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Abstract—Linear systems over the max-plus algebra provide
a suitable formalism to model discrete event systems where
synchronization, without competition, is involved. In this paper,
we consider a formulation of the model matching problem for
systems of such class, in which the output of a given system,
called the plant, is forced, by a suitable input, to track exactly
that of a given model. A necessary and sufficient condition for
its solvability is obtained by making a suitable use of geometric
methods in the framework of systems over the max-plus algebra.

Index Terms—Max-plus systems, discrete event systems, geo-
metric methods, manufacturing

I. INTRODUCTION

Linear systems over the max-plus algebra Rmax were
introduced in [1] as a suitable formalism to model discrete
event systems where synchronization, without competition, is
involved (an in-depth discussion can be found in [2], while
a good summary can be found in [3]). This class of systems
coincides with timed event graphs, which are Petri nets where
all the places have only one upstream and one downstream
transition.

Control problems involving systems over the max-plus alge-
bra are important in many applications, especially in industrial
engineering [4], [5], [6], and a number of analysis and control
techniques have been developed in the last years [7], [8], [9],
[10]. In particular, the development of a structural geometric
approach for linear systems over the max-plus algebra has
been indicated as a promising research direction in [3] and,
since then, several results have been obtained along that line
[11], [9], [12] and [13].

One of the problems considered in the literature consists in
searching for a suitable control law that forces a given plant,
modeled as a linear system over the max-plus algebra Rmax,
to behave accordingly to a given model of the same kind.
Different formulations of this problem, usually referred to as
the model matching problem, have been given in relation to
max-plus systems. In particular, in [14] it is required that the
output of the plant is forced to be greater than or equal to
that of the model in a suitable ordering and the problem is
dealt with by exploiting the properties of monotone formal
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series over a dioid. In [15], the matching condition consists
in minimizing the distance, in a suitable sense, between the
output of the plant and that of a reference model while
delaying as much as possible the control action. The tools
used for solving the problem are based on residuation theory
and some properties of the Kleene star operator. A similar
formulation is considered in [16], where the problem is tackled
by developing a three-block control structure that implements
a precompensation and a feedback action. In a similar vein,
we consider here the problem of forcing the plant to generate
an output that equals that of a given model, giving in this way
a formulation of the problem that more closely mimics the
classical model matching problem for linear systems [17].

The contribution of our study consists in deriving a novel,
simple structural necessary and sufficient condition for the
solvability of the problem, that can be practically checked
under suitable conditions.

The paper is organized as follows. In Section II, we intro-
duce notions and tools of the max-plus algebra and we show
by an example how they can be used to model a class of
discrete event systems as linear systems over Rmax. Moreover,
we formally state the model matching problem we want to
study. Section III contains the main result of this work, that
is a structural geometric necessary and sufficient solvability
condition for the considered model matching problem. An
example is provided in Section IV. Section V contains the
conclusions.

II. BACKGROUND AND PROBLEM STATEMENT

In this section we recall some basic concepts and the cor-
responding notation for max-plus linear systems. An example
is also provided in order to show how a manufacturing system
can be modeled using such formalism.

The max-plus algebra Rmax consists of the set R∪{−∞},
equipped with two operations denoted respectively by ⊕ and
by ⊗ and defined by a⊕ b = max {a, b} for a, b ∈ Rmax and
by a ⊗ b = a + b if a, b belongs to R or by (−∞) ⊗ a =
a⊗ (−∞) = −∞ for any a ∈ Rmax.The neutral element for
⊕ and for ⊗ are denoted respectively by ε and by e and we
have ε = −∞ and e = 0 ∈ R. As ⊗ distributes over ⊕, Rmax

is a semiring.
Semimodules over semirings are analogous to vector spaces

over fields and the aspects of their theory that are considered
in this paper can be dealt with by standard tools of linear
algebra, provided the fact that the elements of Rmax, except
ε, have no inverse with respect to ⊕ is kept into account. An
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introduction to the theory of semimodules over Rmax with
application to the study of max-plus systems can be found in
[18], [11] and [9]. By Rn

max we denote the semimodule over
Rmax consisting of the set of all the n-tuples of elements
of Rmax, or vector, equipped with the component-wise and
the scalar operations defined in a standard way in terms of
⊕ and ⊗. If v and w are vectors of the same dimension,
the relation v ≥ w is understood to hold component-wise.
By abuse of notations, ε ∈ Rn

max will be used to denote the
vector whose components are all equals to ε, also referred
to as the null vector. Subsemimodules of Rn

max are subsets
of elements that are closed with respect to the component-
wise and the scalar operations defined in terms of ⊕ and ⊗.
Subsemimodules will be denoted by script letters, as V ⊆
Rn

max. A set of vectors {v1, ..., vn} ∈ V ⊆ Rn
max is a set

of generators for V if any element x ∈ V can be written as
a linear combination of the vi’s, namely x =

⊕n
i=1 ai ⊗ vi.

Note that not all the subsemimodules of Rn
max have a finite

set of generators and those which enjoy this property are said
to be finitely generated.

In particular, (n×m)-matrices with entries in Rmax can be
viewed as elements of Rn×m

max , so that, given A,B ∈ Rn×m
max and

using subscripts to denote, in a standard way, the elements of
a matrix, their sum A⊕B ∈ Rn×m

max is defined by (A⊕B)ij =
Aij ⊕ Bij . Given A ∈ Rn×m

max and B ∈ Rm×p
max , their product

A ⊗ B ∈ Rn×p
max, or simply AB, is defined by (A ⊗ B)ij =⊕m

r=1Air ⊗ Brj . Analogously, given A ∈ Rn×m
max and a ∈

Rmax, the scalar product a ⊗ A ∈ Rn×m
max , or simply aA, is

defined by (a⊗A)ij = a⊗Aij . If no confusion arises, ε will
also be used to indicate a matrix whose entries are all equal to
ε. The identity matrix, whose diagonal elements are all equal to
e and whose off-diagonal elements are all equal to ε, is denoted
by In, where the subscript denotes the dimension, or simply
by I whenever its dimension is clear from the context. If A is
an n×m matrix the semimodule ImA is the subsemimodule
of Rn

max generated by the columns of A.
In modelling a situation in which events of n different types

may occur, we can consider a so-called n-dimensional dater
function d(.) : N → Rn

max, whose value at k ∈ N is an n-
dimensional vector d(k) = (d1(k), ..., dn(k))> in which the
i-th component di(k) indicates the time instant at which an
event of the i-th type occurs for the k-th time. Dater functions
must be non-decreasing (i.e. such that d(k + 1) ≥ d(k) for
each k ∈ N) in order to have physical meaning.

Using the above notions, we can see a max-plus linear
system Σ as a dynamical object whose evolution is defined
by the equations

Σ ≡


x(k + 1) = Ax(k)⊕Bu(k + 1)

y(k) = Cx(k)

x(0) = ε

(1)

where k ∈ N is the event instance index, x(.) : N → X =
Rn

max is the dater of internal events, u(.) : N → U = Rm
max

is the dater of input events and y(.) : N → Y = Rp
max is

the dater of output events, A ∈ Rn×n
max, B ∈ Rn×m

max , and C ∈
Rp×n

max. Coherently with the usual terminology for dynamical
systems, the semimodules X , U and Y are called, respectively,

Fig. 1. Scheme of the plant.

TABLE I
DATERS AND EVENTS.

u1(k) arrival time of the k-th component of type R1
u2(k) arrival time of the k-th component of type R2
x1(k) completion time of the k-th cycle on the machine M1
x2(k) completion time of the k-th cycle on the machine M2
x3(k)
y(k)

}
completion time of the k-th cycle on the machine M3

the state module, the input module and the output module of
the system. Note that in Σ we have n types of internal events,
that correspond to the n components of x, m types of input
events, that correspond to the m components of u and p types
of output events, that correspond to the p components of y.
The vector x(k) = (x1(k), ..., xn(k))> ∈ Rn

max indicates that
the k-th internal event of type i occurs at time xi(k) and a
similar interpretation holds for u(k) and for y(k). A sequence
{u(k + 1)}k∈N is viewed as an input to Σ, while a sequence
{y(k + 1)}k∈N is viewed as an output of Σ.

Example 1. Two types of components, R1 and R2, are used
in a manufacturing plant. These raw parts are processed by the
machines M1 and M2 respectively, in order to obtain the semi-
finished parts S1 and S2. These intermediate parts are then
assembled together by the machine M3, in order to obtain a
unit of final product F1. The machines M1, M2 and M3 require
1, 2 and 4 time units respectively to execute their processing
cycles. The plant is schematized, from an operational point of
view, in Figure 1. We assume that all the machines involved
can process only one part at a time, and that buffers of infinite
capacity are present at each stage of the plant. Clearly, these
assumptions can be suitably modified, still obtaining a max-
plus linear model.

The only type of event that is triggered internally by the
system, and is visible from outside it, is the “completion of a
cycle by the machine M3”, we will refer to this event as an
output event. Two types of events are triggered by outside of
the system: “arrival of a component of type R1” and “arrival of
a component of type R2”, we refer to them as input events. We
can consider as internal events the ones of type “completion
of a cycle by the machine M1” and “completion of a cycle by
the machine M2”. We can associate a dater function to each
of this events, as reported in Table I.

Clearly, the values u1(k) and u2(k) need to be provided by
some external source, while the values of the other variables
can be computed using appropriate rules. Events of type
“completion of a cycle on the machine M1” can occur only
after the previous activity on M1 has been completed and one
unit of time has elapsed after a new input raw part of type
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R1 has been made available. Assuming that all the activity
starts as soon as possible, we can express this statement by
the following equation:

x1(k + 1) = max {x1(k), u1(k + 1)}+ 1 =
= max {x1(k) + 1, u1(k + 1) + 1}

and, using similar arguments, we have

x2(k + 1) = max {x2(k) + 2, u2(k + 1) + 2}
x3(k + 1) = max {x1(k + 1) + 4, x2(k + 1)

+4, x3(k) + 4}
y(k) = x3(k)

The two above equations are linear in the max-plus algebra
and they can be written as

x1(k + 1) = 1⊗ x1(k)⊕ 1⊗ u1(k + 1)
x2(k + 1) = 2⊗ x2(k)⊕ 2⊗ u2(k + 1)
x3(k + 1) = 4⊗ x1(k + 1)⊕

4⊗ x2(k + 1)⊕ 4⊗ x3(k)
y(k) = x3(k)

or, using a matrix notation and omitting the multiplication
operator as usual, as: x(k + 1) = A0x(k + 1)⊕A1x(k)⊕

B′u(k + 1)
y(k) = Cx(k)

(2)

with A0 =

ε ε ε
ε ε ε
4 4 ε

, A1 =

1 ε ε
ε 2 ε
ε ε 4

, B′ =

1 ε
ε 2
ε ε

,

C =
(
ε ε e

)
.

The first equation of (2), due to the presence of the term
A0x(k+1), describes an implicit relation that has to be made
explicit in order to obtain an expression of the form (1). In the
max-plus algebra, the least solution of the implicit equation
x = Ax ⊕ b (that is: x = max{Ax, b}) can be expressed,
by means of the so-called Kleene star A∗ =

⊕
n∈NA

n
0 , as

x = A∗b, whenever A∗ can be given a meaning. In our case,
thanks to the fact that A0 is lower triangular, we have Ai

0 = ε
for all i ≥ dimA0 (note that this holds in general, provided
that in the plant to be modeled there are no events that cannot
be triggered because of mutual dependence or, in other words,
if there are no cyclic paths in the graph describing the sequence
of the plant’s operations) and therefore we can compute A∗0

getting A∗0 =

e ε ε
ε e ε
4 4 e

. Then, we obtain the following

representation of the form (1) of the considered plant
x(k + 1) = A∗0A1x(k)⊕A∗0B′u(k + 1)

= Ax(k)⊕Bu(k + 1)
y(k) = Cx(k)
x(0) = ε

with A =

1 ε ε
ε 2 ε
5 6 4

, B =

1 ε
ε 2
5 6

, C =
(
ε ε e

)
, and

the condition x(0) = ε is taken accordingly to the derivation
of the explicit form from the least solution of the implicit
equation.
Assuming, for sake of illustration, that raw parts of type R1

and R2 arrive together at the time instant 0 and, again, at the
instant 1 and simulating the evolution of the system, we get:

u(1) =

(
0
0

)
→ x(1) =

1
2
6

 y(1) = 6

u(2) =

(
1
1

)
→ x(2) =

 2
4
10

 y(2) = 10

Remark 1. In the physical world, the (k + 1)-th occurrence
of an event cannot anticipate the k-th one and so, using
dater representations, any input {u(k + 1)}k∈N is as a non-
decreasing sequence. The same must hold for the sequence
{x(k + 1)}k∈N that describes the state evolution and this
implies that the dynamic matrix A in the defining equation (1)
is greater than or equal to the identity matrix In, i.e. A ≥ In,
where In is the n×n-matrix with all elements on the diagonal
equal to e and all other elements equal to ε. Decreasing inputs
or systems with a dynamic matrix that is not greater than the
identity matrix, or anticipative systems, are therefore of little
interest and they will not be considered here.

We now have the tools to formalize the problem we tackle
in this paper.

Problem 1 (Model Matching Problem). Given a linear max-
plus system

ΣP ≡

xP (k + 1) =APxP (k)⊕BPuP (k + 1)
yP (k) =CPxP (k)
xP (0) = ε

(3)

of the form (1), called the plant, and a linear max-plus system

ΣM ≡

xM (k + 1) =AMxM (k)⊕BMuM (k + 1)
yM (k) =CMxM (k)
xM (0) = ε

(4)

of the form (1), called the model, with xP : N → RnP
max,

xM : N → RnM
max, uP : N → RmP

max, uM : N → RmM
max

and yP , yM : N → Rp
max, the Model Matching Problem

(MMP) consists in finding, for all possible non-decreasing
input sequences {uM (k+1)}k∈N of the model, an appropriate
non-decreasing control input sequence {uP (k + 1)}k∈N for
the plant, such that the output {yP (k + 1)}k∈N of this
latter equals the output {yM (k + 1)}k∈N of the model, i.e.
yP (k + 1) = yM (k + 1) for all k ∈ N.

A more restrictive formulation of the MMP is obtained by
requiring that the control signal can be computed as a linear
function of the state of the plant and of the state and the input
of the model, which can be viewed as a feedback map.

Problem 2 (Feedback Model Matching Problem). Given a
plant of the form (3) and a model of the form (4), the Feedback
Model Matching Problem (FMMP) consists in finding, for all
possible non-decreasing input sequences {uM (k + 1)}k∈N of
the model, two appropriate matrices F ∈ RmP×(nP+nM )

max and
G ∈ RmP×mM

max such that the control input sequence {uP (k+
1)}k∈N defined by

uP (k + 1) = F

(
xP (k)
xM (k)

)
⊕GuM (k + 1) for k ≥ 0 (5)
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is a solution for the corresponding MMP.

Remark 2. Since in the given formulation of the FMMP the
entries of F and G are not required to be positive real num-
bers, it may happen that some components of uP (k+ 1) com-
puted by (5) are smaller than some component of uM (k+ 1),
or even that uP (k+1) < uM (k+1). According to the meaning
of the daters uP (.) and uM (.), this implies that, in order to
satisfy the matching requirement, the plant must receive (some
components of) its (k+1)-input before the model has received
(some components of) its (k + 1)-input. Therefore, since the
knowledge of uM (k + 1) is necessary to compute uP (k + 1),
the control law constructed by means of (5) is physically
implementable only if the time at which the model receives
(each component of) its k-input is appropriately known in
advance. For instance, this happens in practice when the
sequence of input events of the model is scheduled in advance
to satisfy some specific requirements or to comply with some
specific policy. In such cases, the value of xP (k) and xM (k)
can be obtained by simulating the joint dynamics, using the
previous states and the scheduled value for uM (k).

III. SOLUTION OF THE PROBLEMS

Given the plant ΣP described by (3) and the model ΣM

described by (4), let us consider the joint internal event dater

xE(.) =

(
xP (.)
xM (.)

)
: N → R(nP+nM )

max and the related joint

dynamics, which is described by the equation

xE(k+ 1) = AExE(k)⊕B1uP (k+ 1)⊕B2uM (k+ 1) (6)

with AE =

(
AP ε
ε AM

)
, B1 =

(
BP

ε

)
, B2 =

(
ε
BM

)
and

xE(0) = ε.
It is possible, then, to reformulate the control problem ex-

pressed in Problem 1 as that of finding, for any input {uM (k+
1)}k∈N, a control input {uP (k + 1)}k∈N that keeps xE(k)

inside the output equalizer subsemimodule K ⊆ R(np+nM )
max

defined by

K = {xE =

(
xP
xM

)
∈ R(np+nM )

max , s. t. CPxP = CMxM}.
(7)

In the framework of max-plus systems, control problems of
this type, in which the control objective is that of constraining
x(k) inside a given subsemimodule, have been considered and
dealt with by employing a structural geometric approach in [9]
and [19].

Remark 3. Viewing {uM (k + 1)}k∈N as a disturbance input
and {uP (k+1)}k∈N as a control input, the above formulation
essentially reduces the MMP to a disturbance decoupling
problem, as it happens in the case of classical linear systems
with coefficients in a field or in a ring. In those cases, it is pos-
sible to consider the difference between the output of the plant
and that of the model and to describe the resulting control
problem as that of keeping the state inside the kernel of such
function [20]. Differences cannot be computed in the max-plus
algebra and, in general, it is not possible to find a matrix CE

such that the output equalizer subsemimodule K defined in

(7) is the kernel of CE , neither using the classical definition
of kernel (i.e. KerA = {x ∈ Rnr

max, such thatAx = ε},
where nr is the number of rows of A), nor the alternative
definition, more convenient in the max-plus case, given by
some authors (see for instance [12]) in terms of congruence
(i.e. Ker = {(x, y) ∈ R2nr

max, such thatAx = Ay}). This
means that it is not possible to associate to the dynamics (6)
a linear output map that represents the difference between the
output of the plant and that of the model. Note, however, that
the output equalizer subsemimodule K defined in (7) is the
pull-back, in the category of modules over Rmax, of the pair
of maps (CP , CM ) and, as such, it generalizes the notion of
kernel of the difference between these two maps [21]. Note
that it would be possible to proceed differently by introducing
the operator �, defined over Rmax by a � b = a − b for
a, b ∈ R, by ε � a = a � ε = a for any a ∈ Rmax and by
ε� ε = e. This, actually makes it possible to write

yE(k) = yP (k)� yM (k) = CPx(k)� CMxM (k) (8)

and the MMP reduces to find, for any disturbance input
{uM (k + 1)}k∈N, a control input {uP (k + 1)}k∈N such that
yE(k) = e for all k ∈ N. However, the output equation (8)
is non linear and it cannot be conveniently handled in this
context. For such reason, we do not follow this approach.

In order to deal with the MMP in the formulation that
consists in keeping xE(k) inside the output equalizer subsemi-
module K it is convenient to make use of a structural geometric
approach that extends those developed for classical linear
systems with coefficients in a field in [22], [23]. Extensions
of such approach to systems with coefficients in a ring [24],
[25], [26] and, then, in a semiring [3], [12], [11], [13], [9]
have been considered by several authors. Here, we recall the
basic notion of controlled invariant subsemimodule for max-
plus linear systems given in [9] and some related results.

Definition 1. Given a max-plus linear system Σ of the form
(1), a subsemimodule V ⊆ Rn

max is said to be an (A,B)-
controlled invariant subsemimodule if for all v ∈ V there exists
u ∈ Rm

max such that (Av ⊕Bu) belongs to V .

Given a max-plus linear system Σ of the form (1) and a
subsemimodule of its state semimodule K ⊆ Rn

max, the set of
all the (A,B)-controlled invariant subsemimodules contained
in K is a semi-lattice with respect to inclusion and sum of
semimodules, so a maximum element, denoted V∗(K), exists.

The sequence of semimodules Vk defined by

V0 = K
Vk = Vk−1 ∩A−1(Vk−1 	 ImB)

(9)

where A−1(Y) = {v ∈ Rn
max, such thatAv ∈ Y} and

Vk−1 	 ImB = {x ∈ Rn
max, for which there existsu ∈

Rm
max such thatx ⊕ Bu ∈ Vk−1}, is such that Vk+1 ⊆ Vk

for all k ∈ N. If we define V∞ = limk→∞Vk =
⋂

k∈N Vk,
then every (A,B)-invariant semimodule contained in K is also
contained in V∞. Moreover, Vk+1 = Vk if and only if Vk is
(A,B)-invariant and in such case V∞ = Vk = V∗(K). As it
happens for systems with coefficients in a ring, the sequence
(9) does not necessarily converge in a finite number of steps
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and therefore it does not provide, in general, an algorithm for
the computation of V∗(K), as its counterpart does for systems
with coefficients in a field [23].

Remark 4. If K is finitely generated, then the semimodules
Vk are finitely generated for all k ∈ N. In fact, given some
finitely generated semimodules Z and Y , the semimodules Y	
Z , A−1(Y), and Y ∩ Z are all finitely generated (see [18,
Corollary 86]). As explained in [9, Remark 1], their generators
can be obtained as the set of solutions of appropriate systems
of linear equations over the max-plus algebra Rmax.

Definition 2. Given a max-plus linear system Σ of the form
(1), a subsemimodule V ⊆ Rn

max is said to be an (A,B)-
controlled invariant subsemimodule of feedback type if there
exists a matrix F ∈ Rm×n

max such that (A ⊕ BF )v belongs to
V for all v ∈ V .

Clearly, (A,B)-controlled invariance of feedback type
implies (A,B)-controlled invariance. In the framework of
systems with coefficients in a field, the two properties are
known to be equivalent [22], [23], but this is not true in the
case of systems with coefficients in a ring [24], [25] or in a
semiring [9] and, in particular, in the case of the max-plus
systems considered here.

We can now state the main result of this work, that is
a necessary and sufficient condition for the existence of a
solution to the MMP.

Theorem 1. Given a plant ΣP of the form (3) and a model
ΣM of the form (4), assume that AP ≥ InP

and AM ≥ InM
.

Then, the related MMP is solvable if and only if for all

x ∈ ImB2 = Im

(
ε
BM

)
there exists y ∈ ImB1 = Im

(
BP

ε

)
such that x ⊕ y belongs to V∗(K), where V∗(K) is the
maximum (AE , B1)-invariant semimodule contained in the
output equalizer semimodule K defined by (7).

Proof. If. By (AE , B1)-controlled invariance of V∗(K), it
follows that given xE(k) ∈ V∗(K), there exists u1(k + 1) ∈
RmP

max such that AExE(k)⊕B1u1(k + 1) belongs to V∗(K).
Moreover, by hypothesis, given uM (k + 1) ∈ RmM

max, there
exists u2(k+1) ∈ RmP

max such that B1u2(k+1)⊕B2uM (k+1)
belongs to V∗(K). We can then construct recursively a control
input {uP (k + 1)}k∈N for the dynamics (6) as

uP (k + 1) =

{
u2(1) for k = 0

u1(k + 1)⊕ u2(k + 1)⊕ uP (k) for k > 0
(10)

More precisely, we start by taking u2(1) such that B1u2(1)⊕
B2uM (1) ∈ V∗(K) and we set uP (1) = u2(1). Then, we
compute xE(1) by means of (6), xE(0), uP (1) and uM (1),
and we take u1(2) and u2(2) such that AExE(1)⊕B1u1(2) ∈
V∗(K) and B1u2(2)⊕BMuM (2) ∈ V∗(K). We set uP (2) =
u1(2) ⊕ u2(2) ⊕ uP (1) and we iterate the same procedure
increasing by 1 the index k at each step. Note that the sequence
{uP (k+ 1)}k∈N, thanks to the presence of the term uP (k) in
the second equation of (10), is non decreasing and it gives rise

to the following state evolution

xE(k+1) =


AExE(0)⊕B1u1(1)⊕B2uM (1) for k = 0

AExE(k)⊕B1u1(k + 1)⊕ (B1u2(k + 1)
⊕B2uM (k + 1))⊕B1uP (k) for k > 0

(11)
In equation (11), the term B1uP (k) is irrelevant, since, by
induction, we have xE(k) ≥ B1uP (k) and hence, thanks to
the assumption AE ≥ I , also AExE(k) ≥ B1uP (k). Then,
disregarding this last term, we can show by induction that
the state evolution {xE(k)}k∈N given in (11) is contained in
V∗(K). In fact, xE(0) = ε belongs to V∗(K). Moreover, by the
definition of u1(.) it follows that the summand (AExE(k)⊕
B1u1(k + 1)) in the right-hand term of (11) is contained in
V∗(K) if xE(k) is contained in V∗(K). Finally, the second
summand (B1u2(k+1)⊕B2uM (k+1)) in the right-hand term
of (11) is contained in V∗(K) by the definition of u2(k + 1).
Since V∗(K) ⊆ K, by the definition of K given in (7), it
follows that the output {yP (k+1)}k∈N of the plant generated
by the input {uP (k + 1)}k∈N defined by (10) is equal to the
output {yM (k + 1)}k∈N of the model generated by the input
{uM (k + 1)}k∈N and the MMP is solved.

Only if. If the condition of the theorem does not hold,
there exists an input vector ūM such that B2ūM ⊕ B1uP /∈
V∗(K) for any uP ∈ RmP

max. Then, for the constant input
{uM (k + 1)}k∈N with uM (k + 1) = ūM for k ∈ N,
we have, from (6), that xE(1) = AExE(0) ⊕ B1uP (1) ⊕
B2uM (1) = AEε ⊕ B1uP (1) ⊕ B2ūM = B1uP (1) ⊕ B2ūM
does not belong to V∗(K) for any value uP (1) ∈ RmP

max

and also xE(1) ≥ B2ūM . The latter inequality, thanks to
the assumption AE ≥ I , implies recursively xE(k + 1) =
AExE(k) ⊕ B1uP (k + 1) ⊕ B2uM (k + 1) = AExE(k) ⊕
B1uP (k + 1) ⊕ B2ūM = AExE(k) ⊕ B1uP (k + 1), while
the fact that xE(1) does not belong to V∗(K) implies that
for any input {uP (k + 1)}k∈N there exists k̄ ∈ Z such
that xE(k̄ + 1) = AExE(k̄) ⊕ B1uP (k̄ + 1) /∈ K. In
other words, xE(k + 1) cannot be kept indefinitely inside the
subsemimodule K and, as a consequence, the MMP cannot be
solved.

Remark 5. The condition expressed by Theorem 1 can be
equivalently written, using the 	 operator introduced in (9),
as ImB2 ⊆ V∗(K)	 ImB1 and it can be practically checked
using the same techniques described in Remark 4.

For the feedback version stated in Problem 2, we can state
the following solvability condition.

Theorem 2. Given a plant ΣP of the form (3) and a model
ΣM of the form (4) as in Theorem 1, the related FMMP is solv-
able if and only if there exists an (AE , B1)-invariant subsemi-
module V of feedback type contained in the output equalizer

subsemimodule K such that for all x ∈ ImB2 = Im

(
ε
BM

)
there exists y ∈ ImB1 = Im

(
BP

ε

)
with x⊕ y ∈ V .

Proof. If. Let V ⊆ K be an (AE , B1)-invariant subsemi-
module of feedback type for which the condition of the
theorem holds. Then, by hypothesis, there exists a matrix F
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such that for each xE(k) ∈ V , (AE ⊕ B1F )xE(k) belongs
to V and a matrix G such that the columns of the matrix(

ε
BM

)
ImM

⊕
(
BP

ε

)
G =

(
BPG
BM

)
belong to V . We can

then construct recursively a control input {uP (k+ 1)}k∈N, of
the form (5), for the dynamics (6) as

uP (k + 1) = FxE(k)⊕GuM (k + 1) (12)

More precisely, we start by taking uP (1) = FxE(0) ⊕
GuM (1) = GuM (1). Then, we compute xE(1) by means
of (6), xE(0), uP (1) and uM (1), and we take uP (2) =
FxE(1)⊕GuM (2). We iterate the same procedure increasing
by 1 the index k at each step. The sequence {xE(k+ 1)}k∈N
that is generated, together with {uP (k + 1)}k∈N, during the
iteration, is non-decreasing, since AE ≥ InP+nM

. Since also
{uM (k + 1)}k∈N is assumed to be non-decreasing, the input
{uP (k+1)}k∈N turns out to be non-decreasing. The resulting
state evolution

xE(k+1) = (AE⊕B1F )xE(k)⊕
(
BPG
BM

)
uM (k+1) (13)

clearly evolves in V ⊆ K and, hence, the MMP is solved.
Only if. Assume that the FMMP is solved by a control law of

the form (5). Then, the set of reachable states for the dynamics
(13) is an (A,B)-invariant subsemimodule of feedback type
contained in K that contains all the columns of the matrix(
BPG
BM

)
=

(
ε
BM

)
ImM

⊕
(
BP

ε

)
G. This clearly implies the

condition of the theorem.

Remark 6. The solvability condition for the FMMP given
in Theorem 2 is stronger than the solvability condition for
the MMP given in Theorem 1, since any (A,B)-controlled
invariant of feedback type V contained in K is also contained
in V∗(K) due to the maximality of the latter, and V∗(K) is not
necessarily of feedback type. Therefore, the solvability of the
FMMP implies the solvability of the MMP and any solution
of the first is a solution also of the second. In particular, if
the solvability condition given in Theorem 2 is satisfied, the
solution {uP (k+1)}k∈N given by (12), being non-decreasing,
can be expressed as

uP (k+ 1) =

{
GuM (1) for k = 0

FxE(k)⊕GuM (k + 1)⊕ uP (k) for k > 0
(14)

Letting u1(k + 1) = FxE(k) and u2(k + 1) = GuM (k +
1), (14) shows that the procedure indicated in the proof of
Therorem 2 provides the same control input we can have from
(10) in the proof of Theorem 1.

Remark 7. In practice, the condition of Theorem 1 can be
checked and the elements u1(k+1), u2(k+1) that are needed
in (10) to construct the control input {uP (k + 1}k∈N can be
found by solving systems of linear equations over the max-
plus algebra Rmax that involve the matrices AE , B1, B2 and
the generators of V∗(K). The same holds for the condition
of Theorem 1 and for the matrices F , G that are needed in
(12). Since inverses with respect to ⊕ do not exist in Rmax, the

general systems of linear equations in the vector indeterminate
ξ over Rmax one has to deal with takes the bilateral form

Mξ ⊕ α = Nξ ⊕ β (15)

where M , N are known matrices and α, β are known
vectors of compatible dimensions with elements in Rmax (see
[2]). Computational problems that arise in dealing with such
systems of equations are illustrated in [18], [9]. Elimination
methods can be applied to find solutions, as described in [9]
and in [27], possibly with the aid of a dedicated Scilab®

toolbox [28]. An example of how to deal in practice with the
computations involved in solving the FMMP is given in the
following section.

IV. EXAMPLE

In this section we provide an example to illustrate the
previous results.
Let us consider a plant ΣP of the form (3) described by

ΣP ≡


xP (k + 1) =

(
e e
2 e

)
xP (k)⊕

(
2
e

)
uP (k + 1)

yP (k) =
(
e e

)
xP (k)

xP (0) = ε

and a model ΣM of the form (4) described by

ΣM ≡

 xM (k + 1) = 3xM (k)⊕ 4uM (k + 1)
yM (k) = xM (k)
xM (0) = ε

The related joint dynamics is given by

xE(k + 1) = AExE(k)⊕B1uP (k + 1)⊕B2uM (k + 1)

with xE =

(
xP
xM

)
and

AE =

e e ε
2 e ε
ε ε 3

 , B1 =

2
e
ε

 , B2 =

εε
4


The output equalizer subsemimodule K is easily seen to be
given by the set of vectors in R3

max whose last component is
equal to the maximum of the first two components, namely

K = {

x1x2
x3

 ∈ R3
max with max{x1, x2} = x3} (16)

and we also have K = ImK = Im

e ε
ε e
e e

. Note that K is

not AE-invariant, since e.g.

e e ε
2 e ε
ε ε 3

eε
e

 =

e2
3

 does

not belong to K, but it can be proved to be (AE , B1)-invariant
of feedback type and, hence, V∗(K) = K.
To show that K is (AE , B1)-invariant of feedback type,
we need to solve the two sided linear max-plus system of
equations

(AE ⊕B1F )K = KQ (17)

whose set of solutions (F,Q) is a finitely generated max-plus
set [9]. This can be done, first, by rewriting (17) as a system
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of max-plus linear equations in the vector indeterminate ξ of
the form (15) and, then, by solving it by implementing the
technique presented in [27]. To accomplish the first step, let
us consider separately each column Ki, with i = 1, 2, of K
in the left-hand side of (17), so obtaining a set of equations
of the form

(AE⊕B1F )Ki = AEKi⊕B1FKi = KQi for i = 1, 2. (18)

Now, for the max-plus product FKi, we can write FKi =

∆(K>1 ,K
>
2 )f where f is a vector in R(nM+nP )mP

max that
consists of all the columns of F stacked on top of each other
in lexicographic order and ∆(K>1 ,K

>
2 ) is a block-diagonal

matrix in RmP×((nP+nM )mP )
max whose diagonal blocks are all

equal to K>i . Substituting in (18), we get

B1∆(K>1 ,K
>
2 )f ⊕AEKi = KQi for i = 1, 2 (19)

that is an equation of the form (15) with ξ =(
f
Qi

)
∈ R(nP+nM )mP+2

max , M =
(
B1∆(K>1 ,K

>
2 ) ε

)
∈

R(nP+nM )×((nP+nM )mP+2)
max , α = AEKi ∈ RnP+nM

max , N =(
ε K

)
, β = ε, and N and β have the same dimensions of

M and α, respectively.
Using elimination methods, as mentioned in Remark 7, it is
possible to find a solution of (19) and then a solution

(F,Q) = (
(
1 1 ε

)
,

(
3 3
2 1

)
)

of (17) (we do not report here the single elementary steps
of the computation, but the reader can easily verify that the
pair (F,Q) given above solves (17)). In particular, the control
law uP (k + 1) = FxE(k) keeps inside K any state evolution
which starts in K.
The condition of Theorem 2 is satisfied for V = V∗(K) = K.
In fact, any x ∈ ImB2 is of the form x = B2 a =εε

4

 a =

 ε
ε

4 + a

 with a ∈ Rmax and, taking y = B1 b =2
e
ε

 b =

2 + b
b
ε

 with b = 2a ∈ Rmax, we have that

x ⊕ y =

4 + a
2 + a
4 + a

 belongs to K. In particular, the columns

of the matrix
(

ε
BM

)
ImM

⊕
(
BP

ε

)
G =

(
BPG
BM

)
=

2G
G
4


belongs to K for G = (2). Hence, according to the proof of
Theorem 2, a solution to the FMMP turns out to be given by
the control law

uP (k + 1) = FxE(k)⊕GuM (k + 1)
= (1 1 ε)xE(k)⊕ 2uM (k + 1)
= 1xP1(k)⊕ 1xP2(k)⊕ 2uM (k + 1)

(20)

that is of the form (5). In fact, by substituting uP (k+ 1) with
the above expression in the joint dynamics (6) we getxP1(k + 1)
xP2(k + 1)
xM (k + 1)

 =

3 3 ε
2 1 ε
ε ε 3

xP1(k)
xP2(k)
xM (k)

⊕
4

2
4

uM (k+1)

and

yP (k + 1) = xP1(k + 1)⊕ xP2(k + 1)
= 3xP1(k)⊕ 3xP2(k)⊕ 4uM (k + 1)
= 3yP (k)⊕ 4uM (k + 1),

yM (k + 1) = xM (k + 1)
= 3xM (k)⊕ 4uM (k + 1)
= 3yM (k)⊕ 4uM (k + 1).

From the last expression, since xP (0) = xM (0) = ε, it is
easy to see by induction that {yP (k + 1)}k∈N is equal to
{yM (k+1)}k∈N. Obviously, the found solution of the FMMP
is a solution also of the MMP and, as explained in Remark 6,
the control law (20) satisfies the requirement of Problem 1.

V. CONCLUSIONS

A natural formulation of the matching problem for max-
plus systems has been given and the problem has been tackled
in the framework of the geometric approach. This provides
solvability conditions that basically extend those originally
found in the framework of classical linear systems, showing,
in particular, the validity and the potential of the geometric
approach also for this class of systems. Future work will
consider the extension of the methods and of the results
to max-plus systems that have a switching structure and
can therefore model the behaviour of real plants in varying
operational conditions.
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