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Otolith biomineralization results from biochemical processes
regulated by the interaction of internal (physiological) and
external (environmental) factors which lead to morphological
and ultrastructural variability at intra- and interspecific levels.
The aim of this study was to conduct a multi-scale analysis of
the sagittal otoliths of the Merlucius merlucius (European hake)
from the western Adriatic Sea in order to correlate otolith
features with fish ontogeny and sex. We show that otoliths of
sexually undifferentiated (non-sexed) individuals having a fish
body total length (TL) less than 15 cm had faster growth in
length, width, area, perimeter, volume and weight and a
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higher amount of organic matrix compared with otoliths of sexually differentiated individuals
(females and males) having a fish size range of 15–50 cm. Most importantly, with increasing fish
TL, female saccular otoliths contained a higher number of protuberances and rougher surface
compared with male specimens, which showed more uniform mean curvature density. The
differences between females and males discovered in this study could be associated with fish
hearing adaptation to reproductive behavioural strategies during the spawning season. The
outcomes of this research provide insights on how size and sex-related variations in otolith features
may be affected by fish ecological and behavioural patterns.
/journal/rsos
R.Soc.Open

Sci.9:211943
1. Introduction
Otoliths, or ear stones, are three dense paired calcium carbonate (CaCO3) structures within a proteinaceous
matrix, contained in three chambers associated with the inner ear of teleosts [1]. Otoliths act as
mechanoreceptors involved in hearing through the detection of particle motion [2,3]. The size and shape
of otoliths probably influence the frequencies that can be detected and the sensitivity (auditory
threshold) to those frequencies [4]. Thus, the wide variability in ear morphologies and otoliths of fishes
is probably linked to the diversity in hearing mechanisms and capabilities among different species [2].
Otoliths form during embryo development and continue to grow in incremental layers of CaCO3 in an
organic matrix [5]. Consequently, otolith structure can also vary substantially during fish growth [6] in
response to both physiological and ecological ontogenetic changes, and/or to differences in the acoustic
environment related to diverse habitats occupied by juveniles and adults. Indeed, otoliths record the
specifics of the physico-chemical environment experienced by a fish at any given point in its life and
also provide information about its physiology related to ontogeny and feeding [7,8]. However, to date,
only few investigations have focused on the relation between the morphological and ultrastructural
differences of otoliths and the ecomorphological adaptations of the auditory system to habitat features
such as water depth, feeding modalities, spatial niches and mobility [5,9–11].

The European hake (Merluccius merluccius) is a major component of the demersal fish assemblages
and is distributed over a wide depth range (20–1000 m) throughout the Mediterranean Sea and the
northeast Atlantic region [12]. The hake is an important predator of deeper-shelf, upper-slope
Mediterranean communities. Previous studies, which were also conducted by experimental trawl
surveys carried out in the Mediterranean [13], have observed a different bathymetric distribution
during the ontogenesis of this species, while no differences were highlighted between females and
males [14–16]. Juvenile hakes are mostly found around 170–220 m depth, intermediate hakes reach the
highest abundance mainly on the continental shelf with a preference for shallower depths (70–100 m),
especially when they reach 18–20 cm length [14,15,17]. Large hakes (greater than 36 cm) are found in
a wide depth range but concentrate on the shelf break during the spawning period. Migration of
juvenile hake from nursery areas on the shelf break and upper slope to the mid-shelf [17] is induced
by a change in trophic requirements [18]. During its early life, the hake feeds on small crustaceans
(Euphausiacea), where shrimp are among the most common preys in the muddy bottom communities
of the Mediterranean Sea [15]. Subsequently, juvenile hakes migrate from the nursery areas to the
parental stock, and when they reach a total length between 18 and 32 cm, they gradually change their
diet towards pelagic and necto-benthic fish such as Sardina pilchardus and Engraulis encrasicolus
[15,16]. These preys inhabit the coastal continental shelf and form schools usually deeper than 25 m
[12]. Moreover, such trophic shifts coincide with an increase in the area of the inner ear of hake
responsible for the detection and localization of objects, which takes place approximately at the critical
size of 14–15 cm and could be important in detecting mobile prey such as fish [19]. Indeed, although
hakes are demersal fishes, they feed typically upon fast-moving pelagic prey caught in mid-water or
near the surface at night, undertaking daily vertical migrations [20,21]. Growth induces a continuous
qualitative and quantitative change in diet that is reflected in the increasing mean weight of prey [15].
The shift toward large fish prey usually occurs slightly before maturity, the life-history stage with
much higher energetic demands due to gonadal development [22]. Thus, increased energy demands
related to sexual requirements, gonadal development and breeding activity appear to be the critical
factors driving the changes in feeding strategy of Merluccius merluccius. Furthermore, in large hakes
(greater than 36 cm), also cannibalism has been observed, probably in response to a great accessibility
of conspecifics in the same area [23]. Nevertheless, most of the literature reports no difference in
feeding habits between females and males [15,24].
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The hake M. merluccius should be capable of vocalizing, as highlighted by the presence of paired
drumming muscles for sound production located at the anterior wall of the swim bladder, similar to
those found in known vocal fish species [25]. The same study also observed a sexual dimorphism in
the drumming muscles during the spawning period of this species. In fact, only the drumming
muscles from males are hypertrophied, while in females this effect is not observed, suggesting that
adult males may increase the vocalizations in the context of spawning, like the males of other
previously studied gadoids [25].

This multi-scale study investigated the sagittal otoliths characteristics of the M. merluccius from the
central western Adriatic Sea. The first hypothesis is that different habitat distribution and feeding
habits during the ontogenesis can leave a fingerprint in otolith characteristics that might provide clues
related to hearing eco-functional adaptations to different environments and/or ecology during hake
growth. To provide knowledge that could help in unravelling the challenging issue of ‘how sagitta
morphology and structure varies regarding fish’s ecological features and lifestyle (e.g. bathymetric
distribution, habitat, feeding strategy and mobility pattern)?’ we performed an integrated comparison
analysis of the morphometry, morphology and structure of otolith of sexually undifferentiated
individuals (having gonads not macroscopically distinguishable and fish total length (TL) below the
critical size of 15 cm) with data of sexually differentiated fishes (female or male with a size greater
than 15 cm).

The second hypothesis concerns the sex-specific developmental pattern of the drumming muscles
during the spawning season of hake previously seen in another study, which probably reflect different
sound production associated with the calls in the reproductive behaviour of male with respect to
female [25]. Consequently, it is reasonable to think that females exhibit auditory features capable of
detecting the advertisement calls of males, since acoustic communication may play a crucial role in
reproductive interactions [26]. Furthermore, the otolith features have an important role in fish hearing
capabilities, and in particular, the morphology of otoliths is known to bring a functional significance.
Although recent studies have focused on understanding the relationship between otolith features (e.g.
biometry, morphology, density) and fish response to acoustic signals, [27–31], little is still known
about the shape/structure-dependent otolith motion in response to harmonic waves. Therefore, it is
interesting to compare otolith characteristics between conspecifics which share the same ecological
context in order to exclude the otolith shape heterogeneity that can be determined by environmental,
or/and ecological difference. In the context of the species investigated in this study, we performed an
accurate description of the sagittae for sexually differentiated individuals (females versus males) to
assess whether differences exist in otolith characteristics that could be related to hearing adaptation
associated with acoustic communication in context of spawning.

The aims of this study were to: (i) correlate the morphometric (using two-dimensional image
scanning programs), morphologic (by two-dimensional image scanning programs shape descriptors
and micro-CT scans analysis), structural (through porosimetry technique) and compositional (by X-ray
diffraction, thermogravimetric analysis and spectroscopy) otolith features with fish ontogeny and sex,
(ii) verify whether there are any differences among undifferentiated, female and male otoliths which
could be related to hearing adaptations to different habitats or behavioural contexts, and (iii) provide
a new micro-CT scan-based approach developed using Python in combination with Visualization
Toolkit libraries to investigate otolith shape curvature and perimetral irregularities (protuberances),
displaying features not revealed with the canonical methods based on two-dimensional images.
2. Material and methods
Otoliths’ biometry, two-dimensional contour, three-dimensional shapes, density and porosity,
mineralogic composition, organic matrix content and incorporated elements were assessed.
Furthermore, a new approach based on micro-CT scans was developed to investigate the overall
curvature of otolith surface and to detect and count the protuberances of the contours, providing a
methodological advancement toward the establishment of a reproducible, accurate and manual error-
free measurement of three-dimensional otolith shapes. Merluccius merluccius was selected for the study
for the following reasons: (i) it is a widely distributed, commercially important species in the
Mediterranean Sea; (ii) otolith extraction more easily compared with other species, (iii) otolith data
from other geographical areas in the Mediterranean Sea are available, (iv) it is a target species in
which different methodologies have been applied, and (v) ecological and behavioural characteristics
during ontogenesis and sexes make this species suitable to test adaptation to different habitat.
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2.1. Sample collection
A total of 210 M. merluccius (61 non-sexed and 149 sexed) were collected from commercial catch, by
benthic trawlers, longlines and gillnets, on May 2018 in the western Adriatic Sea, off the San
Benedetto del Tronto coast (N 42°5206.05600 E 14°33043.2900, electronic supplementary material, figure
S1). In the Mediterranean Sea, M. merluccius has three genetic clusters corresponding to the western,
central and eastern Mediterranean populations [20,32,33]. Previous genetic studies based on molecular
markers have not consistently defined a subdivision within western Adriatic hake stocks [34,35],
therefore the samples used in this study were considered as belonging to the same fishing stocks.

For each specimen, fish total length (TL ± 1 cm) and weight (TW± 1 g) were measured, and a
macroscopic inspection of gonads was conducted to sex the fish. Sex categories were based on the sex
maturity codes used by MEDITS-Handbook (2017) [36]. Undifferentiated or non-sexed fish showed
inactive gonads. These fish are commonly referred to as juveniles [37] with less than 15 cm TL.
Differentiated or sexed fish were 66 males (M) and 83 females (F) showing developed gonads and a
body length greater than 15 cm TL.

Both sagittal otoliths were manually removed making a transverse cut with knife from the dorsal side
of the fish head deep enough to reach the otic capsule. Then the head was flexed as if hinged near the
snout, exposing the otic capsule and the otoliths which were then removed using forceps, cleaned from
tissue with 3% H2O2 for 15 min and then washed with Milli-Q water, dried and stored inside Eppendorf
microtubes. For the following analysis, the right otoliths were arbitrarily chosen since no scientific
evidence suggests a side dimorphism in otoliths in this species [38].
43
2.2. Otolith biometry, morphology and structural parameters
Fish of a body length range of 6.9 to 45. 5 cm TL were included in the 210 otolith analyses based on digital
images. These images were taken from a DCM 500 usb 2.0 5 MP linked to a Wild Heerbrugg M5A
microscope. However, only 148 images of otoliths (40 non-sexed fish, 61 females and 47 males) were
used to calculate structural parameters by buoyant weight. The relationships of otolith parameters with
fish TL were determined for undifferentiated, females, males and for all the individuals combined
(electronic supplementary material, tables S1–S2). Details on biometry, morphology and structural
parameters are provided in the electronic supplementary material.
2.3. Otolith composition
For the mineral characterization of the samples analyses were conducted by X-ray powder diffraction
(XRD) and Fourier transform infrared spectroscopy (FTIR). The otolith organic matrix and water
content were assessed by thermogravimetric analysis (TGA) performed on powdered samples.

For the XRD analyses, the air-dried samples were ground in a mortar to obtain a fine and
homogeneous powder (grains smaller than 100 µm) that was then loaded on a low background silica
holder. XRD analyses were performed on 34 otoliths (eight undifferentiated, 13 females and 13 males)
using a PANanalytical X’Pert Pro powder diffractometer equipped with X’Celerator detector
(electronic supplementary material, figure S3).

FTIR analyses were conducted on samples previously used for the diffractometric analysis, by using a
Nicolet FTIR 380 spectrometer working in the range of wavenumbers 4000–400 cm−1 at a resolution of
2 cm−1. This technique was used to confirm the X-ray powder diffraction data.

An estimation of the organic matter content for 35 powered samples (nine undifferentiated, 14
females and 12 males) was performed by TGA on a SDT Q600 simultaneous thermal analysis
instrument (TA Instruments, electronic supplementary material, figure S4). Details on the XRD, FTIR
and TGA procedures are provided in the electronic supplementary material.
2.4. Analysis of otolith microchemistry
Elemental analyses were conducted on powdered samples of six undifferentiated, nine females and nine
males using induced coupling plasma-optical emission spectroscopy (ICP-OES). The analyses were
performed on otoliths previously treated to remove surface contamination. Details are provided in the
electronic supplementary material.
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2.5. Morphological analysis on three-dimensional reconstruction of otoliths based on
microcomputed tomography imaging

To investigate the three-dimensional shape of a subset of 24 otolith samples, high-resolution
microcomputed tomography (micro-CT) scans were acquired with a GE Phoenix X-ray Nanotom S
(electronic supplementary material, figure S5). The dataset consisted of six immature individuals and
18 adult samples, split in nine females and nine males having the same fish TL, in order to remove
the impact of the different fish body size units and avoiding the standardization step. The isotropic
voxel sizes in the scans varied from 2.024 to 8.333 μm depending on the actual size of the investigated
otolith sample. Details on the procedure are extensively reported in the electronic supplementary
material.

2.6. Statistical analysis
The relationships between otolith parameters (length, OL; width, OW; perimeter, OP; area, OA;
circularity, OC; aspect ratio, OAR; roundness, OR; solidity, OS; volume, OV; weight, Oweight; micro-
density, Omicro; bulk density, Obulk; porosity, Oporo; organic matrix, OM%) and TL were determined
for undifferentiated, females, males and for all the individuals combined [39]. The best fits with the
data to describe the relationships between otolith variables and fish somatic growth were first
evaluated by curve estimation regression for three different curve models (linear, power and
exponential, electronic supplementary material, table S3). When the best fitting was defined with
nonlinear functions (power or exponential models) y = axb or y = aebx, ‘y’ is the otolith parameter, ‘x’ is
fish length, ‘a’ is the factor and ‘b’ is the exponent. The parameters ‘a’ and ‘b’ were estimated through
the linear regression analysis on log-transformed data: log (y) = log (a) + b log (x) (for power models)
and log (y) = log (a) + bx (for exponential model). The relationships between otolith parameters and
fish size were determined first for the entire group of individuals and then separately for
undifferentiated, females and males, so that four growth curves were derived for each parameter
(table 1, electronic supplementary material, table S4). The significance of the correlation was verified
using Pearson’s correlation coefficient. The statistical differences in regression slopes among groups
were examined using a double approach to strengthen the analyses: comparing the confidence
intervals of regression coefficients and checking the slopes of regression relationships through the
analysis of covariance (ANCOVA). Post hoc tests after ANCOVA provided specific information on
which regression lines were significantly different from each other in slope (table 1). Finally, principal
component analysis (PCA) based on correlation matrix between groups was used to identify which
otolithic biometric (length, width, perimeter), morphologic (circularity, aspect ratio, roundness,
solidity, area) and structural (micro-density, porosity, bulk density, organic matrix content and initial
temperature of degradation of CaCO3) parameters among the three otolith groups (undifferentiated,
female and male) were more related to each other (electronic supplementary material, figure S11).
Statistical analyses were performed using SPSS 20.0 and PAST 3 software.
3. Results
3.1. Otolith biometry, morphology and structural parameters
Curve regression analyses (linear, power and exponential) were performed for testing the best fitting
model for describing the general relationship for each dependent variable (parameters) with fish TL
(electronic supplementary material, tables S3 and S4).

The results of the relationships between otolith length, width, area with fish TL among the three fish’s
groups showed differences (ANCOVA) between non-sexed and differentiated fishes, while no differences
were highlighted between the females and males (table 1). The regression coefficients of undifferentiated
fishes were significantly higher compared with males’ and females’ ones. There was significant difference
in otolith perimeter–fish TL relationship among the three groups with a higher value of the regression
coefficient in undifferentiated, followed by females and lastly the males’ one.

Furthermore, the relation between otolith area and otolith perimeter showed a higher value of the
regression coefficients in females’ samples with respect to males’ (table 1). For the circularity index,
the correlation analysis with TL was significant only for undifferentiated and females and did not
show differences in the regression coefficient between these two groups. The correlation analyses of
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the aspect ratio and roundness with fish TL were significant only in female. Concerning the solidity
shape index, the correlation analysis was significant in females and males and the post hoc test did not
show differences in the regression slopes between the two sex categories. The relationships between
otolith volume with fish TL showed that the regression coefficients of undifferentiated fishes were
significantly higher compared with males’ and females’ ones, while no differences were highlighted
between the sexes (table 1).

Concerning the otolith structural parameters (micro-density, bulk density and porosity), otolith micro-
density increased with increasing fish TL, from 2.64 g cm−3 at fish TL of 13.5 cm to 2.82 g cm−3 in
individuals of 44.6 cm (table 2, electronic supplementary material, figures S4 and S6). Also, bulk density
correlated positively with fish size, while porosity showed an opposite trend (electronic supplementary
material, table S4 and figure S6). The bulk density correlated negatively with porosity while micro-
density was positively correlated with bulk density (electronic supplementary material, figure S7).

The content of organic matrix (OM wt%) decreased as fish TL increased (electronic supplementary
material, figure S8; table 2, electronic supplementary material, table S4). Furthermore, a negative
correlation between organic matrix content and both bulk density and micro-density was observed
(electronic supplementary material, figure S9). The TGA profiles of most of the otolith samples
contained two or three events with weight loss in the temperature range 130°C to 460°C (electronic
supplementary material, figure S4). The initial temperature of decarbonation of CaCO3 is also reported
(electronic supplementary material, figure S8; table 2) and there was a shift toward lower initial
decarboxylation temperatures with increasing fish TL. No differences in otolith composition (100%
aragonite) were found in undifferentiated, females and males (electronic supplementary material,
figure S3). However, the measure of full width at half maximum (FWHM) values from the diffraction
patterns showed a change in crystallite size with fish TL, with the presence of smaller crystallites in
undifferentiated than in differentiated fishes (electronic supplementary material, figure S10).

Biplots of the principal component analysis (PCA) on the correlation matrix between the three groups
representing the undifferentiated, female, and male otolith categories of the M. merluccius individuals are
given in electronic supplementary material, figure S11. The first two axes (PC1 and PC2) of the PCA plots
(electronic supplementary material, figure S11) showed a partial separation of otolith between the three
groups representing the undifferentiated, female and male otolith categories of the M. merluccius
individuals investigated. In particular, PC1 (electronic supplementary material, figure S11 a: approx.
84%, b: 79%, c: approx. 78%) separated the undifferentiated from differentiated through the otolith
variables of length, width, area, perimeter, solidity, porosity, organic matrix content (OM%) and T° of
CaCO3 decarbonation. Whereas PC2 slightly separated undifferentiated and males (which showed a
wider overlapping area) otolith circularity, aspect ratio, bulk-density parameters from females (a: 16%,
b: approx. 21%, c: approx. 22%).

3.2. Analysis of otolith microchemistry
In four out of six undifferentiated samples the concentration of trace elements resulted under the
detection limits of the instrument not allowing the statistical analysis (electronic supplementary
material, table S5). For nine females’ and nine males’ otoliths the concentration of 12 trace elements
(Ba, Ca, Co, K, Li, Mg, Mn, Na, P, S, Sr and Zn) are reported in absolute concentrations (µg g−1,
electronic supplementary material, table S6) and normalized to Ca (µmol mol−1, electronic
supplementary material, table S7). Statistical analyses were conducted for each element but didn’t
reveal any differences in the quantitative analysis (ANOVA, p > 0.05, electronic supplementary
material, table S6). Differently, the metal : Ca molar ratio values showed a significant difference in K/
Ca and Na/Ca between sex (ANOVA, p < 0.05, electronic supplementary material, table S7). Moreover,
a unique pool of individuals was then taken in account in this analysis (females +males; electronic
supplementary material, figure S12). For all the elements, except K/Ca, Mn/Ca and Na/Ca, a
negative correlation between the element and fish TL was observed, with a higher concentration of
these elements in smaller adult sizes (electronic supplementary material, figure S12).

3.3. Morphological analysis on three-dimensional reconstruction of otoliths based on
microcomputed tomography imaging

The otolith three-dimensional reconstructions based on micro-CT imaging (figure 1, electronic
supplementary material, figure S5) of non-sexed fishes showed fewer perimetric irregularities, no
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internal or proximal face external or distal face

undifferentiated
fish TL = 82 mm

female
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male
fish TL = 400 mm

500 µm 

1 mm
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(c)

Figure 1. (a) Representative surface reconstruction of otolith’s internal and external face by Marching Cubes algorithm visualized
with ParaView. Fish TL means fish total length. (b) Representative images of detected protuberances (separated by colour) on
proximal face (at the top) and sagittal plane (at the bottom) of a reconstructed otolith. (c) Otolith’s sample of female (at the
top) and male (at the bottom) of M. merluccius. The fish TL for both specimens is 300 mm. Otolith length is 14.6 and
14.4 mm in female and male, respectively. Note the difference in the shape and in the dentate protuberances along the
perimeter (more pronounced in female). Otolith perimeter is 45.0 and 38.1 mm in female and male, respectively, while otolith
area is almost the same between female (59 mm2) and male (60 mm2).
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prominent branching-like protuberances, and a flat shape from the lateral view (figure 1, electronic
supplementary material, figure S5). Instead, otoliths of sexed fishes showed a more elaborate
structure, with a high number of irregularities on both the internal and external surfaces (figure 1,
electronic supplementary material, figure S5). The curvature of the internal face tended to become
more pronounced as the length of the fish increased, assuming an evident convex shape for the older
samples (electronic supplementary material, figure S5). The number of otolith protuberances increased
as fish grew (figure 2) and between females and males of equal fish TL the number of detected otolith
protuberances was consistently higher for females. Peaks in the distribution H (mean curvature)—
acquired via kernel density estimations (KDE)—for male otoliths were higher than those in females
(figure 2). The peakedness (third moment of the density curve) decreased from top to bottom (less
peaked shape) in female otoliths as fish grew (electronic supplementary material, figure S13).
4. Discussion
The study of eco-functional modifications in relation to changes in otolith features during fish growth is
still at its infancy. In this study, we provided regression models describing the ontogenetic variation in
otolith biometry, morphology, structural parameters (i.e. micro-density, bulk density, porosity, organic
matrix content, crystallite size) and elemental composition of representative otolith samples from
non-sexed and differentiated fishes of size range between 6.9 and 45.5 cm fish TL.

Under a same increase in fish TL, undifferentiated individuals (6.9 cm < TL < 15.0 cm) had a
more pronounced increase in otolith length, width and perimeter compared with differentiated ones.
We observed a higher concentration of organic matrix in otoliths of undifferentiated fishes compared
with differentiated ones, which could explain the higher growth rates observed in the former
compared with the latter. Indeed, the organic matrix contains various organic compounds (e.g.
proteins, amino acids, collagens, proteoglycans) which are known to guide temporally and spatially
the biomineralization process controlling and promoting the crystallites nucleation, orientation
and growth [40–42]. Furthermore, the number of touching branch-like structures (referred to as
protuberances) increased with fish TL. These differences suggest a heterogeneous distribution of the
organic matrix, which can reflect a non-homogeneous deposition of CaCO3 along the surface of the
otolith during fish growth [43]. Previous investigations performed on other species showed a decrease
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Figure 2. (a) Number of detected protuberances per fish total length for 24 samples. For females and males, a pairwise comparison
of equal fish TL was performed. (b) Comparison of distribution plots by kernel density estimation (KDE) for H (mean curvature) on
the surface for all female and male otoliths. The distribution for females contains considerably more positive H values in comparison
with males (the female curve is shifted to the right). A comparison between distribution plots of H for males and females of equal
fish length (see electronic supplementary material) shows the peaks of male otoliths to be consistently higher than its female
counterparts. Consequently, the H values on male otoliths are more uniform, which indicates a smoother surface. This is also
reflected by the difference in the number of detected protuberances.
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in otolith organic matrix content during fish ontogenesis and reported that the decrease in organic matrix
content could be related to the change in trophic strategies [44,45]. Accordingly, the reduction in organic
matrix content with fish growth, could be related to: (i) changes in feeding strategies and diet that occur
during the life cycle ofM. merluccius [8], (ii) reduction in feeding rates associated with energy demanding
processes (e.g. sexual maturation and spawning) which could affect the biosynthesis of organic matrix
macromolecules and their entrapment within the growing biomineral [46]. Since the mineralogic
investigations have revealed uniform compositions (CaCO3 in aragonite form) regardless of fish TL,
the decrease in otolith organic matrix with fish size could also explain the increase in micro-density
from undifferentiated to differentiated fishes as the organic matrix has a lower density compared with
aragonite [47]. Bulk density also increased with fish size, probably as the combination of increased
micro-density and decreased apparent porosity. The ontogenetic variations in otolith biometric,
morphological, structural and compositional parameters were also confirmed by the PCA analysis on
the correlation matrix among the three otolith categories. Variations in otolith shape and structure
during the ontogenesis can be associated with differences in terms of sound detections (structure–
function relationship). The micromechanics of the tensors-associated masses (excrescences, roughness,
furrows) of otolith shape and the otolith density may influence the acoustic stimulation and,
consequently, modify the hearing capabilities in relation to fish size [27,30,48]. Otolith crystalline
features also changed with fish size. Earlier studies have shown that the time-dependent distribution
of a protein involved in the formation of otoliths (Starmaker-like protein) can have a significant effect
on the crystallite size of growing crystals [42]. Therefore, the increment in aragonite crystallite size
during otolith growth observed in M. merluccius could depend on variations in organic matrix
composition [42]. Concerning otolith microchemistry, most of the investigated trace elements
(element : Ca molar ratio) showed a negative correlation with fish size (Ba, Co, Li, Mg, P, S, Sr, Zn)
which could depend on: (i) different water chemistry associated with water depth (Sr and Ba) [49],
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probably related to fish migration, and consequently (ii) shift in dietary sources (S) [50], and (iii)
ontogenetic changes of the organic matrix content (P and Zn) [51]. Although most of the ontogenetic
changes in otolith morphology and structure highlighted in M. merluccius could be the result of
ecological adaptations to different habitats and/or trophic strategies, further acoustic and ecological
studies must be carried out to assess the relations of structure–functionality associated with our
observations.

Micro-CT imaging analysis resulted as a valuable approach to detect otolith protuberances and to
quantify the amount of overall surface curvatures (ripples) of M. merluccius otoliths. The integration of
the use of regression analysis of two-dimensional shape descriptors with a new method designated to
analyse the otolith three-dimensional curvature from micro-CT images revealed for the first time a
sexual dimorphism in the shape of sagittal otoliths in M. merluccius. Under a same increase in otolith
area, females showed a higher increase in perimeter than males. The indices of circularity, roundness
and aspect ratio with fish TL showed a higher amount of irregularities (dentate protuberances) in the
contour and a more elliptical shape in otoliths from females compared with males. The morphological
results obtained by the canonical two-dimensional image scanning programs were also corroborated
by computational analyses based on micro-CT scans which highlighted the presence of a higher
number of protuberances in the otolith of females in comparison with males of equal fish TL. In
addition, the comparison of distribution plots by kernel density estimation (KDE) for H (mean
curvature) on the otoliths surface of males and females of equal fish length showed that the peaks of
male otoliths were consistently higher than its female counterparts. Consequently, the H values on
otoliths were more uniform for males indicating smoother surfaces with respect to female, which
instead were characterized by more wrinkled surfaces. Since no evidence of a spatial segregation
between sexes has been reported so far [14–16], female and male fishes probably cohabit the same
environment and are subject to the same exogenous factors. Therefore, the otolith shape dimorphism
is probably less related to environmental factors and probably more influenced by genetically and
physiologically controlled factors [6,52]. The differences highlighted between male and female otolith
shapes may have a functional meaning linked to the sexual dimorphism of sound-generating muscles
(drumming muscles) previously observed in this species [25]. Nonetheless, further studies aiming to
establish the shape/structure–function relationships in otoliths are needed to confirm the hypothesis
of an adaptive role in female’s otolith related to the perception of male calls in the spawning context.
5. Conclusion
This study reports variations in otolith shape, morphology, structure and composition during hake
(M. merluccius) ontogenesis. We revealed for the first time a sexual dimorphism in the otolith shape of
hakes from the same geographical area by using a computational method developed to analyse otolith
three-dimensional shape based on micro-CT scans.

The economic importance of hakes for European fishery makes this species subject of fish population
studies in which establishing the sex of the specimens is a common practice. In such context, our study
provides the basis for a new methodology for sex identification in hake specimens unrelated to gonadal
inspection. This approach based on otolith sex dimorphism can be useful when fish gonadal tissues are
unavailable due to damage or degradation (e.g. freezing), or to evaluate sex of preys from otoliths
recovered from stomach of predators.
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