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Abstract
In a continuous-time market with a safe rate and a risky asset that pays a dividend stream
depending on a latent state of the economy, several agents make consumption and invest-
ment decisions based on public information–prices and dividends–and private signals. If each
investor has constant absolute risk aversion, equilibrium prices do not reveal all the private
signals, but lead to the same estimate of the state of the economy that one would hypothet-
ically obtain from the knowledge of all private signals. Accurate information leads to low
volatility, ostensibly improving market efficiency, but also reduces each agent’s consump-
tion through a decrease in the price of risk. Thus, informational efficiency is reached at the
expense of agents’ welfare.
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JEL Classification G11 · G12 · G15
Mathematical Subject Classfication 91G10, 91G80

For in much wisdom is much grief: and he that increaseth knowledge increaseth sorrow.

Ecclesiastes 1:18

Introduction

Hayek [15] famously observed that “knowledge never exists in concentrated or integrated
form, but solely as the dispersed bits of incomplete and frequently contradictory knowledge
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which all the separate individuals possess”. Since then, understanding the ability of markets
to aggregate information dispersed among participants has been central to evaluate their
efficiency. Indeed, each version of Fama’s market efficiency hypotheses [11] is a statement
on the type of information that asset prices reveal.

The natural counterpart of informational efficiency is its impact on welfare, that is, the
effect that information quality has on market participants. Such an effect is twofold: On one
hand, each individual brings personal information to bear on market prices through demand
for assets. On the other hand, the same individual benefits from the information latent in
prices, which partially reveal the demand of other individuals. In contrast to informational
efficiency, the impact of information aggregation on agents’welfare has received considerably
less attention in the literature.

This paper tackles these twin questions in a continuous time model, where agents differ
in their constant absolute risk aversion, time preference, and, most importantly, private infor-
mation. Each agent’s information provides a noisy signal on the state of the economy, which
in turn affects the stream of dividends paid by a risky asset, in unit supply, whose price is
determined in equilibrium. In making their consumption and investment decisions, agents
have access to a safe asset, available in unlimited supply with constant interest rate. Crucially,
each investor bids the risky asset based on the private signal and on the public information
embedded in dividends, which are exogenous, and in prices, determined endogenously.

We find explicitly the linear equilibrium price, its implied consensus estimate of the state
of the economy, and the resulting welfare for each agent, thereby obtaining a framework
for answering the twin questions of informational efficiency and its welfare impact. The
equilibrium displays two ostensibly contradictory results: (i) themarket optimally aggregates
agents’ private signals in prices, but (ii) such information reduces the welfare of each agent.
Put differently, the intellectual gain fromsuperior information is accompanied by an economic
loss.

The first finding is consistent with the results on fully-revealing equilibria, pioneered in
one-period models by Grossman [13], and generalized in [1, 10, 14, 16] to partial revela-
tion by including noise traders or, equivalently, a noisy supply of risky assets, both of which
makemarket information inaccurate.1 As our focus is on information aggregation, we eschew
noise traders to concentrate on rational agents with separate private information flows. In a
continuous-time model where agents maximize utility from consumption over an infinite
horizon, we show that full revelation holds, though the market does not reveal all individual
signals, but only a sufficient statistic for the state of the economy. Thus, in the same spirit
as [22], we find that market prices transmit only relevant knowledge to participants, discard-
ing redundant information. Our dividend dynamics is based on the asymmetric information
framework ofWang [23], but we do not prescribe informed and noise traders, positing instead
several agents, all rational and endowed with different information.

The difference between one-period and the present dynamic setting is more than technical.
With a single period, current signals and prices are the only information available to agents,
while in a dynamic setting present signals affect consumption and investment decisions even
in the future, as rational agents take all past information into account to form their views of
the state of the economy.

The second finding, on welfare, does not seem to have been investigated in depth in
the literature, and the contrast between equilibrium informational gains and welfare losses
deserves a closer examination of the mechanisms leading to both effects. A key aspect of
this phenomenon is equilibrium volatility: intuitively, more information reduces the volatility

1 For further developments on rational expectations equilibria, see [2, 4, 6, 8, 9, 12, 17, 21, 24].
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of asset prices because more accurate predictions on future dividends decrease the standard
deviation of unexpected shocks. The less intuitive implication of lower volatility is that
the reduction in risk leads to a much lower risk premium available to investors, hence a
deterioration of investment opportunities,which ultimately reduces consumption andwelfare.

The paradox of informational gains with welfare losses rests on a number of assump-
tions, including constant absolute risk aversion of agents, normally distributed shocks, initial
endowments in cash only, and the presence of a safe asset with constant rate, in unlimited
supply (equivalently, a riskless technology with linear returns). Although these assumptions
are ubiquitous in the literature and, in the absence of a general theory, the attribution of any
conclusion is necessarily tentative, it is worth noting that the unlimited supply of safe assets
is intuitively a key driver of the paradox, and helps qualifying its relevance.

In the model, the safe asset plays the fundamental role of store of value and is impervious
to the flow of information. Thus, more information merely affects the valuation of the risky
asset in relation to the safe one, without altering agents’ inclination to consume over time.
As an inelastic safe rate allows agents to consume or save in the aggregate, more impatient
agents have no reason to alter their risky holdings, as their fluctuations are inconsequential
for short-term consumption decisions.

Furthermore, the presence of a safe asset in unlimited supply, in contrast to the assumption
of zero supply typical of another strand of literature on general equilibrium, implies that the
risky asset is not the only type of wealth in the economy, but merely a extra source of revenue,
to be evaluated for its marginal contribution to long-term consumption.

The last observation suggests that the main result is relevant to understand the effect
of competitive markets in aggregating the information on an individual asset from market
participants, and in evaluating the effect of such aggregation on the residual value available
to investors. In this context, the main message of the main result is that the lower volatility
resulting from more information does not benefit investors, but rather pre-existing owners of
the asset (such as a company’s founders and venture capitalists in an IPO), who see prices
increase as a result of the lower risk premium. Vice versa, the assumption of an unlimited
supply of safe asset does not endorse the same conclusions at the macro level, because in
this context a substantial increase in information may also translate into a change in the
equilibrium interest rate, both through variations in conditional dividend growth and through
the precautionary-savings channel.

This paper also contributes to the literature on information aggregation by offering a
rigorous treatment of admissible strategies, linear equilibria, and optimality in the presence of
heterogeneous information. In the familiar setting of portfolio choice, prices and information
flows are exogenous, while consumption and investment strategies are endogenous. In the
other familiar setting of representative-agent equilibria, cash flows and information flows are
exogenous, while prices are endogenous. In the present setting, cash flows are exogenous,
but both prices and information flows are endogenous. Because each agent can choose from
a different set of consumption and investment strategies, admissible strategies are agent-
specific, and the filtration generated by market prices is also endogenous.

Finally, note that the paradox highlighted in this paper – that more informationmay lead to
lower welfare – is reminiscent of but conceptually different from the the Grossman-Stiglitz
[14] paradox on the impossibility of informational efficiency. In contrast to their model,
in which one-period information acquisition is costly and noise traders are present, here
each agent is endowed with a costless personal signal that flows continuously and can affect
consumption and investment decisions, while noise traders are absent.

At the technical level, our model is closest to [20], with some important differences.
While both models entertain infinite-lived agents with constant absolute risk aversion and
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individual signals, [20] focuses on a continuum of agents, so that the impact on aggregate
demand of individual noises is null by design. On the contrary, we consider a finite number
of agents, leaving aggregate noise to be random. A finite number of agents also allows us to
find explicitly equilibrium quantities in terms of exogenous parameters, and does not involve
the measurability issues arising with the aggregation of a continuum of independent random
processes. In addition, [20] introduces noise traders by considering a fluctuating supply of
shares, while we focus on a constant supply, thereby excluding noise traders.

The rest of the paper is organized as follows: Sect. 1 describes themodel in detail and states
the main result, characterizing the equilibrium asset price, its implied consensus estimate,
and the optimal consumption-investment strategies of the agents. Section 2 discusses the
main implications for information and welfare, separating the effects of dividend risk, state-
of-the-economy risk, and heterogeneous information. Section 3 derives the equilibrium from
control arguments. Concluding remarks are in Sect. 4. All proofs are in the appendix.

1 Model andmain result

1.1 The economy

The economy includes a safe asset, in unlimited supply and paying a constant interest rate r ,
and a risky asset, in unit supply and paying the dividend stream (Dt )t≥0 described by

d Dt = (πt − k Dt )dt + σDdW D
t , D0 ∈ R, (1.1)

where k, σD > 0, W D is a Brownian motion and the state of the economy (πt )t≥0 is an
Ornstein-Uhlenbeck process

dπt = a(π̄ − πt )dt + σπ dW π
t , (1.2)

driven by an independent Brownian motion W π , where a, σπ , π̄ > 0. In other words, the
dividend stream Dt grows at some time-varying rate πt − k Dt that depends on the current
state πt , which stochastically reverts to some long-termmean π̄ . Note that, although dividend
shocks and state shocks are independent, Dt and πt are dependent because the past values
of the state π affect the current dividend Dt .2 Furthermore, the initial value π0 is assumed
to be independent of W D, W π and normally distributed with mean π̄ and variance σ 2

π .
3

2 Indeed, as t increases, (Dt , πt ) converges in law to the bivariate Gaussian distribution with mean (π̄/k, π̄)

and covariance matrix

⎛
⎜⎜⎝

σ2
D
2k + σ2

π
2ak(a+k)

σ2
π

2a(a+k)

σ2
π

2a(a+k)

σ2
π
2a

⎞
⎟⎟⎠ , (1.3)

hence the long-term correlation of πt and Dt is positive.
3 The assumption that π0 ∼ N (π, σ 2

π ) is not arbitrary, as σ 2
π is chosen in equilibrium. (In particular σ 2

π �=
σ 2
π /2a, the long-run volatility of the unobserved state of the economy, πt ). The particular choice of σ 2

π made
below implies stationary filters for the individual agent’s estimates, as well as for the market consensus, see
Lemma (iii) A.7 and A.7.
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1.2 Agents: objectives and information

There are n agents who invest in the safe and risky assets to maximize expected utility from
consumption. Each agent i (1 ≤ i ≤ n) has additive preferences with individual discount
rate βi > 0 and constant absolute risk aversion αi > 0.

None of the agents can see the underlying state of the economy πt , but they all have access
to public information, comprised of the dividend stream (Ds)s≤t and the price of the risky
asset (Ps)s≤t , to be determined in equilibrium, as discussed below. In addition, each of them
sees a private signal ξ i

t , which offers a noisy glimpse of the latent state of the economy. Thus,
for any 1 ≤ i ≤ n,

dξ i
t = πt dt + σi dW i

t , ξ i
0 = 0, (1.4)

where (W i )1≤i≤n is an n-dimensional Brownian motion independent of (W D, W π ) and
σi > 0 for 1 ≤ i ≤ n. Note that the shocks to the signals of different agents are independent,
though signals themselves are interdependent, as they are all affected by the state of the
economy.

The probability space is (�,G, (Gt )t≥0,P) where Gt is the augmented natural filtration
of π0, W D

u , W π
u , and W i

u for 1 ≤ i ≤ n and 0 ≤ u ≤ t ; G is the augmented sigma algebra
generated by

⋃
t≥0 Gt . Likewise, for any 1 ≤ i ≤ n, F i

t is the augmented natural filtration
of (Du, Pu, ξ i

u)0≤u≤t , which represents the information of the i-th agent at time t ≥ 0. (All
augmentations are henceforth performed with the null sets of the sigma algebra G.) Thus, for
any t ≥ 0 the objective of the i-th agent is

max
(c,θ)∈U i

E

[∫ ∞

t
e−βi (u−t)Ui (cu)du

∣∣∣F i
t

]
, (1.5)

where for any 1 ≤ i ≤ n, Ui (c) := − e−αi c

αi
, while the class of admissible consumption-

investment strategies U i is described in Definition 1.3 below.
To study each agent’s consumption-investment problem, we specify the functional form

of the price of the risky asset with parameters to be determined in equilibrium. If the state
of the economy were known to all agents, in view of the properties of exponential utility, it
would be natural to guess that prices are affine in the state variables, i.e.,

Pt = C + εD Dt + εππt . (1.6)

However, each agent has only incomplete information about the state of the economy, sum-
marized by the signals ξ i , and resulting in the individual (market) estimates (π̂ i

t )t≥0 =
(E[πt |F i

t ])t≥0. As the equilibrium price aggregates all individual signals, we replace πt in
(1.6) by an estimate πw

t that combines such information.

Definition 1.1 (i) Let wi > 0 (1 ≤ i ≤ n). The consensus estimate πw = (πw
t )t≥0 of the

state of the economy with weights w = (wi )1≤i≤n is defined as

πw
t := E

⎡
⎣πt

∣∣∣∣
(

Du,

n∑
i=1

wiξ
i
u

)

0≤u≤t

⎤
⎦ . (1.7)

(ii) A linear price is a process

Pt = C + εD Dt + εππw
t , t ≥ 0, (1.8)

where πw
t is the consensus estimate with weights w = (wi )1≤i≤n and C, εD, επ ∈ R.
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(iii) Define the constants

ν := σ−2
D + (

∑n
i=1 wi )

2

∑n
i=1 w2

i σ 2
i

, oM := −a + √
a2 + σ 2

πν

ν
(1.9)

as well as

σ 2
P := ε2Dσ 2

D + 2εDεπ oM + ε2π o2Mν. (1.10)

Remark 1.2 (i) Because D0 is deterministic and the signals ξ are initially zero, for any
weights (wi )1≤i≤n , any consensus estimate is initiallyπw

0 = π̄ . As a further consequence,
for any 1 ≤ i ≤ n,

π̂ i
0 = E[π0 | F i

0] = E[π0 | σ(D0, P0)] = E[π0 | σ(D0, π
w
0 )] = E[π0] = π̄ .

(ii) Lemma A.4 below justifies the notation σP for the constant in (1.10) by showing that σ 2
P

is indeed the squared volatility of a linear price (1.8) for a stationary Kalman-Bucy filter
of the state of the economy.

Definition 1.3 (Admissible strategies) The set U i of admissible strategies for the i-th agent
is the set of all consumption-investment strategies (ct , θt )t≥0 that satisfy the conditions:

(i) (ct )t≥0 and (θt )t≥0 are (F i
t )t≥0-adapted processes such that E

[∫ T
0 |θt |2dt

]
,

E

[∫ T
0 |ct |dt

]
< ∞ for all T > 0.

(ii) The wealth Xt is self-financing, i.e.,

d Xt = −ct dt + θt Dt dt + r(Xt − θt Pt )dt + θt d Pt , X0 = xi
0, (1.11)

and satisfies the transversality condition

lim sup
T →∞

logE[|XT |2 | F i
t ]

2T
< r − 1

2
r2|ᾱ|2σ 2

P , (1.12)

where ᾱ := (
∑n

j=1
1
α j

)−1.

Definition 1.4 A linear equilibrium in the economy is comprised of:

(i) A linear price as in (1.8), for some C , εD , επ , and w = (wi )
n
i=1.

(ii) Optimal consumption-investment strategies (ci
t , θ

i
t )

1≤i≤n
t≥0 that clear the market, i.e.,

n∑
i=1

θ i
t = 1 a.s. for all t ≥ 0. (1.13)

With the above definitions, it is now possible to state the main result of the paper, which
characterizes the linear equilibrium in the model with heterogeneous information. The main
result holds under two conditions: the first condition (1.14) ensures that the equilibrium is
stationary, and is essentially equivalent to assuming that the market has been in existence
for some time. The second condition (1.15) guarantees that the optimal trading strategy is
admissible, as for the latter the limit on the left side of (1.12) is zero, while the right-hand
side is strictly positive by assumption. The latter condition is satisfied, for instance, when the
aggregate risk-aversion level ᾱ is sufficiently small.
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Theorem 1.5 Assume that

σ 2
π = o�

M = −a + √
a2 + σ 2

πν�

ν�
, where ν� = σ−2

D +
n∑

j=1

σ−2
j , (1.14)

and

r |ᾱ|2
2

[(
σD

k + r
+ o�

M

(a + r)(k + r)σD

)2

+ (o�
M )2(ν� − σ−2

D )

(a + r)2(k + r)2

]
< 1. (1.15)

Then, defining the constants:

w�
i = σ−2

i , ε�
D = 1

k + r
, ε�

π = 1

(k + r)(a + r)
, C� = aπ̄

r(k + r)(a + r)
− ᾱσ 2

P ,

(1.16)

(i) The price of the risky asset, P = (Pt )t≥0 of the form (1.8), where the market consensus
(i) has weights wi = w�

i , and εD = ε�
D, επ = ε�

π , C = C� (defined in (1.16)), is a
linear equilibrium. The squared volatility (1.10) of P equals

(σ �
P )2 = σ 2

D

(k + r)2
+ σ 2

π

(a + r)2(k + r)2

⎛
⎝1 + 2r

a +
√

a2 + σ 2
π ( 1

σ 2
D

+ ∑n
i=1

1
σ 2

i
)

⎞
⎠ .

(1.17)

(ii) Under such equilibrium, the optimal strategy of the i-th agent (1 ≤ i ≤ n) is

ci
t = βi − r

rαi
+ r

(
Xi

t + ᾱ2

2αi
(σ �

P )2
)

, θ i
t = ᾱ

αi
, (1.18)

where Xi
t denotes the wealth of the i-th agent.

(iii) The value function of the i-th agent (1 ≤ i ≤ n) is

E

[∫ ∞

t
e−βi uU i (ci

u)du | F i
t

]
= −e−rαi X i

t +δi
0

rαi
, δi

0 := −βi − r

r
− r ᾱ2

2
(σ �

P )2.

(1.19)

(iv) The market consensus is a positively recurrent process with dynamics

dπw
t = a(π − πw

t )dt + σ̂π d Zt , πw
0 = π,

where Z = (Zt )t≥0 is a (F i
t )t≥0- standard Brownian motion for any 1 ≤ i ≤ n, and

the volatility of the consensus estimate is4

σ̂π = o�
M

√
ν� = −a + √

a2 + σ 2
πν�

√
ν�

. (1.20)

Remark 1.6 The equilibrium in Theorem 1.5 is in fact unique up to scaling among linear equi-
libria, i.e., those of the form (1.8). Thus, uniqueness holds under a normalization condition
such as

∑n
i=1 wi = 1 or

∑n
i=1 w2

i σ 2
i = ∑n

i=1 wi (cf. Assumption A.5 below).
The proof of such uniqueness relies on lengthy but standard stochastic control arguments,

whereby the value function of any linear equilibrium is found to be of exponential-quadratic

4 That is, πw is positive-recurrent with stationary distribution π∞ ∼ N (π̄, σ̂ 2
π /2a).
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form, hence the optimal number of shares is linear in the state variables. Aggregating asset
demand, it follows that the only parameters that are compatible with the market clearing
condition are those in Theorem 1.5. These details are not reported here for brevity, but are
found in [5].

1.3 Three equilibria

To understand the partial-information equilibrium quantities identified in this theorem, it is
useful to compare them with two limit cases: (i) full-information and (ii) dividend-only.

Full-information equilibrium occurs when at least one agent’s signal becomes infinitely
precise (σi ↓ 0 for some i), and the knowledge of πt thus propagates to other agents through
market prices. Indeed, as any σi vanishes, (1.14) implies that ν� diverges, hence σ̂π in (1.20)
converges to σπ , and σ 2

π , the variance of the initial market state, converges to zero. The SDE
for the market consensus (Theorem 1.5 (iv)) shows that, as σi ↓ 0, the consensus estimate
πw converges in distribution to the true value of the state π . Likewise, price volatility in
(1.17) simplifies to

(σ �
P )2 = σ 2

D

(k + r)2
+ σ 2

π

(a + r)2(k + r)2
. (1.21)

Vice versa, if all agents’ signals become infinitely imprecise (σi ↑ ∞ for all i), the
consensus estimate collapses to the estimate obtained by the dividend flow alone, because
ν� in (1.14) reduces to σ−2

D . Thus the consensus estimate πw
t coincides with the conditional

expectation (i.e., linear filter) of πt given (Ds)s≤t , with volatility σ̂π = −a+
√

a2+σ 2
π /σ 2

D

σ−1
D

.

Accordingly, price volatility in (1.17) becomes

(σ �
P )2 = σ 2

D

(k + r)2
+ σ 2

π

(a + r)2(k + r)2

⎛
⎜⎜⎝1 + 2r

a +
√

a2 + σ 2
π

σ 2
D

⎞
⎟⎟⎠ , (1.22)

reflecting the increased uncertainty on fundamentals. Thus, the full-information anddividend-
only equilibria are the two extremes between which the partial-information equilibrium
considered in this paper lays.

Remark 1.7 A cumbersome but straightforward differentiation shows that left-hand side of
the parametric restriction in (1.15) is increasing in each of the σi , which means that, if such
parametric restriction holds in the dividend-only equilibrium (i.e., setting ν� = σ−2

D ), then it
also holds in any partial-information equilibrium (that is, for any choice of (σi )

n
i=1, holding

other parameters fixed). In other words, the dividend-only setting is essentially the worst-
case for the transversality condition: the validity of (1.15) for dividends-only guarantees its
validity also with partial and full information.

The comparison between the partial-information equilibrium and the dividend-only or
full-information equilibria helps to evaluate the potential impact of regulations such as the
“disclose or abstain from trading” principle embedded in SEC Rule 10b-5 in US securities
law, whereby it is unlawful for individuals with a fiduciary duty to shareholders to trade on
material nonpublic information.

In the context of the present model, the main result implies that disclosing information is
essentially equivalent to allowing trading, as information propagates instantaneously through
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prices to all market participants. Such release of information has in turn the ostensibly desir-
able effect of minimizing volatility, as the magnitude of shocks is reduced to reflect only the
news that is unexpected to all participants.

Yet, the unintended consequence of reducing volatility is to deplete its aggregate risk
premium, which leads to a decrease in welfare. Consequently, in this model agents would
be best served by a “do not disclose and abstain from trading” policy, which would lead to
higher volatility but also higher expected returns and welfare. As the next section shows, this
effect is most pronounced for less risk-averse agents, who hold most of the asset (and earn
its returns) in equilibrium.

2 Implications

2.1 Information in equilibrium

In the present model, the equilibrium endogenously identifies the consensus estimate πw

revealed by the market price Pt as πw
t = (Pt − C − εD Dt )/επ . In particular, it is possible

to understand the extent to which market prices aggregate and reveal the information of
individual agents, by comparing the consensus estimate πw to the estimate of a hypothetical
omniscient agent who could observe all the signals (ξ i )1≤i≤n in addition to the dividend,
i.e.,

π O
t = E

[
πt

∣∣∣σ
(
(Du)0≤u≤t , (ξ

i
u)

1≤i≤n
0≤u≤t

)]
.

The calculation of π O
t follows from the filtering results of Liptser and Shiryaev

[19, Theorem 10.3] and coincides with πw . Thus, the dynamic equilibrium price reveals
not all information available to agents, as the individual signal ξ i

t remains visible only to the
i-th agent, but all the information that is necessary to obtain the same estimate of the state
of the economy that a hypothetical omniscient agent would be able to achieve. In this sense,
the market equilibrium provides an efficient mechanism for information aggregation, in that
the information revealed by prices optimally aggregates individual signals, with no need for
agents to disclose their private information.

In the resulting equilibrium, public information from prices and dividends alone already
incorporates the contributions of all private signals, which are not used directly by the agents.
Yet, each of the private signals is critical to price formation, as it enters the public signal with
a positiveweight. Put differently, if the i-th agent decided not to observe the private signal, the
equilibrium price would be the one where only the others are present (which is equivalent to
assuming that σi is infinite). Then, if the same agent decided to observe the signal, trading the
risky asset would become optimal until its price had reached the equilibrium that reflects such
signal. In general, equilibrium weights for signals are inversely proportional to the signals’
respective variances, i.e., directly proportional to the signals’ precisions.

Note that this model only includes rational agents and a fixed asset supply, and leads to
a fully revealing equilibrium. By contrast, partial-revelation equilibria rely crucially on the
presence of noise traders, either explicitly, as in the asymmetric-information model of Kyle
[18] and its numerous extensions, or implicitly through a stochastic asset supply (for which
noise traders are responsible), as in the model of Hellwig [16] and its derivatives.5

5 In Kyle’s continuous-time model, the insider’s information is eventually revealed at the final horizon, but
remains partially concealed throughout the period.
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The present model deliberately excludes noise trading in order to avoid ambiguity on
the attribution of the welfare loss identified in the paper: if noise were present, one could
plausibly ascribe agents’ suffering to the information degradation due to noise rather than
to the information enhancement due to their signal. In the absence of noise, such ambiguity
disappears, and we can firmly establish the role of increased information in reducing welfare.

2.2 Volatility

Theorem 1.5 identifies squared volatility – the rate of change in the quadratic variation of the
price – as (1.17). To understand this expression, it is useful to consider separately its different
contributions. The first term σ 2

D/(k + r)2 reflects the variability of the discounted dividend
stream, and is present even with a constant state of the economy (σπ = 0).

The second term σ 2
π/(a + r)2(k + r)2 is due to the variability of the state of economy,

and has a different discount rate because the state of the economy affects the growth rate of
dividends rather than their levels. Note that this second term is present even when the state
is observable (σi ↓ 0 for some i), in which case the third term vanishes. The third term is
the only one that is affected by the quality of information on the state of the economy. In
particular, volatility increases as quality decreases (σi increases) and as the state becomes
more persistent (a decreases).

Interestingly, a low interest rate r is associated with a smaller impact of information
quality. Upon reflection, this observation is consistent with the stationarity of the state of the
economy: at long horizons, the state reverts to its long term mean, and information about the
current state is less relevant. It is precisely when interest rates are low that prices reflect the
risk-adjusted value of dividends at longer maturities, for which information on the current
state of the economy has a lower impact.

Note also that the above formula implies that volatility is independent of agents’ prefer-
ences, which means that in this model an increase in risk aversion has no effect on volatility.
As discussed next, the effect of risk aversion is on prices. Finally, the number of agents affects
volatility only through the total signal precision

∑n
i=1 σ−2

i . Put differently, a market with
a single agent having a private signal with noise σ1 is equivalent to a market with n agents
having independent private signals with noise σ1

√
n.

2.3 Prices

The above considerations on volatility are key to understand the dependence of prices on the
model’s parameters. The price of the risky asset is

Pt = aπ̄

r(a + r)(k + r)
+ 1

k + r
Dt + 1

(a + r)(k + r)
πw

t − ᾱσ 2
P

=E

⎡
⎣
∫ ∞

t
e−r(u−t) Dudu

∣∣∣∣∣∣
σ

⎛
⎝
(

Du,

n∑
i=1

wiξ
i
u

)

u≤t

⎞
⎠
⎤
⎦ − ᾱσ 2

P . (2.1)

Put differently, the first three terms (2.1) reflect the expected present value of future dividends
using equilibrium information. By contrast, the last term−ᾱσ 2

P represents the price discount
that arises in equilibrium from the aggregate risk aversion ᾱ of the agents. Thus, while an
increase in risk aversion does not affect volatility, it does reduce prices by increasing the
discount below their expected present value.
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A further message of the above equation is that information affects price levels only
through (i) the present value of future dividends, and (ii) volatility. In particular, the estimate
of the state of the economy πw affects prices only through the present value of dividends,
and does not affect the discount for risk, which remains constant over time. It also does not
affect the sensitivity of prices to the current dividend Dt and the state of the economy πw .

2.4 Welfare

The optimal consumption rate of the i-th agent is

ci�
t = βi − r

rαi
+ r

(
Xi�

t + ᾱ2

2αi
σ 2

P

)
. (2.2)

The first term in this formula reflects the agent’s time preference and intertemporal substi-
tution, and is constant. More impatient (higher βi ) and intertemporally inelastic (lower αi )
agents consume more, regardless of the dynamics of dividends. (Note that, as the model
assumes an exogenous interest rate r , aggregate consumption

∑n
i=1 ci

t does not necessarily
match dividends Dt because a safe asset in unlimited supply makes aggregate accumulation
and depletion possible.)

An implication of (2.2) is that consumption depends on dividends and the state of the
economy only through wealth: given the equilibrium price, the agent consumes as if the state
of the economy were constant. Hence, agents do not have to use complicated consumption-
investment policies to achieve a rational expectations equilibrium: even if they were able to
only optimize among constant investment strategies and among consumption policies that
are affine in wealth, they would still reach the same equilibrium.

To understand the second and third terms in (2.2), it is useful to observe that, from the
formula for the value function (1.19), the i-th agent is indifferent between (i) starting with
Xi�

t in cash and then live in the market where the risky asset is available, and (ii) living in a
simpler market, where only the safe asset exists, but starting with the higher cash amount

X̄ i
t = Xi�

t + ᾱ2

2αi
σ 2

P , (2.3)

which thus represents the certainty equivalent of the i-th agent.
Hence, the second and third terms in (2.2) are interpreted as the rent that the agent collects

from the certainty equivalent Xi�
t + ᾱ2

2αi
σ 2

P : it represents the minimum amount of money that
at time t the agent would accept to give up the opportunity to invest in the risky asset. As it is
natural, such certainty equivalent is proportional to the total discount ᾱσ 2

P of the risky asset
below its risk neutral value, and to the number of shares θ i = ᾱ/αi in the agent’s portfolio.

In relation to information, the consumption formula (2.2) has a central message: as more
information enters the market, in equilibrium all agents become worse off because their
consumption declines. Although this result is superficially surprising, it is in fact consistent
with the previous observations that information reduces volatility, which in turn reduces the
price discount. Because the certainty equivalent is additive in the price discount, it follows
that consumption has to decrease as volatility decreases.

This observation highlights a potential tension between informational and economic effi-
ciency. In the present model, self-interested rational agents achieve anonymously the same
informational efficiency as a hypothetical omniscient central planner. Yet, while each of them
attempts to use private information to gain an edge on the others, the overall result is that all
of them are worse off as a result, mimicking qualitatively the classical prisoner’s dilemma
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paradox. Note also that each of them could make everyone (including oneself) better off by
foregoing one’s private signal in the decision process, thereby switching to an equilibrium
with higher volatility, price discount, and hence consumption. But such a decision would
require perfect commitment: otherwise, in the new equilibrium, the agent would be tempted
to peek at the private signal to gain a temporary advantage over the others, eventually bringing
prices back to the original equilibrium.

2.5 New vs. old investors

The certainty equivalent formula (2.3) also helps to understand in which sense an increase
in information benefits existing assets’ owners rather than investors, as mentioned in the
introduction.6 Imagine that the i-th agent starts with an endowment of ci in cash and θ i

0−
shares. Thus, the certainty equivalent is

ci + θ i
0− P0 + ᾱ2

2αi
σ 2

P , (2.4)

where the additional middle term reflects the value of the shares in the endowment.
The agent’s intention is to immediately trade at time 0, as to hold the optimal number of

shares ᾱ/αi . Now, suppose that the quality of information on the asset changes before the
agent can trade (i.e., between 0− and 0), so that the variance σ 2

P increases by 
. In view of
(1.16), the agent’s welfare increases by

− θ i
0− ᾱ
 + ᾱ2

2αi

 =

(
ᾱ

2αi
− θ i

0−

)
ᾱ
. (2.5)

Thus, an improvement in information quality (
 negative) results in a welfare decrease if
the endowment is less than half of the optimal asset position (θ i

0− < ᾱ
2αi

), otherwise in an
increase.

The intuition is straightforward: if the endowment is only in cash, welfare increases with
volatility through the earned risk premium, as observed above. However, if the endowment
also includes shares, then the agent may also gain or lose from the effect of volatility on
the asset price. Because the price increases as volatility decreases, if the agent’s position is
sufficiently high, then the gain in price overrides the welfare loss from the lower risk premium
earned in the future.

These remarks offer a clear rationale for company founders and early investors to improve
information quality before taking a company public: regardless of regulatory requirements, it
is in their personal interest to improve investors’ knowledge of their company’s fundamentals,
as to increase its stock price. (While in the present model, which has a single risky asset, this
effect is tantamount to a reduction in the variance of the company’s stock price, in general
it would entail minimizing systematic risk, because idiosyncratic risk does not affect stock
prices.)

Finally, note that a lower variance actually increases the welfare of the representative
agent, who has risk aversion ᾱ = 1/

∑n
i=1

1
αi

and holds the whole asset (i.e., one share)
both before and after any change in information quality. Indeed, (2.4) implies that a variation

 in price variance leads to a change in the certainty equivalent equal to (1/2 − 1)ᾱ
.
That is, welfare increases as variance decreases, but such an increase is entirely ascribed to
previous owners, whose gains more than offset the losses of all new entrants. In this sense,
the representative agent is only representative of the old, not the new, investors.

6 We are indebted to an anonymous referee for suggesting this comparative-statics analysis.
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3 Heuristics

In equilibrium, all agents must agree on the same price (otherwise somewould want to trade).
As prices should depend on dividends – which are public – and on an estimate of the state of
the economy, it follows that agents should agree in equilibrium on a common estimate, i.e.,
the consensus. As exponential utility leads to affine demand functions in the states variables
Dt and πw , and the asset supply is fixed, it is also natural to guess that prices are affine in
states, i.e., Pt = C + εD Dt + εππw

t . Denoting by Xi
t the i-th agent’s wealth process, the

self-financing condition implies

d Xi
t = −ct dt + θ i

t Dt dt + r(Xi
t − θ i

t Pt )dt + θ i
t d Pt ,

= −(ci
t − r Xt )dt + θ i

t Dt dt − rθ i
t Pt dt + θ i

t (εDd Dt + επ dπw
t ).

Note that π̂ i and πw are indistinguishable for 1 ≤ i ≤ n, therefore wi = w�
i = σ−2

i for
1 ≤ i ≤ n (Lemma A.8), therefore Lemma (iii) implies that

dπw
t = a(π̄ − πw

t )dt + oM

⎛
⎝σ−1

D d Bi D
t +

n∑
j=1

σ−1
j d B j

t

⎞
⎠ ,

d Dt = (πw
t − k Dt )dt + σDd Bi D

t .

Denoting by ν� and o�
M the values of ν and oM obtained from w�

i , it follows that

d Xi
t = μi

t dt + θ i
t

(
(εDσD + επ o�

Mσ−1
D )d Bi D

t + επ o�
M

n∑
i=1

σ−1
i d Bi

t

)
,

where

μi
t = r Xi

t − ci
t + θ i

t Dt − rθ i
t (C + εD Dt + εππw

t ) + θ i
t (εD(πw

t − k Dt ) + επ a(π̄ − πw
t )).

(3.1)

Note that the instantaneous quadratic variation is

d〈Xi 〉t

dt
= (θ i

t )
2

(
(εDσD + επ o�

Mσ−1
D )2 + (επ o�

M )2
n∑

i=1

σ−2
i

)
= (θ i

t )
2σ 2

P . (3.2)

Next, consider the value function of the i-th agent. A priori, it may depend on the agent’s
wealth, the dividend Dt , and the consensus estimate πw

t . Individual wealth is essential, but
the question is whether the dependence on the other two variables is separate from wealth
or only through wealth. It is natural to attempt the latter approach, as it implies a value
function of the type V i = V i (Xi ) rather than a function of three states. The corresponding
Hamilton-Jacobi-Bellman equation is

sup
c,θ∈U i

(
e−αi ci

t

−αi
− βi V i + μi

t V i
x + V i

xx

2

d〈Xi 〉t

dt

)
= 0. (3.3)

Consistently with the exponential utility, guessing V i (Xi ) = e−rαi Xi +δi
0

−rαi
and using equations

(3.1)-(3.2), the first order conditions are

ci
t = log(V i

x )

−αi
= r Xi

t − δi
0

αi
(3.4)
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for consumption and

θ i
t = − V i

x

V i
xx

(
Dt (1 − (k + r)εD) + πw

t (εD − (a + r)επ ) − rC + aπ̄επ

ε2Dσ 2
D + (o�

M )2ε2πν� + 2εDεπ o�
M

)

= 1

rαi

(
Dt (1 − (k + r)εD) + πw

t (εD − (a + r)επ ) − rC + aπ̄επ

ε2Dσ 2
D + (o�

M )2ε2πν� + 2εDεπ o�
M

)
(3.5)

for investment. The market clearing condition (1.13) dictates that the coefficients of Dt , πw
t

vanish, which imply the constants εD = ε�
D and επ = ε�

π as stated in (1.16), and that

ᾱ−1 −C + aπ̄
r ε�

π

(ε�
D)2σ 2

D + (o�
Mε�

π )2ν� + 2ε�
Dε�

π o�
M

= 1.

Elementary algebraic manipulations yield (1.17) for the squared volatility (σ ∗
P )2 of the equi-

librium price P . Thus, the market clearing condition implies that

ᾱ−1 −C + aπ̄
r ε�

π

(σ �
P )2

= 1,

whence the constant C = C� as in (1.16). Then, equation (3.5) yields the candidate optimal
trading policy for the i-th agent,

θ i
t = ᾱ

αi
,

which is the second formula in (1.18). It remains to compute the constant δi
0, which in turn

identifies both the value function and the optimal consumption. Inserting θ i and ci
t from (3.4)

into the HJB equation (3.3) yields (1.19) which, again after some algebraic manipulations,
obtains the consumption formula in (1.18).

4 Conclusion

This paper investigates the aggregation of disperse information in a financial market with
rational agents who maximize lifetime utility from consumption, learning from both public
prices and private signals. Themarket aggregates information optimally because the resulting
consensus estimate of the state of the economy is the same as the one that a hypothetical
agent with access to all private information could obtain.

In equilibrium, more information reduces price volatility, and in particular the component
that stems from uncertainty on the state of the economy in the near future. Such an effect is
more pronounced when interest rates are higher, and therefore the relative weight of near-
term dividends is higher. However, volatility mitigation does not translate into higher utility
for market participants because its primary effect is to more closely align asset prices with
the present value of their dividends, thereby reducing the risk premium.

Thus, market participants find themselves in a predicament, whereby each of them uses
private information to make optimal investment and consumption decisions, but the net effect
is that the useful component of such information is revealed to other participants through
prices, and everyone earns a lower risk premium in the future as a result of informational
efficiency.
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A. Proofs

A.1 Filtering results

Applying [19, Theorem 10.3] to the setup of this paper, the Kalman-Bucy filter can be stated
as:

Theorem A.1 Let (W π , W ) be a k +1-dimensional (k ≥ 1) standard Brownian motion (with
W π being one-dimensional) and a0 ∈ R, A1 ∈ R

k and A2, B be k × k real-valued matrices.
Suppose a1 < 0 and b ∈ R \ {0}. Consider the one-dimensional process (�t )t≥0 and the
three-dimensional process (�t )t≥0 with dynamics

d�t = (a0 + a1�t )dt + bdW π
t ,

d�t = (A1�t + A2�t )dt + BdWt ,

such that �0 ∈ R
k , and �0 ∼ N (�̄, κ0) is normally distributed, independent of (W π , W ),

where κ0 > 0. Denote by (Gt )t≥0 the filtration generated by (�t )t≥0, and let κ(t) be the
unique non-negative solution of the Riccati differential equation

κ̇ = 2a1κ + b2 − κ2(A�
1 (B B�)−1A1) = 0, κ(0) = κ0. (A.1)

Then the Kalman-Bucy filter (�̂t )t≥0 (where �̂t := E[�t | Gt ]) of the process (�t )t≥0

with signal (�t )t≥0 is the unique solution of the stochastic differential equation

d�̂t = (a0 + a1�̂t )dt + κ(t)A�
1 (B B�)−1[d�t − (A1�̂t + A2�t )dt], �̂0 = �̄,

and
∫ ·
0(B B�)−1/2[d�t − (A1�̂t + A2�t )dt] is a (Gt )t≥0- Brownian motion. Furthermore,

κ(t) is the mean-square error7 of the prediction, that is,

κ(t) = E[(�̂t − �t )
2].

In particular, if κ0 is the unique solution of the algebraic Riccati equation

2a1κ0 + b2 − κ2
0 (A�

1 (B B�)−1A1) = 0, (A.2)

then the Kalman-Bucy filter is stationary in the sense that κ(t) ≡ κ0 for t ≥ 0.

Remark A.2 Note that the initial condition of (A.1) isVar(�0−E[�0 | �0]) = Var(�0) = κ0
because �0 is deterministic.

7 As it is an unbiased estimate, is equals to the variance Var(�̂t − �t ).
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Proof of Theorem A.1 To apply [19, Theorem 10.3], set therein θ = �, ξ = �, and further-
more W1 = W π and W2 = W , leading to the values

(i) (drift coefficients) a2 = 0, A0 = 0, and a0, a1, as well as A1, A2 are constants,
(ii) (diffusion coefficients) b2 ≡ 0, and B1 ≡ 0, while b1(t) ≡ b and B2(t) ≡ B are

constants.

Therefore, the definitions in [19, (10.8)] simplify to the following (constant) expressions

(b ◦ b)(t) ≡ b1b�
1 , (b ◦ B)(t) ≡ 0 and (B ◦ B)(t) ≡ B2B�

2 .

Thus, by [19, Theorem 10.3], mt = �̂t satisfies

d�̂t = (a0 + a1�̂t )dt + κ(t)A�
1 (B B�)−1[d�t − (A1�̂t + A2�t )dt], �̂0 = E[�0 | G0],

where the mean-square error of the prediction equals κ(t) > 0, which is the unique non-
negative solution of (A.1).

If, in addition, the variance of �̂0 equals the unique positive root of (A.2), then clearly
κ(t) ≡ κ , and the second claim follows. ��
Lemma A.3 The consensus estimate (πw

t )t≥0 of the state of the economy has dynamics

dπw
t =

[
a(π̄ − πw

t ) + oM (t)kσ−2
D Dt − oM (t)

(
σ−2

D + (
∑n

i=1 wi )
2

∑n
i=1 w2

i σ 2
i

)
πw

t

]
dt

+ oM (t)

(
σ−2

D d Dt +
∑n

i=1 wi∑n
i=1 w2

i σ 2
i

n∑
i=1

wi dξ i
t

)
, (A.3)

where πw
0 = π̄ and oM (t) satisfies the Riccati differential equation

ȯM (t) = −2aoM (t) + σ 2
π − νoM (t)2, oM (0) = σ 2

π .

In particular, if σ 2
π = oM , then oM (t) ≡ oM = σ 2

π , for all t ≥ 0.

Proof Apply Theorem A.1 with the processes (Dt ,
∑n

i=1 wiξ
i
t )t≥0 as signals. ��

Lemma A.4 If σ 2
π = oM , then the squared volatility of the linear price (1.8) is as in (1.10).

Proof By Lemma (iii) A.7, σ 2
π = oM implies that oM (t) ≡ oM . From the system of SDEs

A.8, it follows that

σ 2
p =

(
ε2Dσ 2

D + ε2π o2Mσ−2
D + 2εDεπ oM

)
+ ε2π o2M

(
(
∑n

i=1 wi )
2

∑n
i=1 w2

i σ 2
i

)
.

which equals (1.10) by by (1.9). ��
Assumption A.5 For convenience of notation, in the remainder of this section assume

n∑
i=1

w2
i σ 2

i =
n∑

i=1

wi . (A.4)

This assumption entails no loss of generality because (πw
t )t≥0 is invariant with respect to a

common scaling factor λ > 0, i.e., πλw is indistinguishable from πw . To wit, for any vector
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of weights w, it suffices to normalize the weights to λw, where λ = ∑n
i=1 wi/

∑n
i=1 w2

i σ 2
i .

Note that by (A.4), the parameter defined in (1.9) may be written in two equivalent forms,

ν = σ−2
D +

∑
i=1

wi = σ−2
D +

∑
i=1

w2
i σ 2

i .

Also, note that (A.3) simplifies now to

dπw
t =

[
a(π̄ − πw

t ) + oM (t)kσ−2
D Dt − oM (t)

(
σ−2

D +
n∑

i=1

wi

)
πw

t

]
dt

+ oM (t)

(
σ−2

D d Dt +
n∑

i=1

wi dξ i
t

)
, (A.5)

The rest of this section relates the individual estimates of each agent (π̂ i
t )t≥0 to the

consensus estimate (πw
t )t≥0. To this end, we introduce further constants

Definition A.6 Recalling ν and oM from Definition 1.1 (iii), define the constants

wi⊥ :=
√∑

j �=i

w2
jσ

2
j , σi⊥ :=

√∑
j �=i w2

jσ
2
j∑

j �=i w j
,

νi := σ−2
D + σ−2

i + σ−2
i⊥ , oi := −a + √

a2 + σ 2
πνi

νi
.

We start by finding the agents’ views about the state of the economy.

Lemma A.7 (Filtering) Define

ξ i⊥
t := 1∑

j �=i w j

∑
j �=i

w jξ
j

t , π̂ i
t := E[πt |F i

t ],

and the stochastic processes B := (Bt )t≥0 = (Bi D
t , Bi

t , Bi⊥
t )t≥0, where

Bi D
t := W D

t +
∫ t

0

πu − π̂ i
u

σD
du, Bi

t := W i
t +

∫ t

0

πu − π̂ i
u

σi
du,

Bi⊥
t := 1

wi⊥

∑
j �=i

w jσ j W j
t +

∫ t

0

πu − π̂ i
u

σi⊥
du. (A.6)

The following hold:

(i) For every t ≥ 0, F i
t = σ {Du, πw

u , ξ i
u}0≤u≤t = σ

{
Du, ξ i⊥

u , ξ i
u

}
0≤u≤t .

(ii) The i-th agent’s (stationary) filter for the state of the economy is

dπ̂ i
t = a(π̄ − π̂ i

t )dt + oi (t)
(
σ−1

D d Bi D
t + σ−1

i d Bi
t + σ−1

i⊥ d Bi⊥
t

)
, π̂ i

0 = π̄ , (A.7)

B is a standard (P,F i
t )t≥0)-Brownian motion, and oi (t) satisfies the Riccati differential

equation

ȯi (t) = −2aoi (t) + σ 2
π − νi oi (t)

2, oi (0) = σ 2
π .

In particular, if σ 2
π = oi , then oi (t) ≡ oi = σ 2

π , for all t ≥ 0.
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(iii) For every 1 ≤ i ≤ n, the processes (πw
t )t≥0 and (Dt )t≥0 follow the dynamics

dπw
t = [a(π̄ − πw

t ) + oM (t)ν(π i
t − πw

t )]dt

+ oM (t)
(
σ−1

D d Bi D
t + wiσi d Bi

t + wi⊥d Bi⊥
t

)
,

d Dt = (π̂ i
t − k Dt )dt + σDd Bi D

t , (A.8)

where oM (t) satisfies the Riccati differential equation

ȯM (t) = −2aoM (t) + σ 2
π − oM (t)2(σ−2

D +
n∑

i=1

wi ), oM (0) = σ 2
π .

In particular, if σ 2
π = oM , then oM (t) ≡ oM = σ 2

π , for all t ≥ 0.

Proof DefineHi
t = σ {Du,πw

u , ξ i
u :0≤ u ≤ t} andLi

t = σ
{

Du,
∑

j �=i w jξ
j

u , ξ i
u :0≤ u ≤ t

}
.

Equation (1.8) implies (F i
t )t≥0 = (Hi

t )t≥0.
Proof of Hi

t ⊆ Li
t : As D and ξ i are Li -adapted, by (A.5), also πw is adapted to the

filtration generated by D, ξ i and ξ i,⊥.
Proof of Li

t ⊆ Hi
t : Dividing (A.5) by oM (t), and integrating by parts allows to write ξ i⊥

as a non-anticipating functional of the paths of ξ i , πw and D. Hence ξ i⊥ is Hi -adapted.
Applying TheoremA.1with the process (Dt , ξ

i
t , ξ

i⊥
t )t≥0 as signal, A.7 follows, while A.7

is a direct consequence of A.7, Lemma A.3 and the definition A.7 of the Brownian motion
(Bi D

t , Bi
t , Bi⊥

t )t≥0. ��
The market estimate of the state of the economy reveals a weighted average of the private

information available. The (second part of the) following Lemma shows that each agent
considers (πw

t )t≥0 the best approximation for (πt )t≥0 if the weight of the private signal in
the process (πw

t )t≥0 is the inverse of the square of the signal’s noise, i.e. wi = σ−2
i .

Lemma A.8 (Properties of filters)

(i) Let σπ > 0 and 1 ≤ i ≤ n. The following are equivalent:

(a) The (Gt )t≥0-measurable processes (πw
t )t≥0 and (π̂ i

t )t≥0 are indistinguishable.
(b) wi = σ−2

i , νi = ν (or, equivalently, for all t ≥ 0, oi (t) = oM (t)) and σ−1
i⊥ = wi⊥.

(ii) If wi = σ−2
i for all 1 ≤ i ≤ n, then π̂ i

t = πw
t a.s. for all t ≥ 0 and 1 ≤ i ≤ n.

Proof The statement A.8 follows from A.8. The characterization in A.8 holds in view of the
explicit SDEs for the consensus estimate and the individual estimates, (A.8) and (A.7). ��

Existence

This section shows the existence of a linear equilibrium, as stated in Theorem 1.5. First, note
that the market clears for the stated strategies because, by the definition of ᾱ,

n∑
i=1

θ i
t = ᾱ

n∑
i=1

1

αi
= 1.

Therefore, it remains to show that each agent acts optimally, given the stated price process.
In accordance with the assumption of Theorem 1.5 we assume throughout this section that
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the constants C = C�, εD = ε�
D and επ = ε�

π as given by (1.16), that wi = w�
i = σ−2

i for
1 ≤ i ≤ n, and that σ 2

π = o�
M . (The latter condition implies stationarity of the filter, see

Lemma (iii).)

Definition A.9 A stochastic discount factor (SDF) for the i-th agent is a positive, continuous,
(F i

t )t≥0-adapted process (Hi
t )t≥0 such thatHi

0 = 1,P-almost surely, and for every 0 ≤ s ≤ t

Hi
sers = E[ertHi

t |F i
s ], (A.9)

as well as

Hi
s Ps +

∫ s

0
Hi

u Dudu = E

[
Hi

t Pt +
∫ t

0
Hi

u Dudu
∣∣∣F i

s

]
. (A.10)

Consider now the stochastic discount factors, for 1 ≤ i ≤ n,

N i
t = exp

(
− r t +

∫ t

0
ai Dd Bi D

u +
∫ t

0
ai d Bi

u +
∫ t

0
ai⊥d Bi⊥

u

−1

2

∫ t

0
((ai D)2 + (ai )2 + (ai⊥)2)du

)
, (A.11)

where B = (Bi D, Bi , Bi⊥) is defined by (A.6), and

ai D = −r ᾱ(ε�
DσD + ε�

π o�
Mσ−1

D ), ai = −r ᾱε�
π o�

Mw�
i σi , ai⊥ = −r ᾱεπ o�

Mw�
i⊥,

where w�
i⊥ is the wi⊥ computed with w∗

i , 1 ≤ i ≤ n. and the remaining parameters are in
Definition 1.1 (iii).

Lemma A.10 For any 1 ≤ i ≤ n, the process (N i
t )t≥0 defined in (A.11) is a normalized

stochastic discount factor for the i-th agent.

Proof (A.9) is obviously satisfied for any Hi = N i , 1 ≤ i ≤ n. To prove the rest, we first
show that the process

Mi
t := N i

t Pt +
∫ t

0
N i

u Dudu

is a local martingale. AsMi
t is an Itô integral, it suffices to show that its drift vanishes almost

surely. By the product rule,

dMi
t = −re−r tE i

t Pt dt + N i
t d Pt + e−r t Pt dE i

t + e−r t d[P, E i ]t + e−r tE i
t Dt dt,

and the drift must be zero because E i
t is a martingale. Therefore, the problem reduces to

showing that the drift in

d Zi
t := d Pt − r Pt dt + Dt dt + d[P, E i ]t

E i
t

(A.12)

vanishes. By the functional form of the price (1.8), the dynamics of the dividend and the
consensus estimate in the system (A.8), and the fact that π̂ i

t and πw
t are indistinguishable

(see Lemma A.8), it follows that the drift terms of d Zi
t are those of

d(C + ε�
D Dt + ε�

π dπw
t ) − r(C� + ε�

D Dt + ε�
ππw

t )dt + Dt dt

+ d[ε�
DσDd Bi D + ε�

π o�
M (σ−1

D d Bi D + w�
i σ

−1d Bi + w�
i⊥d Bi⊥), ai Dd Bi D

+ ai d Bi + ai⊥d Bi⊥]t
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These terms are in turn given by the affine function

πw
t (ε�

D − ε�
π (a + r)) + Dt (1 − ε�

D(k + r))

+ ε�
π aπ − rC� − rα

[
(ε�

DσD + ε�
π o�

Mσ−1
D )2 + (ε�

π o�
M )2

∑
i

σ−2
i

]
.

(Using the fact that w�
i = σ−2

i for 1 ≤ i ≤ n and that the filter is stationary, that is
oM (t) ≡ o�

M = σ 2
π , see Lemma (iii).) The first two linear terms vanish by the definition

of ε�
π and ε�

D . A straightforward but lengthy algebraic manipulation, featuring the explicit
formula C in (1.16), yields that the third term also vanishes. Thus, the drift of (A.12) indeed
vanishes and Mi

t is a local martingale.
Similar computations yield that the Brownian terms of dMt are of the form

dMi
t = N i

t

⎛
⎝C0d Bi D

t +
n∑

j=1

C j d B j
t + Pt (D0d Bi D

t +
n∑

j=1

D j d B j
t )

⎞
⎠ ,

with some real constants Ci , Di , 0 ≤ i ≤ n. As N i
t is a geometric Brownian motion (dis-

counted by exp(−r t)), and Pt is square-integrable (as sumofOrnstein-Uhlenbeck processes),
the Cauchy-Schwarz inequality implies that E[[Mi ,Mi ]t ] < ∞, for all t ≥ 0. That is, M
is a square-integrable F i

t -martingale, whence the martingale property (A.10) holds. ��
Lemma A.11 Let (θt , ct ) be an admissible strategy for the i-th agent. Then

N i
t X i

t +
∫ t

0
N i

s csds (A.13)

is an L2-martingale, and

lim inf
T →∞ E[N i

T Xi
T | F i

t ] ≥ 0. (A.14)

Consequently,

lim sup
T →∞

E

[∫ T

t
N i

s ci
sds | F i

t

]
≤ N i

t X i
t . (A.15)

Proof First, we show the decomposition

N i
t X i

t +
∫ t

0
N i

s ci
sds = xi

0 +
∫ t

0
θsd

(
N i

s Ps +
∫ s

0
N i

u Dudu

)
(A.16)

+
∫ t

0
e−rs(Xs − θs Ps)d(ersN i

s ).

As E i
t := ertN i

t is by construction a square integrable martingale, the third term on the right
side is a localmartingale. The second termon the right side of (A.16) is also a localmartingale,
and so isN i

t by the definition of the stochastic discount factor (Lemma A.10). Furthermore,
asE[∫ t

0 θ2s ds] < ∞ andN i
t Pt +

∫ t
0 N i

s Dsds is anL2-martingale, by construction also (A.13)
is an L2-martingale.

To prove (A.16), note that by the product formula and the self-financing property (1.11),

d(N i
t X i

t ) + N i
t ct dt = −re−r tE i

t X i
t dt + e−r t X i

t dE i
t + e−r tEt d Xi

t + e−r t d[E i , Xi ]t + ctN i
t dt

= e−r t X i
t dE i

t + e−r tθt d[E i , P]t + e−r tE i
t (θt Dt dt − rθt Pt dt + θt d Pt ).
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Hence, integration by parts yields

d(N i
t X i

t ) + N i
t ct dt = e−r tθt d(PtE i

t ) + E i
t Dt dt − rθt Pt e

−r tE i
t dt + e−r t (Xi

t − θt Pt )dE i
t .

Once again, integration by parts allows to combine the first two terms on the right side to
obtain (A.16), proving the first part of the statement.

Next, by the Cauchy-Schwarz inequality,

−E[N i
T Xi

T | F i
t ] ≤ E[|N i

T Xi
T | | F i

t ] ≤
√
E[|N i

T |2 | F i
t ]
√
E[|Xi

T |2 | F i
t ]

= N i
t e−rT + (T −t)

2

(|ai D |2+|ai |2+|ai⊥|2)
√
E[|Xi

T |2 | F i
t ].

Therefore property (A.14) follows from the admissibility condition (1.12).
The third part of the statement (A.15) follows from (A.13)-(A.14). ��

Proposition A.12 (Candidate strategy) Let yi� = e−rαi x i
0+δi

0 , where δi
0 is defined in (1.19),

and define a self-financing strategy with wealth Xi�
t , t ≥ 0, as

ci�
t = r Xi�

t − δi
0

αi
, θ i�

t = ᾱ

αi
, t ≥ 0, (A.17)

where δi
0 is defined in (1.19). Then:

(i) (Admissibility) for each 1 ≤ i ≤ n, (ci�
t , θ i�

t )t≥0 is an admissible strategy and its wealth
process (Xi�

t )t≥0 is

Xi�
t = xi

0 +
((

ε�
π aπ̄ − rC�

) ᾱ

αi
− ci

0

)
t

+ ᾱ

αi

⎛
⎝(ε�

DσD + ε�
π o�

Mσ−1
D )Bi D

t + o�
Mε�

π

n∑
j=1

σ−1
j B j

t

⎞
⎠ , (A.18)

where the Brownian motion B = (Bi D, Bi , 1 ≤ i ≤ n) is defined in (A.6) and

ci
0 := βi − r

rαi
+ r ᾱ2

2αi

(
(ε�

D)2σ 2
D + 2ε�

Dε�
M o�

M + (o�
Mε�

π )2ν�
)
.

(ii) The utility of the strategy is

E

[∫ ∞

0
e−βi uU (ci�

u )du
∣∣∣F i

0

]
= − yi�

rαi
.

Proof To prove (i), note that the self-financing condition (1.11), Definition 1.1 (ii) and (iii),
equation (1.16) and Lemma (iii) A.7 imply identity (A.18) for the wealth Xi�. Using the
definition ofN i

t , which is a geometric Brownian motion, and of portfolio wealth, a Brownian

motion with constant drift, it follows that limT →∞
log E[|Xi�

T |2|F i
t ]

T = 0, that is strictly smaller
than the right hand side of (1.12), which is strictly positive by condition (1.15). The utility
in (ii) is obtained by a straightforward computation. ��

Theorem A.13 (Duality) For any 1 ≤ i ≤ n, let (N i
t )t≥0 be the stochastic discount factor

(A.11). Then
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(i) The utility of the i-th agent satisfies

E

[∫ ∞

0
e−βi uU (cu)du

∣∣∣F i
0

]
≤ − yi�

rαi
= −e−rαi x i

0+δi
0

rαi
,

for any admissible strategy (ct , θt )t≥0, where δi
0 is defined in (1.19), and therefore the

strategy in (A.17) is optimal for any 1 ≤ i ≤ n.
(ii) For any 1 ≤ i ≤ n, the optimal strategy (A.17) satisfies the transversality condition8,

lim
T →∞ E

[∫ T

t
N i

u c̃i
udu

∣∣∣F i
t

]
= N i

t X̃ i
t . (A.19)

Proof Recall that for any x ∈ R and for any y > 0,

Ui (x) ≤ Ũ i (y) + xy,

where Ui (·) = −e−αi ·/αi is the utility function of the i-th agent and Ũ i (·) is its Fenchel
conjugate Ũ i (y) = y

αi
(log y − 1) (cf. [7, Tables 4.1 and 4.2]). For any 0 ≤ s ≤ t and y > 0,

the properties of the conjugate Ũ yield

E

[∫ T

s
e−βi uU (cu) | F i

s

]
≤ E

[∫ T

s
e−βi uŨ (yeβi uN i

u)du | F i
s

]

+yE

[∫ T

s
N i

ucudu | F i
s

]
(A.20)

and

E

[∫ t

s
e−βi uŨ (yeβi uN i

u)du
∣∣∣F i

s

]
= y

αi

{
(log y − 1) E

[∫ t

s
N i

udu
∣∣∣F i

s

]
+

+ βi E

[∫ t

s
uN i

udu
∣∣∣F i

s

]

+ E

[∫ t

s
N i

u logN i
udu

∣∣∣F i
s

] }
.

Set E i
t := ertN i

t . By the conditional version of Fubini’s Theorem [3, page 13, Theorem
1.1.8],

E

[∫ t

s
e−βi uŨ (yeβi uN i

u)du
∣∣∣F i

s

]

= y

αi

{
(log y − 1) E i

s

∫ t

s
e−rudu + +(βi − r)E i

s

∫ t

s
ue−rudu

+
∫ t

s
e−ru E

[
E i

u log E i
u

∣∣∣F i
s

]
du

}
.

Setting s = 0 and letting t → ∞, it follows that9

lim
t→∞ E

[∫ t

0
e−βi uŨ (yeβi uN i

u)du
∣∣∣F i

0

]

= y

rαi
(log(y) − 1) + y

r2αi
(βi − r) + y

αi

|ai D|2 + |ai |2 + |ai⊥|2

2r2
. (A.21)

8 Note that this is an equality with an actual limit, whereas for general admissible strategies only the inequality
with a lim sup holds, see (A.15).
9 Recall that E[ZeZ ] = (μ + σ 2)eμ+σ2/2 for a Gaussian random variable Z ∼ N (μ, σ 2).
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The previous estimated employ limits for T → ∞. Instead, the last term in (A.20) does
not necessarily have a limit as T → ∞, but the latter equation yields an estimate the utility
of any admissible strategy, as follows. Using (A.15),

E

[∫ ∞

0
e−βi uU (cu) | F i

0

]
≤ E

[∫ ∞

0
e−βi uŨ (yeβi uN i

u)du | F i
0

]

+ lim sup
T →∞

yE

[∫ T

0
N i

ucudu | F i
0

]

≤ E

[∫ ∞

0
e−βi uŨ (yeβi uN i

u)du | F i
0

]
+ xi

0y.

Thus, setting y = yi� = e−rαi x i
0+δi

0 and using (A.21),

lim
t→∞ E

[∫ t

0
e−βi uŨ (yi�eβi uN i

u)du
∣∣∣F i

s

]
+ xi

0yi�

= xi
0yi� + y

rαi
(log(y) − 1) + y

r2αi
(βi − r) + y

αi

|ai D|2 + |ai |2 + |ai⊥|2

2r2

= e−rαi x i
0+δi

0

−rαi
= − yi�

rαi
.

Thus, the duality bound (A.20) implies that the utility of any strategy is bounded above

by − yi�

rαi
. As this utility is attained by the strategy in (A.17), the latter is indeed optimal, and

part (i) follows.
Proof of part (ii): For any admissible strategy, the process in (A.13) is a martingale. As

the optimal strategy (A.17) is admissible, this martingale property implies

E

[∫ T

t
N i

s ci�
s ids | F i

t

]
= N i

t X i�
t − E[N i

T Xi�
T | F i

t ]. (A.22)

Due to (A.22), the claim (A.19) is equivalent to

lim
T →∞E[N i

T Xi�
T | F i

t ] = 0. (A.23)

Using the vector-valued standard Brownian motion B, Proposition A.12 (that is, the wealth
identity (A.18)) implies that, for some c, d ∈ R and κ ∈ R

n+1,

Xi�
T = c + dT + κ� BT .

Moreover, for some λ ∈ R
n+1, (N i

t )t≥0 equals

N i
T = e−rT eλBT − 1

2 ‖λ‖T .

(For simplicity, we suppress the dependence of all these constants on the i-th agent.) The
martingale property of the stochastic exponential implies that

lim
T →∞E[(c + dT )N i

T | F i
t ] = lim

T →∞ e−r(T −t)(c + dT )N i
t = 0. (A.24)
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Furthermore, by Itô’s formula applied to BT eλ� BT − 1
2 ‖λ‖T and the additivity of the martingale

property,

E[κ� BT e−rT eλ� BT − 1
2 ‖λ‖T | F i

t ]

= e−rT
(

κ� Bt e
λ� Bt − 1

2 ‖λ‖t + λ�κE[
∫ T

t
eλ� Bu− 1

2 ‖λ‖udu | F i
t ]
)

= e−rT
(
κ� Bt + κ�λ(T − t)

)
,

whence

lim
T →∞ κ�

E[BT e−rT eλ� BT − 1
2 ‖λ‖T | F i

t ] = 0.

In combination with the limit (A.24), the claim (A.23) follows, and so does (A.19). ��
The results established in Sect. 1 provide a complete proof of themain theorem, as follows:

Proof of Theorem 1.5 Proof of (i) – (ii): Let the price of the risky asset P = (Pt )t≥0 be as
in (i). Then each of the agents’ consumption-investment policies stated in (ii) is admissible
(Proposition A.12 (i)) and optimal (Proposition A.18 (ii) and Theorem A.13 (i)). As the
market clearing condition (1.13) is satisfied, the existence of an equilibrium in the sense of
Definition 1.4 follows.

Proof of (iii): The value function is obtained similarly to the utility in the duality Theorem
A.13 (i), using the arguments in its proof following (A.20). Part (iv) holds by applying the
filtering Lemma A.7 (iii) with the values of the weights wi = σ−2

i for 1 ≤ i ≤ n, (cf. the
simplified equation (A.5)). ��
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