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Abstract. Federal student loans are fixed-rate debt contracts with three main special features: (i)
borrowers can use income-driven schemes to make payments proportional to their income
above subsistence; (ii) after several years of being in good standing, the remaining bal-
ance is forgiven but taxed as ordinary income; and (iii) accrued interest is simple, i.e.,
not capitalized. For a very small loan, the cost-minimizing repayment strategy dictates
maximum payments until full repayment, forgoing both income-driven schemes and for-
giveness. For a very large loan, the minimal payments allowed by income-driven schemes
are optimal. For intermediate balances, the optimal repayment strategy may entail an
initial period of minimum payments to exploit the noncapitalization of accrued interest,
but when the principal is being reimbursed maximal payments always precede minimum
payments. Income-driven schemes and simple accrued interest mostly benefit borrowers
with very large balances.
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1. Introduction. In the United States, student loans today are a leading com-
ponent of nonmortgage household debt, accounting for liabilities of over $1.7 trillion,
triple their size fifteen years ago, and exceeding both auto loans ($1.3 trillion) and
credit card balances ($0.9 trillion).1 The bulk of such loans is issued by the fed-
eral government through various schemes, which give borrowers a plethora of repay-
ment options, such as income-driven repayment, consolidation, deferral, forbearance,
forgiveness---even the recent pandemic suspension. The combination of all these fea-
tures makes student loans very unusual debt contracts, more akin to financial deriva-
tives than fixed-income products, and leaves individual borrowers with contracts that
are extremely hard to understand and manage optimally, even for graduates with
advanced degrees.
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Federal loans make funds available to students to cover their tuition and living
expenses. A few months after graduation or withdrawal, students are responsible for
repaying their debts, and here the repayment puzzle begins. Student loan balances
grow at a national fixed rate (which depends on the origination date of the loan) and
can be repaid in full over a fixed horizon (typically ten years), while a borrower is free
to make additional payments at no penalty, similar to a mortgage. Yet student loans
have three main peculiar features that distinguish them from other debt.

First, borrowers can enroll in income-driven repayment schemes, whereby monthly
payments are due only if their income is above a certain subsistence threshold and
are proportional to the amount by which it exceeds such a threshold. Second, after a
number of years of qualifying payments (usually 20 or 25), the remaining balance is
forgiven, but the forgiven amount counts as taxable income, hence generates a large
final tax liability.2 Third, if income-driven repayments are not enough to cover interest
on the loan, accrued interest is not added to the principal balance, i.e., interest is not
capitalized.3

These peculiar features create significant incentives to delay payments: income-
driven schemes allow borrowers to minimize present payments and have the balance
eventually forgiven. Simple (i.e., noncapitalized) interest implies that the outstanding
balance is divided in two: the principal, which accumulates interest at the loan's
rate, and accrued interest, which does not produce interest. The main countervailing
incentive is the loan rate, which is typically higher than the borrower's discount
rate and accumulates throughout the life of the loan, thereby leading to a larger tax
liability. Also, forgiveness may not be relevant for a small loan, as minimum payments
may extinguish its balance before it becomes eligible for forgiveness.

Overall, the complexity of student loan repayment options creates an intricate
tradeoff between the benefits of late repayments (forgiveness and simple interest) and
their costs (accrued interest), which depend on the loan size relative to income, the
loan rate and the borrower's discount rate, the forgiveness horizon, and the income
tax rate. The goal of this paper is to understand this tradeoff and find the optimal
repayment strategy for a borrower who wishes to minimize the loan's cost, i.e., the
present value of future repayments.

If the loan is so large (or the income so low) that even maximum payments cannot
erode the principal, the optimal strategy is to make minimal payments indefinitely,
thereby taking advantage of negative amortization, because simple interest is tan-
tamount to a separate, interest-free loan on all accrued interest, which will also be
forgiven. (Put differently, the total balance increases linearly, not exponentially, over
time.)

If the loan is so small (or the income so high) that even minimum payments
do cover interest, then noncapitalization is irrelevant, and the remaining tension is
between forgiveness and compound interest. On one hand, a borrower is tempted to
delay repayments until the loan is forgiven and only taxes on the forgiven balance are
due. On the other hand, the loan rate is much higher than the borrower's discount
rate; hence the cost of delaying payments increases exponentially with the forgiveness
horizon, potentially offsetting its ostensible savings. If the remaining loan life is short,

2The American Recovery Act passed in March 2021 made student loan forgiveness tax-free
through 2025, but not from 2026 onwards. An exception is the Public Sector Loan Forgiveness
Program, for which forgiveness is tax-free after ten years, without expiration.

3Capitalization of interest takes place at consolidation, after a period of deferment or forbearance,
or at other specific events. For the Income-Contingent Repayment scheme, interest does capitalize
annually, but only up to 10\% of the initial loan balance.
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the benefits of forgiveness override interest costs, and hence minimum payments are
still optimal; otherwise, maximum payments are optimal up to a critical horizon.

The critical horizon is the time at which the benefits of forgiveness equal interest
costs: repaying an extra dollar today spares the borrower from paying taxes on its
forgiven future value, i.e., principal plus interest. If both the loan and the tax rates
are high, and forgiveness is far away, then it is best to maximize payments for some
time, until the critical horizon, when the remaining life of the loan shortens to the
point that the savings from extra payments are null. Then minimal payments through
income-driven schemes are optimal because forgiveness is so close that any additional
payment increases the cost of the loan.

Despite the sheer size of student loan debt and its proximity to academia, the
problem of finding cost-minimizing repayment strategies has not received much at-
tention in the academic literature. Although it is common knowledge that borrowers
with large balances and a relatively low tax rate are better off enrolling in income-
driven repayment plans, thereby paying the minimum required by the scheme, typical
student resources tend to recommend continued enrollment in such schemes, rather
than considering the possibility of a period of maximum payments, which we find to
be optimal under certain conditions.

In the United States, student loans were first introduced in the postwar period,
and their growth accelerated after the establishment of Sallie Mae in 1973. Student
loans are now a mainstream scheme to finance higher education, and the Depart-
ment of Education estimates that there are nearly 45 million student debt holders
in the U.S., with 2.5 million borrowers owing more than $100,000 each.4 While stu-
dent loans have the merit to expand access to higher education, research in the past
decade has also brought potential demerits to light. Recent empirical work finds that
higher balances of student loans contribute to reducing home ownership [12], inhibit-
ing propensity to entrepreneurship [7] and public sector employment [14], delaying
marriage [5], postponing parenthood [15] and enrollment in graduate or professional
degrees [11, 16], and increasing cohabitation with parents [1, 4]. Similarly controver-
sial is the interaction between student loans and tuition: [10] shows that an increase
in the subsidized loan maximum leads to a sticker-price increase in tuition of about
60 cents on the dollar, thereby suggesting that colleges (rather than students) may be
the beneficiaries of a large fraction of government loan subsidies. (This is the so-called
Bennett hypothesis, named after William Bennett, who publicly formulated the link
between student loan availability and tuition fees as Secretary of Education in 1987.)

This paper contributes to the understanding of student loans by finding the cheap-
est repayment strategy that accounts for income-driven repayment and forgiveness.
When the loan is very large or very small, we also account for simple interest. For
intermediate balances, the complete characterization of the optimal strategy with
income-driven repayment, forgiveness, and simple interest remains an open problem
that currently requires numerical optimization for specific parameter values.

We focus on the minimization of the cost of the loan because, a priori, it is con-
sistent with the maximization of the net worth of a household. A posteriori, the
cost-minimizing strategy also offers significant protection to negative shocks through
income-driven repayment. In principle, deviating from cost minimization would be
justified when an alternative strategy would offer lower risk, but our result suggests
that potential improvements in this regard may be rather limited. Indeed, the central

4And each of the top hundred borrowers owes more than $1 million; see https://www.wsj.com/
articles/mike-meru-has-1-million-in-student-loans-how-did-that-happen-1527252975.
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risk reduction that can be achieved in student loans is through income-driven repay-
ment schemes, which allow monthly payments to be proportional to income above
subsistence, thereby partially hedging income fluctuations. However, our results show
that enrollment in such schemes is already optimal for large loan balances (for which
the potential risk reduction is largest), for the purpose of minimizing costs---even ne-
glecting their hedging potential. Put differently, income-driven schemes reduce both
costs and risk, which means that the minimization of these two quantities is largely
aligned. A partial tradeoff between cost and risk is present when the cheapest strategy
entails a period of maximum payments. In this case, the borrower could postpone
maximum payments at the price of increased repayment costs over the lifetime of the
loan, while only reducing risk for the period by which maximum payments have been
postponed.

Our findings rely on some assumptions that make the model tractable and its
solution accessible. Our model is intentionally deterministic, for two reasons: First,
and foremost, deterministic analysis is more accessible, and is in fact central to stu-
dents' decision making, as attested by the typical online comparison tools, which do
not entertain randomness.5 Second, the scarcity of literature on optimal repayment
of student loans suggests that this problem should be first understood in the simplest
form that specifies its central elements. This paper offers such an analysis: it extends
the results in [6], which considered the effects of income-driven repayment and loan
forgiveness, by including also simple interest, which is an important aspect of loans
with large balances. (We are very grateful to Erik Kroll [8] for bringing this feature
to our attention.)

In addition, we do not model certain actions that may be available to borrow-
ers, such as deferment, forbearance, consolidation, delinquency, death, or refinancing
through a private loan. Some of these actions are possible only when certain events
occur in the borrower's life. Others, such as delinquency, tend to increase student-loan
liabilities and reduce access to credit, while private-loan refinancing entails forgoing
income-driven repayments and forgiveness.

The issue of delinquency and default deserves some discussion. Student loans,
unlike other unsecured debt such as credit card balances, cannot be discharged in
bankruptcy except in very rare circumstances [13], while borrowers' wages can be
garnished for life. As a result, delinquency on student loans does not reduce the
borrower's liabilities; instead, it adds collection fees to the loan's balance and signifi-
cantly reduces access to credit by impairing the debtor's credit score. In addition, a
borrower with subsistence income (or no income at all) can remain in good standing
without making payments by enrolling in income-driven repayment schemes, thereby
avoiding delinquency at no cost. Empirical work on student loan defaults confirms
that defaults are difficult to reconcile with borrowers' optimal choices, and may be
due to borrowers' insufficient information about their options [3]. Using individu-
ally identifiable information on student loan borrowers, [2] finds that ``the majority
of distressed student borrowers have their loans in disadvantageous repayment plans
even when eligible for more advantageous options."" In particular, [9] finds that over
30\% of student loans of $5,000 or less are in default, even though they would be paid
in full in ten years with monthly payments below $100 (and without income-driven
schemes). Also, delinquencies tend to decrease as loan balances increase, contrary to
the incentives of strategic default. For these reasons, the model in this paper does not

5See https://studentloanhero.com/calculators/, https://smartasset.com/student-loans/student-
loan-calculator, and https://www.calculator.net/student-loan-calculator.html, among others.
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entertain delinquency, as its aim is to identify optimal repayment strategies rather
than explain observed defaults. Put differently, our focus is normative rather than
positive.

The tax treatment of student loans is also worth mentioning. Unlike mortgage
interest, which is fully tax-deductible, student loan interest is deductible up to $2,500
and only if the borrower's income is below $70,000 (the deduction is fully phased out
above $85,000).6 Thus, the tax benefit varies across taxpayers, but for each taxpayer
with a minimal loan amount such a benefit is virtually constant across strategies, and
therefore has no marginal effect in the choice of the optimal strategy. For this reason,
the model in this paper does not incorporate the tax benefit explicitly.

Finally, it is worth discussing how the prospect of partial debt cancellation may
affect present repayment strategies. The model in the paper does not include this
feature explicitly, because the sheer uncertainty on the details of cancellation policies
would force any quantitative analysis to rely on arbitrary assumptions. Qualitatively,
however, the possibility of debt cancellation is equivalent, on average, to a lower
student loan rate, with the reduction equal to the probability of cancellation per unit
of time, multiplied by the fraction of debt canceled.7 As a result, the prospect of
cancellation tends to bolster minimum payments in the early stages of repayment.

The rest of this paper is organized as follows: Section 2 describes in detail the
statement of the main result and discusses its quantitative implications. Section 3 dis-
cusses the effect of simple accrued interest, obtaining the optimal repayment strategy
for very large or small balances, and deriving some necessary conditions for optimal-
ity. Section 4 contains the rigorous mathematical proof of the main result in [6]---the
case of capitalized interest, which is relevant for small loan balances---first reducing
the search for optimal strategies to a class of max-min strategies, and then identifying
the optimal ones within this class. Section 5 contains new results that account for
simple interest, characterizing the optimal repayment strategy for very large or very
small balances, and offering two necessary conditions satisfied by optimal strategies.
Concluding remarks are in section 6.

2. Model and Main Result. This section presents the complete solution of the
optimal repayment problem in the presence of forgiveness and income-driven schemes.
The next section additionally accounts for simple accrued interest.

A student graduates with a loan balance of x > 0 and seeks the repayment
strategy \alpha that minimizes the present value of future payments, discounted at some
rate r > 0, which represents the opportunity cost of money, i.e., the alternative safe
return that could be obtained on any dollar used to pay off the loan. For example, a
household with a mortgage may ponder whether to increase mortgage or student loan
payments, and hence the mortgage rate is a close approximation to the household's
discount rate. For a household without other debt, the discount rate represents the
return on a safe investment.

The loan carries an interest rate of r+\beta , higher than the discount rate (i.e., \beta > 0),
which means that paying off the loan earlier entails lower compounding costs.8 Thus,
denoting by \alpha t the chosen repayment rate at time t, the loan balance b\alpha t evolves over

6See https://www.irs.gov/pub/irs-pdf/p970.pdf.
7This insight is in analogy to the hazard and recovery rates in the valuation of defaultable bonds.
8The case of a household with debt that carries a higher interest rate than student loans, such

as credit card debt, is somewhat trivial, as the borrower's optimal policy is to pay off such debt first.
Thus, we focus on the case of a positive spread \beta .
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time according to the dynamics

db\alpha t = (r + \beta )b\alpha t dt - \alpha tdt, b0 = x > 0.(2.1)

The student loan also includes a forgiveness provision, whereby at some future
horizon T > 0 the remaining balance b\alpha T of the loan is forgiven, but then taxed at
rate \omega \in (0, 1), whence a payment of \omega b\alpha T is due at time T . Such a provision encour-
ages delaying payments as the forgiveness horizon approaches, thereby countering the
compounding motive.

The payment rate at time t is constrained to the range m(t) to M(t), which
depends on the borrower's income, with m(t) reflecting the minimum payment due
under income-driven repayments, and M(t) the maximum payment that accommo-
dates other living expenses without incurring debt, such as credit card balances, which
carry a higher rate than that of student loans. Specifically, for any x > 0 and Lebesgue
measurable \alpha : [0, T ] \rightarrow [0,\infty ), the present value of future payments is

(2.2) J(x, \alpha ) :=

\int \tau 

0

e - rt\alpha tdt+ e - r\tau \omega b\tau ,

where

\tau := inf\{ t \geq 0 : bt = 0\} \wedge T(2.3)

is the time when the loan is either paid in full or forgiven. The goal is to minimize
the present value of future payments, i.e.,

(2.4) v(x) := inf
\alpha \in \scrA 

J(x, \alpha ),

where the set of admissible repayment strategies is defined as

\scrA := \{ \alpha : t \mapsto \rightarrow \alpha t is Lebesgue measurable with m(t) \leq \alpha t \leq M(t) for 0 \leq t \leq T\} 

for some Lebesgue integrable m,M : [0, T ] \rightarrow (0,\infty ) satisfying m(t) < M(t) for all
t \in [0, T ]. The main result describes the optimal repayment strategy in relation to
the loan's parameters.

Theorem 2.1. Define the critical horizon as

(2.5) tc :=

\biggl( 
T +

log\omega 

\beta 

\biggr) +

\in [0, T ),

and let x\ast :=
\int t\ast 

0
e - (r+\beta )sM(s)ds > 0, where the time t\ast \in (tc, T ) is the unique

solution to

(2.6)

\int t\ast 

tc

e - rsM(s)(1 - \omega e\beta (T - s))ds =

\int T

tc

e - rsm(s)(1 - \omega e\beta (T - s))ds.

Then, for any x > 0, the strategy \alpha \ast \in \scrA defined as

\alpha \ast 
t :=

\Biggl\{ 
M(t)1[0,tc](t) +m(t)1(tc,T ](t), t \in [0, T ], if x > x\ast (max-min),

M(t), t \in [0, T ], if x \leq x\ast (max)
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Fig. 1 Left: Critical balance x\ast (contours), above which the max-min strategy is cheaper than the
max repayment strategy, against loan spread \beta (horizontal, in percent) and discount rate
(vertical, in percent). Right: Cost-to-balance ratio (vertical) against loan balance (horizontal)
for PLUS loans ( 7.54\% rate), with discount rate of 3\% (solid) and 6\% (dashed). Parameters:
Forgiveness horizon T = 25, annual growth of income and poverty level g = 4\%, tax rate
\omega = 40\%, minimum and maximum payments are 10\% and 30\% of income above subsistence
of $32,000.

attains the minimum loan value. Also, v(x) = v1(x) for x > x\ast and v(x) = v2(x) for
x \leq x\ast , where

v1(x) :=

\int tc

0

e - rsM(s)ds+

\int T

tc

e - rsm(s)ds

+ \omega e\beta T

\Biggl( 
x - 

\int tc

0

e - (r+\beta )sM(s)ds - 
\int T

tc

e - (r+\beta )sm(s)ds

\Biggr) 
,(2.7)

v2(x) :=

\int tM

0

e - rsM(s)ds, where tM > 0 satisfies x =

\int tM

0

e - (r+\beta )sM(s)ds.

(2.8)

The message of this result is straightforward: the cheapest repayment strategy
mandates maximum payments when the initial balance is sufficiently low (x < x\ast ,
``max"" strategy). Otherwise (x > x\ast , ``max-min"" strategy), maximum payments
are in order before the critical horizon tc in (2.5), at which point enrollment in the
income-driven scheme takes place, implying minimum payments thereafter. If the
critical horizon is zero (for example, if either the tax rate or the interest rate spread
is very low), then enrollment is immediate, and minimum payments span the entire
life of the loan (i.e., the ``max-min"" boils down to ``min""). The critical balance x\ast 

that separates these two regimes is precisely the unique balance which yields the same
repayment cost under both strategies.

The left panel of Figure 1 displays the critical balance x\ast as a function of the
borrower's discount rate r and the loan spread \beta , and shows that its dependence on
these rates is highly nonlinear. The critical balance is particularly sensitive to the
discount rate r, with low rates making it optimal to repay large balances early, and
high discount rates encouraging deferral. The intuition is clear: a borrower with a
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higher opportunity-cost of capital has a stronger preference to later payments because
they entail a lower sacrifice in return.

Note also that the ostensible complexity of calculating the critical balance x\ast is
not a significant obstacle for a borrower who wishes to choose the cheapest repayment
strategy: in practice, the borrower only needs to compare the cost of the max and
max-min strategies, choosing the cheaper one. An important corollary of this result is
that only large loan balances, those above x\ast , benefit from income-driven repayment
schemes. Instead, smaller balances should be paid off as early as possible through
maximum payments.

To better understand this issue, the right panel of Figure 1 plots the cost-to-
balance ratio for PLUS loans for discount rates 3\% and 6\%, representative of borrowers
with different credit scores. Discount rates have a minor impact on the valuation of
small loan balances, leading to noticeable differences only after enrollment in income-
driven schemes becomes optimal. Indeed, a higher discount rate lowers the enrollment
threshold x\ast , significantly decreasing the borrowing cost per unit of balance. Once
such a threshold is exceeded, the marginal cost of any additional borrowed dollar is
exactly \omega e\beta T and the additional balance affects payments neither in the ``max"" nor
in the ``min"" periods of the loan.

In summary, the marginal cost of borrowing increases with the balance until en-
rollment in income-driven repayment becomes optimal. At that point, the marginal
cost of additional borrowing drops to the constant \omega e\beta T , as the average cost of bor-
rowing gradually declines to the same constant. Thus, an implication of income-driven
repayment schemes is that the average unit cost of borrowing is higher for medium
balances than it is for very high balances. As the next section shows, this conclusion
is made even stronger by the practice of noncapitalization of interest, which further
reduces the cost of borrowing for large balances.

3. Simple Interest. The noncapitalization of interest, which is typical of most
student loans in income-driven repayment plans, introduces an additional complica-
tion for the optimization problem, as it requires keeping track of the amount of unpaid
principal p\alpha t in addition to the total balance b\alpha t (i.e., principal plus accrued interest).
Because the principal can be repaid only after any accrued interest has been paid off,
the dynamics of the loan is described by the following:

db\alpha t = ((r + \beta )p\alpha t  - \alpha t)dt, b0 = x > 0;(3.1)

p\alpha t = inf
0\leq s\leq t

b\alpha s .(3.2)

The first equation states that the loan balance increases by the loan rate times the
remaining principal, as prescribed by simple interest with negative amortization, and
decreases at the current repayment rate. The second equation identifies the current
principal as the running minimum of the loan balance, reflecting the priority of accrued
interest relative to the principal.

To understand the impact of simple interest, it is useful to introduce the following
definition. For any x > 0 and a strategy \alpha \in \scrA , define the first time of principal
repayment as

(3.3) \theta (\alpha ) := inf \{ t \in [0, T ] : p\alpha t < x\} ,

following the convention that inf \emptyset = T . For \alpha s = M(s) (resp., m(s)) for all s \in [0, T ],
the corresponding times are denoted by \theta (M) (resp., \theta (m)) for \theta (\alpha ). Hence, (3.1)--
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(3.2) imply that

(3.4) p\alpha t = x for t \in [0, \theta (\alpha )].

That is, an admissible strategy \alpha \in \scrA repays only the interest portion of the loan by
time \theta (\alpha ). At time \theta (\alpha ), all previously unpaid interest has finally been paid off and
the principal portion of the loan is next in line for repayment.

The next lemma shows how to improve a strategy, depending on the value of \theta (\alpha ).

Lemma 3.1. For any x > 0 and \alpha \in \scrA ,
(i) if \theta (\alpha ) = T , then J(x,m) \leq J(x, \alpha );
(ii) if \theta (\alpha ) < T , then there exists a unique t0 \in [0, \theta (\alpha )] that satisfies

(3.5)

\int \theta (\alpha )

0

\alpha sds =

\int t0

0

m(s)ds+

\int \theta (\alpha )

t0

M(s)ds.

Moreover, \alpha \in \scrA defined by

(3.6) \alpha t := m(t)1[0,t0](t) +M(t)1(t0,\theta (\alpha )] + \alpha t1(\theta (\alpha ),T ](t) \forall 0 \leq t \leq T

satisfies \theta (\alpha ) = \theta (\alpha ) and J(x, \alpha ) \leq J(x, \alpha ).

Part (ii) implies that any strategy that starts with negative amortization (i.e., for
which \theta (\alpha ) > 0) can be improved by first minimizing and then maximizing payments
before the principal is repaid. Furthermore, part (i) stipulates that if the principal is
never repaid before forgiveness, then permanent minimal payments reduce costs. As
an immediate corollary, if a loan is so large that even maximal payments would never
erode the principal, then minimal payments are optimal.

Corollary 3.2. For any x > 0,
(i) if \theta (M) = T , then \alpha \ast 

t := m(t), t \in [0, T ], is optimal for (2.4).
(ii) if \theta (m) = 0 and m(t) is nondecreasing, then \alpha \ast in Theorem 2.1 is optimal

for (2.4).

The above result is relevant for those large loans, typical of graduate or profes-
sional degrees, which (i) carry a high interest rate, and (ii) do not result in immediate
high earnings upon graduation. For such loans, the first few years necessarily result
in negative amortization, accumulating a large balance of accrued interest that must
be repaid before the principal. In such cases, even if subsequent increases in income
would allow maximal payments to exceed interest, unless past accrued interest can
also be repaid before forgiveness, then it is optimal to keep payments to the minimum
for the entire life of the loan. (Hence such loans should be valued accordingly.)

Instead, when even the minimum payments of an income-driven scheme generates
positive amortization, the analysis in the previous section applies because p\alpha t = b\alpha t for
all \alpha \in \scrA and t \in [0, T ].

Lemma 3.1 improves a strategy \alpha \in \scrA by optimizing the repayment of accrued
interest. The next lemma, on the other hand, examines how to more efficiently repay
the principal portion of the loan. Mathematically, it offers an additional necessary
condition for optimality by stipulating that when a strategy is repaying principal
over a time interval [a, c], on that interval maximum payments should always precede
minimum payments.

Lemma 3.3. Fix any x > 0 and \alpha \in \scrA with \theta (\alpha ) < T . Suppose that there exist
a, c \in [\theta (\alpha ), T ] with a < c such that t \mapsto \rightarrow p\alpha t is strictly decreasing on [a, c]. If \alpha \in \scrA 
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does not belong to the collection

\scrB [a,c] := \{ \alpha \in \scrA : \exists s0 \in [a, c] s.t. \alpha t = M(t)1[a,s0] +m(t)1(s0,c](t) for a.e. t \in [a, c]\} ,

then there exists u \in (a, c) such that \alpha (u) \in \scrA defined by

(3.7) (\alpha (u))t := \alpha t1[0,a](t) +M(t)1(a,u](t) +m(t)1(u,c](t) + \alpha t1(c,T ](t) \forall t \in [0, T ]

satisfies J(x, \alpha (u)) < J(x, \alpha ).

This lemma implies that when an optimal strategy is in positive amortization
(i.e., it is repaying the principal), then payments should be first maximal and then
minimal. Otherwise, it can be improved by altering repayment rates so that they
are initially maximal and then minimal. In particular, repaying a loan through a
constant repayment rate cannot be optimal, unless such a constant happens to be
the maximum payment that a borrower can afford. As constant repayments are the
default for student loans, this observation indicates that inaction is unlikely to be
optimal for any borrower.

Finally, it is worth highlighting the stark difference that simple interest makes in
the marginal cost of very large loans. As observed above, once a loan becomes large
enough, the repayment strategy does not change, and the only marginal effect of a
higher balance is through the increased tax liability at the forgiveness horizon. In the
case of compound interest (section 2), the present value of an additional dollar is then
\omega e - rT e(r+\beta )T = \omega e\beta T , which is insensitive to the discount rate r.

By contrast, in the case of simple interest the marginal cost of an additional
dollar borrowed becomes \omega e - rT (1 + (r + \beta )T ), which reflects the present value of
linearly increasing accrued interest and depends on both the discount rate and the
loan spread separately. The difference between these formulas can be very significant;
for example, with r = 3\%, \beta = 4\%, \omega = 40\%, T = 25, the marginal cost is $1.09 with
compound interest, but it decreases to $0.52 with simple interest. As the discount
rate increases, simple interest becomes even more advantageous, making additional
balances increasingly inconsequential.

4. Proofs for Section 2. This section contains the proof of Theorem 2.1 (the
main result in [6]), which identifies the cheapest repayment strategy in relation to the
initial balance in the case of compound interest.

First, Lemma 4.2 reduces the search for the optimal strategy to the class of
strategies with maximum, followed by minimum payments (with the latter possibly
absent). Next, Propositions 4.3, 4.4, and 4.5 together demonstrate that the optimal
strategy must be either \alpha 1

t := M(t)1[0,tc](t) + m(t)1(tc,T ](t) or \alpha 2
t := M(t). Finally,

Lemma 4.6 compares the costs of \alpha 1 and \alpha 2, establishing Theorem 2.1 at the end of
this section. The discussion begins by observing a simple expression for the remaining
balance (2.1) in terms of the initial balance and the discounted value of repayments.

Remark 4.1. For any measurable \alpha : [0, T ] \rightarrow [0,\infty ), the unique solution to (2.1)
is

(4.1) bt = e(r+\beta )t

\biggl( 
x - 

\int t

0

e - (r+\beta )s\alpha sds

\biggr) 
, t \geq 0.

Indeed, the claim follows by integrating the equality

d(e - (r+\beta )sbs) = e - (r+\beta )s\{  - (r + \beta )bsds+ dbs\} =  - e - (r+\beta )s\alpha sds.
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The next result shows that it is sufficient to consider repayment strategies of a
very specific form: repaying first at the maximum rate M(t) and then at the minimum
rate m(t).

Lemma 4.2. For any x > 0, v(x) = inf\alpha \in \scrB J(x, \alpha ), where

\scrB := \{ \alpha \in \scrA : \exists t0 \geq 0 s.t. \alpha t = M(t)1[0,t0](t) +m(t)1(t0,T ](t) for a.e. t \in [0, T ]\} .
(4.2)

Proof. Fix x > 0. First, observe that inf\alpha \in \scrB J(x, \alpha ) = inf\alpha \in \scrB \prime J(x, \alpha ), where

\scrB \prime := \{ \alpha \in \scrA : \exists t0 \geq 0 s.t. \alpha t = M(t)1[0,t0](t) +m(t)1(t0,\tau ](t) for a.e. t \in [0, \tau ]\} .

Indeed, for any \alpha \in \scrB , the truncated strategy \alpha \prime , defined by \alpha \prime 
t := \alpha t1[0,\tau ](t), be-

longs to \scrB \prime and satisfies J(x, \alpha \prime ) = J(x, \alpha ); conversely, for any \alpha \prime \in \scrB \prime , the ex-
tended strategy \alpha , defined by \alpha t := \alpha \prime 

t1[0,\tau ](t) + m1(\tau ,T ](t), belongs to \scrA and satis-
fies J(x, \alpha ) = J(x, \alpha \prime ). For this reason, the remaining proof focuses on establishing
v(x) = inf\alpha \in \scrB \prime J(x, \alpha ). To this end, it remains to show that for any \alpha \in \scrA \setminus \scrB \prime , there
exists \=\alpha \in \scrB \prime such that J(x, \=\alpha ) < J(x, \alpha ), i.e.,

(4.3)

\int \tau (\=\alpha )

0

e - rt\=\alpha tdt+ \omega e - r\tau (\=\alpha )b\=\alpha \tau (\=\alpha ) <

\int \tau (\alpha )

0

e - rt\alpha tdt+ \omega e - r\tau (\alpha )b\alpha \tau (\alpha ),

where \tau in (2.3) is denoted by \tau (\=\alpha ) or \tau (\alpha ), and b in (2.1) by b\=\alpha or b\alpha , to emphasize
their dependence on the chosen repayment strategy.

For any \alpha \in \scrA \setminus \scrB \prime , the first claim is that there exists 0 < t0 < \tau (\alpha ) such that

(4.4)

\int t0

0

(M(t) - \alpha t)e
 - (r+\beta )tdt =

\int \tau (\alpha )

t0

(\alpha t  - m(t))e - (r+\beta )tdt.

Define f : [0, \tau (\alpha )] \rightarrow \BbbR by f(t) :=
\int t

0
(M(s) - \alpha s)e

 - (r+\beta )sds - 
\int \tau (\alpha )

t
(\alpha s - m(s))e - (r+\beta )sds.

As \alpha ,M,m are all Lebesgue integrable, f is by definition continuous. Also, \alpha /\in \scrB \prime im-

plies that \alpha t cannot be equal to m(t) for a.e. t \in [0, \tau (\alpha )], whence f(0) =  - 
\int \tau (\alpha )

0
(\alpha s - 

m(s))e - (r+\beta )sds < 0. Likewise, \alpha t cannot be equal to M(t) for a.e. t \in [0, \tau (\alpha )], im-

plying f(\tau (\alpha )) =
\int \tau (\alpha )

0
(M(s) - \alpha s)e

 - (r+\beta )sds > 0. The continuity of f thus ensures
the existence of 0 < t0 < \tau (\alpha ) such that f(t0) = 0, i.e., (4.4) holds. Now, define
\=\alpha : [0, T ] \rightarrow [0,\infty ) by

(4.5) \=\alpha t := M(t)1[0,t0](t) +m(t)1(t0,\tau (\alpha )](t), 0 \leq t \leq T.

Observe that \tau (\=\alpha ) = \tau (\alpha ). Indeed, by (4.4),

\int \tau (\alpha )

0

e - (r+\beta )t\=\alpha tdt =

\int \tau (\alpha )

0

e - (r+\beta )t\alpha tdt+

\int t0

0

(M(t) - \alpha t)e
 - (r+\beta )tdt

 - 
\int \tau (\alpha )

t0

(\alpha t  - m(t))e - (r+\beta )tdt =

\int \tau (\alpha )

0

e - (r+\beta )t\alpha tdt.

This fact, together with Remark 4.1, implies b\=\alpha \tau (\alpha ) = b\alpha \tau (\alpha ). The case b\alpha \tau (\alpha ) > 0 leads

to \tau (\alpha ) = T and thus b\=\alpha T = b\=\alpha \tau (\alpha ) > 0, which readily implies \tau (\=\alpha ) = T = \tau (\alpha ). If

b\alpha \tau (\alpha ) = 0, then b\=\alpha \tau (\alpha ) = 0 and thus \tau (\=\alpha ) \leq \tau (\alpha ), thanks to the definition of \tau in (2.3).
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If \tau (\=\alpha ) < \tau (\alpha ) \leq T , then b\=\alpha \tau (\=\alpha ) = 0, again by (2.3). It then follows from the definition

of \=\alpha and the formula of b\=\alpha in (4.1) that b\=\alpha \tau (\alpha ) < b\=\alpha \tau (\=\alpha ) = 0, a contradiction. Thus,

\tau (\=\alpha ) = \tau (\alpha ), as required, which implies \=\alpha \in \scrB .
It remains to show (4.3). As a consequence of (4.4),

e - \beta t0

\int t0

0

e - rt(M(t) - \alpha t)dt <

\int t0

0

e - (r+\beta )t(M(t) - \alpha t)dt

=

\int \tau 

t0

e - (r+\beta )t(\alpha t  - m(t))dt < e - \beta t0

\int \tau 

t0

e - rt(\alpha t  - m(t))dt.(4.6)

It follows that\int \tau (\=\alpha )

0

e - rt\=\alpha tdt+ \omega e - r\tau (\=\alpha )b\=\alpha \tau (\=\alpha ) =

\int \tau (\alpha )

0

e - rt\alpha tdt+

\int t0

0

e - rt(M(t) - \alpha t)dt

 - 
\int \tau (\alpha )

t0

e - rt(\alpha t  - m(t))dt+ \omega e - r\tau (\alpha )b\=\alpha \tau (\alpha ) <

\int \tau (\alpha )

0

e - rt\alpha tdt+ \omega e - r\tau (\alpha )b\alpha \tau (\alpha ),

where the equality follows from \tau (\=\alpha ) = \tau (\alpha ) and the definition of \=\alpha in (4.5), and the
inequality is due to (4.6) and b\=\alpha \tau (\alpha ) = b\alpha \tau (\alpha ). That is, (4.3) is established.

4.1. Three Cases. The following analysis distinguishes three cases, depending
on how large the initial balance of the loan is. Consider the two useful thresholds

(4.7) x :=

\int T

0

e - (r+\beta )sm(s)ds and x :=

\int T

0

e - (r+\beta )sM(s)ds.

The first case is that of an initial balance x > 0 of the loan so large that even
maximum payments cannot pay it off by time T .

Proposition 4.3. Fix x > x and recall tc \in [0, T ) defined in (2.5). Then \alpha \ast \in \scrA 
defined by

(4.8) \alpha \ast 
t := M(t)1[0,tc](t) +m(t)1(tc,T ](t), 0 \leq t \leq T,

is an optimal control. Moreover, \tau (\alpha \ast ) = T and v(x) = v1(x), with v1 defined as in
(2.7).

Proof. Note that with x > x even maximum payments, i.e., \~\alpha t := M(t) for
all 0 \leq t \leq T , cannot pay off the debt by time T . Indeed, b\~\alpha T = e(r+\beta )T

\bigl( 
x  - \int T

0
e - (r+\beta )sM(s)ds

\bigr) 
> 0 by (4.1), whence b\alpha T > 0 and \tau (\alpha ) = T for all \alpha \in \scrA . Thus,

a strategy of the form

(4.9) \alpha \ast 
t := M(t)1[0,t0](t) +m(t)1(t0,T ](t), 0 \leq t \leq T, 0 \leq t0 \leq T,

satisfies

J(x, \alpha \ast ) =

\int T

0

e - rt\alpha \ast 
t dt+ \omega e - rT b\alpha 

\ast 

T = f(t0), where(4.10)

f(t) :=

\int t

0

e - rsM(s)ds+

\int T

t

e - rsm(s)ds(4.11)

+ \omega e\beta T

\Biggl( 
x - 

\int t

0

e - (r+\beta )sM(s)ds - 
\int T

t

e - (r+\beta )sm(s)ds

\Biggr) 
.
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Note that the second equality in (4.10) follows from (4.9) and Remark 4.1. By direct
calculation, f \prime (t) = e - rt(M(t) - m(t))

\bigl( 
1 - \omega e\beta (T - t)

\bigr) 
, which shows that f is strictly

decreasing for t < T + ln\omega 
\beta and strictly increasing for t > T + ln\omega 

\beta . It then follows

from (4.10) that by taking t0 = tc in (2.5), \alpha \ast in (4.9) attains inf\alpha \in \scrB J(x, \alpha ) = v(x),
where the equality follows from Lemma 4.2.

Next, consider the case where the initial balance x > 0 of the loan is so small
that even minimum payments can pay it off by time T .

Proposition 4.4. Fix 0 < x \leq x. Consider the unique tM \in (0, T ] such that

(4.12) x =

\int tM

0

e - (r+\beta )sM(s)ds.

Then \alpha \ast \in \scrA defined by \alpha \ast 
t = M(t), 0 \leq t \leq T , is an optimal control. Moreover,

\tau (\alpha \ast ) = tM < T and v(x) = v2(x), with v2 defined as in (2.8).

Proof. As 0 < x \leq x, even minimum payments (\~\alpha t := m(t) for all 0 \leq t \leq T ) pay

off the debt by time T . Indeed, b\~\alpha T = e(r+\beta )T
\bigl( 
x  - 

\int T

0
e - (r+\beta )sm(s)ds

\bigr) 
\leq 0 by (4.1),

whence

(4.13) b\alpha \tau = 0 and \tau (\alpha ) \leq T \forall \alpha \in \scrA .

Also, observe that 0 < x \leq x and 0 < m(t) < M(t) readily imply the existence of a
unique tM \in (0, T ] such that (4.12) holds.

Now, focus on strategies \alpha \ast as in (4.9), with 0 \leq t0 \leq T . For each 0 \leq t0 \leq T ,
since b\alpha 

\ast 

\tau = 0 by (4.13), it follows that x =
\int \tau 

0
e - (r+\beta )s\alpha \ast 

sds in view of (4.1). This
fact, together with (4.9) and (4.12), implies

x =

\int t0

0

e - (r+\beta )sM(s)ds+

\int \tau 

t0

e - (r+\beta )sm(s)ds for 0 \leq t0 \leq tM .(4.14)

Thus, \tau is a function t0 \mapsto \rightarrow \tau (t0), 0 \leq t0 \leq tM . By the strict positivity of M and m,
(4.14) indicates that \tau (t0) = t0 + \eta (t0), where

(4.15) t0 \mapsto \rightarrow \eta (t0) is strictly decreasing on [0, tM ] with \eta (tM ) = 0.

It then follows from the decreasing property of \eta and (4.14) that t0 \mapsto \rightarrow \tau (t0) is differ-
entiable a.e. Indeed, given 0 \leq t0 \leq tM , for any h \in \BbbR such that 0 < t0 + h < tM ,
(4.14) entails \int t0

0

e - (r+\beta )sM(s)ds+

\int \tau (t0)

t0

e - (r+\beta )sm(s)ds

=

\int t0+h

0

e - (r+\beta )sM(s)ds+

\int \tau (t0+h)

t0+h

e - (r+\beta )sm(s)ds,

which reduces to

(4.16)

\int \tau (t0)

\tau (t0+h)

e - (r+\beta )sm(s)ds =

\int t0+h

t0

e - (r+\beta )s(M(s) - m(s))ds.

Thus, the right-hand side above vanishes as h \rightarrow 0, and hence \tau (t0 + h) \rightarrow \tau (t0), i.e.,
t0 \mapsto \rightarrow \tau (t0) is continuous and so is t0 \mapsto \rightarrow \eta (t0). By the continuity of \eta , the Lebesgue
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differentiation theorem implies that, for a.e. t0 \in [0, tM ],

lim
h\rightarrow 0

1

\tau (t0) - \tau (t0 + h)

\int \tau (t0)

\tau (t0+h)

e - (r+\beta )sm(s)ds = e - (r+\beta )\tau (t0)m(\tau (t0)),

lim
h\rightarrow 0

1

h

\int t0+h

t0

e - (r+\beta )s(M(s) - m(s))ds = e - (r+\beta )t0(M(t0) - m(t0)).

Dividing the second equality above by the first one and recalling (4.16) yields

(4.17) \tau \prime (t0) = lim
h\rightarrow 0

\tau (t0 + h) - \tau (t0)

h
=  - e(r+\beta )(\tau (t0) - t0)

M(t0) - m(t0)

m(\tau (t0))
.

Thanks to (4.9) and (4.13)

J(x, \alpha \ast ) =

\int \tau 

0

e - rt\alpha \ast 
t dt+ \omega e - r\tau b\alpha 

\ast 

\tau =

\int \tau 

0

e - rt\alpha \ast 
t dt = g(t0),(4.18)

where g : [0, tM ] \rightarrow \BbbR is defined as

(4.19) g(t0) :=

\int t0

0

e - rsM(s)ds+

\int \tau (t0)

t0

e - rsm(s)ds.

By direct calculation,

g\prime (t0) = e - rt0(M(t0) - m(t0)) + e - r\tau (t0)m(\tau (t0))\tau 
\prime (t0)

= e - rt0(M(t0) - m(t0))
\Bigl( 
1 - e\beta (\tau (t0) - t0)

\Bigr) 
< 0 for a.e. 0 \leq t0 < tM ,(4.20)

where the second line follows from (4.17) and the inequality is due to (4.15). This
shows that g(t0), 0 \leq t0 \leq tM , has a global minimum at t0 = tM . Thus, it follows
from (4.18) that by taking t0 = tM , \alpha \ast in (4.9) attains inf\alpha \in \scrB J(x, \alpha ) = v(x), where
the equality follows from Lemma 4.2. Consequently, v(x) = J(x, \alpha \ast ) = g (tM ) =\int tM
0

e - rsM(s)ds, where the last equality follows from (4.19) and (4.15). Finally,
simply because \tau (tM ) = tM (again, by (4.15)), one can without loss of generality take
\alpha \ast 
t = M(t) for all 0 \leq t \leq T .

Finally, consider the intermediate case of an initial balance x > 0 small enough
that maximum payments can pay off the debt by time T , but also large enough that
minimum payments cannot pay it off by time T .

Proposition 4.5. Let x < x \leq x, tc \in [0, T ) as in (2.5), and define xc \in [x, x)
as

(4.21) xc :=

\int tc

0

e - (r+\beta )sM(s)ds+

\int T

tc

e - (r+\beta )sm(s)ds.

(i) If x > xc, then
v(x) = v1(x) \wedge v2(x),

where v1 and v2 are defined as in (2.7) and (2.8), respectively. Furthermore,
if v1(x) < v2(x), \alpha 

\ast \in \scrA defined in (4.8) is an optimal control; otherwise,
\alpha \ast \in \scrA defined by \alpha \ast 

t = M(t), 0 \leq t \leq T , is an optimal control.
(ii) If x \leq xc, then v(x) = v2(x) with v2 defined as in (2.8). Moreover, \alpha \ast \in \scrA 

defined by \alpha \ast 
t = M(t), 0 \leq t \leq T , is an optimal control.

D
ow

nl
oa

de
d 

08
/0

4/
22

 to
 1

09
.5

2.
21

5.
12

8 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



© 2022 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

MINIMIZING THE REPAYMENT COST OF FEDERAL STUDENT LOANS 703

Proof. As x < x \leq x and 0 < m(t) < M(t), there exists a unique \~t \in (0, T ] such
that

(4.22) x =

\int \~t

0

e - (r+\beta )sM(s)ds+

\int T

\~t

e - (r+\beta )sm(s)ds.

Thus, \~t \leq tM by (4.22) and the definition of tM > 0 in (2.8). Now, decompose \scrB in
(4.2) into \scrB 1 := \{ \alpha \in \scrB : b\alpha T > 0\} and \scrB 2 := \{ \alpha \in \scrB : b\alpha T \leq 0\} . In view of Remark 4.1
and (4.22),

(4.23) \scrB 1 = \{ \alpha \in \scrB : 0 \leq t0 < \~t\} and \scrB 2 = \{ \alpha \in \scrB : \~t \leq t0 \leq T\} .

For any \alpha \in \scrB 1, argue as in (4.10) to obtain that J(x, \alpha ) = f(t0), where f : \BbbR \rightarrow \BbbR is
defined as in (4.11). As shown after (4.11), f(t) is strictly decreasing for t < T + ln\omega 

\beta 

and strictly increasing for t > T + ln\omega 
\beta . Thus, (4.23) implies that

(4.24) inf
\alpha \in \scrB 1

J(x, \alpha ) = f
\bigl( 
tc \wedge \~t

\bigr) 
,

where tc \in [0, T ) is defined as in (2.5). For any \alpha \in \scrB 2, argue as in (4.18) to obtain
J(x, \alpha ) = g(t0 \wedge tM ), where g : [0, tM ] \rightarrow \BbbR is defined as in (4.19). As shown below
(4.19), g(t) is strictly decreasing for t < tM . Thus, (4.23) and \~t \leq tM imply that

(4.25) inf
\alpha \in \scrB 2

J(x, \alpha ) = g(tM ).

In view of \~t \leq tM , note also that g(tM ) \leq g(\~t) = f(\~t), where the equality follows from
the definitions of f and g ((4.11) and (4.19)) and (4.22). Now, by Lemma 4.2, (4.24),
and (4.25),

v(x) = inf
\alpha \in \scrB 

J(x, \alpha ) = f
\bigl( 
tc \wedge \~t

\bigr) 
\wedge g(tM ) =

\Biggl\{ 
f (tc) \wedge g(tM ) = v1(x) \wedge v2(x) if tc < \~t,

g(tM ) = v2(x) if tc \geq \~t,

where the third equality exploits g(tM ) \leq f(\~t), and v1 and v2 are defined as in (2.7)
and (2.8), respectively. Note from (4.22) and (4.21) that tc < \~t if and only if xc < x.
The desired result thus follows from the previous equality.

In summary, Propositions 4.3, 4.4, and 4.5 together demonstrate that the optimal
strategy must be either \alpha 1

t := M(t)1[0,tc](t)+m(t)1(tc,T ](t) or \alpha 
2
t := M(t). Specifically,

(i) if \alpha 1 can pay off the balance x by time T (i.e., x \leq xc), Proposition 4.4 and 4.5 (ii)
state that it is best to pay off the debt as soon as possible, i.e., \alpha 2 is optimal; (ii) if \alpha 1

cannot pay off the balance x by time T but \alpha 2 can (i.e., xc < x \leq x), Proposition 4.5 (i)
states that one needs to compare the costs v1(x) and v2(x) to determine which one of
\alpha 1 and \alpha 2 is optimal; (iii) if \alpha 2 cannot pay off the balance x by time T (i.e., x > x),
Proposition 4.3 states that \alpha 1 is optimal. Thus, for the case xc < x \leq x, we need to
analyze v1(x) and v2(x) further to determine the optimal strategy.

Lemma 4.6. (i) v1(x) - v2(x) is strictly decreasing on [\^x, x], where

(4.26) \^x :=

\int tc

0

e - (r+\beta )sM(s)ds \in [0, x).

(ii) There exists a unique x\ast \in (\^x, x) such that v1(x
\ast ) = v2(x

\ast ). Hence, v1(x) > v2(x)
for x \in [\^x, x\ast ) and v1(x) < v2(x) for x \in (x\ast , x]. Moreover, x\ast is identified as in
Theorem 2.1 and satisfies x\ast > xc, with xc defined as in (4.21).
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Proof. In view of (2.8), tM > 0 is in fact a function of x and is strictly increasing
by definition. Henceforth, denote tM as tM (x) for clarity. As tM (\^x) = tc by construc-
tion, it follows that tM (x) > tc for all \^x < x \leq x. Thanks to the definitions of v1 and
v2 in (2.7) and (2.8), as well as the relation (4.12), for any \^x \leq x \leq x,

v1(x) - v2(x) =  - 
\int tM (x)

tc

e - rsM(s)ds+

\int T

tc

e - rsm(s)ds

+ \omega e\beta T
\biggl( \int tM (x)

tc

e - (r+\beta )sM(s)ds - 
\int T

tc

e - (r+\beta )sm(s)ds

\biggr) 
=  - 

\int tM (x)

tc

e - rsM(s)
\Bigl( 
1 - \omega e\beta (T - s)

\Bigr) 
ds+

\int T

tc

e - rsm(s)
\Bigl( 
1 - \omega e\beta (T - s)

\Bigr) 
ds.(4.27)

Note that s > tc = (T + lnw
\beta )+ if and only if 1  - \omega e\beta (T - s) > 0. Hence, because

M(s) and 1  - \omega e\beta (T - s) are strictly positive and tM (x) is strictly increasing, (4.27)
implies that v1(x)  - v2(x) is strictly decreasing on [\^x, x]. Now, observe from (4.12)
that tM (x) = T and from (4.27) that

v1(x) - v2(x) =  - 
\int T

tc

e - rs(M(s) - m(s))
\Bigl( 
1 - \omega e\beta (T - s)

\Bigr) 
ds < 0,

because M(s) > m(s) and 1  - \omega e\beta (T - s) > 0. On the other hand, by tM (\^x) =

tc, (4.27) yields v1(\^x)  - v2(\^x) =
\int T

tc
e - rsm(s)

\bigl( 
1 - \omega e\beta (T - s)

\bigr) 
ds > 0, again because

1 - \omega e\beta (T - s) > 0. As v1(x) - v2(x) is strictly decreasing on [\^x, x], there must exist x\ast \in 
(\^x, x) such that v1(x

\ast )  - v2(x
\ast ) = 0. Note that x\ast is identified by setting the right-

hand side of (4.27) to be zero, which leads to the characterization in Theorem 2.1.
Now, in view of (4.26), (4.21), and (4.7), \^x < xc < x by definition. Observe from
(2.7), (4.21), and (4.19) that

v1(xc) =

\int tc

0

e - rsM(s)ds+

\int T

tc

e - rsm(s)ds = g(tc) > g(tM (xc)) = v2(xc),

where the inequality follows from the fact that g : [0, tM (xc)] \rightarrow \BbbR is minimized at
tM (xc) (recall (4.20)) and the last equality is due to (4.19) and (2.8). This fact readily
implies xc < x\ast .

Proof of Theorem 2.1. By Lemma 4.6, x\ast > xc, v1(x) > v2(x) for x \in [\^x, x\ast ),
and v1(x) < v2(x) for x \in (x\ast , x]. The results of Proposition 4.5 are then simplified
to v(x) = v1(x) for x \in (x\ast , x] and v(x) = v2(x) for x \in (x, x\ast ]. Combining this fact
with Propositions 4.3 and 4.4 yields the claim.

5. Proofs for Section 3. To prove Lemma 3.1, we need to introduce additional
notation. For any fixed \ell \in [0, T ), consider
(5.1)
\scrA \ell := \{ \alpha : t \mapsto \rightarrow \alpha t Lebesgue measurable, m(t+\ell ) \leq \alpha t \leq M(t+\ell ) for a.e. 0 \leq t \leq T - \ell \} .

Clearly, \scrA 0 = \scrA . Given x > 0 and \alpha \in \scrA \ell , we consider \tau \ell as in (2.3), with T > 0
therein replaced by T  - \ell > 0, and J\ell (x, \alpha ) as in (2.2), with \tau therein replaced by \tau \ell .

Remark 5.1. Fix x > 0 and \alpha \in \scrA . For any 0 \leq \ell < \tau , set y := b\alpha \ell and define
\alpha \ell \in \scrA \ell by

(5.2) \alpha \ell 
s := \alpha \ell +s for s \in [0, T  - \ell ].
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Then, in view of (2.2),

J(x, \alpha ) =

\int \ell 

0

e - rs\alpha sds+

\int \tau 

\ell 

e - rs\alpha sds+ e - r\tau \omega b\alpha \tau 

=

\int \ell 

0

e - rs\alpha sds+ e - r\ell 

\biggl( \int \tau \ell 

0

e - rs\alpha \ell 
sds+ e - r\tau \ell 

\omega b\alpha 
\ell 

\tau \ell 

\biggr) 
=

\int \ell 

0

e - rs\alpha sds+ e - r\ell J\ell (y, \alpha \ell ).

Proof of Lemma 3.1. (i) Suppose that \theta (\alpha ) = T . Observe from (3.3) that \theta (m) \geq 
\theta (\alpha ) = T . That is, neither \alpha s nor m(s) pays off the accumulated interest balance by
time T , so that the principal remains untouched at time T . It follows that

J(x, \alpha ) - J(x,m) =

\int T

0

e - rt\alpha sds+ e - rT\omega 

\Biggl( 
x+ (r + \beta )xT  - 

\int T

0

\alpha sds

\Biggr) 

 - 
\int T

0

e - rtm(s)ds - e - rT\omega 

\Biggl( 
x+ (r + \beta )xT  - 

\int T

0

m(s)ds

\Biggr) 

=

\int T

0

\bigl( 
e - rt  - \omega e - rT

\bigr) 
(\alpha s  - m(s))ds \geq 0,(5.3)

where we used the fact \omega \in (0, 1) for the inequality.
(ii) Suppose that \theta (\alpha ) < T . If \alpha s = m(s) for a.e. s \in [0, \theta (\alpha )], t0 = \theta (\alpha ) in (3.5).

If \alpha s = M(s) for a.e. s \in [0, \theta (\alpha )], t0 = 0 in (3.5). If both \{ s \in [0, \theta (\alpha )] : \alpha s > m(s)\} 
and \{ s \in [0, \theta (\alpha )] : \alpha s < M(s)\} have positive measures, consider f : [0, \theta (\alpha )] \rightarrow \BbbR 
defined by

f(t) :=

\int t

0

(\alpha s  - m(s))ds - 
\int \theta (\alpha )

t

(M(s) - \alpha s)ds.

As m(s) \leq \alpha s \leq M(s) and m(s) < M(s) for all s \in [0, \theta (\alpha )], f is by definition
continuous and strictly increasing. Since \{ s \in [0, \theta (\alpha )] : \alpha s < M(s)\} has a positive

measure, f(0) =  - 
\int \theta (\alpha )

0
(M(s)  - \alpha s)ds < 0. Likewise, the fact that \{ s \in [0, \theta (\alpha )] :

\alpha s > m(s)\} has a positive measure implies f(\theta (\alpha )) =
\int \theta (\alpha )

0
(\alpha s - m(s))ds > 0. Hence,

there exists a unique 0 < t0 < \theta (\alpha ) such that f(t0) = 0, which is equivalent to (3.5).
Observe that\int t0

0

e - rs(\alpha s  - m(s))ds \geq 
\int t0

0

e - rt0(\alpha s  - m(s))ds =

\int \theta (\alpha )

t0

e - rt0(M(s) - \alpha s)ds

\geq 
\int \theta (\alpha )

t0

e - rs(M(s) - \alpha s)ds,

where the equality follows from (3.5) (with both sides multiplied by e - rt0). This gives

(5.4)

\int \theta (\alpha )

0

e - rs\alpha sds \geq 
\int \theta (\alpha )

0

e - rs
\bigl( 
m(s)1[0,t0](s) +M(s)1(t0,\theta (\alpha )](s)

\bigr) 
ds.

Now, we claim that \theta (\alpha ) = \theta (\alpha ). By (3.5) and the definition of \alpha \in \scrA in (3.6),
we have

(5.5)

\int \theta (\alpha )

0

\alpha sds =

\int \theta (\alpha )

0

\alpha sds.
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Suppose that \theta (\alpha ) > \theta (\alpha ). By (5.5), p\alpha \theta (\alpha ) = p\alpha \theta (\alpha ) = x. This, together with \alpha s = \alpha s

for all s \in (\theta (\alpha ), T ] (see (3.6)), implies that p\alpha s = p\alpha s for all s \in [\theta (\alpha ), T ]. By the
definition of \theta (\alpha ) in (3.3), there exists \{ tn\} n\in \BbbN in (\theta (\alpha ), T ] with tn \downarrow \theta (\alpha ) such that
p\alpha tn = p\alpha tn < x for all n \in \BbbN . This shows that \theta (\alpha ) \leq \theta (\alpha ), a contradiction. On the
other hand, suppose that \theta (\alpha ) < \theta (\alpha ), which implies

(5.6)

\int \theta (\alpha )

0

\alpha sds = (r + \beta )x\theta (\alpha ) \geq 
\int \theta (\alpha )

0

\alpha sds.

If \theta (\alpha ) < t0, since \alpha s = m(s) \leq \alpha s for all s \in [0, t0], we must have \theta (\alpha ) \leq \theta (\alpha ), a con-

tradiction. With \theta (\alpha ) \geq t0, (5.6) and (5.5) together yield
\int \theta (\alpha )

\theta (\alpha )
\alpha sds \geq 

\int \theta (\alpha )

\theta (\alpha )
\alpha sds =\int \theta (\alpha )

\theta (\alpha )
M(s)ds. As \alpha \in \scrA , we must have \alpha s = M(s) for a.e. s \in [\theta (\alpha ), \theta (\alpha )], so that\int \theta (\alpha )

\theta (\alpha )
\alpha sds =

\int \theta (\alpha )

\theta (\alpha )
\alpha sds. In view of (5.5), this shows that (5.6) in fact holds as an

equality. It follows that p\alpha \theta (\alpha ) = p\alpha \theta (\alpha ) = x. This, along with \alpha s = M(s) = \alpha s for a.e.

s \in [\theta (\alpha ), \theta (\alpha )], implies that p\alpha s = p\alpha s for all s \in [\theta (\alpha ), \theta (\alpha )]. By the definition of \theta (\alpha )
in (3.3), there exists \{ tn\} n\in \BbbN in (\theta (\alpha ), \theta (\alpha )] with tn \downarrow \theta (\alpha ) such that p\alpha tn = p\alpha tn < x
for all n \in \BbbN . This shows that \theta (\alpha ) \leq \theta (\alpha ), a contradiction. Hence, we conclude that
\theta (\alpha ) = \theta (\alpha ).

Finally, recall the notation introduced above Remark 5.1. Since (3.3) and (3.1)
imply b\alpha \theta (\alpha ) = b\alpha 0 = x, we deduce from Remark 5.1 that

J(x, \alpha ) =

\int \theta (\alpha )

0

e - rs\alpha sds+ e - r\theta (\alpha )J\theta (\alpha )(x, \alpha \theta (\alpha ))

\geq 
\int \theta (\alpha )

0

e - rs\alpha sds+ e - r\theta (\alpha )J\theta (\alpha )(x, \alpha \theta (\alpha )) = J(x, \alpha ),

where the inequality follows from (5.4) and the definition of \alpha in (3.6), and the last
equality is due to \theta (\alpha ) = \theta (\alpha ) and Remark 5.1.

Proof of Corollary 3.2. (i) For any \alpha \in \scrA , since \theta (\alpha ) \geq \theta (M) = T implies \theta (\alpha ) =
T , we conclude from Lemma 3.1 (i) that J(x,m) \leq J(x, \alpha ). It follows that J(x,m) =
inf\alpha \in \scrA J(x, \alpha ) = v(x), as desired.

(ii) As \theta (m) = 0, there exists \{ tn\} n\in \BbbN in (0, T ] with tn \downarrow 0 such that m(tn) >
(r+\beta )x for all n \in \BbbN . For any \alpha \in \scrA , \alpha t \geq m(t) \geq m(tn) > (r+\beta )x for t \geq tn because
m(t) is nondecreasing. As tn \downarrow 0, it follows that \alpha t > (r+ \beta )x for all t \in (0, T ]. Now,
consider the process b\alpha defined by db\alpha t = ((r+\beta )b\alpha t  - \alpha t)dt, t \in (0, T ], with b\alpha 0 = x, as
well as p\alpha t := inf0\leq s\leq t b

\alpha 
s , t \in [0, T ]. Thanks to \alpha t > (r+\beta )x for all t \in (0, T ], t \mapsto \rightarrow b\alpha t

is strictly decreasing, which in turn implies p\alpha t = b\alpha t for all t \in [0, T ]. It follows that
(b\alpha , p\alpha ) satisfies (3.1)--(3.2) and is in fact the unique solution (as the coefficients in
(3.1)--(3.2) are Lipschitz). Moreover, the dynamics reduces to (2.1) due to p\alpha = b\alpha .
As such a reduction to (2.1) holds for all \alpha \in \scrA , an optimal strategy \alpha \ast \in \scrA follows
from Theorem 2.1.

Before we proceed to prove Lemma 3.3, notice that it is essentially an extension
of Lemma 4.2 to the present case of simple interest. The goal is to establish an
inequality similar to (4.3), but the challenge here is that, in contrast to the case
of compound interest, the total balance process b is no longer tractable. However,
a careful comparison between the total balances in these two cases shows that the
desired inequality still holds with simple interest.
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In the following, to clearly distinguish between the two total balance processes
(one in (2.1) with compound interest, the other in (3.1)--(3.2) with simple interest),
we will reserve ``b"" for the latter and use ``b"" to denote the former.

Remark 5.2. By the comparison theorem of ordinary differential equations, we
deduce from the dynamics (3.1)--(3.2) (satisfied by b) and (2.1) (satisfied by b) that
b\alpha t \leq b\alpha t , t \geq 0, for any \alpha \in \scrA .

Proof of Lemma 3.3. Thanks to \alpha \in \scrA \setminus \scrB [a,c], the same arguments in the proof
of Lemma 4.2 (see (4.4) particularly) show that there exists s0 \in (a, c) such that\int s0

a

e - (r+\beta )tM(t)dt+

\int c

s0

e - (r+\beta )tm(t)dt =

\int c

a

e - (r+\beta )t\alpha tdt.(5.7)

In addition, by an estimation similar to (4.6), this implies

(5.8)

\int s0

a

e - rtM(t)dt+

\int c

s0

e - rtm(t)dt <

\int c

a

e - rt\alpha tdt.

Now, consider \alpha (s0) \in \scrA defined as in (3.7) (with u = s0). Set y := b\alpha a > 0. In
the following, we will add the superscript ``y"" to the functions t \mapsto \rightarrow bt (resp., t \mapsto \rightarrow bt)
to emphasize its initial condition b0 = y (resp., b0 = y). Observe that

b
y,(\alpha (s0))

a

c - a \leq b
y,(\alpha (s0))

a

c - a = by,\alpha 
a

c - a = by,\alpha 
a

c - a ,

where we use the notation (5.2) (with \ell = a). Note that the inequality above follows
from Remark 5.2, and the first equality above is due to (5.7) and the explicit formula
(4.1) (now satisfied by b). The second equality above stems from the fact that t \mapsto \rightarrow p\alpha t
is strictly decreasing on [a, c], so that the dynamics in (3.1)--(3.2) and (2.1) (now
satisfied by b) coincide on [a, c].

Let us finish the proof by dealing with the following two cases separately. For the

case where b
y,(\alpha (s0))

a

c - a = by,\alpha 
a

c - a , we have

J(x, \alpha ) =

\int \tau 

0

e - rt\alpha tdt+ e - r\tau \omega bx,\alpha \tau 

>

\int a

0

e - rt\alpha tdt+

\int s0

a

e - rtM(t)dt+

\int c

s0

e - rtm(t)dt

+

\int \tau 

c

e - rt\alpha tdt+ e - r\tau \omega b
y,(\alpha (s0))

a

\tau  - a

= J(x, \alpha (s0)),

where the inequality follows from (5.8) and b
y,(\alpha (s0))

a

t - a = by,\alpha 
a

t - a = bx,\alpha t for t \geq c, and the
last equality holds by the definition of \alpha (s0) in (3.7). Hence, we obtain J(x, \alpha (u)) <

J(x, \alpha ) by taking u = s0. Now, consider the other case, where b
y,(\alpha (s0))

a

c - a < by,\alpha 
a

c - a .
Observe from (3.7) that (\alpha (a))t = m(t) for all t \in (a, c]. It follows that

b
y,(\alpha (a))

a

c - a = by,m
a

c - a > by,\alpha 
a

c - a > b
y,(\alpha (s0))

a

c - a ,

where the first inequality follows from \alpha t \geq m(t) for all t \in [a, c] and that \{ t \in 
[a, c] : \alpha t > m(t)\} has a positive measure (as \alpha /\in \scrB [a,c]). Then, by the continuity of

u \mapsto \rightarrow b
y,(\alpha (u))

a

c - a , there exists u \in (a, s0) such that b
y,(\alpha (u))

a

c - a = by,\alpha 
a

c - a . Note that (5.8)
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still holds with s0 therein replaced by u. Indeed, with u \in (a, s0), the left-hand side
becomes even smaller with u in place of s0. It follows that the same calculation in (5.9)
(with s0 replaced by u \in (a, s0)) still holds, which leads to J(x, \alpha ) > J(x, \alpha (u)).

6. Conclusion. Federal student loans are complex debt contracts that enable
borrowers to cap repayments to a fraction of their income, have the balance forgiven
after at least twenty years in good standing, and accrue interest without capitalization
while the loan is in negative amortization. On one hand, the prospects of simple ac-
crued interest and debt forgiveness entice borrowers to enroll in income-driven schemes
to minimize payments and maximize the forgiven amount. On the other hand, the
high interest rate on student loans, combined with the long forgiveness horizon, may
more than offset the benefits of income-driven repayments for small balances.

This paper finds the cost-minimizing repayment strategy that accounts for income-
driven schemes and debt forgiveness. For very large or very small loan balances, our
treatment also incorporates the effect of simple accrued interest with negative amorti-
zation. A small loan should be paid as soon as possible, i.e., maximizing repayments
until it is paid off. For a very large loan, enrollment in income-driven schemes is
optimal, as the benefits of simple accrued interest and balance forgiveness override
interest costs.
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