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Abstract

Maternally Inherited Diabetes and Deafness (MIDD) is a rare form of diabetes due to defects in mitochondrial DNA (mtDNA).
3243 A.G is the mutation most frequently associated with this condition, but other mtDNA variants have been linked with
a diabetic phenotype suggestive of MIDD. From 1989 to 2009, we clinically diagnosed mitochondrial diabetes in 11 diabetic
children. Diagnosis was based on the presence of one or more of the following criteria: 1) maculopathy; 2) hearing
impairment; 3) maternal heritability of diabetes/impaired fasting glucose and/or hearing impairment and/or maculopathy in
three consecutive generations (or in two generations if 2 or 3 members of a family were affected). We sequenced the
mtDNA in the 11 probands, in their mothers and in 80 controls. We identified 33 diabetes-suspected mutations, 1/33 was
3243A.G. Most patients (91%) and their mothers had mutations in complex I and/or IV of the respiratory chain. We
measured the activity of these two enzymes and found that they were less active in mutated patients and their mothers
than in the healthy control pool. The prevalence of hearing loss (36% vs 75–98%) and macular dystrophy (54% vs 86%) was
lower in our mitochondrial diabetic adolescents than reported in adults. Moreover, we found a hitherto unknown
association between mitochondrial diabetes and celiac disease. In conclusion, mitochondrial diabetes should be considered
a complex syndrome with several phenotypic variants. Moreover, deafness is not an essential component of the disease in
children. The whole mtDNA should be screened because the 3243A.G variant is not as frequent in children as in adults. In
fact, 91% of our patients were mutated in the complex I and/or IV genes. The enzymatic assay may be a useful tool with
which to confirm the pathogenic significance of detected variants.
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Introduction

Maternally Inherited Diabetes and Deafness (MIDD) is a rare

form of diabetes that accounts for up to 1% of all diabetes cases in

Europeans and is due to defects in mitochondrial DNA (mtDNA)

[1,2]. In addition to maternal transmission of diabetes, the clinical

features of MIDD are mainly neurosensorial deafness, followed by

other mitochondrial disorders, myopathies, and macular dystro-

phy [1]. MIDD is often misdiagnosed as type 1, type 2 or

monogenic diabetes [1,3]. The absence of autoimmunity and

obesity and the presence of maternal heritability, respectively,

distinguish the latter three forms of diabetes from MIDD [1,3].

Besides the frequently reported mtDNA 3243A.G mutation,

whose functional significance has been evaluated [4], several other

mtDNA variants have been associated with a diabetic phenotype

suggestive of MIDD [5,6]. However, few studies have explored the

mitochondrial efficiency associated with detected mtDNA variants

[7,8]. Consequently, the pathogenic significance of many newly

identified variants remains to be established.

The aim of this study was to look for DNA variants in the

mitochondrial genome of a pediatric cohort with suspected

mitochondrial diabetes from Southern Italy. Patients were selected

for investigation based on stringent diagnostic criteria. The

pathogenic role of the detected mutations was investigated using

an informatics approach. We also spectrophotometrically evalu-

ated the enzyme activity of the respiratory chain complexes I and

IV mutated in the mtDNA of most of our patients and their

mothers.

Results

The clinical and metabolic characteristics of the 11 patients with

suspected mitochondrial diabetes are listed in Table 1 and their

family pedigrees are shown in Figure 1. Median age at diabetes

onset was 11 years (age range 5–14 years). Maternal inheritance of

diabetes or IFG was documented in all but 1 patient: patient 6

who was affected by hypoacusia and had a maternal history of

hypoacusia. All 11 patients needed insulin therapy and most were
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of normal weight (median z score 1.4). Macular dystrophy was the

most frequent diabetes-associated disease (54%), but no patient

had diabetic retinopathy, whereas neurosensorial hearing impair-

ment was observed only in one-third of patients. Seven patients

(64%) showed alterations of the muscle enzymes CK and/or

LDH, 4 patients (36%) were affected by thyroiditis, and 9 patients

had a maternal history of deafness and/or macular dystrophy

and/or thyroiditis. Particularly, in addition to the clinical

characteristics described in Fig. 1, we detected: high CK levels

in patient 2; high CK, LDH and ALP levels in patients 41, 42, 43;

high LDH levels in patient 6; high ALP levels in patient 9; muscle

pain in patient 14; and high CK levels and lactic acidosis in patient

15. Interestingly, HLA gene typing in the 11 patients revealed

HLA-DQ2 and/or DQ8 molecules, and 3 were also affected by

celiac disease (27%).

We sequenced the entire mitochondrial genome of the 11

patients, their mothers and 80 controls. The results were

compared to the Revised Cambridge Reference Sequence

(rCRS:NC_012920) [14]. We identified a total of 416 variants,

among which 325 were detected only in controls, 58 were present

in both controls and cases (Table S3), and 33 suspected mutations

(4/33 novel) (Table 2) were present only in cases and their

mothers. Among the suspected mutations detected only in

patients, 22/33 were in the coding region (50% synonymous

and 50% caused an amino acid change). Table 2 shows the main

features (i.e.,the nucleotide variation, the relative amino acid

substitution and its conservation across species, together with the

bioinformatic-predicted role of the changed amino acid in the

structure and/or function of the relative protein) of the variants

detected in each patient. Each patient had from one to seven

suspected mtDNA mutations. Table 2 also shows previously

reported variants.

The 3243A.G variant in tRNA leucine, which is the mutation

most frequently associated with MIDD, was present in only one of

our patients (patient 5) at heteroplasmic level. The level of

heteroplasmy was higher in the DNA of patient 5 than in his

mother’s DNA, in both swab and blood samples (Figure S1). qRT-

PCR confirmed a higher level of heteroplasmy in the patient than in

his mother (respectively 34% and 3%). The distribution (percentage)

of suspected mutations in the non-coding and in the coding regions of

mtDNA is reported in Figure 2. Most suspected mutations (67%)

were in the coding region and those with the highest frequencies

occurred in complex I (46%) (ND1: 4024A.G, 4086C.T;

ND2:5093T.C, 5300C.T; ND3: 10373G.A; ND4: 11253T.C,

11447G.A, 11928A.G; ND4L:10685G.A; ND5:12346C.T,

13135G.A, 14002A.G; ND6:14365C.T, 14502T.C, 14582A.G),

in complex-IV (15%) (CO2:7762G.A; CO3:9803A.G, 9935T.C,

9947G.A, 9548G.A) of the respiratory chain enzymes followed

by complex III (3%) (CYB:15530T.C) and complex V (3%)

(ATP8:8562C.G). Within the non-coding region, the highest

suspected mutation frequency was in the D-Loop (18%) (HVI:

16048G.A, 16137A.G, 16354C.T, 16526G.A; HVII:293T.C,

385A.G), followed by RNRs (951G.A, 960delC) and tRNAs

(TV:1664G.A; TL1:3243A.G) both 6%, and by the NC7 region

(3%) (8289_8290insCCCCCTCTA).

Because almost all patients (10/11 = 91%) had suspected

mutations in complex I and/or in complex IV, we measured the

enzymatic activities of these two complexes to investigate if the

variants identified were associated with impaired mitochondrial

function in patients and in their mothers when samples were

available (i.e., patients 2, 6, 9, 10 and 15). Patient 5 carried

mutation 3243A.G and was not further investigated because the

functional significance of this mutation has been well established

(4). Table 3 shows the enzyme activities recorded in patients and

their mothers after normalization first vs citrate synthase and then

vs the healthy control pool. Residual complex I and/or complex

IV enzyme activities were lower (below the detected biological

variability of 40%) than in the control pool (set at 100%) in 4/5

patients and borderline in 1/5 patients. The enzyme activities in

mothers were similar to those measured in their offspring except in

mother 2 (a subject bearing 2 variants in complex IV, one of which

at heteroplasmic level), in whom the residual enzyme activity was

higher than in her son.

Discussion

Potentially pathogenetic mtDNA mutations have been identi-

fied in more than 5% of patients affected by type 2 diabetes [6],

which suggests that the true prevalence of mitochondrial diabetes

could be higher than usually reported in Europeans subjects 1%

[1]. In our geographic area, the global incidence of diabetes, in the

population under 15 years of age, is 6.4/100,000/year [19]. In our

pediatric diabetology unit we diagnosed mitochondrial diabetes in

11/1600 children with a diabetic phenotype observed from 1989

to 2009, which corresponds to a prevalence of 0.6% of the

diabetes. The study population included a ‘‘historical’’ case of

1972.

Most MDD studies [1,20] started with the search for mutation

3243A.G in patients affected by both diabetes and deafness.

Identification of the mutation prompted the investigation of the

other common features (i.e., maculopathy and maternal heritabil-

ity). Our approach was first to test all the diabetic patients of our

Pediatric Diabetology Unit for maculopathy. Second, we carried

Table 1. Clinical and metabolic characteristics of pediatric
patients from Southern Italy with suspected mitochondrial
diabetes (n = 11)a.

Age at onset (years) 11.0 (5.0–14.0)

Ophthalmic diseases

-Macular dystrophy 54%

-Cataract 18%

Hearing impairment 36%

Normal weight 82%

BMI (z score)b 1.4 (20.9–2.4)

Insulin therapy 100%

Fasting Plasma glucose (mmol/L) 13.0 (8.0–21.2)

HbA1c at diagnosis (%) 9.5 (6.3–14.0)

HbA1c at diagnosis (mmol/mol) 80.33 (45.3–129.5)

Fasting C peptide at diagnosis (nmol/l) 0.06 (0.033–0.495)

CK (.174 U/L) and/or LDH (.190 U/L) 64%

Presence of HLA DQ2 and/or DQ8 alleles 100%

Thyroiditis 36%

Presence of celiac disease 27%

Maternalc history of:

-Deafness 45%

-Maculopathy 9%

-Thyroiditis 45%

aContinuous variables are reported as median (2.5th–97.5th percentiles) and
categorical variables as percentages;
bBMI z score = Body mass index z score;
cMother and/or maternal relatives.
doi:10.1371/journal.pone.0034956.t001

Mitochondrial Diabetes in Children

PLoS ONE | www.plosone.org 2 April 2012 | Volume 7 | Issue 4 | e34956



out an audiometric examination of all patients positive for

maculopathy or, if negative, in patients presenting maternal

heritability of diabetes or IFG and/or hearing impairment and/or

maculopathy in three consecutive generations (or in two

generations if 2–3 members of the family were affected). This

approach resulted in a lower incidence of deafness (36%) than

previously reported, namely from 75% to 98% in 3243A.G-

carriers with diabetes, with or without a maternal history of

diabetes [1,20], and 58% in type 2 diabetic patients bearing

mtDNA variations [6]. The low incidence of deafness in our

patients suggests that the designation of deafness as the main

diagnostic criterion for mitochondrial diabetes may result in

underestimation of the real prevalence of the disease. This is why,

in our patients, we call the disorder ‘‘mitochondrial diabetes’’

rather than MIDD.

Macular dystrophy was present in 54% of our patients, which is

also lower than the 86% reported in carriers of mutation

3243A.G [1,20]. All our patients had DQ2 and/or DQ8

molecules that predispose to type 1 diabetes and to celiac disease.

Intriguingly, celiac disease was detected in 27% (3/11 patients) of

our suspected mitochondrial diabetic patients versus 1% of the

general population [21] and versus 3%–6% of patients with type 1

diabetes [22]. As far as we are aware, this is the first report of an

association between celiac disease and mitochondrial diabetes.

Further investigations of mitochondrial function in celiac patients

are required to verify the involvement of mtDNA variants in the

pathogenesis or progression of the celiac disease. Notably, one-

third of our mitochondrial diabetic patients had secondary

thyroiditis, which has been previously reported in 3243A.G

carriers in the presence of diabetes or other mitochondrial diseases

[1,23].

To our knowledge, there are no previous studies of mitochon-

drial diabetes in pediatric cohorts. In studies conducted in adults,

young adults, in family case reports and in the MIDD 1 form,

diabetes was usually diagnosed in patients aged between 16 and 43

years [1,6,24,25]. The age at MIDD onset is also related to the

heteroplasmy level of the mutations. In fact, in 3243A.G carriers

with heteroplasmy levels of 34.5%, 14.9%, 14.6% and 5.9%, the

age of MIDD onset was 15, 41, 44 and 65 years, respectively [26].

In agreement with these data, the age of diabetes onset was 14

years in our mitochondrial diabetic patient (patient 5) who had a

heteroplasmy 3243A.G level of 34%. The heteroplasmic level of

the mutation was higher in patient 5 than in his mother in both

buccal cells and blood leucocytes, which is in agreement with

previous reports [27]. This finding supports the concept that the

heteroplasmy load in blood of 3243A.G declines with age [1,28].

As mentioned above, the genetic analysis of MIDD usually

focuses on the search for the 3243A.G mutation in selected

diabetic patients affected by hearing loss; the entire mitochondrial

genome is rarely screened [29,30]. Sequence analysis of the whole

mtDNA in our suspected mitochondrial diabetic pediatric patients

and controls resulted in a high rate of mtDNA polymorphisms (a

total of 383/416 variants, present also in controls). Consequently,

it is important to ascertain the pathogenic significance of newly

identified variants. Among the 33 suspected mutations, 11/22

(50%) of those occurring in the coding region caused an amino

Figure 1. Familial (F) pedigrees of the suspected mitochondrial diabetes patients enrolled in the study. The inclusion criteria were:
Diabetes+at least one of the following: A) maternal heritability of diabetes or Impaired Fasting Glucose (IFG) and/or hearing impairment and/or
maculopathy in three consecutive generations (or in two if there were 2–3 affected subjects/family); B) neurosensorial hearing impairment; and C)
maculopathy. In each square it’s reported the presence of the criteria (A, B and/or C) in the probands.
doi:10.1371/journal.pone.0034956.g001
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acid change. Using informatics we predicted a benign change by

SIFT and/or Polyphen programs for 10/11 variants; however,

contrasting results were generated for 4/11 variants. Only one of

the four novel suspected mutations (8562C.G) detected in our

population caused an amino acid change (P66R: a not conserved

amino acid) in the ATP8 gene, the others being synonymous (2

variants) or present in the control region (1 variant).

Most of the suspected mutations detected in our cohort have

been described previously, often in a single patient or family, in

association with diabetes, with other mitochondriopathies (mito-

chondrial encephalomyopathy, lactic acidosis and stroke-like

episodes: MELAS, Leber’s hereditary optic neuropathy: LHON),

with hearing loss [31–37], with cancer and with Parkinson disease

or in population studies (MITOMAP: A Human Mitochondrial

Genome Database:http://www.mitomap.org). However, the true

clinical significance of these suspected mutations, apart from

3243A.G [4], has been scarcely investigated [7,8]. Given the

highly polymorphic patterns detected in our patients, each usually

bearing more than one variant (range: 1–7), and each variant

being present once in the cohort, we measured the enzyme

Table 2. Characteristics of suspected mtDNA mutations detected by sequence analysis in mitochondrial diabetic patients and
their bioinformatic analysis.

Patient Gene Variant position Amino acid change
ClustalW
Conservationa SIFT Scoreb Poliphen predictionc Referencesd

2 NC7 8289–8290 insCCCCCTCTA Novel Variant

CO3 9803A.G syn Novel Variant

CO3 9947G.Ae syn 31

41, 42, 43 ND3 10373G.A syn -

ND4 11447G.A V230M C T/0.11 Benign -

5 TL1 3243A.Ge 32

6 HVII 293T.C -

ND5 12346C.T H4Y N T/0.17 Benign -

CYB 15530 T.C syn -

7 HVII 385A.G -

TV 1664G.A -

ND2 5093T.C syn -

ND2 5300C.T syn Novel Variant

ATP8 8562C.G P66R N T/0.44 Possibly Damaging Novel Variant

ND4 11928A.G N390S H A/0.00 Benign -

ND1 4086C.T syn 33

9 ND5 13135G.A A267T N T/0.50 Benign 34

10 RNR1 960delC 35

ND1 4024A.G T240A N T/0.12 Benign -

ND6 14365C.T V103M C A/0.01 Benign -

ND6 14582A.G V31A N T/1 Benign -

HVI 16048G.A -

14 CO3 9935T.C syn -

CO3 9548G.A syn 36

ND4L 10685G.A syn -

HVI 16137A.G -

HVI 16526G.A -

15 RNR1 951G.A -

CO2 7762G.A syn -

ND4 11253 T.Ce I165T C A/0.01 Possibly Damaging 37

ND5 14002A.G T556A N T/0.42 Benign -

ND6 14502T.C I58V C T/0.36 Benign -

HVI 16354C.T -

aAmino acid conservation evaluated with the ClustalW program, C: conserved/semi-conserved, N: not conserved, H: highly conserved.
bScore: T (tolerated: Score .0.05): The substitution is predicted to be functionally neutral, A (affected: score ,0.05): The substitution is predicted to affect protein
function.
cEvaluated with the Poliphen program (see Materials and Method for details). Benign: changes most likely lack a phenotypic effect; Possibly damaging: reflects a
likelihood of affecting protein function or structure.
dWhen there is no reference, the variant was reported in MITOMAP, which is a human mitochondrial genome database http://www.mitomap.org.
eHeteroplasmic variants.
doi:10.1371/journal.pone.0034956.t002
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activities of complexes I and IV, where most of the variants

occurred. The residual enzyme activity of the relative complex was

lower in mitochondrial diabetic patients (5 patients) and in their

mothers (complex I 12–65% and complex IV 46–76%) than in the

healthy control pool set at 100%, although there was no

correlation between the diabetic phenotype and the level of the

residual enzyme activity in our patients. Intriguingly, patient 6 was

affected by diabetes and deafness, her grandmother was affected

by deafness and her father by diabetes. Although we detected some

potentially pathogenic mtDNA variants and a reduced enzyme

activity of complex I in both patient 6 and her mother, we cannot

exclude that other genetic factors could have contributed to the

diabetic phenotype of this patient. In fact, the phenotype of a

pathogenic mtDNA mutation, or the severity of an mtDNA

mutation that may not be pathological in some cases, could be

influenced by the mitochondrial DNA haplogroup [38]. In

addition, the genetic instability of mtDNA heteroplasmic muta-

tions in the patient’s somatic tissues [39], or the nuclear

background, by nuclear modifiers, may also play a role in

determining mtDNA mutation pathogenicity [40].

In conclusion, mitochondrial diabetes should be considered a

complex syndrome with several phenotypic variants. Deafness is

not an essential component of the disease in children. Investiga-

tions of patients should include the study of the entire mtDNA

because the 3243A.G variant is not as frequent in children as in

adults. In fact, 91% of our patients were mutated in the complex I

and/or IV genes. The enzymatic assay may be a useful tool with

which to measure the mitochondrion dysfunction associated with

detected mtDNA variants.

Materials and Methods

Patients and controls
Sixteen patients (including 3 brothers), with suspected mito-

chondrial diabetes were enrolled from among the diabetic

population attending the Department of Pediatrics of the Second

University of Naples (Italy) (15/16 from 1989 to 2009 and 1/16, a

historical case in 1972). Controls (10 affected by type 1 diabetes

and 70 healthy controls) were recruited at DASMELAB/

CEINGE–Advanced Biotechnology/University of Naples Feder-

ico II. All patients (54% males), their mothers, and controls had

lived in Southern Italy for at least 2–3 generations. All the diabetic

children were screened for maculopathy by ophtalmoscopic

examination. Inclusion criteria for suspected mitochondrial

diabetes, in addition to the presence of diabetes defined according

to the American Diabetes Association (ADA) [9], were: 1)

maternal heritability of diabetes or impaired fasting glucose

(IFG) and/or hearing impairment and/or maculopathy in three

consecutive generations (or in two generations if 2 or 3 members of

the family were affected); 2) neurosensorial hearing impairment;

and 3) maculopathy. At least one or more of these criteria were

required for enrollment in the study (Figure 1). Audiometric

examination was performed in all patients with maculopathy, and

in patients without maculopathy if they fulfilled one of the above-

indicated clinical criteria. A cut-off point of 250 Hz with a slope of

24 dB/oct was considered diagnostic of hearing impairment [10].

The ophthalmoscopic examinations were performed according to

standardized procedures [11,12]. Age at disease onset, need of

insulin therapy, levels of fasting C peptide, and type 1 diabetes

autoantibodies were also recorded. All pedigrees were verified

from the patients’ records by expert pediatricians and in

cooperation with the family doctor. Patients with suspected

mitochondrial diabetes were also typed for Human Leukocyte

Antigen (HLA) -DRB1(*03/*04/*07/*11), DQA1 (*02/*03/*05),

and DQB1(*02–*06) alleles (Histotype Special Medium Resolution

and Histotype DQB Low SSP Kits- BAG Healthcare) to identify

HLA alleles predisposing to type 1 diabetes and/or to other

autoimmune diseases. To determine whether our patients were

affected by the autoimmune diseases most frequently associated

with type 1 diabetes (thyroiditis and celiac disease), we carried out

the following immunofluorometric or immunoenzymatic assays:

free triiodothyronine (FT3), free thyroxine (FT4), thyroid-stimu-

lating hormone (TSH), thyroglobulin (TG), anti-thyroglobulin

(Anti-TG), anti-peroxidase (Anti-TPO) antibodies and IgA-IgG

anti-gliadin antibodies (AGA) and IgA transglutaminase (TGase)

antibodies. The presence of celiac disease in serology-positive

Figure 2. Percentage distribution in mitochondrial genome of
suspected mutations detected in pediatric mitochondrial
diabetic patients. Most diabetic associated variants (67%), detected
by sequencing analysis, occurred in the coding region. The highest
variant frequencies were observed in complex I (46%) and in complex IV
(15%). In the non-coding region, the highest variant frequency was in
the D-Loop (18%).
doi:10.1371/journal.pone.0034956.g002

Table 3. Enzyme activities of the respiratory chain complexes I and IV evaluated in lymphocytes from mitochondrial diabetic
patients (pt) and their mothers (m) bearing mtDNA variants in these complexes.

Sample ID Poola pt2 m2 pt6 m6 pt9 m9 pt10 m10 pt15 m15

Mutated Complex IV IV I I I I I I I,IV I,IV

Complex I residual activity %b(nmol NADH
oxidized min21 mU21 citrate synthase)

100 90 ND 39 12 64 65 32 33 52 20

Complex IV residual activity %b (nmol Cytc
oxidized min21mU 1citrate synthase)

100 51 76 ND ND ND ND 99 ND 46 56

aPool is relative to 12 healthy control subjects.
bResidual activity (%) was obtained by normalization of the enzyme activity firstly vs citrate synthase and then vs the healthy cont rol pool. ND: Not determined.
doi:10.1371/journal.pone.0034956.t003
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participants was confirmed by total or subtotal villous atrophy at

biopsy examination. We also screened our patients for myopathy

(muscle enzymes alterations) by measuring creatine kinase

(CK).174 U/L and/or lactate dehydrogenase (LDH).190 U/

L) levels. A detailed family history, and anthropometric and

clinical data were collected on a standard case-record form.

The presence of hypertension, defined as blood pressure in

excess of the 90u percentile in children [13] was also explored. A

fasted blood sample was collected from all patients at the first

clinical examination for routine biochemical investigations:

glucose, C-peptide, glycated hemoglobin (HbA1C), islet cell

antibody (ICA), Anti-glutamate decarboxylase (GAD), protein

tyrosine phosphatase (IA2), insulin auto antibody (IAA), CK,

LDH, creatinine, which were determined with routine procedures.

Based on biochemical findings, five of 16 suspected mitochondrial

diabetic patients were diagnosed as type 1 diabetes (high positivity

for all the tested diabetes type 1 autoimmune markers), and were

excluded from the study. Although autoimmune markers do not

rule out a mitochondrial form of diabetes, in this preliminary study

we preferred to avoid any factor that could interfere with the

pathogenetic mechanism of a supposed ‘‘mitochondrial form’’. A

peripheral blood+EDTA sample was also collected from patients,

their mothers and controls to obtain DNA samples for mtDNA

sequence analysis. The mtDNA analysis was also performed in

patients with suspected mitochondrial diabetes and their mothers

on buccal cells collected by swab. Written informed consent was

obtained from all recruited subjects, in the case of children,

consent was obtained from their parents, and the study was

approved by the Ethics Committee of the Faculty of Medicine of

the Second University of Naples (Italy). The study was performed

according to the Helsinki declaration.

DNA extraction and mtDNA sequencing
Genomic DNA was extracted with the Kit-Nucleon-BACC2

(Illustra DNA-Extraction Kit-BACC2-GE Healthcare, UK) and

stored at +4uC. The primers used to amplify by PCR the mtDNA

were chosen by the PRIMER 3 program (http://frodo.wi.mit.

edu/primer3/) and were selected to generate two overlapping

fragments encompassing the whole mitochondrial genome.

Primers are listed in Table S1. The mtDNA was amplified by

long PCR using GeneAmp PCR System 9700 (Applied-Biosys-

tems, Foster City, CA, USA). The long PCR mixture and

conditions are detailed in Methods S1. The PCR fragments were

examined by electrophoresis to assess yield and purity, then

amplicons were purified over affinity spin columns (Qiaquick-PCR

purification Kit, Qiagen Hilden, Germany). The whole mitochon-

drial genome was then sequenced with the BigDye Terminator

v3.1 cycle sequencing method on the ABI-Prism 3730 Genetic

Analyzer (Applied-Biosystems) by using 32 forward primers,

summarised in Table S2, and analyzed using the SeqScape

program (v2.5 Applied-Biosystems) to compare the mtDNA

sequences of patients and controls with the revised Cambridge

Reference Sequence (rCRS) [14].

Real-time quantitative PCR
We used the TaqMan system (7900HT Fast-Real-Time-system;

Applied-Biosystems) to evaluate by real-time quantitative PCR

(qRT-PCR) the level of heteroplasmic 3243A.G mutation

detected in one patient and his mother. Primers and Real-time

quantitative PCR conditions were detailed in Methods S2. To

quantify total and mutant mtDNA, standard curves were

constructed using plasmids with the wild-type (WT) and the

mutant mtDNA fragments respectively. The ratio between total

mtDNA and mutant mtDNA was calculated in each sample.

Bioinformatic analysis
We used the Sorting Intolerant from Tolerant (SIFT) (http://

sift.jcvi.org/), Polymorphism Phenotyping (PolyPhen) (http://

genetics.bwh.harvard.edu/pph) and ClustalW http://www.ebi.

ac.uk/Tools/clustalw2/index.html) programs to predict the path-

ogenicity of the detected missense suspected mutations. The

evaluation included amino acid conservation across species and

the role of the changed amino acid in the structure and/or in the

function of the relative protein.

Evaluation of the enzyme activities of complexes I and IV
of the respiratory chain

Lymphocytes from mitochondrial diabetic patients, their

mothers, and 12 healthy controls were first isolated from fresh

peripheral blood+EDTA (10 ml) and then separated on Ficoll

medium using Ficoll Paque plus reagent (GE Healthcare,

Waukesha, WI, USA) as previously described [15]. Briefly, the

blood was diluted by the addition of an equal volume of PBS

(Sigma-Aldrich Corp., St. Louis, MO, USA), then aliquots of

7 mL of this mixture were layered over 3 mL of Ficoll Paque and

centrifuged at 400 g, at 18uC for 30 min. The mononuclear cell

fraction was removed, diluted in PBS (1:10) and centrifuged. The

pellet was washed with 5 mL of PBS and lymphocytes were

counted with the automated Analyzer Coulter LH 750 (Beckman

Coulter Inc., Fullerton, CA, USA) and finally aliquots of 2.56106

lymphocytes were resuspended in an ice-cold buffer (SHE-PIM)

containing 250 mmol/l sucrose, 10 mmol/l HEPES pH 7.4 and

1 mmol/l EDTA (SHE) supplemented with a protease inhibitor

mixture (PIM) (Complete, EDTA-free, Roche Diagnostics, Main-

heim, Germany). These aliquots of lymphocytes were rapidly

frozen in liquid nitrogen and stored at 280uC.

Sample preparation for the enzyme assays. Cells were

permeabilized by four freeze/thawing cycles. The protein content

of the aliquots of lymphocytes was determined by the Bio-Rad

Protein Assay (Biorad Laboratories, GmbH, Munchen, Germany)

using BSA as standard.

NADH: Ubiquinone-oxidoreductase (Complex-I) Activity:

Complex-I activity was measured as previously described [16] by

monitoring the oxidation of NADH to NAD+ at 340 nm at 37uC,

using a Cary 1E Spectrophotometer (Varian), equipped with an

electronic temperature controller, and a molar extinction

coefficient of 6220 M21cm21. The baseline absorbance variation

was determined by adding an appropriate amount of permeabi-

lized lymphocytes (usually 2.56106–5.06106). Therefore, the

reaction started with the addition of 50 mmol/l Coenzyme-Q

(CoQ1) in the absence or in the presence of 5 mmol/l rotenone, a

specific complex I inhibitor, and was monitored for an additional

3–5 min. Under these conditions, the rate of NADH oxidation

measured in the absence of rotenone corresponded to the total

NADH-CoQ oxidoreductase activity, whereas that measured in its

presence reflected the rotenone-insensitive NADH-CoQ oxidore-

ductase activity (RINQ), which is not associated to complex I

activity. Therefore, the activity of complex I can be derived

subtracting the rate of RINQ from the total activity and is

expressed as nmol of NADH oxidized min21 mg21 of protein.

Cytochrome c oxidase (complex IV) activity. Complex IV

activity was determined by monitoring the oxidation of reduced

cytochrome-c (rCyt-c) at 550 nm (molar extinction coefficient

29500 M21 cm21). rCyt-c was prepared from commercially

available oxidised Cytochrome c (Sigma Aldrich) by reduction

with dithiothreitol (DTT) and quantification as indicated by the

manufacturer. The assay mixture, prepared in 10 mmol/l potassium

phosphate, pH 7.4, contained 1.5% n-dodecyl-b-D-maltoside,

which is required to maximize complex IV activity [17], and
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25 mmol/l rCyt-c. After reading the baseline activity, the reaction

was started by adding appropriate amounts of permeabilized

lymphocytes (usually 2.06104–3.06104 cells), and followed by

measuring the decrease of the absorbance at 550 nm for an

additional 2–3 min. Complex IV activity was expressed as nmol Cyt-

c oxidized min21 mg21 of protein. Both complex I and complex IV

activities were normalized to citrate synthase activity, which is an

index of mitochondrial mass, as previously reported [17], to correct

for any differential mitochondrial content due to mitochondrial

dysfunction [18]. Finally, the residual percent activities of complex I

and complex IV in both mitochondrial diabetic patients and their

mothers were obtained by comparing their activities with that

measured in a healthy control pool set at 100%. The biological

variability of enzyme activities in the samples used for the control

pool was 40%, in agreement with the previously reported value [16].

To check the quality of our assay, we also verified the enzyme

activity of two un-mutated complexes in two patients (patients 2 and

10) and in the father of a diabetic patient (data not shown). The

residual enzyme activities in these controls ranged from 87% to 99%.

Statistical analysis
The statistical analysis of biochemical and general data from

patients was carried out using PASW 18.0 software version (SPSS

Inc., Chicago, IL, USA). The Kolmogorov-Smirnov test was used to

evaluate the distribution of continuous variables (age at onset, BMI

Z score, fasting plasma glucose, glycated haemoglobin, fasting C

peptide at diagnosis) that were expressed as median (2.5th–97.5th

percentiles). The categorical variables were reported as percentage.

Supporting Information

Figure S1 Detection of 3243A.G mitochondrial muta-
tion by sequence analysis. Sequence analysis of swab and

blood mtDNA from patient 5 (pt5) and from her mother (m5)

showing the heteroplasmic 3243A.G mutation. Levels of

heteroplasmy were higher in mtDNA from pt5 than in mtDNA

from m5 in both swab and blood samples.

(PDF)

Methods S1 Mixture and conditions for Long PCR of
mtDNA.

(PDF)

Methods S2 Primers and Real-time quantitative PCR
conditions.

(PDF)

Table S1 Primers sequence for Long PCR of mtDNA.
Table shows the two primers pair used for the amplification of the

entire mtDNA.

(PDF)

Table S2 Primers sequence for mtDNA sequencing.
Table shows the primers used for the sequencing of the mtDNA

amplification products.

(PDF)

Table S3 MtDNA Variants detected in control subjects
or both in control subjects and patients. Table reports the

325 mtDNA variants detected only in our controls subjects and the

58 variants detected both in control subjects and patients. For each

variant is reported the mitochondrial region, the nucleotide and

amino acid change and the relative frequency.

(PDF)
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