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The digitalization of news and social media provides an unprecedented source to investigate the role
of information on market dynamics. However, the observed sentiment time-series represent a noisy
proxy of the true investor sentiment. Moreover, modeling the joint dynamics of different sentiment
series can be beneficial for the assessment of their economic relevance. The main methodological
contribution of this paper is twofold: (i) we filter the latent sentiment signals in a genuinely multi-
variate model; (ii) we propose a decomposition into a long-term random walk component, named
long-term sentiment, and a short-term component driven by a stationary Vector Autoregressive pro-
cess of order one, named short-term sentiment. The proposed framework is a dynamic factor model
describing the joint evolution of the observed sentiments of a portfolio of assets. Empirically, we
find that the long-term sentiment co-integrates with the market price factor, while the short-term
sentiment captures transient and firm-specific swings. By means of quantile regressions, we assess
the significance of the explanatory power of filtered present sentiment on future returns. Then, we
demonstrate how the lagged relation can be successfully exploited in a portfolio allocation exercise.

Keywords: Investment analysis; Sentiment analysis; Kalman-filter; Expectation maximization;
Quantile regressions

JEL Classifications: C30, C58, G11

1. Introduction

Nowadays, as Ignacio Ramonet wrote in The Tyranny of
Communication, ‘a single copy of the Sunday edition of the
New York Times contains more information than an educated
person in the eighteenth century would consume in a life-
time’. This huge amount of information cannot be read by
a single person. Recent developments in machine learning
algorithms for sentiment analysis help us to categorize and
extract signals from text data and pave the way for a new
area of research. The use of these new sources of textual
data has become popular to analyze the relationship between
sentiment and other economic variables using econometric
techniques. Algaba et al. (2020) refer to this new strand of
literature as Sentometrics. A vast literature focuses on the
forecast of future market returns or volatility using sentiment.
For instance, Groß-Klußman and Hautsch (2011) study the

∗Corresponding author. E-mail: danilo.vassallo@sns.it, danilo.mate.
vassallo@gmail.com

impact of unexpected news on the displayed quotes in a limit
order book, Sun et al. (2016) and Schnaubelt et al. (2020)
show that intraday S&P 500 index and constituent returns are
predictable using lagged investor sentiment, Peterson (2016)
investigates the trading strategies based on sentiment, Tet-
lock (2007) and Garcia (2013) consider the Dow Jones Indus-
trial Average (DJIA) index predictability using sentiment,
Calomiris and Mamaysky (2019) show how the predictabil-
ity can be exploited in different markets around the world,
while Kim and Kim (2014) finds no evidence of predictabil-
ity coming from messages on Yahoo! Finance. In addition to
market returns forecast, sentiment indicators have been used
to forecast other market and economic variables. Antweiler
and Frank (2004), Borovkova and Mahakena (2015), Allen et
al. (2015), Smales (2015), and Jiao et al. (2020) study the
impact of sentiment on volatility, Ranco et al. (2015) ana-
lyze the impact of social media attention on market dynamics,
Borovkova (2015) develops risk measures based on sentiment
index, Nyman et al. (2021) and Mai et al. (2019) find predic-
tive power of sentiment indices on financial crisis and firms’
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bankruptcy respectively, Feuerriegel and Gordon (2019) use
financial news to predict macroeconomic indicators and Lillo
et al. (2015) show that different types of investors react differ-
ently to news sentiment. Huynh et al. (2021) show that media
coverage and investor sentiment was able to predict stock
returns and volatility during the recent COVID-19 pandemic.

As observed by Zygmunt Bauman in Consuming Life,
as the amount of information also increases the amount of
useless information increases, and the noise becomes pre-
dominant. Two different non-exclusive methods have been
explored in the literature to remove or, at least, mitigate the
impact of useless information. In the first case, a general-
to-specific approach is used directly on the textual data. The
amount of information can be reduced by selecting only ver-
ified news (i.e. eliminating fake news), considering only the
words which are closely related to the topic of interest, consid-
ering the importance of any news (e.g. Da et al. 2011), select-
ing only news which appear for the first time (e.g. Thomson
Reuters News Analytics engine uses the novelty variable,
see Borovkova et al. 2017), or weighting a news by means
of a measure of attention (e.g. with the number of clicks it
receives when published in a news portal Ranco et al. 2016).
Obviously, the selection of the relevant data is application-
specific. For instance, fake news may be irrelevant to forecast
the GDP of a country but may be crucial to forecast the results
of an election (e.g. Allcott and Gentzkow 2017).

In the second case, sentiment time series are directly
considered rather than the text source they are built
from. The observed sentiment is noisy and various
approaches have been proposed to filter it and recover
the latent signal. Thorsrud (2018) applies a 60-day mov-
ing average, Peterson (2016) uses the Moving Aver-
age Convergence-Divergence methodology proposed in
Appel (2003), Borovkova and Mahakena (2015), Audrino
and Tetereva (2019), and Borovkova et al. (2017) introduce
the Local News Sentiment Level model (LNSL), a univari-
ate method that takes inspiration from the Local Level model
of Durbin and Koopman (2012). In spite of its convenience
from a practical perspective, the moving average approach
is not statistically sound and the window length is usually
chosen following rules of thumb, which have been tested
empirically but lack a clear theoretical motivation. The meth-
ods based on the Kalman-Filter techniques present a natural
and computationally simple choice to extract an informative
signal. Unfortunately, when multiple assets are considered in
the analysis, the LNSL model does not exploit the multivari-
ate nature of the data. One goal of this paper is to show that
the covariance structure is very informative in sentiment time
series analysis.

The first contribution of this paper is to extend the exist-
ing time series methods in the latter stream of literature. We
propose to model noisy sentiment disentangling two different
sentiment signals. In our approach, the observed sentiment
follows a linear Gaussian state-space model with three rel-
evant components.† The first component, named long-term
sentiment is modeled as a random walk, the second compo-
nent is termed short-term sentiment and follows a VAR(1)

† In the empirical application, we find that the Gaussian assumption
is appropriate for the investigated data

process, and the last component is an i.i.d Gaussian observa-
tion noise process. We name the novel sentiment state-space
model Multivariate Long Short Sentiment (MLSS). In the
empirical section of the paper, we separately model the sen-
timent coming from newspapers (news sentiment) and the
sentiment extracted from social media (social sentiment). We
show that the decomposition provides a better insight on the
nature of sentiment time series, linking the long-term senti-
ment to the long-term evolution of the market—proxied by the
market factor—while the short-term sentiments reflect tran-
sient swing of the market mood and is more related to the
market idiosyncratic components. Specifically, we find that
(i) the second news long-term sentiment cointegrates with
the first market factor extracted via PCA; (ii) the correlation
structure of the short-term sentiment explains a significant
and sizable fraction of correlation of return residuals of a
CAPM model. Finally, we show that the multivariate local
level model provides the best description of the data with
respect to alternative models, such as the LNSL.

The second contribution of the paper is to unravel the rela-
tion between news and market returns conditionally on quan-
tile levels. We perform various quantile regressions showing
that sentiment has good explanatory power of returns. When
contemporaneous effects are considered, the result is expected
and holds for all models at intermediate quantile levels. How-
ever, when the analysis is focused on abnormal days—i.e.
days for which returns belong to the 1% and 99% quantiles—
neither the noisy sentiment nor the filtered sentiment from an
LNSL model explain the observed market returns. The only
model achieving statistical significance is the MLSS. This
result shows that it is essential to filter the noisy sentiment
according to the MLSS, which exploits both the multivariate
structure of the data and disentangles the long- and short-term
components. Moreover, a test performed on the single com-
ponents confirms the intuition that the short-term sentiment
is the one responsible for the contemporaneous explanatory
power. The empirical evidence in favor of the MLSS becomes
even more compelling when lagged relations are tested. When
a single day lag is considered, i.e. one tests whether yester-
day’s sentiment explains today returns, the significance of all
models, but MLSS, drops to zero. This result holds across
all quantile levels. Instead, for quantiles smaller than 10%
and larger than 90%, the returns predictability for the MLSS
model is highly significant. As before, the decomposition in
two time scales is essential and the short-term component
is the one responsible of the effect. The analysis extended
including lagged sentiment—up to five days—confirms previ-
ous findings by Garcia (2013) that past sentiment contributes
in predicting present returns. Interestingly, this is true for
quantiles between 5% and 10%, both negative and positive,
but neither in the median region nor for extreme days. In light
of these findings, we finally investigated whether media and
social news immediately digest market returns and whether
this relation depends on the sign of returns. Our results pro-
vide a clear picture showing that (i) the impact of market
returns on sentiment is significant up to five days in the
future when negative extreme returns—i.e. belonging to quan-
tiles from 1% to 10%—are considered, (ii) when positive
returns are considered the impact rapidly fades out and is
significant only for quantiles smaller than 5%, (iii) previous
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findings become not significant if the MLSS sentiment is
replaced by the observed noisy sentiment. Consistently with
the intuition provided by these results, we test whether the
returns predictability of the MLSS model can be exploited in a
portfolio allocation exercise. We show that the portfolios gen-
erated with the MLSS sentiment series have a higher Sharpe
ratio and lower risk than similar portfolios constructed with
raw sentiment or sentiment filtered with the univariate LNSL
model. Our model outperforms also the benchmark consti-
tuted by the buy-and-hold equally weighted portfolio. This
result remains true when transaction costs are included.

The rest of the paper is organized as follows. In section 2,
we develop the multivariate model for the sentiment and dis-
cuss the estimation technique. In section 3, we introduce the
TRMI sentiment index and describe the data used in the anal-
ysis. In section 4, we report the empirical findings and discuss
the advantages of the multivariate approach. In section 5, we
compare the various techniques and report the performances
of the long-short sentiment decomposition in explaining daily
returns. Section 6 describes the portfolio allocation strategies
using different filtering techniques and assesses the superi-
ority of the MLSS filter among the others. Section 7 draws
the relevant conclusions and sketch possible future research
directions.

2. The model

Consider K assets and the corresponding K observed daily
sentiment series Si

t where i = 1, . . . , K. The observed daily
sentiment Si

t quantifies the opinions of investors and con-
sumers about company i. In most cases, the observed senti-
ment is a continuous number in a compact set.

The Local News Sentiment Level model (LNSL), presented
in Borovkova and Mahakena (2015) and subsequently used in
Audrino and Tetereva (2019), reads as follows

Si
t = Fi

t + εt, εt
d∼ N (

0, σ i
ε

)
,

Fi
t = Fi

t−1 + vt, vt
d∼ N (

0, σ i
v

)
.

(1)

for every i = 1, . . . , K. This model is a univariate specifica-
tion of the Local Level model of Durbin and Koopman (2012).
The latent sentiment series Fi

t is considered as slowly chang-
ing components, modeled as independent random walks and
the parameters σ i

ε and σ i
v are estimated via maximum likeli-

hood (MLE).
Since the LNSL model does not consider the correlations

of the innovations among the K assets, we can easily derive
its multivariate version as

St = Ft + εt, εt
d∼ N (0, R) ,

Ft = Ft−1 + vt, vt
d∼ N (0, Q) .

(2)

where St = [S1
t , . . . , SK

t ]′ and Ft = [F1
t , . . . , FK

t ]′ are K dimen-
sional vectors, Q is a K × K symmetric matrix and R is a
K × K diagonal matrix. We refer to the multidimensional
LNSL model as MLNSL. The synchronous correlation among

the innovations of the latent sentiment are described by the
covariance matrix Q, while the correlations among the obser-
vation noises are assumed to be 0. Clearly, the LNSL model
is a special case of the MLNSL model when the matrix Q
is diagonal. Since the number of parameters for this model
scales as K2, the MLE of the MLNSL model is computa-
tionally demanding. For this reason, we use the Kalman-EM
approach described in Corsi et al. (2015).

The idea of the LNSL and MLNSL models is that the
latent sentiment is a slowly changing component with a
Gaussian disturbance. In their empirical studies, Audrino and

Tetereva (2019) observe that the signal-to-noise ratio σ 2
v

σ 2
ε

,
obtained using the LNSL filter, is very small. This find-
ing indicates that the majority of the daily changes in the
sentiment series can be considered as noise. One possible
explanation for this result is that the Local Level specification
of these models is not sufficiently rich to capture all the sig-
nals from the observed sentiment. Indeed, in newspapers and
social media, there is a consistent amount of articles and opin-
ions which represent fast trends or rapidly changing consumer
preferences. Following the recent strand of literature on per-
suasion (Gerber et al. 2011, Hill et al. 2013), these fast trends
have strong but short-lived effects on consumer preferences.
Since the (M)LNSL model, introduced in Borovkova and
Mahakena (2015) and Audrino and Tetereva (2019), consid-
ers the sentiment as an integrated series, these mean-reverting
signals are treated as noise.

The main contribution of this paper is to define a new model
which disentangles the slowly changing sentiment from a
rapidly changing sentiment, which we name short-term sen-
timent, and the observation noise. We build our model on
the existing approach of Borovkova (2015) and Audrino and
Tetereva (2019), and we specify the slowly changing compo-
nents as a unit root process. In addition, it is reasonable to
think that the slowly changing components of a set of firms
with common characteristics, for instance, belonging to the
same sector, market, or country, should be affected by the
same trends and shocks. For this reason, in our model we con-
sider a number q � K of factors driving the slow component
of the sentiment dynamics. We name these factors as long-
term sentiment. We do not fix the number q a priori, but we
select it by means of information criteria.

To provide a more quantitative intuition behind our mod-
eling specification, let us consider the true, but unobserved,
daily investor’s mood M i

t of asset i. We hypothesize today’s
daily mood can be written as

Moodi
t = Long-term Moodi

t + Short-term Moodi
t. (3)

Based on Audrino and Tetereva (2019) and Borovkova and
Mahakena (2015), the Long-term Mood is composed of yes-
terday’s Long-term Mood plus a shock si,long

t , which is usually
small but permanent, i.e.

Long-term Moodi
t = Long-term Moodi

t−1 + si,long
t .

On the contrary, the Short-term Mood is short-lived, but with
a strong and highly influential impact. In particular, the Short-
term Mood is composed by a residual part of the yesterday
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Short-term Mood plus a shock si,short, i.e.

Short-term Moodi
t = φiShort-term Moodi

t−1 + si,short
t .

In this framework, the long-term shocks permanently change
the investor’s mood while the short-term shocks have an
exponentially decaying persistence in the investor’s mood.
Equation (3) can be rewritten as

Moodi
t = Long-term Moodi

t−1 + si,long
t

+ φiShort-term Moodi
t−1 + si,short

t . (4)

Considering the whole story and the dynamic of the two
sentiments shocks, we can rewrite equation (4) as

Moodi
t =

t∑
k=−∞

(φi)
t−ksi,short

k

︸ ︷︷ ︸
Short-term Moodi

t

+
t+1∑

k=−∞
si,long

k

︸ ︷︷ ︸
Long-term Moodi

t

,

where we assumed Moodi
−∞ to be negligible and equal to

zero. In full generality, the multivariate version of model (3)
can be formulated as follows

Moodt = A × Long-term Moodt + B × Short-term Moodt,

with A and B being K × K matrices. However, in light of
the considerations in the previous paragraph, we restrict
the matrix B to be the identity matrix. In this way, the
Short-term Mood is purely company-specific. We replace
A Long-term Moodt with the product between a factor load-
ing matrix and a limited number of factors, that is we rewrite
the previous equation as

Moodt = � × Long-term Factor Moodt

+ Short-term Moodt, (5)

where � belongs to R
K×q with q ≤ K. It is important to

notice that the significance of � can be statistically tested
and the selection of the number q of factors can be performed
by means of AIC and BIC criteria. Following Audrino and
Tetereva (2019), we assume that the observed sentiment St is
a noisy observation of the investors Moodt, and we formulate
a state-space model for St consistent with the intuition pro-
vided by model (5). The Multivariate Long Short Sentiment
model (MLSS) for the observed sentiment model, assuming
a Gaussian specification for the short-term sentiment shock,
long-term sentiment shock and the observation noise, reads

St = �Ft + �t + εt, εt
d∼ N (0, R) ,

�t = ��t−1 + ut, ut
d∼ N (0, Qshort) ,

Ft = Ft−1 + vt, vt
d∼ N (

0, Qlong
)

,

(6)

where R ∈ R
K×K is the diagonal covariance matrix of the

observation noise εt, � ∈ R
K×K is the matrix of autoregres-

sive coefficients, Qshort ∈ R
K×K is the covariance matrix of

the short-term sentiment innovations, and Qlong ∈ R
q×q is the

covariance matrix of the random walk innovations. Section B
in the online material shows an alternative specification for
the long-term component, but the implementation of this
model is left for future work. In equation (6), Ft and �t are the
latent processes that proxy the Long-term Factor Mood and
Short-term Mood in (5), respectively. Please notice that the
essential difference between equations (5) and (6) is that the
observed sentiment, and its components, are noisy versions
of the investors’ mood and its long and short components.
Finally, in this paper, we force a diagonal structure on the
matrix �, thus neglecting the possible lead-lag effects among
sentiments. This restriction is introduced to limit the curse
of dimensionality of the model. As an alternative approach
allowing for possible lead-lag effects, one should consider
to implement well-known regularization techniques. Chen
et al. (2017) propose an Expectation Regularization Maxi-
mization algorithm to estimate high-dimensional state space
model. However, this methodology can not be used in the case
of augmented state-space models. A possible extension of reg-
ularization techniques for augmented state-space models is an
interesting research problem, whose investigation is beyond
the scope of the current work. After model (6) is estimated on
data (see section 4), we perform the standard tests on the resid-
uals finding that they are approximately normally distributed,
serially uncorrelated, as well as their absolute values.† All
these results indicate that a Gaussian state space model is an
appropriate specification for the sentiment dataset.

It is worth noticing that, if the observed sentiment St lies
in a compact set, the LNSL, MLNSL and MLSS models,
in their current specification, do not consider the upper and
lower bounds. This issue can be accounted for with a non-
linear transformation of the data, e.g. by Fisher transforming
the data, which maps them on the whole real line as commonly
done for correlation time series. In this paper, we do not apply
any non-linear transformation since most of the daily senti-
ment observations are far from the bounds and, as we verified,
the Fisher transform mildly affects our analysis. In addition,
the definition of unit root processes in presence of bounds is
non standard but studied in the literature and it can be tested
using ad-hoc unit root tests (Cavaliere and Xu 2014).

The estimation of the unknown parameters is based
on a combination of the Kalman filter with Expecta-
tion Maximization (Kalman 1960, Shumway and Stof-
fer 1982, Harvey 1990, Wu et al. 1996, Jungbacker and
Koopman 2008, Banbura and Modugno 2014). Given that
model (2) is a special case of model (6), in the next session,
we only consider the estimation procedure of model (6).

2.1. Estimation procedure

The estimation of model (6) is performed using the Kalman
filter (Kalman 1960) and the Expectation Maximization (EM)
method in Dempster et al. (1977) and Shumway and Stof-
fer (1982), which was proposed to deal with incomplete or
latent data and intractable likelihood. The EM algorithm is a
two-step estimator. In the first step, we write the expectation
of the likelihood considering the latent process as observed.

† Detailed results are available upon request.
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In the second step, we re-estimate the static parameters maxi-
mizing the expectation obtained in the first step. This routine
is repeated until some convergence criterion is satisfied. To
cast (6) in a standard state-space representation, we use the
same procedure as Banbura and Modugno (2014) and define
the augmented states �̃, F̃, �̃ and Q̃ s.t.

St = �̃F̃t + εt, εt ∼ N (0, R) ,

F̃t = �̃F̃t−1 + vt, vt ∼ N
(

0, Q̃
)

,
(7)

where

�̃ = [
� IK

] ∈ R
K×(q+K),

F̃t =
[

Ft

�t

]
∈ R

(q+K)×1, �̃ =
[

Iq 0
0 �

]
∈ R

(q+K)×(q+K),

Q̃ =
[

Qlong 0
0 Qshort

]
∈ R

(q+K)×(q+K).

(8)
The EM renders the approach feasible in high dimension.
Indeed, while a direct numerical maximization of the like-
lihood is computationally demanding, the EM algorithm,
thanks to the Kalman filtering and smoothing recursions in
appendix 1, can be formulated using the closed-form equa-
tions reported in appendix 2. In particular, it allows to
disentangle the long-term sentiment Ft and the short-term
sentiment �t. To derive the EM steps, we consider the log-
likelihood l(St, F̃t, θ) where θ denotes the set of static param-
eters �̃, �̃, Q̃ and R. The EM proceeds in a sequence of
steps:

(1) E-step: it evaluates the expectation of the log-
likelihood using the estimated parameters from the
previous iteration θ(j):

G
(
�̃ (j) , �̃ (j) , Q̃ (j) , R (j)

)
= E

[
l
(
St, F̃t, θ (j)

) | S1, . . . , ST
]

. (9)

The E-step strongly relies on equations (A1). The
details are explained in appendix 1.

(2) M-step: the parameters are estimated again maximiz-
ing the expected log-likelihood with respect to θ :

θ (j + 1) = arg max
θ

G
(
�̃ (j) , �̃ (j) , Q̃ (j) , R (j)

)
.

(10)
The M-step is performed updating the static parame-
ters following equations (A3)–(A6). Details are pro-
vided in appendix 2.

We initialize the parameters θ(0) and repeat steps 1 and 2
until we reach the convergence criterion

|l (St, F̃t, θ (j)
) − l

(
St, F̃t, θ (j − 1)

) |
|l (St, F̃t, θ (j)

) + l
(
St, F̃t, θ (j − 1)

) | <
ε

2
. (11)

We set ε = 10−3. As observed in Harvey (1990), the dynamic
factor model (7) is not identifiable. Indeed, if we consider
a non singular invertible matrix M, then the parameters

θ1 = {�, R, Q} and θ2 = {�M −1, R, MQM ′} are observation-
ally equivalent, then starting from St we cannot distinguish
θ1 from θ2. We solve this identification problem using the
approach proposed by Harvey (1990), imposing the following
restrictions

Q̃ =
[

Iq 0
0 Qshort

]
, � =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ11 0 0 . . . 0
λ21 λ22 0 . . . 0

...
...

...
. . .

...
...

...
...

... 0
...

...
...

...
...

λK1 λK2 λK3 . . . λKq

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12)
where � is the K × q sub-matrix in (8).

The specifications of �̃, �̃, Q̃ and R in (8), together
with (12), impose several constraints to the estimation. The
EM procedure allows us to impose restrictions on the param-
eters in a closed-form. According to Wu et al. (1996) and
Bork (2009), we get the constrained �̃, �̃, Q̃ and R as:

vec(�̃r) = vec(�̃) +
(

A−1 ⊗ Q̃
)

M (M (A−1 ⊗ Q̃)M ′)−1

× (k� − Mvec(�)) (13)

where A is defined in (A2), M is the f × 2K(r + K) matrix, f
is the number of constraints, k� is the f vector containing the
constraints values such that Mvec(�̃) = k�.

Equivalently, for the restricted �r:

vec(�r) = vec(�) + (
E−1

1 ⊗ R
)

G(G(E−1
1 ⊗ R)G′)−1

× (kλ − Gvec(�)) (14)

where E1 is defined in (A2), G is the s × Kr matrix, s is the
number of constraints, kλ is the s vector containing the con-
straints values such that Gvec(�) = kλ. Q̃ and R are evaluated
using equations (A4) and (A5) and the restrictions, according
to Wu et al. (1996), can be imposed elementwise.

The final estimation scheme reads as follows:

(1) Initialize �̃(0), �̃(0), Q̃(0) and R(0)

(2) Perform the E-step using the estimations �̃(j), �̃(j),
Q̃(j) and R(j) and the Kalman Smoother (A1).

(3) Perform the M-step and evaluate the new estima-
tors �̃(j + 1), �̃(j + 1), Q̃(j + 1) and R(j + 1) using
equations (A3)–(A5).

(4) Use the unrestricted estimations and (13) and (14) to
obtain the restricted ones.

(5) Repeat 2, 3 and 4 above until the estimates and the
log-likelihood reach convergence.

Finally, we select the number of long-term sentiment q
using the AIC and BIC indicators.

3. Data

The approaches to sentiment analysis can be broadly classified
into three categories. The first class is based on (mostly super-
vised) Machine Learning techniques. Three steps are typically
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considered. The first one is to collect textual data forming the
training dataset. The second one is to select the text features
for classification and to pre-process the data according to the
selection. The final step is to apply a classification algorithm
to the textual data. As an example, Pang et al. (2002) compare
the performance of Naive Bayes, support vector machines,
and maximum entropy algorithm to classify positive or nega-
tive movie reviews. The second category is the lexicon-based
approach. It also typically consists of three steps. The first
step is the selection of a dictionary of N words that could be
relevant to a specific topic (e.g. the word great is considered
as a positive word to review a movie). The second one con-
sists in tokenizing the textual data and, for each word in the
dictionary, count how many times it appears in the text. This
process can be visualized with a vector of length N where the
ith element represents the number of times the ith word of the
dictionary is mentioned in the text. Finally, a measure takes
the vector of length N as an input and gives a quantitative
score as an output. One can refer to Loughran and McDon-
ald (2011) for a relevant example in the financial literature.
The third and last approach is a combination of methodologies
coming from the first and second approach. For an overview
of textual data treatments and computational techniques, we
refer to the review paper (Vohra and Teraiya 2013) and the
book (Liu 2015).

In this paper, we use a pre-classified index named The
TRMI sentiment index. It is constructed using over 700
primary sources, divided into news and social media, and col-
lects more than two million articles per day. For every article,
a ‘bag-of-words’ technique is used to create a sentiment score,
which lies between −1 and +1, a buzz variable,† and one or
more asset codes, which in our case refer to companies. The
time resolution of the sentiment data is one minute.

For any asset a, minute s, and day t we denote as Sa
t,s the

sentiment score and as Buzza
t,s the buzz variable. The variable

Sa
t,s can be specific for news or social sentiment. In this paper,

we use both the series but analyze them separately. Since the
following empirical analysis are performed using daily data,
we need to aggregate the TRMI series on a daily basis. TRMI
user guide suggests to use the following equation

Sa
t =

∑4:00PMt

s=4:00PMt−1 Buzza
t,sS

a
t,s∑4:00PMt

s=4:00PMt−1 Buzza
t,s

∈ [−1, 1] , (15)

where Sa
t refers to the daily sentiment at day t, evaluated

on a 24-hour window between the 4:00 PM of day t − 1
(4 : 00PMt−1) and the 4:00 PM of day t (4 : 00PMt). Note that
the TRMI server provides a daily frequency sentiment, where
they use equation (15) with a 24-hours window from 3:30 PM
to 3:30 PM of the day after. However, since we want to relate
the sentiment series with close-to-close returns, we construct

† ‘The buzz field represents a sum of entity-specific words and
phrases used in TRMI computations. It can be non-integer when any
of the words/phrases are described with a minimizer, which reduces
the intensity of the primary word or phrase. For example, in the
phrase “less concerned” the score of the word “concerned is” mit-
igated by “less”. Additionally, common words such as “new” may
have a minor but significant contribution to the Innovation TRMI.
As a result, the scores of common words/phrases with minor TRMI
contributions can be minimized’. See TRMI user guide.

Table 1. Static parameters of model (6) for news sentiment.

Signal to noise

Tickers �news �news MLSS MLNSL

AXP 0.464 1.177 0.623 0.010
(0.029) (0.050)

JPM 0.732 − 0.169 0.711 0.326 0.023
(0.016) (0.035) (0.058)

VZ 0.682 0.545 − 0.080 0.431 0.029
(0.019) (0.038) (0.063)

CVX 0.545 0.103 0.894 0.610 0.022
(0.024) (0.042) (0.071)

GS 0.773 − 0.239 0.718 0.336 0.029
(0.014) (0.036) (0.060)

JNJ 0.407 0.851 0.834 0.788 0.010
(0.030) (0.039) (0.065)

MRK 0.336 0.811 0.885 0.832 0.008
(0.033) (0.036) (0.059)

PFE 0.299 0.530 1.021 1.185 0.007
(0.029) (0.031) (0.052)

UNH 0.374 1.177 0.530 0.574 0.009
(0.037) (0.056) (0.093)

BA 0.585 0.376 0.742 0.896 0.033
(0.021) (0.036) (0.059)

CAT 0.633 0.309 0.045 0.423 0.017
(0.021) (0.064) (0.108)

GE 0.581 1.083 − 0.196 0.587 0.022
(0.023) (0.035) (0.058)

MMM 0.295 0.958 0.072 0.788 0.009
(0.034) (0.038) (0.064)

UTX 0.331 0.422 − 0.413 0.690 0.011
(0.035) (0.057) (0.094)

XOM 0.591 − 0.058 1.025 0.725 0.031
(0.021) (0.039) (0.065)

KO 0.486 0.476 0.245 0.620 0.015
(0.028) (0.033) (0.055)

PG 0.337 0.838 − 0.623 0.929 0.008
(0.031) (0.041) (0.068)

AAPL 0.593 0.221 0.160 1.736 0.096
(0.018) (0.026) (0.043)

CSCO 0.714 1.063 − 1.094 0.441 0.046
(0.017) (0.043) (0.071)

IBM 0.603 0.754 − 1.269 0.853 0.040
(0.020) (0.038) (0.063)

INTC 0.641 0.641 − 0.299 0.865 0.066
(0.018) (0.039) (0.065)

MSFT 0.651 0.858 − 0.007 0.668 0.053
(0.019) (0.026) (0.043)

DIS 0.439 0.454 − 0.198 1.074 0.013
(0.025) (0.028) (0.046)

HD 0.611 1.137 0.232 0.473 0.021
(0.024) (0.058) (0.098)

MCD 0.404 − 0.291 0.020 1.401 0.013
(0.024) (0.034) (0.057)

NKE 0.368 0.664 − 0.285 0.783 0.010
(0.032) (0.046) (0.076)

WMT 0.516 0.147 0.619 0.854 0.022
(0.023) (0.031) (0.052)

Note: Values and standard errors of estimated � are multiplied by
103. In parenthesis we show the standard error of the estimated
parameter. The last two columns show the signal-to-noise ratio for
two competing models.

the daily sentiment series aggregating the high-frequency sen-
timent according to the trading closing hour of the NYSE
(4:00 PM). For more details, please refer to Peterson (2016).
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For the empirical analysis, we consider the TRMI sentiment
index of 27 out of 30 stocks† of the Dow Jones Industrial
Average (DJIA) over the period 03/01/2006–29/12/2017. The
companies that we considered are the components of the DJIA
as of December 29, 2017. Since the TRMI index divides the
news sentiment from the social sentiment, we have a total
of 54 time series. A description of tickers, sectors and sum-
mary statistics is available in Sector A of the online material.
Finally, the MLSS model, in its current specification, does not
manage missing values in data, while some of the sentiment
time series present missing observations. The EM algorithm is
naturally designed to handle missing observations. However,
since the number of missing values is small,‡ we fill them
using the rolling mean over the last 5 days.

4. Empirical analysis

In this section, we present the results of the estimation of the
MLSS model for the investigated stocks, providing an eco-
nomic interpretation of the long- and short-term component
of the sentiment. In the analyses, we consider separately the
case of news and social sentiment indicator.

The first quantity to fix is the number q of long-term sen-
timent factors. Using the Bayesian information criteria (BIC)
we select qnews = 2 and qsocial = 2. An additional criterion for
the selection of the number of long-term sentiment is provided
in section C of the online material.

Table 1 reports the values of � and � with the estimation
errors.§ Bold values indicate parameters which are signifi-
cantly different from 0 with a p-value smaller than 0.05. We
notice that most of the estimated parameters are statistically
significant.

As an illustrative example, the top panel of figure 1 shows
how the filter works for the Goldman Sachs news sentiment
series. We observe that a high fraction of the sentiment daily
variation is captured by the filter. In section D of the online
material, we quantify more in detail the signal-to-noise ratio
of the proposed filter. We find that the MLSS model has
a signal-to-noise ratio approximately 20 times larger than
the MLNSL. Moreover, the noise in social media is gener-
ally higher than the noise in newspapers. The bottom panel
of figure 1 reports separately the long-term and short-term
components of the filtered sentiment signal.

The MLSS approach considers two new quantities
extracted from the observed sentiment. The first novelty is the
long-term sentiment, which, by construction, represents the
series of common trends in a particular basket of sentiment
time series. The second novelty is the multivariate structure
of sentiment, extracted using the symmetric matrix Qshort. In
the next sections, we separately analyze the relation between

† We only consider 27 assets because one is missing in the Thomson
Reuters dataset and two have a high ratio of missing values at the
beginning of the sample.
‡ 47 out of 54 sentiment series have less than 1% of missing obser-
vations. All the series have a percentage of missing which is smaller
than 7.5%. For more information on the sentiment series, we refer to
section A of the online material.
§ Note that the � matrices, as discussed in the supplementary
material, have the upper triangular submatrix equal to zero.

these two quantities and the stock market prices. To this end,
we extract the market factors from the stock prices of these
assets. Denote as rt ∈ R

27 the vector of demeaned close-to-
close log-returns and evaluate the unconditional covariance
matrix Qret and the unconditional correlation matrix Cret. We
extract the factor loading matrix �mrk ∈ R

qmrk×27 using the
PCA on the matrix Cret and define the return factors Rt =
�mrkrt ∈ R

qmrk . We also define the market factors as M mrk
t =

�mrkpt, where pt ∈ R
27 is the vector of log-prices. In the

following analysis, we consider qmrk = 1 and name the first
market factor Fixed Dow 27.¶

4.1. Long-term sentiment

We first investigate a possible economic interpretation of
the long-term sentiment. Since we estimate model (6) sepa-
rately for the news and social sentiment, the total number of
long-term sentiment series is four. However, two of them are
specific for the news sentiment while the other two are specific
for the social sentiment. Using the Engle-Granger test (Engle
and Granger 1987), we observe that one of the factors of the
news long-term sentiment is cointegrated with the Fixed Dow
27. Figure 2 shows the cointegration relation, pointing out that
the main driver of the prices and the driver of the sentiment
time series reflect the same common information. Since, at
daily scale, the news from which the sentiment is extracted
could in general reflect the performance of the market, the
existence of such a co-integration relation sounds very rea-
sonable and not so surprising. However, figure 3 shows the
standardized weights of the cointegrated factors. The weights
of the market factor are very homogeneous across assets, as
shown in the top panel, while the weights of the cointegrated
factor of the long-term sentiment are very heterogeneous, as
shown in the bottom panel. The values of the elements of
the factor loading matrix �news reported in table 1 are either
positive or negative.‖ Then, some firm’s sentiment positively
affects the common sentiment factors, while some other firm’s
sentiment negatively affects them. We checked whether the
heterogeneity of weights were related to the number of news
of a given asset, or with the buzz index, but we found no
significant evidence. Unravelling the origin of the detected
heterogeneity is an interesting research question, that could
be probably answered by looking at the contents of the arti-
cles from which the sentiment was computed. Unfortunately,
we do not have access to this kind of information.

We do not have a clear interpretation for the other news
long-term sentiment component. The loadings of this factor
are reported in the second column of table 1. We see that
all the companies are positively related with the factor with
the only exceptions of two financial stocks (GS and JPM).
In addition, the two social long-term sentiment are not coin-
tegrated with the Fixed Dow 27 and, even in this case, the
loadings do not provide a clear association between the factors
and the market or a specific sector.

¶ Since we are not re-balancing the index to track the real composi-
tion of the Dow Jones, we fix the composition as of December 29,
2017 and name the index Fixed Dow 27.
‖ The elements of the factor loading matrix �social are available upon
request.
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Figure 1. Goldman Sachs sentiment series. In the top panel, the blue line is the observed sentiment and the orange line is the filtered sentiment
including both long-term and short-term component. In the bottom panel, we decompose the contribution of the long-term sentiment (in
orange, RHS scale) and the short-term sentiment (in blue, LHS scale).

Figure 2. Co-integration between Fixed Dow 27, in blue, and the second factor of the news long-term sentiment, in orange. Time series are
scaled. The Fixed Dow 27 is the first market factor built using log-prices.

4.2. Short-term sentiment

The second novelty of the MLSS model is the multivari-
ate structure of the short-term sentiment series. The question
we want to address in this section is whether the correla-
tion structure of the short-term sentiment is (linearly) related
with the correlation structure of the daily returns. In the pre-
vious section, we observed that one of the factors of the
long-term sentiment is cointegrated with the first market fac-
tor. We therefore expect the short-term sentiment to capture
asset-specific features, i.e. we expect a close relation with the

idiosyncratic dynamic of the returns.† To test this intuition
for the correlation structure, we compare the results of the
MLSS model with the results of the MLNSL model which, by
construction, does not disentangle the factors from the senti-
ment series. If the intuition is correct, the correlation matrix
of the sentiment extracted using the MLSS model should
be linearly related with the return correlations and with the
idiosyncratic return correlations. On the contrary, the corre-
lation matrix of the sentiment extracted using the MLNSL

† We define idiosyncratic returns as the market returns where the first
market factor is removed using the factor model (17)
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Figure 3. Values of the standardized factor loadings of the cointegrated series. Top panel: loadings of the Fixed Dow 27 index. Bottom panel:
loadings of the second factor of the news long-term sentiment.

model, which only captures the slowly changing dynamics of
the sentiment series, and thus of the first market factor, should
be linearly related with the returns correlation but mildly cor-
related with the idiosyncratic returns correlations. Finally, to
test whether the filtering procedure is a crucial step in our
approach, the correlation matrix of the observed sentiment is
also considered.

We define Cshort as the correlation matrix associated with
the covariance matrix Qshort, CMLNSL the correlation matrix
associated with the covariance matrix Q of equation (2),
CObs = Corr(
St) the unconditional correlation of the first
difference of the observed sentiment, and Cret the uncon-
ditional correlations matrix of the stock returns. We search
for a linear element-wise relation between Cret and Cmodel,
where model is one of short, MLNSL, or Obs. The results
are reported for the news case only, but the conclusions are
similar for the social sentiment.

We perform a standard ordinary least squares estimation on
the model

vechl(Cret) = α + βmodelvechl(Cmodel), (16)

where vechl(X ) is the operator which collects the lower trian-
gular elements of matrix X in a column vector. We compare
the results obtained using the MLSS model (Cmodel = Cshort),
with the results obtained using the MLNSL model (Cmodel =
CMLNSL) and using the Observed sentiment (Cmodel = CObs).
In addition, since the unconditional correlation between two
assets is higher when they belong to the same sector, we
separately consider two cases. In the first case, we estimate
model (16) considering all the pairs of assets. In the second
case, we estimate model (16) considering only the pairs of
assets belonging to the same economic sector according to
table A.1.

The top left panel of table 2 shows the results with all the
correlation pairs. In the first column, we report the R2 of the
regression; in the second column, we report the F-statistic
and the relative p-value is reported in the third column. The
regressions with Cshort and CMLNSL have high and significant
p-values, while the regression with Cobs is not statistically
different from the model with the intercept only. This find-
ing has two implications. The first one is that the sentiment
innovations have a similar correlation structure as that of the
returns’ innovations. In particular, if the returns of two assets
are relatively highly correlated, then also the increment of the
filtered sentiment of the news about these assets are relatively
highly correlated. The second implication is that, if a filter-
ing procedure is not applied to the observed sentiment data,
the noise is too large to find significant results. In the top
right panel of table 2, we report the results of the model (16)
applied to the pairs of assets belonging to the same sector.
We observe that the R2 increases for all models. This result
is expected since it is well known that the return correla-
tion is higher and more significant between two assets of the
same sector. However, even if the R2 increases, the number
of pairs decreases. For this reason, the increment in the R2

does not lead to an increment in the F-statistic, which fails
to reject the null hypothesis for the Cobs. This result con-
firms that the Cobs matrix is not a significant regressor for
Cret.

Comparing the top panels of table 2, we note that the incre-
ment in the R2 is higher for the MLSS model rather than the
MLNSL model. This evidence is consistent with the intuition
that the short-term sentiment series, extracted using the MLSS
model, are more related with the idiosyncratic returns. Indeed
the correlation induced by the market factor is predominant
in the first case, reported in the top left panel, where all the
assets are considered, rather than the second case, reported
in the top right panel, where the co-movements are not only
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Table 2. Top rows: Results from the linear regression (16).

All assets Same sector

Models R2 F-statistic p-value R2 F-statistic p-value

MLSS 13.77 % 55.713 0.0000 37.89 % 23.182 0.0000
MLNSL 15.63 % 64.669 0.0000 28.78 % 15.359 0.0004
Obs 0.95 % 3.330 0.0689 4.19 % 1.662 0.2052
MLSS 11.34 % 44.659 0.0000 30.91 % 17.001 0.0002
MLNSL 4.31 % 15.700 0.0001 7.50 % 3.081 0.0873
Obs 1.01 % 3.554 0.0602 4.88 % 1.950 0.1707

Notes: Bottom rows: Results from the linear regression (18). Left columns: OLS estimates when all the assets are considered; right columns:
OLS estimates when only the correlations between stocks belonging to the same sector are considered. Obs rows: estimation based on the
observed sentiment.

driven by the first market factor, but they are also driven by
sector-specific factors.

Now we extract the Fixed Dow 27 return from the asset
returns using a one-factor model. We repeat the analysis com-
paring the matrices Cshort, CMLNSL and CObs with the uncondi-
tional correlation of the idiosyncratic returns. We extract the
market factor Rt from the returns using the factor model

ri
t = αi + β iRt + zi

t, ∀ i = 1, . . . , 27 (17)

where zi
t ∼ N(0, Q̃ret). We then compute the cross-correlation

matrix C̃ret from the covariance matrix Q̃ret and estimate the
following model

vechl(C̃ret) = α + βmodelvechl(Cmodel). (18)

The bottom panels of table 2 report the results. In the bottom
left panel, we show the results for the model (18), where all
the correlation pairs are considered. The first evidence is that
the MLNSL R2 dramatically decreases, while the MLSS R2

remains almost the same. This finding suggests that almost
all the return correlations explained by the CMLNSL matrix are
associated with the market factor Rt, while the matrix Cshort,
which represents the fast trends on the sentiment data, also
captures different dynamics.

In the bottom right panel, we show the results for the
model (18), where we consider only the correlation pairs for
assets belonging to the same sector. In this case, the dif-
ferences between the MLSS and MLNSL are more severe.
Indeed, the MLSS model still has a high and highly signifi-
cant R2, while the F-statistic for the MLNSL model fails to
reject the null that βMLNSL, defined in equation (18), is equal
to 0. Again, the model with the observed sentiment has no
significant p-values.

As a last observation, we see the different behavior of the
sectors in this regression exercise. Figure 4 reports the scatter
plot of the elements of Cshort versus the corresponding val-
ues of Cret when the two stocks belong to the same economic
sector, characterized by a specific marker. We also superim-
pose the regression line obtained from equation (16). Note that
the behavior is different among sectors. The financial sector,
marked with blue dots, is the one with highest linear rela-
tion and the three assets belonging to this sector have all high
returns and sentiment correlations. On the contrary, the con-
sumer cyclical sector, marked with garnet-red triangles, has a
high dispersion among the correlations of the 5 assets.

In summary, sections 4.1 and 4.2 support the intuition
behind the MLSS model. Indeed, the slowly changing com-
ponents of the sentiment are effectively captured by the
long-term sentiment. We successfully confirmed this hypoth-
esis in section 4.1. At the same time, the short-term sentiment
effectively describes the firm-specific behavior of the returns.
Section 4.2 shows that the MLSS model can capture different
features of the returns, while the MLNSL mainly captures the
sentiment component associated with the market.

5. Contemporaneous and lagged relations

The goal of this section is to assess the explanatory power of
the sentiment with respect to the market returns using the dif-
ferent filters presented in the previous sections. In particular,
we show that both the extraction of long-term and short-term
sentiment components and the multivariate specification of
the model are crucial ingredients to capture the synchronous
and lagged effects.

We consider the asset prices Pi
t of the 27 stocks of the Fixed

Dow 27 and construct the equally weighted portfolio

Mt = 1

27

27∑
i=1

Pi
t (19)

as a representative portfolio and denote with rm
t its log-returns.

We consider a representative portfolio for two reasons. Firstly,
Beckers (2018) shows that the predictability returns using sen-
timent indicators is higher when using market indexes rather
than single stocks. Secondly, using a representative portfolio,
we can compare different filtering techniques which do or do
not consider the multivariate structure.

We define S̄news
t = 1

27

∑27
i=1 Si,news

t and S̄social
t = 1

27

∑27
i=1

Si,social
t as the sentiment associated with the representa-

tive portfolio. We consider six different filtering techniques
defined as follows:

(1) SMLSS
t is the filtered signal obtained using the MLSS

model in equation (6). The resulting filtered quanti-
ties are 4 long-term sentiment factors FMLSS

t , 2 for the
news and 2 for the social sentiment, and 54 short-term
sentiment series �MLSS

t , 27 for the news and 27 for
the social sentiment. We compute the cross-sectional
average for the news short-term sentiment �̄

MLSS,news
t
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Figure 4. Scatter plot of the news short-term sentiment correlations and the return correlations for pairs of assets in the same sector. The line
corresponds to the regression (16).

and social short-term sentiment �̄
MLSS,social
t . As a final

result, we define

SMLSS
t =

[

FMLSS,news

t , 
FMLSS,social
t ,

�̄
MLSS,news
t , �̄MLSS,social

t

]′
∈ R

6.

(2) SLSS
t is the filtered signal obtained applying the MLSS

model directly to the univariate series S̄news
t and S̄social

t .
For identifiability reasons, the number of factors is one.
The motivation behind this model is to test whether a
simple cross-sectional average of sentiment time series
can be an effective proxy of the sentiment of the rep-
resentative asset. This approach intentionally neglects
the multivariate structure of the sentiment and treats it
as a non-relevant feature. A similar reasoning has been
used in Borovkova et al. (2017). The resulting filtered
quantities are 2 long-term sentiment factors FLSS

t , one
for the news and one for the social sentiment, and 2
short-term sentiment series �̄LSS

t , one for the news and
one for the social sentiment. The final model reads

SLSS
t =

[

FLSS,news

t , 
FLSS,social
t ,

�̄
LSS,news
t , �̄LSS,social

t

]′
∈ R

4.

(3) SMLNSL
t is the filtered signal obtained using the MLNSL

model in equation (2) from the 54 observed sentiment
time series. The resulting filtered quantities are 54 fil-
tered sentiment series FMLNSL

t , 27 for the news and
27 for the social sentiment. We compute the cross-
sectional average for the news sentiment F̄MLNSL,news

t

and social sentiment F̄MLNSL,social
t . As a final result, we

define

SMLNSL
t =

[

F̄MLNSL,news

t , 
F̄MLNSL,social
t

]′
∈ R

2.

(4) SLNSL
t is the filtered signal obtained applying the

LNSL model, introduced by Borovkova and Mahak-
ena (2015) and presented in equation (1), to S̄news

t and
S̄social

t . As for the LSS model, the motivation behind
this choice is to test whether the multivariate structure
of sentiment is a relevant feature or not. We obtain two
filtered sentiment series F̄LNSL

t , one for the news and
one for the social sentiment. We then define

SLNSL
t =

[

F̄LNSL,news

t , 
F̄LNSL,social
t

]′
∈ R

2.

(5) SSDFM
t is the signal obtained applying a standard

dynamic factor model estimated on the sentiment
series with Principal Component Analysis. In order
to be consistent with the MLSS model, we extract
two principal factors for the news sentiment and two
principal factors for the social sentiment. As for the
Sentiment Dynamic Factor Model (SFDM), the moti-
vation behind this choice is to test whether the multi-
variate specification of the MLSS model provides any
additional advantage. We obtain four filtered sentiment
series F̄SDFM

t , two for the news and two for the social
sentiment. We then define

SSDFM
t =

[

F̄SDFM ,news

t , 
F̄SDFM ,social
t

]′
∈ R

4.

(6) Sobs
t only considers the observed sentiment S̄news

t and
S̄social

t

SObs
t = [


S̄news
t , 
S̄social

t

]′ ∈ R
2.
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In summary, the six models allow us to separate the effect
of the different components. The MLSS model exploits all the
possible information from the multivariate time series and all
the relevant factors are considered. The average across assets
is computed at a later stage on the short-term sentiment. For
this reason, it does not affect the long-term components. The
LSS model computes the cross-sectional average as a first step
and does not exploit the multivariate structure. Then, both the
short-term and long-term components are different from one
of the MLSS model. The MLNSL and LNSL models differ
only on the step of the aggregation. The first model applies
the filter on the multivariate time series, while the second
model applies the filter on the aggregated time series. The
SDFM model uses a non-parametric PCA to extract the com-
mon features and ignores the possible presence of a short-term
sentiment component. The advantage of this model is that,
similarly to the MLSS model, it extracts the main factors start-
ing from the row data without aggregating them. Finally, the
Obs model works as a benchmark.

5.1. Quantile regression

In this section, we investigate the lagged relation between
sentiment and market returns. The recent literature for the
DJIA (Garcia 2013) and for the gold futures (Smales 2014)
found that the reaction to news is more pronounced during
recessions. For this reason, we use the quantile regression
in place of a simple linear regression to obtain a more com-
prehensive analysis of the relationship between variables. In
section E of the online material we report the investigation on
the contemporaneous relation between sentiment and returns.

5.1.1. Lagged relations. We consider the following quantile
regression

rm
t (τ ) = α0 (τ ) + α1 (τ ) rm

t−h(τ ) + βmodel (τ ) Smodel
t−h , (20)

where model denotes one of the six filtering models presented
above and α1(τ ) �= 0 for h �= 0. According to Koenker and
Machado (1999), we can compare the explanatory power of
a selected model according to the R1 measure. In particu-
lar, if we consider the functional expression for the quantile
regression

V̂ (τ ) = min
(α0,α1,β)

T∑
t=1

ρτ

(
rm

t − α0 − α1rm
t−h − βSt−h

)
, (21)

where ρτ (u) = u(τ − Iu<0), we can define the quantile R1

measure as

R1 (τ ) = 1 − V̂ (τ )

Ṽ (τ )
, (22)

where Ṽ (τ ) is evaluated restricting equation (21) with the
intercept parameter and the market return at time t − h. In
contrast with the R2 measure of the linear models, R1(τ ) is
a local measure of goodness of fit and only applies to a partic-
ular quantile. In addition, Koenker and Machado (1999) show
that using V̂ we can test the significance of the βmodel parame-
ters. However, the likelihood ratio test introduced in Koenker

and Machado (1999) assumes that the residuals of the quan-
tile regression are i.i.d. while the observed residuals show
heteroskedasicity. For this reason, we perform a multivariate
Wald test where the covariance structure of the estimators is
estimated using a block bootstrap. For an introduction to con-
fidence intervals estimations with bootstrap methods refer to
MacKinnon (2006). To maintain the autocorrelation structure
of the data, the block bootstrap length is set to 22 days (one
month in financial time).

As a first step, we consider the lag h = 1. We evaluate the
R1(τ ) statistic and test the significance using the χ2 Wald-test.

Table 3 reports the values and significance of the R1 mea-
sure. A finding is common among all models: the values of
R1 are higher in the tails and lower close to the median. In
addition, what we observe is extremely promising for the
Long-Short modeling approach. The significance of the noisy
sentiment is zero for almost all quantile levels. Filtering the
time series is essential to recover predictability. However, fil-
tering alone is not sufficient. Indeed, neither the predictability
of the LSNL model nor of the multivariate extension MLSNL
is statistically significant except for some case. Significance
is recovered only when the filtered sentiment is decomposed
into the short-run and long-run components. This is true
for extreme returns, both positive and negative. The result
is stronger when the LSS model is replaced by the MLSS,
meaning that the cross-sectional dependence is an important
ingredient to enhance predictability. It is worth noticing that
the values of R1 presented in table 3 come from models with
different number of regressors, therefore, an adjustment with
respect to the number of regressors should be applied. How-
ever, given that the number of observations used to evaluate
the measures is T = 3020, a correction in the spirit of the
adjusted R2 would be of order 0.2% and would not affect the
results.

A further advantage of the long-short decomposition is that
we can properly asses the relative contribution of the two
components. In particular, we use a bootstrap Wald test to
assess the significance of the parameters in the MLSS model.
Considering the SMLSS = [
FMLSS

t , �̄MLSS
t ], the significance

of the parameter βLT ∈ R
4 and βST ∈ R

2 can be tested using

Ṽ LT (τ )

= min
(α0,α1,βLT)

T∑
t=1

ρτ

(
rm

t − α0 − α1rm
t−h − βLT
FMLSS

t−h

)
(23)

and

Ṽ ST (τ ) = min
(α0,α1,βST)

T∑
t=1

ρτ

(
rm

t − α0 − α1rm
t−h − βST�̄MLSS

t−h

)
,

(24)
As before, we use a Wald test based on block bootstrap
resampling to assess the significance of βST and βLT .

We report the p-values of the Wald test statistics in table 4.
The contribution given by the short-term sentiment is

strongly significant, in particular for extreme quantiles. On
the contrary, the long-term sentiment is not significant in 6
out of 9 quantiles. The results support the intuition that, if
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Table 3. The R1 measure across the value τ for the one-lag quantile regression.

R1(τ ) measure

τ quantiles MLSS LSS MLNSL LNSL SFM Obs

0.01 12.7∗∗∗% 4.5∗∗% 0.3% 0.2% 0.5% 0.1%
0.05 3.2∗∗% 1.3% 0.1% 0.0% 0.2% 0.1%
0.10 1.7∗∗% 1.2∗∗% 0.0% 0.0% 0.3% 0.1%
0.33 0.2% 0.1% 0.0% 0.0% 0.1% 0.0%
0.50 0.2∗∗% 0.1∗∗% 0.1∗∗% 0.1∗∗% 0.0∗% 0.0%
0.66 0.4∗∗∗% 0.2∗∗% 0.1∗% 0.1∗% 0.1∗% 0.0%
0.90 2.8∗∗∗% 1.0∗∗% 0.2∗∗∗% 0.1% 0.1% 0.1%
0.95 5.3∗∗∗% 1.6∗∗% 0.3∗% 0.1% 0.1% 0.2%
0.99 11.9∗∗∗% 3.4∗∗% 0.0% 0.5% 1.4∗∗% 1.0∗∗%

Note: We denote with ∗∗∗ the significance at 1%, ∗∗ the significance at 5% and ∗ the significance at 10%.

Table 4. p-values for the Wald test statistics.

p-values

τ quantiles LST
t−1 LLT

t−1

0.01 0.000∗∗∗% 0.019∗∗∗%
0.05 0.251∗∗∗% 35.900%
0.10 0.170∗∗∗% 5.700∗%
0.33 3.300∗∗% 28.500%
0.50 0.169∗∗∗% 2.100∗∗%
0.66 2.000∗∗% 0.195∗∗∗%
0.90 0.404∗∗∗% 0.021∗∗∗%
0.95 0.001∗∗∗% 25.200%
0.99 0.003∗∗∗% 20.800%

Note: The statistics are asymptotically χ2 with degrees of
freedom equal to the number of tested parameters.

today a very high or very low return appears, it can be par-
tially explained by the yesterday’s rapidly changing mood,
while the permanent trend in the sentiment series have almost
no impact.

The experiments performed in the contemporaneous (see
section E in the online material) and one-lag cases show that
the MLSS model is the best model to capture the return vari-
ations. For this reason, for the multi-period analysis, we will
only consider the MLSS model.

Considering a general h, we wonder if extra lags can
add explanatory power to the regression exercise. Using the
functional form

V̂ h,MLSS (τ )

= min
(α0,α1β1∈R6,β2∈R6(h−1))

T∑
t=h+1

ρτ

× (
rm

t − α0 − α1rm
t−1 − β1SMLSS

t−1 − β2Lh(S
MLSS
t−1 )

)
,

(25)

we separate the contributions given by the first and higher
order lags. The bootstrap Wald test can be used to assess the
null hypothesis that β2 = 0.

Following Tetlock (2007) and Garcia (2013), we fix a max-
imum number of h = 5 and table 5 reports the p-values for
the different values of h.

Table 5. p-values for the Wald statistics for different values of h.

τ h = 2 h = 3 h = 4 h = 5

0.01 18.133 % 29.136 % 57.652 % 72.784 %
0.05 0.618 %∗ 0.946 %∗ 4.317 %∗ 3.009 %∗
0.10 0.907 %∗ 0.773 %∗ 4.341 %∗ 1.968 %∗
0.33 65.530 % 47.389 % 74.932 % 74.071 %
0.50 62.489 % 70.078 % 80.725 % 90.581 %
0.66 43.722 % 53.518 % 52.853 % 74.962 %
0.90 4.831 %∗ 0.662 %∗ 0.063 %∗ 0.208 %∗
0.95 12.800 % 2.504 %∗ 0.628 %∗ 2.468 %∗
0.99 38.580 % 71.448 % 81.945 % 87.196 %

Note: We denote with ∗ the values where β2 is significantly
different from zero.

The h-lagged sentiment series are uninformative in the
median region, where the one lag sentiment has less explana-
tory power too. However, in agreement with Garcia (2013),
the lagged sentiment remains informative for few days and, in
our case, this is true for the 5%, 10%, 90%, and 95% quantile
levels. It is worth noticing that the 1% and 99% quantiles are
unaffected by higher-order lags. This shows that, in case of
very good or very bad days, the returns are strongly driven
by very fresh news (h = 1) while the older news have no
informative power.

6. Portfolio allocation with sentiment data

This section details an economic application of the MLSS
model in portfolio selection and benckmarks the results
against a buy-and-hold strategy. We consider the equally
weighted portfolio in equation (19) and the six filtered sig-
nals SMLSS

t , SLSS
t , SMLNSL

t , SLNSL
t , SSDFM

t and SObs
t introduced in

the previous section. It is worth noticing that Beckers (2018)
and Garcia (2013) showed that the predictability power of the
sentiment series declined after 2007. For this reason, we want
to challenge the filtering techniques to predict the future daily
returns in the time window 2007–2019.

In the first part of this section, we use the sentiment sig-
nals as exogenous variables to build a simple classifier and
we introduce six trading strategies based on the six senti-
ment time series. Then, we test these strategies in February
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2007–June 2017 window. This period offers a large series
with different economic conditions. The sentiment models are
estimated in the same time window. The estimation of mul-
tivariate models (MLSS and MLNLS) employs a backward-
looking technique based on smoothing recursions. Then, one
may argue that for the multivariate case the estimation tech-
nique may introduce some sort of forward looking bias. We
test that this bias, if any, is not likely to be the dominant effect.
We perform a robustness check where we use the parame-
ter values from February 2007–June 2017 period to filter the
TRMI sentiment series from July 2017 to December 2019.
In this way, the trading signals cannot be affected by any
forward-looking bias. The results in the out-of-sample period
confirm those from February 2007–June 2017, showing that
the trading strategies built on the MLSS model are the best
performers. The details of the robustness check can be found
in section G of the online material.

6.1. Trading strategies

In the financial literature, several papers support the strong
out-of-sample performance of the equally weighted portfolio
(e.g. DeMiguel et al. 2009). The 1/n portfolio without rebal-
ancing is used as a baseline for our trading strategies and the
long passive position in this portfolio is called buy-and-hold
strategy. Given that the buy-and-hold portfolio offers a good
out-of-sample performance, we assume an investor who only
deviates from the baseline strategy if a strong signal which
predicts a negative return arrives from the sentiment series.
For this reason, the criterion variable needs to capture the
behavior of the left tail of returns distribution. We define the
criterion binary variable as

Yt =
{

1, for r̃m
t < z1/3

0, otherwise
(26)

where z1/3 is the 1/3 Gaussian quantile and r̃m
t = rm

t /
√

RVt

are the standardized market returns with the realized vari-
ance, RVt, evaluated by means of 5-minute intraday returns.
The standardization of the returns is crucial to eliminate
possible effects due to the persistence of volatility. The
choice of the 33% quantile is consistent with the findings of
section 5.1.1. Moreover, it is a balance between a more con-
servative choice—a smaller quantile only sensitive to more
extreme and predictive events—and a larger quantile, which
provides a larger number of selling signals but less predictive
power.

Since the goal of this paper is to show that the choice
of the filtering procedure is essential, a simple classification
technique is used. As a classifier, we consider the following
conditional logit model

P (Yt+1 = 1 | Xt) = logit
(
X mod

t θ
)

, (27)

where logit(Xtθ) = eXtθ

1+eXtθ and X mod
t = [1, r̃m

t , Smod
t ]. We recall

that Smod
t is a vector whose dimension depends on the filtering

model. For further details see the first part of section 5.

The predicted binary value is defined as

Ŷ mod
t+1 =

{
1, for logit(X mod

t θ) > 0.5
0, otherwise.

(28)

The main advantages of the conditional logit model are
twofold. On the one hand, the conditional logit model can be
easily estimated using MLE. On the other hand, we can eas-
ily assess the fitness of the model on the data using the Mc
Fadden’s R2 measure defined in McFadden (1973) as

R2 = 1 − log(Lm)

log(L0)
∈ [0, 1] .

Lm represents the maximum likelihood of the complete
model (27) and L0 is the maximum likelihood of the bare
model based only on the intercept. The models are estimated
using overlapping rolling windows of 6 months (126 observa-
tions). We verified that this choice is sufficient to capture the
time-varying nature of the explanatory power of the sentiment
series. Figure 5 shows the value of R2 over the February 2007–
June 2017 period. The MLSS model has the highest R2 w.r.t
the other models, which typically translates into a higher pre-
dictive power. In addition, the MLSS R2 has a high variability,
suggesting that the predictive power changes through time.
This latter finding suggests that the sentiment signal can be
a good returns predictor in certain periods and a poor predic-
tor in others. This intuition will be exploited later to generate
trading strategies based on the R2. In equation (28), we have
used a naive threshold of 0.5 to generate a trading signal. The
choice of the optimal or a dynamic threshold is discussed in
section I of the online material.

The estimated Ȳ mod
t defined in (28) translates in the trading

signal

smod
t+1 =

{
1, if Ŷ mod

t+1 = 0
−1, if Ŷ mod

t+1 = 1
(29)

where smod
t+1 = 1 (smod

t+1 = −1) represents a buy (sell) signal in
the equally weighted portfolio (19). On any day t, at the clos-
ing time of the trading day, the investor uses the sentiment
signal Smod

t and the standardized realized daily returns r̃m
t to

forecast the binary variable Ŷ mod
t+1 and the relative trading sig-

nal. Naming c0 the number of shares bought or sold in any
transaction, there are three possible scenarios

(1) smod
t = smod

t+1 : In this case, the prediction on the future
realization does not change and the investor does not
re-balance the portfolio.

(2) smod
t = +1 and smod

t+1 = −1 : The investor had a long
position in the equally weighted portfolio at time t but
the prediction changed. She sells the current position
and short sells c0 shares of the same portfolio.

(3) smod
t = −1 and smod

t+1 = +1 : The investor had a short
position in the equally weighted portfolio at time t
but the prediction changed. She buys 2c0 shares of the
portfolio.

Please notice that the only exception is for smod
1 because

we initialized smod
0 = 0. In this case, the equally weighted

portfolio is bought when smod
1 = 1 and it is short sold when
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Figure 5. McFadden’s R2 for the different filtering methods using negative abnormal returns.

smod
1 = −1. The investor’s portfolio is then built as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Pmod
t+1 = smod

t+1 c0Mt+1 + casht+1,

casht+1 = casht − (smod
t+1 − smod

t )c0Mt+1

− |smod
t+1 − smod

t |c0Mt+1
cost

2
,

(30)

where cost is the percentage trading cost and Mt is defined
in (19). The first equation in (30) shows that the value of
the portfolio is composed of the value of the invested amount
smod

t+1 c0Mt+1 plus the cash position. The latter increases when
smod

t+1 < smod
t , meaning that the investor sells the portfolio and

receives cash, and decreases when smod
t+1 > smod

t , meaning that
the investor buys and erodes the cash position. The second
equation includes the impact of the transaction costs. Specif-
ically, every time that a transaction happens, i.e. smod

t+1 �= smod
t ,

the investor pays an extra cost proportional to the current
value of the equally weighted portfolio Mt+1.

We fix the starting point smod
0 = 0, cash0 = 100 000$ and

the parameter c0 = 100 000$/M0. In the paper, we only report
the results for the case with trading costs, while the results
with zero trading costs are reported in section F of the online
material. From now on, we refer to without trading costs
when the portfolio in equation (30) is evaluated with cost
= 0 and to with trading costs when costs = 0.1% as in Gilli
and Schumann (2009) and Avellaneda and Lee (2010). In
the following sections, the number of transactions is evalu-
ated as Trmod = ∑T−1

i=0 |smod
i+1 − smod

i | and the transaction costs
are evaluated as Tcmod = ∑T−1

i=0 |smod
i+1 − smod

i |c0Mi+1
cost

2 . It is
worth noticing that the change of signal effectively produces
two transactions. For instance, if the signal moves from st = 1
to st+1 = −1, the first transaction is the liquidation of the long
position and the second transaction is the short position on the
asset. In addition, most of the time, the selling signal appears

for only one day and disappears the day after. Then, the typi-
cal path of a selling signal is given by st = 1, st+1 = −1 and
st+2 = 1 producing a total of four transactions.

The transaction costs can strongly depress the overall per-
formance of the portfolio. To partially mitigate this drawback,
we can decrease the number of transactions using the McFad-
den’s R2 as a measure of the reliability of the signal Ŷ mod

t .
We compute the empirical quantile z1,t

α (R2) of the McFadden
R2 over the time window (1, . . . , t). The quantile z1,t

α (R2) is
Ft-measurable and does not introduce a forward-looking bias.
We can reduce the number of trades conditioning the selling
signal at time t on the level of the McFadden’s R2 evaluated in
the previous 6 months. The R2 adjusted trading signal is then
defined as follows

s̄mod
t =

{ −1, if Ŷ mod
t+1 = 1 and R2,mod

t � z1,t
α

(
R2,mod

)
1, otherwise.

(31)
The value α determines the reduction in the number of trades.
The higher α is, the smaller is the number of transactions.
The parameter α should be considered as a subjective trans-
action cost of the investor. The six strategies, together with
the buy-and-hold strategy itself, are evaluated according to six
measures, the annual return, the annual volatility, the annual
negative volatility, the Sharpe ratio, the Sortino ratio, and the
maximum drawdown (MDD). In the next section, in the first
step, the portfolios with the trading signals (29) with and with-
out trading cost are analyzed. Then, we assess the impact and
the performance of the trade reduction strategy based on (31).

6.2. Empirical application: February 2007–June 2017

The 2007–2009 crisis and the 2009–2017 bull market are
good backtesting periods for the sentiment portfolios because
we can test the return predictability during different market
conditions.
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Table 6. Performances of the seven strategies with transaction cost for the period February 2007–June 2017.

Measures BH MLSS LSS MLNSL LNSL SDFM Obs

A. return (%) 8.975 7.891 6.977 8.882 8.143 6.827 6.986
A. volatility (%) 19.132 15.209 18.136 17.952 19.431 17.672 19.955
A. neg. volatility (%) 15.523 11.767 14.339 14.474 15.374 13.767 16.055
A. Sharpe ratio 0.469 0.519 0.385 0.495 0.419 0.386 0.35
A. Sortino ratio 0.578 0.671 0.487 0.614 0.53 0.496 0.435
MDD ($) 59 377 57 235 50 335 49 773 63 595 45 016 62 785
Number of trades 1 553 161 81 73 297 93
Transaction costs ($) 50 37974 14866 5565 4085 20 335 7544

Note: In bold, the best performance per row. BH is the buy-and-hold portfolio, while MLSS, LSS, MLNSL, LNSL, SDFM, and Obs
correspond to portfolios built from the corresponding model for the sentiment time series.

Table 7. Performances of the MLSS-based strategies built from equation (31) for different values of α × 100.

Measures BH α = 0% α = 20% α = 35% α = 50% α = 65% α = 80%

A. return (%) 8.975 7.891 8.225 9.575 9.84 10.248 9.184
A. volatility (%) 19.132 15.209 15.679 14.083 13.601 13.538 17.201
A. neg. volatility (%) 13.601 10.888 11.196 9.901 9.511 9.443 12.216
A. Sharpe ratio 0.469 0.519 0.525 0.680 0.723 0.757 0.534
A. Sortino ratio 0.660 0.725 0.735 0.967 1.035 1.085 0.752
MDD ($) 59 377 57 235 63 522 49 160 33 264 35 600 59 486
Number of trades 1 553 437 349 273 169 57
Transaction costs ($) 50 37 974 30 626 25 283 20 074 12 007 4127

Note: BH is the buy-and-hold portfolio. In bold, the best performance per row.

Table 6 reports the performances of the six sentiment strate-
gies together with the buy-and-hold portfolio with trading
costs. The sentiment-based strategies have, excluding the
LNSL and the Obs, a smaller volatility and MDD than the
buy-and-hold portfolio. In addition, the MLSS portfolio pro-
duces returns similar to the buy-and-hold strategy, lower neg-
ative volatility, and consequently higher Sharpe and Sortino
ratios than all the other strategies.† The lower performance
for the annual returns is due to the higher transaction costs.
Indeed in section F of the online material, we show that, when
the trading costs are not considered, the MLSS strategy pro-
duces higher annual returns than all the other strategies. In
addition, when we compare without trading costs experiment
with the with trading costs experiment, the excessive number
of transactions for the MLSS strategy reduces the Sharpe ratio
gain with respect to the buy-and-hold portfolio from 40% to
10% and the Sortino ratio gain from 48% to 16%. In section H
of the online material, we show that the selling signal gener-
ated by the MLSS sentiment series corresponds to statistically
significant returns predictability.

The transaction costs incurred by the MLSS portfolio
throughout the nine years amount in total to 38% of the start-
ing capital. For this reason, we employ the trading signal
s̄MLSS defined in equation (31), which penalizes signals with
moderate McFadden’s R2. Table 7 reports the performances of
the strategies based on the penalized signal for different val-
ues of α. As expected, the higher the value of α and the lower

† We have also tested a simple strategy where we remove the first
factor, extracted with PCA, from the observed sentiment. However,
this procedure is not sufficient to remove all the observation noise
and to extract an effective trading signal. The performances of this
strategy are Annual return 8.79%, Annual volatility 19.17%, and
Sharpe ratio 0.459 (against 0.469 for the BH strategy and 0.519 for
the MLSS-based strategy).

the number of transactions is. In addition, the R2-based sig-
nal produces higher quality signal and effectively increases
the performance of the portfolios. The number of transac-
tions decreases almost linearly but the Sharpe and Sortino
ratios strongly increase. They reach a maximum value when
α = 0.65. These findings further corroborate the intuition that
the MLSS sentiment strongly anticipates future returns dur-
ing the financial crisis, given that the R2 values in figure 5
are higher than the unconditional average during the 2007–
2009 period. Again this feature is peculiar for the MLSS filter,
while no evidence of return predictability is reported for the
other filtering techniques. Again, the statistical significance of
these strategies is reported in section H of the online material.

7. Conclusions

In this paper, we presented a novel way to filter multi-
variate sentiment time series. The approach is very general
and encompasses previous models discussed in the literature.
Using a dynamic factor model, we were able to identify two
different sentiment components. The first one, named long-
term sentiment and modeled as a random walk, captures the
common trends which drive the long-term dynamics. The sec-
ond component, dubbed short-term sentiment and modeled
as a VAR(1) process, captures short-term swings in market
mood. An extensive empirical section investigates the dif-
ferent features of the two sentiment components. In a first
analysis, we pointed out that one of the long-term senti-
ment factors co-integrates with the first principal component
of the market. Quite surprisingly, the structure of the sen-
timent factor loadings does not mimic the typical uniform
profile of the market factor. Some assets are over-expressed
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and contribute to the factor with a positive or negative sign,
while others are under-expressed. Concerning the short-term
sentiment, its multivariate dependence structure explains a
sizable fraction of the residual covariance in a single-factor
market model. This result suggests that the short-term compo-
nent captures transient and rapidly changing trends associated
with the idiosyncratic components of the market. In a sec-
ond analysis, based on quantile regression, we showed that
the Multivariate Long-Short Sentiment model provides the
highest explanatory power of lagged and contemporaneous
returns. Essential to achieve statistical significance are the
multivariate nature of the approach and the separation of the
sentiment signal in a long and a short component. In par-
ticular, disentangling the short-term sentiment is crucial to
capture the behavior of extreme returns. In a further analysis,
we observed that newspapers and social media react differ-
ently to negative and positive returns. Specifically, they can
effectively explain abnormal returns from one to five days
in advance, but they almost immediately digest the positive
market realizations while they echo negative realizations for
several days to come.

It is worth noting that Tetlock (2007) and Garcia (2013)
reported results similar to ours for the unfiltered sentiment
focusing on period before 2007. Using the TRMI dataset,
Beckers (2018) showed that the forecasting power on returns
of the sentiment dropped dramatically after 2007. Our results
suggest that the filtering procedures are more important now-
days than in the past. Consistently, in a final investigation, we
performed an asset allocation exercise where the selling sig-
nal are based on the sentiment series. In line with the results
from the quantile regression, the portfolio based on the MLSS
filter significantly outperforms the benchmark buy-and-hold
strategy and the other strategies based on different filtering
techniques.
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Appendices

Appendix 1. Filter and smoother recursions

In this section, we report Kalman Filter and Smoother recursions
ancillary to the EM algorithm. The derivation of the formulas which
follow can be found in Shumway and Stoffer (1982).

Starting from system (7), we calculate recursively the Kalman
Filter as:

F̃t | t−1 = E
[
F̃t | S1, . . . , St−1

] = �̃F̃t−1 | t−1

Pt | t−1 = E
[(

F̃t − F̃t | t−1
) (

F̃t − F̃t | t−1
)′ | S1, . . . , St−1

]

= �̃Pt−1 | t−1�̃
′ + Q

Kt = Pt | t−1�̃
′
(
�̃Pt | t−1�̃

′ + R
)−1

F̃t | t = F̃t | t−1 + Kt

(
St − �̃F̃t | t−1

)

Pt | t = Pt | t−1 − Kt�̃Pt | t−1

where we take F̃0 | 0 = μ and P0 | 0 = �. Now, using backward
recursions t = T , . . . , 1 we derive the Smoother as

Jt−1 = Pt−1 | t−1�̃
′ (Pt | t−1

)−1

F̃t−1 | T = F̃t−1 | t−1 + Jt−1

(
F̃t | T − �̃F̃t−1 | t−1

)
Pt−1 | T = Pt−1 | t−1 + Jt−1

(
Pt | T − Pt | t−1

)
J ′

t−1

Pt−1,t−2 | T = Pt−1 | t−1J ′
t−2 + Jt−1

(
Pt,t−1 | T − �̃Pt−1 | t−1

)
J ′

t−2

(A1)
where PT ,T−1 | T = (I − KT �̃)�̃PT−1 | T−1.
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Appendix 2. Expectation maximization

The log-likelihood of the model (7) is

l
(
St, F̃t, θ (j)

)

= log f (F̃0) +
T∑

t=1

log f (F̃t | St−1) +
T∑

t=1

log f (St | F̃t)

= −1

2
log |�| − 1

2

(
F̃0 − a

)
�−1 (

F̃0 − a
)′

− T

2
log |Q̃| − 1

2

T∑
t=1

(
F̃t − �̃F̃t−1

)
Q̃−1

(
F̃t − �̃F̃t−1

)′

− T

2
log |R| − 1

2

T∑
t=1

(
St − �̃F̃t

)
R−1

(
St − �̃F̃t

)′

where a and � are the parameters s.t. F̃0 ∼ N (a, �).

A.1. E-step

The objective function to maximize is, from Shumway and Stof-
fer (1982),

G
(

a, �, R, Q̃, �̃, �̃
)

= Em [log f | S1, . . . , ST ] ,

where Em denotes the conditional expectation relative to a density
containing the mth iterate values a(m), �(m), R(m), Q̃(m), �̃(m) and
�̃(m). Using now the Kalman smoother (A1) we can derive

E

[(
St − �̃F̃t

) (
St − �̃F̃t

)′ | S1, . . . ST

]

=
(

St − �̃F̃t | T

) (
St − �̃F̃t | T

)′ + �̃Pt | T �̃′,

E

[(
F̃t − �̃F̃t−1

) (
F̃t − �̃F̃t−1

)′ | S1, . . . , ST

]

= Pt | T + F̃t | T F̃′
t | T + �̃Pt−1 | T �̃′

+ �̃F̃t−1 | T F̃′
t−1 | T �̃′ − Pt,t−1 | T �̃′

− F̃t | T F̃′
t−1 | T �̃′ − �̃Pt,t−1 | T − �̃F̃t−1 | T F̃′

t | T ,

lead to

G
(

a, �, R, Q̃, �̃, �̃
)

= −1

2
log |�| − 1

2
tr

{
�−1

[
P0 | T + (

F̃0 − a
) (

F̃0 − a
)′]}

− T

2
log |Q̃| − 1

2
tr

{
Q̃−1

(
C − B�̃′ − �̃B′ + �̃A�̃′

)}

− T

2
log |R| − 1

2
tr

{
R−1

(
E3 − �̃E′

2 − E2�̃
′ + �̃E1�̃

′
)}

,

where

A =
T∑

t=1

(
F̃t−1 | T F̃′

t−1 | T + Pt−1 | T

)
,

B =
T∑

t=1

(
F̃t | T F̃′

t−1 | T + Pt,t−1 | T

)
,

C =
T∑

t=1

(
F̃t | T F̃′

t | T + Pt | T

)
,

E1 =
T∑

t=1

Pt | T + F̃t | T F̃′
t | T , E2 =

T∑
t=1

StF̃
′
t | T , E3 =

T∑
t=1

StS
′
t .

(A2)

A.2. M-step

The resulting update equations are

�(m + 1) = E2E−1
1 , �̃(m + 1) = BA−1 (A3)

Q̃(m + 1) = 1

T

(
C − B�̃ (m + 1)′ − �̃ (m + 1) B′

+ �̃ (m + 1) A�̃ (m + 1)′
)

(A4)

R(m + 1) = 1

T

(
E3 − �̃(m + 1)E′

2 − E2�̃(m + 1)′

+ �̃(m + 1)E1�̃(m + 1)′
)

(A5)

a(m + 1) = F̃0 | T , �(m + 1) = P0 | T . (A6)

For simplicity, in our estimations, we impose F̃0 = 0.
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