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Abstract. An endomorphisms φ of a group G is said inertial if ∀H ≤ G
|φ(H) : (H ∩φ(H))| <∞. Here we study the ring of inertial endomorphisms
of an abelian torsion group and the group of its units. Also the case of vector
spaces is considered. 1
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1 Introduction and statement of main results

Recently there has been interest for inert subgroups of groups (see [9], [4], [5],
for example). A subgroup is said inert if it is commensurable to each conju-
gate of its. Here we consider inertial endomorphims, that is endomorphims
mapping setwise subgroups to commensurable ones.

More precisely, if φ is an endomorphism of an abelian group A (from now
on always in additive notation) we say:
(RIN) φ is right-inertial iff ∀H ≤ A |φ(H) : (H ∩ φ(H))| <∞,
(LIN) φ is left-inertial iff ∀H ≤ A |H : (H ∩ φ(H))| <∞.

In [2] we considered automorphisms of abelian group A and showed that
in this case (RIN) and (LIN) are equivalent, when A is periodic. This gen-
eralized previous results from [1] and [6]. On the other hand, in [5] authors
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consider (RIN) only, which seems to be more adequate for non-invertible
maps. Moreover, if A is periodic (LIN) implies (RIN), see Theorem 1. Let
us call RIN-endomorphims inertial.

Fact Inertial endomorphisms of any abelian group A fill a subring IEnd(A)
of the full ring End(A) of endomorphisms of A.

Clearly IEnd(A) contains the ideal FEnd(A) of endomorphisms with finite
image and the subring PEnd(A) of power endomorphisms (say multiplica-
tions) of A.

Here we have a characterization of inertial endomorphisms of torsion
abelian groups.

Theorem 1 Let A be an abelian periodic group and φ ∈ End(A). Then φ
is inertial iff there is a finite index subgroup B = D⊕E ⊕L of A such that:
i) D ⊕ E and L are coprime,
ii) D is divisible with finite total rank and E has finite exponent,
iii) φ is power on D, E and L .

Thus φ is inertial iff :

(FS) ∃n ∀H ≤ A |H(φ)/H(φ)| ≤ n.

Moreover, φ is LIN iff it is inertial and there are subgroups B, D, E, L
as above such that φ is non-zero on D and invertible on E and L

Thus the picture of IEnd(A), when A is periodic, can be described in
Corollary 1. Note that an endomorphism of an abelian torsion group is
inertial iff it is such on all primary components and multiplication on all
but finitely many of them. Notice also that from Theorem 1 it follows that
inertial endomorphisms of an abelian p-group are elementary, in the sense
they act as a multiplication on a finite index subgroup (they are close to
be multiplications, see later), unless the maximum divisible subgroup D :=
div(A) of A is non-trivial and has finite rank while A/D has infinite rank
and finite exponent. For short, say that such an A is critical. To describe
the ring IEnd(A) we also need consideration of the, say, essential exponent
eexp(A) of an infinite p-group A (with finite exponent) , that is the smallest
power pe such that peA is finite or, equivalently, the maximum pe such that
A[pe]/A[pe−1] is infinite. Clearly, the above e is the least finite Ulm-Kaplansky
invariant of A. Denote by Jp the ring of p-adics. For terminology and
elementary facts see [7] and [8].
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Corollary 1 Let A be an abelian p-group and D := div(A). Then
1) If A is non-critical:

IEnd(A) = PEnd(A) + FEnd(A)

and, according to exp(A) = ∞ or exp(A) = pm and pe = eexp(A), we have

PEnd(A) ∩ FEnd(A) = 0 or = pePEnd(A) ≃ peZ/pmZ

IEnd(A)
FEnd(A)

≃ Jp or Z/peZ.

2) If A is critical, pm := exp(A/D) and pe := eexp(A/D):

IEnd(A) = PEnd(A)⊕ (FEnd(A) +R)

where R ≃ PEnd(A/D) ≃ Z(pm) and FEnd(A)∩R = peR. Moreover

IEnd(A)
FEnd(A)

≃ Z(pe)⊕ Jp.

Concerning invertible inertial endomorphisms of a periodic abelian group,
note that these fill a group IAut(A). Theorem 1 lead us to the consideration
of the normal subgroup filled by the so called finitary automorphisms, that
is FAut(A) := {γ ∈ Aut(A) | [A, γ] is finite}, and the group PAut(A) of
invertible multiplications.

Corollary 2 Let A be an abelian p-group and D := div(A). Then
1) If A is non-critical,

IAut(A) = PAut(A) · FAut(A)

where PAut(A) ∩ FAut(A) = 1 if exp(A) = ∞.
Otherwise, if pm := exp(A) and pe := eexp(A) , we have

PAut(A)∩FAut(A) = {x 7→ rx | r ≡ 1mod pe} ≃ {r̄ ∈ Z(pm) | r ≡ 1mod pe}.

2) If A is critical, pm := exp(A/D) and pe := eexp(A/D),

IAut(A) = PAut(A)× (FAutA · Γ)

with FAutA · Γ = {φ ∈ IAut(A) |φ|D = 1}, Γ ≃ U(Z(pm)) and

FAut(A) ∩ Γ ≃ {r̄ ∈ Z(pm) | r ≡ 1mod pe}.
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One may ask a similar question about vector spaces and get a similar
picture, without critical case. Let V be a K-vector space and denote by
FEnd(V ) the ring of K-linear maps which are finitary, that is have image
with finite dim. Note that these are precisely the linear maps acting as the
zero-map on a finite codimension subspace.

Theorem 2 Let φ be an endomorphism of an infinite dimension K-vector
space A. Then dim(φ(H)/(φ(H) ∩H)) < ∞ for each K-subspace H of V
iff φ acts as a scalar multiplication on a finite codimension subspace.

Therefore the above endomorphisms fill the following subring of End(V ):

K̄ ⊕ FEnd(V )

where K̄ is the field of scalar multiplication and FEnd(V ) is the ideal of
endomorphisms whose image has finite dimension.

On the other hand, H ∩ φ(H) has finite codimension in H for each K-
subspace H of V it iff φ acts as a scalar non-zero multiplication on a finite
codimension subspace. Thus such a φ has the above property as well.

2 Proofs

We first prove the above stated Fact. The corresponding statement for vector
spaces has a similar proof and we omit it.

Proposition 1 1) If φ and ψ are LIN-endomorphism (risp. RIN) of any
group G. Then φψ is LIN (risp. RIN).
2) RIN-endomorphism of an abelian group A fill a subring IEnd(A) of
End(A), containing the ideal FEnd(A) of endomorphism with finite image.

Proof. 1) If H is any subgroup of G then from |H/(H ∩ φ(H))| < ∞ it
follows |(H ∩ψ(H))/(H ∩ψ(H)∩φψ(H))| ≤ |ψ(H)/(ψ(H)∩φψ(H))| <∞.

2) If φ and ψ both have RIN, then |(H + φ(H))/H| < ∞ and |(H +
φ(H) + ψ(H) + φψ(H))/(H + φ(H)| <∞. �

Now we prove Theorem 2, which will serve also for the proof of Theorem
1 in the case A of prime exponent. For a subset X of V and φ ∈ End(V ),
we denote respectively by ⟨X⟩ = KX and X(φ) = K[φ]X the K-subspace
and the K[φ]-submodule of V spanned by X.
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Proof. By contradiction, assume φ is multiplication on no quotient space.
We claim that: for all finite dimension subspaces X ≤ A such that X ∩
φ(X) = 0 there exists a subspace X ′ > X with finite dim such that

X ′ ∩ φ(X ′) = 0 and φ(X ′) > φ(X).

Therefore, starting at X0 = 0, by transfinite recursion we define Xi+1 := X ′
i

and Xω := ∪iXi. We get that both Xω and φ(Xω) have infinite dimension
and Xω ∩ φ(Xω) = 0, a contradiction.

To prove the claim, we first prove that if a ∈ V , then

dim(Ka(φ)) <∞.

This is true as we can consider the natural epimorphism

F : K[x] 7→ Ka(φ)

mapping 1 to a and x to φ(a). If F is injective, we can replace V by K[x] and
φ by multiplication by x. If H := K[x2], then both H and φ(H) = xH are
infinite dim, while H ∩xH = 0, a contradiction. Therefore (Ka)(φ) = im(F )
has finite dim and the same holds for Z = X(φ).

Since φ does not act as a scalar multiplication on A/Z, we can choose a ∈
V such that φ(a) ̸∈ ⟨a, Z⟩ and define X ′ := ⟨a⟩+X. If now y ∈ X ′ ∩ φ(X ′),
then ∃n, s ∈ K, ∃x, x0 ∈ X such that y = na + x = sφ(a) + φ(x0). Thus
sφ(a) ∈ ⟨a⟩ + Z while φ(a) ̸∈ ⟨a⟩ + Z. Therefore s = 0 and na = 0 as well.
It follows y = x = φ(x0) ∈ X ∩ φ(X) = 0, as claimed.

Finally, we have seen that if for each K-subspace H, H ∩φ(H) has finite
codimension in H then φ is multiplication on a finite codim subspace B of
A. In particular φ(B) ̸= 0. �

Recall that φ ∈ End(A) is said to be power or multiplication iff
(PW) ∀H ≤ A φ(H) ⊆ H,
and that PW endomorphisms of an abelian p-group are locally universal
that is have form x 7→ αpx for a p-adic αp, when A is a p-group. Also, if
C ≤ B ≤ A, we say that φ is PW on B/C iff C ≤ H ≤ B implies Hφ ⊆ H.

We say that endomorphisms φ1 and φ2 ∈ End(A) are close iff the image
of φ1 −φ2 is finite, that is they act the same way on a finite index subgroup
or -equivalently- modulo a finite order subgroup. This is the congruence in
End(A) whose kernel is the ideal FEnd(A) of endomorphisms with finite
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image. An endomorphism which is close to a (RIN) (resp. LIN) one re-
mains such, clearly. We say that an endomorphisms is PF iff it is close to a
multiplication. Let us sum up basic facts.

Proposition 2 PF-endomorphisms of an abelian group A fill a subring of
End(A),

PEnd(A) + FEnd(A)

where the sum is direct, provided exp(A) = ∞. Otherwise, if A is a p-
group with pm = exp(A) < ∞ and pe = eexp(A), there is a natural ring
isomorphisms

PEnd(A) ∩ FEnd(A) ≃ peZ/pnZ.

Moreover, if φ is PF, then

(FS) ∃n ∀X ≤ A |X(φ)/X(φ)| ≤ n. �

Here by X(φ) (resp. X(φ)) we mean the smallest (resp. largest) φ-
(invariant) subgroup of A containing X (resp. contained in X).
Proof. This is quite elementary. If φ acts as α ∈ PEnd(A) on B ≤ A with
|A : B| < ∞ , then φ − α ∈ FEnd(A). Moreover if C := ker (φ − α), we
have that for each X ≤ A it holds (X ∩ B) ≤ X(φ) and X(φ) ≤ (X + C).
Thus |X(φ)/X(φ)| ≤ |A/B| · |C| ≤ |A/B|2.

If 0 ̸= α ∈ PEnd(A)∩FEnd(A) we have that exists i such that ker α =
A[pi] (clearly pi is the maximal power of p dividing α). If A[pi] has finite
index in A, then exp(A) < ∞ and e ≥ i. Conversely, if pe divides α it is
plain that α ∈ FEnd(A). �

Let us now have a look at PW-endomorphisms which are LIN too. Recall
that an abelian group A with the minimal condition (Min) is just a group
with shape A = F ⊕D, where F is finite and D is divisible with finite total
rank.

Proposition 3 Let φ be a PW endomorphism of an abelian periodic group.
Then φ is LIN iff A = Aπ ⊕ Aπ′ coprime summands where Aπ has Min and
φ|A′

π
is invertible.

Proof. Assume φ is PW and LIN and let π be the set of primes p such that
φ is not invertible on Ap. Then π is finite. Now p divides φp for any p ∈ π,
and hence φ(A[p]) = 0. It follows that Ap has Min and so Aπ has Min as
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well. Conversely, if A = Aπ ⊕Aπ′ coprime summands where Aπ has Min and
φ|A′

π
is invertible, then for any H ≤ A the quotient H/φ(H) is finite, as it

has finite rank and exponent, and φ is LIN. �

We prove now a Lemma which extends a result due to D.Robinson [9].

Lemma 1 Let a ∈ A be an abelian p-group and φ ∈ End(A).
(1) If φ either LIN or RIN, then the torsion subgroup of the φ-submodule

⟨a⟩(φ) of A generated by a is finite.
(2) If |X/X(φ)| <∞ for all X ≤ A, then |X(φ)/X| <∞ for all X ≤ A.

(3) If |X/X(φ)| ≤ pm for all X ≤ A, then |X(φ)/X| ≤ pm
2
for all X ≤ A.

Proof. (1) We may assume A = ⟨a⟩(φ). Suppose first a has order prime p
and regard A as Zp[x]-module (where x acts as φ) and consider the natural
epimorphism mapping 1 to a and x to φ(a):

F : Zp[x] 7→ A.

If F is injective, we can replace A by Zp[x] and φ by multiplication by x. If
H := Zp[x

2], then φ(H) = xH is infinite, while H ∩xH = 0, a contradiction.
If now a has order pϵ, then A/pA is finite, by the above. Moreover, pA is
finite by induction on ϵ.

(2) This can be proved in a similar way as case (3)

(3) We claim that if a ∈ A has order pϵ, then |⟨a⟩(φ)| ≤ p(m+1)ϵ.

Assume first ϵ = 1, that is a has order p and A0 := ⟨a⟩(φ) is elementary
abelian. Suppose, by contradiction, the above F is injective. As above, let
H := Zp[x

2]. Then H(φ) = (g(x2)) for some polynomial g. Since |H/H(φ)| =
pm < ∞, we have g ̸= 0. Then (g(x2)) ̸⊆ H, a contradiction. Therefore, for
some f ∈ Zp[x] with degree say n, we have

Zp[x]

(f)
≃γ ⟨a⟩(φ) = A0

Thus the minimal φ-invariant subgroups of A0 correspond 1 − 1 to the ir-
reducible monic factors of f , which are at most n. Consider a Zp-basis X
of A containing an element in each subgroup of them. The the hyperplane
H of equation x1 + x2 + · · · + xn = 0 has index p in ⟨a⟩(φ) and H(φ) = 0 as

H ∩X = ∅. Therefore |⟨a⟩(φ)| ≤ pm+1.
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If ϵ > 1, by induction B := ⟨pϵ−1a⟩(φ) has order at most p(m+1)(ϵ−1) and

⟨a⟩(γ)/B has order at most pm+1 by case ϵ = 1. Therefore |a(φ)| ≤ p(m+1)ϵ, as
claimed.

In the general case let X be any subgroup of A andX(φ) = 0. Thus |X| =:
pϵ ≤ pm. Write X = ⟨a1⟩⊕· · ·⊕⟨ar⟩ with ai of order pϵi and ϵ1+ · · ·+ ϵr = ϵ.

Since |⟨ai⟩(φ)| ≤ p(m+1)ϵi by the above, we have |X(φ)| ≤ p(m+1)ϵ. So that
|X(φ)/X| ≤ p(m+1)ϵ−ϵ ≤ pm

2
. �

Lemma 2 Let φ ∈ End(A) and D ≤ A divisible and primary. If φ is
either LIN or RIN, then φ is PW on D, that is there is a p-adic α that is
φ(a) = αa ∀a ∈ D.

Proof. Without loss of generality, let D have rank 1. If φ is LIN, then
D ≤ φ(D) and thus D = φ(D). Therefore in both cases LIN or RIN, we
have φ(D) ≤ D. Thus φ is PW on D. �

Proof of Theorem 1 We may assume A is a p-group with D := div(A) and
note that if A is an elementary abelian, the statement follows from Theorem
2.
We claim that for any RIN or LIN-endomorphism φ of any p-group A:
(fs) ∀H ≤ A |H(φ)/H(φ)| <∞. Therefore (LIN) ⇒ (RIN).
To this aim we may suppose H(φ) = 0. Thus, since φ is PW on the divisible
radical D of A, (see Lemma 2), we have D ∩ H = 0 and H is reduced.
Moreover, by the elementary abelian case, φ is PW on a subgroup of finite
index of A[p], we get that H[p] is finite. It follows that H is finite. Then (fs)
holds by Lemma 1.

Let now A be any residually finite abelian p-group and assume, by contra-
diction, that φ acts as a multiplication on no quotient with finite kernel. As
in the proof argument of Theorem 2, we note that if φ is LIN (resp. RIN),
then there is no sequence of subgroups Xi with the property that if we denote
Yi := Xi ∩ φ(Xi) then we have:
(1) Yi+1 ∩Xi = Yi
(2) the sequence |Xi/Yi| (resp. |φ(Xi)/Yi|) is strictly increasing.
This is true since otherwise there would exists a subgroup Xω := ∪iXi with
the properties that |Xω/Xω ∩ φ(Xω)| ≥ |Xi/Yi| ≥ i (resp. |φ(Xω)/Xω ∩
φ(Xω)| ≥ |φ(Xi)/Yi| ≥ i) for each i. On the other hand, we will construct
now a prohibited sequence Xi, a contradiction. Let X be any finite subgroup
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of A. As above the subgroup K := X(φ) is finite by Lemma 1. By (fs) there is
a φ-subgroup B with finite index such that B∩K = 0. Now, as φ is not PW
on (B +K)/K, there is a ∈ B such that φ(a) ̸∈ ⟨a,K⟩. Let X ′ := ⟨a⟩ +X
and Y ′ := X ′ ∩ φ(X ′). Let us check that
(1) X ∩ Y ′ = Y ;
(2′) X ′ > X + Y ′ and φ(X ′) > φ(X) + Y ′.
In fact, on one hand we have X ∩ Y ′ = Y , as if x ∈ X ∩ Y ′ then x =
sφ(a) + φ(x0) with s ∈ Z, x0 ∈ X and sφ(a) = x − φ(x0) ∈ B ∩ K = 0,
hence x = φ(x0) ∈ Y and (1) holds. On the other hand Y ′ ≤ ⟨pa⟩ + Y ̸∋ a
and Y ′ ≤ ⟨pφ(a)⟩+Y ̸∋ φ(a). Indeed if y′ ∈ Y ′ = X ′∩φ(X ′), then ∃n, s ∈ Z,
∃x, x0 ∈ X such that y′ = na + x = sφ(a) + φ(x0) where na = sφ(a) and
x = φ(x0) ∈ Y := X ∩ φ(X). It follows that p divides s, hence p divides n
as well. Then (2′) holds.

Thus we can define by induction a prohibited sequence as above, since
from (1) and (2′) it follows |X ′/Y ′| > |X/Y | and |φ(X ′)/Y ′| > |φ(X)/Y |.

Let now A be any reduced p-group and let R be a basic subgroup. By
(fs), R(φ)/R is finite and so H := R(φ) is residually finite as well. Also, A/H
is divisible. By the above there are a p-adic α ∈ Jp and a finite φ-invariant
subgroup C of H such that φ = α on H/C. As the kernel K/C of (φ−α)|A/C

contains H/C and its image is reduced, while A/H is divisible, it is clear that
K = A and φ is close to α, as wished.

Finally, assume A is any p-group and φ is not close to any multiplication.
As (fs) holds, at the expense of substituting A with a finite index φ-subgroup
we have A = D ⊕ E with D divisible and E reduced and both φ-invariant.
Now φ is multiplication on bothD (see Lemma 2) and a finite index subgroup
of E (see above). So we may also assume φ is power on E. Say φ|D = α1

and φ|E = α2, where α1 ̸= α2 are p-adics.
If E has finite exponent, we may substitute it by E[pe] where pe =

eexp(E). By the reduced case, φ is power on a subgroup A′ of finite in-
dex of A[pe]. Then if D has infinite rank, α1 ≡ α2 mod pe and φ it is
multiplication on D ⊕ (E ∩A′) which has finite index in A, a contradiction.
Thus D has finite rank.

If by contradiction E has infinite exponent (and by our assumption α1 ̸=
α2), then there is a quotient E/S of its which is a Prüfer group (and infinite).
By (fs) we can assume S to be φ-invariant and consider Ā := A/S. This a
divisible group on which φ acts as a (universal) multiplication by Lemma 2,
contradicting α1 ̸= α2.
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Finally let us show that (FS) holds. If φ is a multiplication on some
B ≤ A take n = |A/B|2. In the other (critical) case, observe that H0 :=
(D ∩H) + (E ∩H) is φ-invariant and the group (H ∩ B)/H0 has exponent
≤ exp(E) =: pm and finite rank r < rank of D. Thus |H/H(φ)| ≤ npmr.
Then apply Lemma 1. Conversely, it is plain that (FS) implies that φ is
inertial. �

Proof of Corollary 1. Let φ ∈ IEnd(A). If A is non-critical, apply
Theorem 1 and Proposition 2.

If A = D⊕E is critical, there is a φ-invariant finite index subgroup E1 ≤
E. Let E2 := E1[p

e]. By the above φ acts as multiplication by r on a finite
index subgroup of E2. For each r we may consider r̄ ∈ PEnd(A) acting as the
zero map on D and multiplication by r on E. Let α ∈ Jp represent the action
of φ in D (which is power by Lemma 2). Thus φ−α−r − α ∈ FEnd(A) and
so IEnd(A) = PEnd(A)+(FEnd(A)+R), where R = {r̄ | r ∈ Z} ≃ Z(pm).
Further, if α = φ0 + r̄ ∈ PEnd(A) ∩ (FEnd(A) + R), then α act as r̄ on
a subgroup with finite index and therefore on D. Thus α = 0. To prove
FEnd(A) ∩R = peR apply Proposition 2 to E. �

Proof of Corollary 2. Let γ ∈ IAut(A). Suppose A non-critical. Then,
according to Theorem 1, there exists α ∈ PEnd(A) and a finite index sub-
group B ≤ A such that γB = α and γ−1α acts on B as the identity map. This
guarantees that p does not divide α, which is therefore invertible. Further if
α ∈ PAut(A) ∩ FAut(A) then αB = 1 on a finite index subgroup B ≤ A.
Then α = 1, provided exp(A) = ∞. Otherwise, if α acts as the identity map
on a finite index B subgroup of A, then B ≥ A[pe] and α ≡ 1 mod pe (see
Proposition 2).

Suppose now A is critical. Fix E with finite exponent such that A =
D⊕E. Consider Γ := {ζ ∈ IAut(A) | ζD = 1 and ζ = ζr is power r on E }.
By Theorem 1, there exists an invertible p-adic α such that γD = α and
r ∈ Z such that γα−1 acts by means of power r on a finite index subgroup of
E. Also r̄ ∈ U(Z(pm)), as p does not divide r. Thus γα−1ζ−1

r ∈ FAut(A), as
wished. The final part of the statement follows from the above argument.�
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