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Effect of intrauterine growth retardation on liver and
long-term metabolic risk
S Cianfarani1,9, C Agostoni2,9, G Bedogni3,9, R Berni Canani4,9, P Brambilla5,9, V Nobili6,9 and A Pietrobelli7,8,9

Intrauterine growth retardation predisposes toward long-term morbidity from type 2 diabetes and cardiovascular disease.
To explain this association, the concept of programming was introduced to indicate a process whereby a stimulus or insult at a
critical period of development has lasting or lifelong consequences on key endocrine and metabolic pathways. Subtle changes in
cell composition of tissues, induced by suboptimal conditions in utero, can influence postnatal physiological functions. There is
increasing evidence, suggesting that liver may represent one of the candidate organs targeted by programming, undergoing
structural, functional and epigenetic changes following exposure to an unfavorable intrauterine environment. The aim of this
review is to provide insights into the molecular mechanisms underlying liver programming that contribute to increase the
cardiometabolic risk in subjects with intrauterine growth restriction.
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THE CONCEPT OF PROGRAMMING
Epidemiological studies have shown an association between
low-birth weight and the risk of developing the cluster of
disorders such as abdominal adiposity, hypertension, dyslipide-
mia, hyperinsulinemia, glucose intolerance, type 2 diabetes and
cardiovascular disease (CVD) that together lead to cardiometabolic
disease (CMD), that is, the association between CVD and type 2
diabetes.1,2 To explain this association the thrifty phenotype
hypothesis was proposed.3 According to this hypothesis, when the
fetus is exposed to malnutrition the organism diverts the limited
nutrient supply for favoring survival of vital organs such as the
brain at the expense of growth and other organs such as
pancreas.4 Fetal malnutrition or, in general, suboptimal uterine
environment may induce permanent anatomical and functional
changes in various tissues and organs, ultimately leading to
increased risk of metabolic and CVD. The process by which
early insults at critical stages of development lead to permanent
changes in tissue structure and function is known as intrauterine
programming.5 The critical time windows at which intrauterine
programming may occur are the periods characterized by a high
rate of tissue differentiation or proliferation.5 As a consequence of
programming adult disease may arise in utero as a result of
changes in the development of key endocrine and metabolic
pathways during suboptimal intrauterine conditions (‘fetal origins’
hypothesis).6

Programming represents an adaptive response of the organism
to the surrounding environment. A detrimental environment
induces a series of phenotype changes aimed at favoring survival

under the adverse circumstances. However, the following
exposure to a different (sometimes opposite) environment in
extrauterine life determines a mismatch eventually leading
to disease.7,8 In this context, prenatal malnutrition followed
by postnatal overnutrition represents a mismatch leading the
organism programmed in utero for surviving in conditions of
limited nutrient supply, to develop obesity, type 2 diabetes and
CVD, and ultimately premature death.9

THE MECHANISMS OF PROGRAMMING
The ability of the organism to change structure and function in
response to environmental signals is named ‘developmental
plasticity’.10,11 Such plasticity permits a range of phenotypes to
develop from a single genotype and is finalized to allow the
organism to match its environment.12 The evidence for invoking
developmental plasticity as a biological property, which may
influence the risk of disease, stems from numerous studies in
animals in which dietary or endocrine challenges at various times
from conception until weaning have been shown to induce
persistent changes in cardiovascular and metabolic function in the
offspring. The most commonly used animal models involve a
prenatal nutrient imbalance, which can be induced by a
global reduction in overall maternal food intake or by protein
restriction in an isocaloric diet, or glucocorticoid exposure. When
environmental cues act during windows of developmental
plasticity, which correspond to the early phases of life, they
may induce permanent changes as a result of biological ‘tradeoffs’.
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In animal models, intrauterine exposure to maternal
undernourishment affects the expression of multiple genes
involved in different metabolic pathways.13 These changes alter
the ability to coordinate fat and carbohydrate metabolism,
favoring a shift to a preferential use of fatty acids as an energy
source in order to adapt the organism to the in utero-reduced
nutrient supply. This finding is consistent with our observation
showing that the exposure of rats to uteroplacental insufficiency
induces adaptations in hypothalamic lipid sensing mechanisms,
ultimately affecting food intake and endogenous glucose
production in postnatal life.14 Another example of permanent
alteration induced by developmental plasticity is provided by
the observation that adult nephron numbers are reduced both in
humans and in animals exposed to suboptimal uterine
environment that develop hypertension in adult life.15–18 This
might represent the consequence of a biological trade-off to spare
energy in response to in utero nutrient deprivation, having
immediate but no long-term adaptive value.

A major mechanism underlying the adaptive response leading
to programming is the epigenetic modification of gene promoters
involved in the control of key metabolic pathways.19,20 The
epigenetic control of gene expression is based on modulation of
chromatin structure and accessibility to transcription factors.
This type of control is achieved by multiple mechanisms
such as methylation–demethylation of cytidine–guanosine (CpG)
sequences in the promoter regions, acetylation–deacetylation of
lysine residues of core histones in the nucleosome and the
presence of microRNA molecules that bind to complementary
sequences in the 30 end of mRNA and reduce the rate of protein
synthesis.21 Intrauterine cues determine the phenotype of the
offspring by inducing epigenetic changes finalized to match the
organism to its environment. However, if the emerging phenotype
is not appropriately matched with the later (postnatal)
environment, the risk of disease is increased.7 Multiple functions
such as growth, metabolism, appetite, body composition,
circulation, brain function, stress response, reproduction and
longevity may be affected by epigenetic programming whose
consequences result in life-long changes in gene expression.7

There is evidence showing that early exposure to suboptimal
environment induces epigenetic changes predisposing to type 2
diabetes (Table 1).22–25

In rats, the exposure to uteroplacental insufficiency induces
hepatic DNA hypomethylation and histone hyperacetylation
of histone H3 on lysine 9 (H3K9), lysine 14 (H3K14) and lysine
18 (H3K18) at birth26 These changes persist up to day 21 of
postnatal life, suggesting a permanent effect on hepatic gene
expression. The hyperacetylation on histone H3 in the liver of IUGR
rats occurs in association with decreased nuclear protein levels

of histone deacetylase 1 (HDAC1) and HDAC activity.22 These site-
specific changes in histone H3 acetylation alter the histone
association with the promoter regions of PPAR-gamma coactivator
(PGC-1) and carnitine–palmitoyl transferase I (CPTI), two genes that
are persistently altered in the rat with intrauterine growth
retardation. It is noteworthy that PGC-1 expression is increased,
whereas CPTI expression is reduced in IUGR rats predisposed
to develop diabetes.27,28 PGC-1 is a transcriptional coactivator
that mediates hepatic glucose production by controlling mRNA
levels of key gluconeogenic enzymes, such as glucose-6-
phosphatase, phosphoenolpyruvate carboxykinase and fructose-
1,6-bisphosphatase.29 CPTI is a rate-limiting transporter in
mitochondrial fatty acid b oxidation.30 Altered expression of
these two genes characterizes the liver of newborn rats exposed
to adverse intrauterine environment, and persists postnatally
(Table 1). Unfortunately, most of these and similar epigenetic
studies do not provide information on the effects of the observed
epigenetic changes on gene expression and lack of a prolonged
postnatal follow-up of the study animals.

Therefore, epigenetics provides a molecular link between
prenatal environment, genes, cellular processes and subsequent
susceptibility to disease. Any cellular component may be affected
by programming: membrane and nuclear hormone receptors,
signaling pathways, ion channels, nutrient transporters, protein
synthesis structures, enzymes, and mitochondria.5 An inhibitory
effect of intrauterine malnutrition on the establishment of stem
cell reservoir in the tissues has also been proposed to explain the
early exhaustion of organs such as pancreas later in life.31

EVIDENCE FOR PROGRAMMING
Intrauterine programming of postnatal physiological functions has
been demonstrated experimentally in several species using a
range of techniques to compromise the intrauterine environment
and induce fetal growth retardation, such as maternal stress,
hypoxia, glucocorticoid administration, dietary manipulation or
utero–placental insufficiency. Two previous papers highlighted the
major experimental findings in different species.32,33

In humans, evidence that embryo–fetal exposure to unfavorable
uterine environment may predispose to disease in adulthood
stems from the finding that individuals who were prenatally
exposed to famine during the Dutch Hunger Winter in 1944–1945
showed a higher risk of developing cardiovascular and metabolic
diseases in adulthood.34 Interestingly, the subjects exposed to
famine periconceptionally showed, 60 years later, decreased
methylation of IGF-II, whereas no change in the degree of IGF-II
methylation was observed in those exposed to famine late in
gestation.35 The reduced methylation of IGF-II may represent the

Table 1. The table lists the different genes whose function is linked to the development of type 2 diabetes

Model Tissue Gene Gene function Epigenetic change

IUGR rats22 Liver PPAR-g
coactivator

Transcriptional coactivator of key gluconeogenic
enzymes

H3K9 hyperacetylation affecting association with
gene promoter

IUGR rats22 Liver CPT-I Rate-limiting transporter in mitochondrial fatty
acid b-oxidation

H3K9 hyperacetylation affecting association with
gene promoter

IUGR rats23 Pancreatic islets PDX-1 Transcription factor critical for b-cell function and
development

H3 and H4 deacetylation, H3K4 demethylation,
H3K9 methylation

IUGR rats24 Skeletal muscle GLUT4 Glucose transporter H3K14 de-acetylation; H3K9 methylation
IUGR rats25 Pancreatic islets CGH-1 Role in endothelial dysfunction and b-cell

development
CpG hypermethylation in intergenic sequences

IUGR rats25 Pancreatic islets FGFR-1 Fibroblast growth factor receptor CpG hypomethylation in intergenic sequences
IUGR rats25 Pancreatic islets PCSK-5 Role in peptide processing and maturation CpG hypermethylation in transcription start site
Humans35 Blood IGF-II Fetal growth CpG hypomethylation

Abbreviations: CGH-1, GTP cyclohydrolase 1; CPT-I, carnitine–palmitoyl transferase I; FGFR-1, fibroblast growth factor receptor 1; IGF-II, insulin-like growth
factor-II; IUGR, intrauterine growth-retarded; PCSK-5, proprotein convertase subtilisin/ketin type 5; PDX-1, pancreatic and duodenal homeobox 1;
PPAR-g coactivator, peroxisome proliferator-activated receptor-gamma coactivator.
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consequence of intrauterine exposure to deficient methyl donors
supply, such as the amino acid methionine, although additional
contribution of other stress factors such as cold and emotional
stress cannot be ruled out. Consistent with the potential role of
methyl donors in determining IGF-II gene methylation status is
the observation that periconceptional folic acid use of the mother
is related to increased methylation of the IGF-II gene in the
offspring.36 The daughters of women exposed to the Dutch
Hunger Winter showed a decreased birth weight and an increased
risk of insulin resistance, and their daughters were born with a
lower birth weight,37,38 suggesting that programming can be
transmitted to the following generations.39

Prenatal stress or exposure to excess glucocorticoids represent
further programming events during intrauterine life, linking
low-birth weight with subsequent development of cardiovascular
risk factors and disease.40 Both hypertension and insulin resistance
have been associated with antenatal glucocorticoid
administration.41,42 The exposure to dexamethasone during
fetal life results in hypothalamic–pituitary–adrenal axis (HPAA)
programming in non-human primate offspring.43

In humans, low-birth weight is associated with increased
levels of plasma cortisol in both childhood and adulthood, and
hyperactivity of HPAA.44–47 HPAA activation may ultimately lead to
the metabolic rearrangement.48 Finally, maternal stress may affect
fetal growth and development leading to intrauterine growth
retardation as suggested by the finding of increased rate of
intrauterine growth restriction in the offspring of mothers
who were pregnant and present in zones near the World Trade
Center on 11 September 2001.49 Epigenetics may intervene in
the regulation of HPAA during fetal life as suggested by the
association between methylation of the glucocorticoid receptor
gene in human placentas and birth weight.50

Despite there is a very large body of experimental evidence in
animal models relating altered fetal development to later
metabolic risk, most of these results cannot be easily applied to
humans. For instance, although there has been considerable
progress in the definition of the specific insults leading to organ
programming in the rat, there remains a lack of detailed
information on the mechanisms affecting programming in
different species, such as the human, sheep and pig. Moreover,
unlike rodents, in humans, organ development occurs over longer
periods of time, thus allowing progressive fetal adaptations to
in utero insults.33

EVIDENCE FOR LIVER PROGRAMMING
Animal models
Virtually all organs can be programmed during fetal life thereafter
changing their morphology and function permanently. There is
abundant evidence that liver is a target for programming. The
exposure to uteroplacental insufficiency alters the expression of
genes encoding enzymes involved with hepatic energy produc-
tion,51 decreasing hepatic oxidative phosphorylation52 and
affecting liver glucose transport.53

The impaired suppression of endogenous hepatic glucose
production is an important component of the peripheral insulin
resistance associated with type 2 diabetes. Peroxisome prolif-
erator-activated receptor-g coactivator-1 (PGC-1) is a key regulator
of the expression of genes such as glucose-6-phosphatase
(G-6-Pase), phosphoenolpyruvate carboxykinase (PEPCK) and
fructose-1,6-bisphosphatase (FBPase) closely involved in hepatic
gluconeogenesis. Intrauterine growth restriction secondary to
uteroplacental insufficiency has been found to be associated with
increased expression of PGC-1 and consequent G-6-Pase, PEPCK
and FBPase gene expression in liver of growth restricted animals.28

Using the same experimental model, an impairment of hepatic
fatty acid metabolism was demonstrated.27

To investigate the effects of uteroplacental insufficiency on
metabolic pathways of different organs, we have used a rat model
of intrauterine growth retardation induced by maternal uterine
artery ligation during late pregnancy.14,54,55 More recently, the
same model of Sprague–Dawley newborn rats born to dams
undergone uterine artery ligation was used to study the effects of
uteroplacental insufficiency on liver metabolic pathways. To
quantify the degree of liver gene expression, we applied PCR
array on six sham and six IUGR livers from different litters. Each
array contained a panel of 96 primer sets for a thoroughly
researched set of 84 pathway-focused genes, plus 5 housekeeping
genes, 1 rat genomic DNA contamination, 3 reverse transcription
control and 3 positive PCR quality controls. Comparison of the
gene expression profile of the 84 genes constituting the array
showed that a total of 26 genes were differentially expressed in
the liver of ligated rats versus sham animal. In all, 15 were
upregulated and 11 were downregulated representing 30.9% and
13%, respectively, of the total number of analyzed genes. The
functional classification of these genes further revealed that most
of them are involved in signal transduction and regulation of
metabolic processes. The metabolism of glucose seems to be the
most affected by uteroplacental insufficiency as indicated by the
lower expression of Fbp1, Gpd, Pklr and the upregulation of Gck,
Hk2 and Slc2a1. Fbp1 encodes fructose-1,6-bisphosphatase, a key
enzyme in the regulation of gluconeogenesis.56 Gck encodes
glucokinase phosphorylates glucose as first step of glucose
utilization in hepatocytes.57 The role of glucokinase is to provide
glucose 6-phosphate for the synthesis of glycogen and fatty acids.
Gpd1, Hk2 and Pklr encode for glycolytic enzymes. Gpd1 encodes
glycerol-3-phosphate dehydrogenase 1 that has an important role
in the synthesis of triacylglycerol and in the transport of reducing
equivalents from the cytosol to mitochondria.58 Hk2 encodes
hexokinase 2 that phosphorylates glucose to produce glucose-
6-phosphate, the preliminary step of intracellular glucose
metabolism.59 Pklr encodes pyruvate kinase that catalyzes the
production of phosphoenolpyruvate from pyruvate and ATP.60

Slc2a1 (previously known as GLUT1) encodes glucose transporter
1.61 Acox1 encodes peroxisomal acyl-coenzyme A oxidase 1,
which is the first enzyme of the fatty acid b-oxidation pathway,
that catalyzes the desaturation of acyl-CoAs to 2-trans-enoyl-CoAs.
It donates electrons directly to molecular oxygen, thereby
producing hydrogen peroxide.62 The other genes whose
expression resulted affected by uterine ligation were those
encoding signal transduction molecules, such as Map2k1 and
Pik3cb, and transcription factors, such as Cebpb, Fos, Jun, Pparg
and Srebf1 (unpublished results, Table 2). Our study was limited
at birth and investigated gene expression only. Therefore, the
present data do not permit to know whether the alterations in
gene expression observed at birth are transient or permanent, or
whether they compensate each other or in the long term may
determine metabolic dysregulation, eventually leading to insulin
resistance and type 2 diabetes in adulthood, as previously
described in the same animal model.63

Maternal protein restriction represents an alternative method to
induce intrauterine programming in the offspring. Deprivation of
proteins during pregnancy in rat dams induces structural and
functional changes in liver of the offspring ultimately affecting
glucose production and insulin sensitivity.64–66 Gene expression
profile of liver obtained from young adult male rats exposed to
maternal undernourishment during pregnancy shows 249
differentially expressed genes whose expression pattern reflects
the propensity to develop adiposity and insulin resistance.13 These
animals show downregulation of expression of several key genes
affecting the entry of glucose into the cell and its metabolism via
the glycolytic and tricarboxylic acid pathways, and upregulation
of genes involved in the intracellular trafficking oxidation of fatty
acids.13 Maternal protein restriction induces multiorgan
transcriptional alterations in the offspring,67 determining a
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rearrangement of transcription factor-binding sites specifically in
the liver.67

Maternal hypoxia is another experimental condition that
induces intrauterine growth retardation. It has recently been
demonstrated that the exposure to hypoxia in utero inhibits the
expression of hepatic phospho-Akt-1, Akt-2 and PKCz in adult
offspring.68

It is noteworthy that maternal overfeeding may also program
liver metabolism.69 Mice offspring of dams with high fat intake
during pregnancy show insulin resistance, reduced glucose
transporter-2 expression and hepatic steatosis.70,71 Consistently,
in utero exposure to high fat diet programs the expression and
epigenetics of hepatic phosphoenolpyruvate carboxykinase
gene in offspring rats72 and affects hepatic energy sensing
pathways in a porcine model.73 Finally, in heterozygous leptin
receptor-deficient mice, the exposure to maternal gestational
diabetes mellitus induces hepatic insulin resistance in the adult
offspring.74,75

Humans
In humans, the impairment of growth during fetal and early
postnatal life has been associated with increased plasma
concentrations of fibrinogen and factor VII in adulthood.76 The
high plasma concentrations of the two hemostatic factors may
predispose to thrombosis and increase the risk of CVD. The finding
that middle aged men and women with small abdominal
circumference at birth, a proxy for liver size, show raised serum
concentrations of total and low density lipoprotein cholesterol
and apolipoprotein B suggests an impaired liver function in
subjects with intrauterine growth retardation, eventually leading
to altered cholesterol metabolism.77,78 To explain these findings, a
redistribution of blood flow in favor of vital organs, such as the
brain, heart and adrenal glands, at the expense of liver has been

hypothesized. The reduced blood supply to liver would limit the
organ growth, ultimately leading to altered organ function.79,80

There is evidence suggesting that among men with low-birth
weight, those with either a reduced or a large abdominal
circumference at birth are at higher risk of coronary heart
disease.78

Another mechanism that has been advocated to explain
the reduced liver function and metabolic risk in infants born small
for gestational age is the impaired passage of long-chain
polyunsaturated fatty acids (LCPUFAs) from mother to fetus
during pregnancy.80,81 There is evidence suggesting that high
dietary intake of LCPUFAs of the n-3 series is associated with
low prevalence of hypertension, coronary heart disease and
type 2 diabetes.82–85 LCPUFAs have protective effects
against inflammation, platelet aggregation, hypertension and
hyperlipidemia.86 A significant association between birth weight
and serum levels of eicosapentenoic acid and docosahexenoic
acid, which have been associated with cardiometabolic risk,87–89

has recently been described in a large European cohort of
adolescents (HELENA study).90 In this context, early nutrition has
been proposed to influence the metabolic risk in later life. Breast
milk is rich in LCPUFAs,91 and breast feeding has been associated
with lower risk of developing CMD in adult life.92–95 Preterm
infants randomly assigned human milk versus formula, for 4
weeks, showed marked benefits for lipid profile,94 blood
pressure93 and insulin sensitivity.96 Consistent with the key role
of PUFAs in liver metabolism is the effectiveness of
docosahexenoic acid supplementation in reducing fat content in
children with non-alcoholic fatty liver disease (NAFLD).97

A study aimed at investigating peripheral and hepatic insulin
action as well as intracellular partitioning of glucose fluxes in a
cohort of young adult men with low-birth weight showed an
enhanced suppression of hepatic glucose production in response
to high insulin concentrations.98 To explain this finding, an altered

Table 2. Overview of gene expression changes in the liver of IUGR newborn Sprague–Dawley rats obtained by maternal uterine artery ligation
on day 19 of gestation vs control animals

Gene name Gene symbol GenBank Fold Change P-value

Metabolism
Acyl-Coenzyme A oxidase 1, palmitoyl Acox1 NM_017340 � 2.36 0.0005
Fructose-1,6-biphosphatase 1 Fbp1 NM_012558 � 3.64 0.0000
Glucokinase Gck NM_012565 1.4 0.0394
Glycerol-3-phosphate dehydrogenase 1 (soluble) Gpd1 NM_022215 � 2.95 0.0002
Hexokinase 2 Hk2 NM_012735 2.88 0.0001
Pyruvate kinase Pklr NM_012624 � 1.55 0.0030
Solute carrier family 2 (facilitated glucose transporter), member 1 Slc2a1 NM_138827 5.32 0.0000

Signal transduction
CCAAT/enhancer-binding protein (C/EBP), beta Cebpb NM_024125 2.01 0.0001
Docking protein 2 Dok2 XM_224344 � 1.96 0.0142
Eukaryotic translation initiation factor 4E-binding protein 1 Eif4ebp1 NM_053857 1.42 0.0039
FBJ osteosarcoma oncogene Fos NM_022197 5.2 0.0063
Fibroblast growth factor receptor substrate 3 Frs3 NM_001017382 � 1.9 0.0377
GRB2-associated binding protein 1 Gab1 XM_341667 � 1.42 0.0465
Growth factor receptor bound protein 2 Grb2 NM_030846 1.73 0.0213
Harvey rat sarcoma virus oncogene Hras XM_001062236 1.6 0.0006
Jun oncogene Jun NM_021835 3.92 0.0046
Mitogen-activated protein kinase kinase 1 Map2k1 NM_031643 � 1.64 0.0067
Peroxisome proliferator-activated receptor gamma Pparg NM_013124 1.68 0.0120
Phosphoinositide-3-kinase, catalytic, beta polypeptide Pik3cb NM_053481 � 1.47 0.0140
Son of sevenless homolog 1 Sos1 XM_233820 1.39 0.0429
Sterol regulatory element binding transcription factor 1 Srebf1 XM_213329 � 2.91 0.0053
V-raf murine sarcoma viral oncogene homolog B1 Braf XM_231692 1.21 0.0495
V-raf-leukemia viral oncogene 1 Raf1 NM_012639 � 1.47 0.0070

Bcl2-like 1 Bcl2l1 NM_031535 2.8 0.0000
Insulin-like growth factor 1 receptor Igf1r NM_052807 1.73 0.0213
Insulin-like growth factor binding protein 1 Igfbp1 NM_013144 2.07 0.0084
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programming of the expression patterns of glucose transporters
was proposed.98

Finally, early feeding habits may have a crucial role in
programming the long-term metabolic risk. Breast feeding has
protective effects against the risk of obesity, hypertension,
hypercholesterolemia and type 2 diabetes.99–102 There is
preliminary evidence suggesting that breast feeding may also
affect the later expression of NAFLD, protecting the liver from the
development of non-alcoholic steatohepatitis and fibrosis.103

CLINICAL IMPLICATIONS
People who experienced intrauterine growth retardation are at
increased risk for the development of CMD, including both type 2
diabetes and CVD. Type 2 diabetes represents a worldwide
growing disease epidemic.104 The two major factors leading to
type 2 diabetes and associated NAFLD are chronic fuel surfeit
leading to obesity and genetic predisposition. However, many
overnourished and obese individuals do not develop diabetes,
thus showing the importance of other predisposing factors such
as genetic and epigenetic background. There is increasing
evidence indicating that part of diabetes susceptibility
is acquired early in life, through intrauterine programming via
epigenetic phenomena (Figure 1). Maternal and early childhood
health might, therefore, be crucial for the development of
effective prevention strategies. Maternal periconceptual and early
pregnancy nutritional status, as well as adequate nutrient supply
to fetus, seem to have a key role in determining the metabolic
outcome.32

The epigenetic changes induced by an unfavorable uterine
environment may affect the structure and function of multiple
organs, such as the brain, pancreas, kidney, endothelium, skeletal
and cardiac muscle, adipose tissue and liver, ultimately leading to

a detrimental programming that favor the susceptibility to CMD.
In this context, liver programming increases the risk of type 2
diabetes by raising the endogenous hepatic glucose production
that leads to persistent hyperglycemia (Figure 1).

Type 2 diabetes is strongly associated with NAFLD, each being
highly predictive of the other, and is a determinant of its severity
and liver-related mortality.105 It is noteworthy that NAFLD
has been reported to be associated with intrauterine
growth retardation, with low-birth weight children showing high
prevalence of non-alcoholic steatohepatitis.106 This finding
suggests that intrauterine liver programming together with
adipose tissue dysfunction may substantially contribute to the
onset of NAFLD and subsequent liver dysfunction stages.
Therefore, in the complex network of factors contributing to the
cardiometabolic risk liver programming certainly has a role whose
importance probably varies among different individuals according
to their genetic and epigenetic predisposition. Besides the adverse
affect exerted by the exposure to a suboptimal intrauterine
environment, the growth trajectory in early childhood seems to
have a key role in increasing the risk of CMD in adult life. Rapid
weight gain during the first 2 weeks of life in premature infants is
associated with insulin resistance in adolescence.96 Consistent
with this finding is the observation that fast weight gain in the first
3 months of life is inversely associated with insulin sensitivity
and serum high-density lipoprotein cholesterol level, whereas is
positively associated with waist circumference, acute insulin
response, ratio of total cholesterol to high-density lipoprotein
cholesterol and level of triglycerides in early adulthood.107 Finally,
a large study on adults with coronary events showed that the
association of low-birth weight and rapid weight gain after the
age of 2 years was associated with insulin resistance and risk of
coronary events in later life.108 These findings could be explained
by the fact that infants who have experienced intrauterine growth

Figure 1. Interplay between liver programming and other mechanisms in the development of cardiometabolic disease (CMD), that is, the
association between cardiovascular disease (CVD) and type 2 diabetes, and non-alcoholic fatty liver disease (NAFLD).
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retardation lack muscle mass at birth. This deficiency will persist
into childhood and adulthood, as there is negligible muscle cell
replication after birth.109 Therefore, a rapid weight gain may lead
to a disproportion between fat and muscle mass in favor of the
former, ultimately leading to increased cardiometabolic risk.108

These data indicate that any rational approach for preventing
CMD should embrace a life-course perspective in order to
promote maternal health from the periconceptional period,
optimal fetal development and appropriate early postnatal
nutrition and growth.

TOWARDS TARGETED INTERVENTIONS
Within the detrimental triad predisposing to CMD, including
genetic predisposition, intrauterine programming and overweight,
the latter two represent acquired susceptibility factors that are
potentially preventable with strategies aimed at promoting
maternal health before and during pregnancy and appropriate
diet and exercise during childhood. Unfortunately, however,
in utero programming is often independent of maternal health
and nutritional status. Therefore, future research should take up
the challenge to partially or totally reverse the established
programming, taking advantage of the developmental plasticity
still present in early postnatal life.110 The feasibility of this
approach was demonstrated in rat by short-term administration
of leptin in a specific time window of early postnatal life.111

In another animal model, the supplementation of acid during
the juvenile–pubertal period resulted effective in modifying the
phenotype and epigenotype induced by prenatal nutritional
constraint.112 The rationale of a deprogramming intervention
postponed to pubertal period was that the stability of
epigenome is reduced during this phase, puberty representing
another period of plasticity that can be exploited with targeted
interventions.

Low-birth weight premature babies represent a population at
risk of long-term metabolic disorders. They are usually fed with
protein and calorie-enriched formulas to stimulate catch-up
growth and brain development. However, the early exposure to
high nutrient intake and rapid weight gain in infancy are
associated with metabolic risk in adolescence and adult-
hood.96,107,113 Innovative feeding strategies should be finely
balanced to guarantee appropriate brain development and
catch-up growth, without exposing the infant to postnatal nutri-
tional programming.113 Future research will test the feasibility and
effectiveness of targeted nutritional interventions at different
stages of development (from periconceptual time to puberty) in
preventing or reversing the epigenetic programming.114

Finally, the knowledge of epigenomic markers, such as
methylation patterns in specific gene promoters, may enable the
identification of individuals who will have increased susceptibility
to chronic disease in adulthood because of adverse factors in their
early environment. The identification of such individuals may
allow targeted prevention strategies, either by lifestyle modifica-
tion or by active nutritional or pharmacological interventions.

CONCLUDING REMARKS AND FUTURE DIRECTIONS
Animal studies have provided compelling evidence for liver
programming induced by intrauterine exposure to adverse cues.
In humans, data on the hepatic involvement in the developmental
origin of CMD are still limited. Further research in man is needed
to elucidate whether and to what extent a suboptimal intrauterine
environment may substantially alter liver structure and function,
thus contributing to the susceptibility to fat accumulation and
metabolic risk in later life. Long-term prospective studies from
birth to adulthood or retrospective studies in well-characterized
cohort of subjects with low-birth weight exposed to different diet
regimens and life styles in postnatal life would ascertain whether

liver undergoes changes predisposing or accompanying the
development of CMD.
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