
University of Huddersfield Repository

Wang, Jing and Xu, Zhijie

Video Analysis Based on Volumetric Event Detection

Original Citation

Wang, Jing and Xu, Zhijie (2010) Video Analysis Based on Volumetric Event Detection. 
International Journal of Automation and Computing, 7 (3). pp. 365-371. ISSN 1476-8186

This version is available at http://eprints.hud.ac.uk/8142/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Huddersfield Repository

https://core.ac.uk/display/55074?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


International Journal of Automation and Computing 00(0), Month 20××, range of pages 

Video Analysis Based on Volumetric Event Detection  

Jing Wang   Zhi-Jie Xu* 

Department of Informatics, School of Computing and Engineering, University of Huddersfield, Huddersfield, HD1 3DH, UK  

 

Abstract:  During the past decade, the feature extraction and the knowledge acquisition based on video analysis have been 

extensively researched and tested on many applications such as Closed-Circuit Television (CCTV) data analysis, large-scale 

public event control, and other daily security monitoring and surveillance operations with various degrees of success. 

However, since the actual video  process is a multi-phased one and encompasses extensive theories and techniques ranging 

from fundamental image processing, computational geometry and graphics, machine vision, to advanced artificial 

intelligence, pattern analysis, and even cognitive science, there are still many important problems to resolve before it can be 

widely applied. Among them, the video event identification and detection are the two prominent ones. Comparing with the 

most popular frame-to-frame processing mode of most of today’s approaches and systems, this project reorganizes the video 

data as a 3D volume structure which provides the hybrid spatial and temporal information in a unified space. This paper 

reports an innovative technique to transform original video frames to 3D volume structures denoted by spatial and temporal 

features. It then moves on to highlight the volume array structure in a so called “pre-suspicion” mechanism for later process. 

The focus of this report is the development of an effective and efficient voxel-based segmentation technique suitable to the 

volumetric nature of video events and is ready for deployment in 3D clustering operations. The paper concludes at the 

performance evaluation of the devised technique with further discussions on the future work for accelerating the 

pre-processing of the original video data. 

Keywords:  Spatio-temporal volume, video processing, volume feature extraction, segmentation; motion analysis. 

1 Introduction
1
 

Inherited from image processing techniques, traditional 

video event detection approaches put more emphasis on 

spatial signal features through the frame-by-frame (FBF) 

processing methods [1]. However the FBF mechanism 

results in the loss of unabridged dynamic information 

contained in a video. This insufficiency leads to high false 

positive rate during the event detection. Generally 

speaking, an event in a video can be defined by correlating 

the coordinates of a group of related pixels through a set of 

frames dispersed along the temporal axis. Unlike the 

features extracted from a static image, a video event can 

record dynamic “actions”. More specifically, a video event 

is the collection of “changes” occurred in a Euclidean space 

over a period of time elapsed. Both the recorded spatial and 

temporal signals can either be continuous or discrete. At the 

level of information systems, multiple events can contribute 

to the generation of “knowledge” that can be handled by 

machine intelligence or human intervention. For example, a 

video footage of a football match can contain many events 

such as tackling, jumping, and running. 

The definition of video events introduced above has 

brought in the concept of time elapsed in video processing. 

This research adopts the spatio-temporal volume (STV) 

data structure to represent spatial and temporal features 

from original video clips. As shown in Fig.1, the STV 

defines a 3D volume space in a 3D coordinate system 

denoted by X, Y and T (time-dimension) axes. In a more 
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natural point of view, it is composed of a stack of video 

frames formed by arrays of pixels in the time order. In this 

structure, individual frame is represented by the mappings 

of the X-Y coordinates with the corresponding pixel values, 

while the dynamic information of the events is largely 

maintained through the navigation along the time axis. To 

integrate the spatial (coordinates) and temporal (time) 

information in a single data structure, each fundamental 

element inside of the STV “box” is called a voxel-acronym 

of volume-pixel, which conjoins the pixel and the time 

information together. 

The STV data structure transforms video event detection 

approaches from a FBF-based mechanism to one of the 

3D-oriented shape analysis operations. Useful events can 

then be extracted directly from the volume data by 

deploying appropriate feature matching processes, which 

are mainly rely on 3D segmentations and clustering 

stemmed from conventional image processing techniques. 

As shown in Fig.2, a video event of a “waving hand” has 

been extracted to form a STV model. It demonstrates the 

feature segmentation operation for highlighting the contour 

of non-rigid body changes through denoting the original 

STV into the potential features and the background.  

If different video events can be abstracted and modeled 

 

Fig. 1  STV Structure 



International Journal of Automation and Computing 00(0), Month 20XX 

as 3D templates-shapes, then the corresponding event 

detection tasks can be transformed into the jobs of 

recognizing 3D shapes from input video volumes. In 

practice, a 3D template shape can sometime show an event 

in the form of the contour of a subject, but more often, a 3D 

shape is marked by a group of voxels that are not visually 

comprehensible, such as the trajectories of some discrete 

points. 

This project has two main objectives. The first one 

focuses on the volume feature extraction, which forms the 

core of this paper. The second attempts to solve some 

difficult feature analysis problems, which will be reported 

in a separate article. The paper is organized in the 

following order: Section 2 provides a brief review on the 

existing STV analysis techniques. Section 3 introduces the 

proposed STV shape modeling method based on the so 

called “STV-array” which segments the STV cube along 

the time axis; Section 4 highlights the related 3D 

voxel-based segmentation techniques devised in this 

research with experimental results. The result is further 

analyzed and discussed in Section 5 with Section 6 

concludes the work. 

2 Literature review 

The volume data structure mentioned earlier emphasizes 

the temporal continuity in an input stream of a video data. 

The use of spatio-temporal volumes was first introduce in 

1985 by Aldelson and Bergen [2], who build motion models 

based on “image intensity energy” and the impulse 

response to various filters. There are a number of widely 

deployed methods for analyzing the STV. One of them is 

through slicing a stack of two-dimensional temporal slices 

for dealing with a variety of problems. For examples, 

inferring feature depth information [3], generating dense 

displacement fields [4], camera calibration [5], motion 

categorization [6], tracking [7], ego-motion estimation [8]; as 

well as in many application system such as advanced 

navigation [9] and view synthesis systems [10]. 

For the particular application of event detection, the 

most popular 3D volume-based approaches are the so 

called shape-based methods. For example, all the human 

gestures can be modeled as non-rigid action templates for 

automated sign language interpretation. The success of this 

kind of shape-based analysis relies heavily on the quality of 

the segmentation process. If deployed successfully, the 

shapes or the contours of the shape will yield significant 

features which can be used for possible events occurred. 

Comparing the aforementioned 2D slice-based process, 

the 3D-based approaches can reveal more hidden features if 

appropriate segmentation operation are applied. For 

instance, a volume can show a series human contour that 

accumulates the 3D shape of a human silhouette. Therefore, 

the aim of the volume shape-based human event detection 

is to evaluate the 3D STV with enriched shape information 

to facilitate the investigation of the types of event is 

occurred over the time span.  

Shape-based methods generally employ a variety of 

techniques to characterize the shape of an event, for 

example, shape invariants [11-13]. To improving the 

computational efficiency and robustness of the extracted 

action variations, Lena [14] introduced a method to analysis 

2D shapes to through integrating information introduced by 

human behaviors. This method applies the Poisson equation 

for extracting various shape properties that are utilized for 

shape representation and classification.  

Bobick and Davis [15] have used the spatio-temporal 

volume for generating motion-history images, which was 

extended by Weinland et al. [16] for handling motion history 

volumes, which is more practical and flexible to 

implement. It is simple to operate on due to its time 

information has been regarded as an additional dimension 

from a 2D motion history image (the different intensity of 

the pixels means the different time sequence). In its data 

structure, the changes time over are reflected by the gradual 

pixels intensity changes. The direction and speed of the 

motion can then be easily represented in a single 2D image, 

where the optical flow-like motion vectors can be 

calculated from the gradient of the motion history image 

directly [17]. 

3 STV construction and STV 

array structure 

STV is a 3D volume data structure, which is widely 

used in medical visualizations, such as Magnetic 

Resonance Imaging (MRI) scan [18]. This project has 

chosen the STV to define and detect events in videos. As a 

pre-processing step, it is necessary to change the original 

digital video format to the STV. 

3.1 Digital video conversion 

Conversional digital video is an aggregation of 2D 

frames in time order. Each frame shares the same size 

unless redefined, which can be expressed as: 

 { }nFFFV ,,, 21 K= ,  (1) 

where V denotes a specific video file and Fi (i=1, 2, … , n) 

denotes individual frames of the video, where the n 

indicates the total frame number of the video. Each frame is 

identical as in the image plane 2
R⊂D . A point D∈p  

is referred as a pixel. Considering the simpler case of gray 

scale for the image plane, each pixel can be represented as 

p=(pi,pk) where j and k denote the coordinate values of the 

pixel in the 2D image plane. The function I=I(p) preserves 

the pixel value, in gray scale. 

In contrast, the STV structure preserves the video 

information through the use of voxels, where 

 ( ) RvRv ∈∈ f,3 . (2) 

The v=(vx,vy,vz) indicates a voxel in 3D space. The 

 

Fig. 2  STV model of a waving hand 
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function f preserves the voxel value, in gray scale. This 

research stores the 3D matrix into a 1D array in the 

“front-left-top” and “right-down-backwards” style, where 

the direct volume rendering (DVR) techniques are used for 

result visualization. 

3.2 STV array structure for efficient 

voxel-based processing 

Video data from real applications usually contains 

thousands of frames. It is both unnecessary and impossible 

to compose and analyze all the video events in a single 

enormous STV structure. A conceivable solution is the 

adoption of the STV array structure based on a 

pre-processing mechanism which decomposes the video 

into useful and useless “paragraphs”. It constructs a series 

of sub-STVs by marking interesting features in each frame. 

This mechanism rebuilds a quantity of “pre-suspicion” 

STV data from original video footage and composes the 

STV sequence as an STV array.  

Pre-processing steps can remove many frames which 

make little contribution for event analysis in the original 

video. As shown in Fig.3, the residual video clips are 

translated into “pre-suspicion” STV structures which have 

a high probability of containing events. Since the video 

footage contains many events, pre-suspicion adds to the 

number of STV, but reduce the complexity of analysis. 

Each STV in the array might only contain one event 

depending on the definition of it. The complexity of the 

follow up steps such as segmentation and pattern 

recognition can then be simplified.  The FBF processing 

for the “pre-suspicion” STV also provides useful 2D 

features which can also be used in event detection. For 

example, based on the edge information, shadows from 

traffic sequences are successfully removed by Xiao [19]. 

Yamamoto also introduced a colour detection approach for 

multi-view video by using energy minimization of view 

network [20].  

3.3 Video volume compression 

As explained in Section 3.1, original STV data catch 

the video frames one by one according to the temporal 

order and convert them into 2D slices to form a 3D stack. 

This process preserves every pixel in a video and 

transforms them into the 3D space as voxel. This process 

order can introduce significant size problem. For example, 

5-second video clip at a frame rate of 30 with the resolution 

of 320 by 240 pixels will result at 33MB memory 

consumption at run time for just viewing the data block 

before any further process. 

To tackle this problem, a new feature-based volume 

structure has been developed in this research which consists 

of two main parts, the frame pre-processing and the volume 

compressor. The prior will filter the original frames and 

only keep the “useful” features in each frame, which means 

before the 3D volume is through applying various 

traditional image processing techniques such as optical 

flow [21] and the partner recognition approaches. This 

method removes the large still background pixels and 

separates the useful features according to specific 

application. This pre-processing step ensures a low level of 

entropy through constructing a feature-only STV volume. 

As appropriate compressing technologies can further 

reduce the memory footprint, the latter part of the devised 

process applies an Audio Video Interleave (AVI) 

compression filter to produce the final STV feature volume. 

Other popular compression techniques and file structures 

might be used for this purpose too, such as the Moving 

Picture Experts Group (MPEG). Applied on the case 

addressed earlier in this section, the 5-seconds video clip at 

a 30 fps and in resolution of 320 by 240 will only 130KB in 

the memory if stored as an AVI file in the Digital Video 

Express (DVIX) code. 

4 Voxel-based segmentation by 

clustering  

The segmentation process divides a volume into 

constituent sub-regions. The level to which the subdivision 

is carried out depends on the problem being solved, which 

means the segmentation process should cease when the 

regions of interest in an application have been isolated. 

The STV segmentation methods devised in this 

 

Fig. 3  Pre-suspicion STV array mechanism 
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research so far are mainly based on extending the 2D image 

segmentation techniques into 3-Domain. In the 3D 

environment, the volume segmentation process is similar to 

sculpturing in which unnecessary parts of a raw block are 

removed from the bulk. For a STV “cube”, the “things” to 

be removed can be defined by various features such as 

colour, density, edge and texture [22]. As shown in the Fig.2, 

this volume of waving event has been segmented by 

isolating the active contour. After volume segmentation, a 

representing 3D feature volume in the feature space can be 

built for further event recognition task. In this research, the 

clustering approaches are employed due to their efficiency 

and robustness. 

The clustering methods in general intend to sort the 

studied elements using the pre-defined spectrums. In the 

volume space, voxel groups are categorized by different 

signatures. The volume segmentation process can benefit 

from 2D-based methods such as K-Mean and Mean-Shift 

clustering approaches without changes on the foundational 

mathematic model. The only difference from the 

pixel-based operations is the extra dimension in the 3D 

feature space. 

Taking the Mean-Shift (MS) clustering algorithm as an 

example, the original MS method was presented by 

Fukunaga and Hostetler [23] as a nonparametric method to 

estimate a Probability Density Function (PDF) using the 

so-called Parzen window density estimator [24]. Using a 

similar notation as explained in [25], the MS technique can 

be described as follows: given n data points xi, i=1,...,n in 

the d-dimensional (Rd) feature space, the multivariate 

kernel density estimator with kernel KH(x) computed at the 

point x is given by 

 ( )∑
=

−=
n

i

iHK
n

f
1

1
)( xxx ,  (3) 

where H is a symmetric positive dd ×  bandwidth 

matrix. KH(x) can be defined as 

 )()( 2/12/1
xHHxH

−−
= KK . (4) 

The multivariate kernel function K(x) is a bounded 

function which obeys following rules. 
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where CK is a constant. Two well-known Kernel functions, 

KP(x) and KS(x) can be generated from a symmetric kernel 

K1(x). 
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and 

 )()( 1, xx KaK dk

S = , (7) 

where KP(x) is generated by product of the kernel and 

KS(x) is obtained from rotating K1(x).in a specified manner. 

The ak,d is a normalization constant.  

In this project, only a special class of radially 

symmetric kernels that predigest (7) for 0≥x is of 

interest to the investigators. The normalization constant is 

assumed strictly positive in this case as shown in (8.1). 

 )()(
2

, xx kcK dk= , (8.1) 

where profile k is defined by a gate function 
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It also predigests H from fully parameterized matrix to 

an identity matrix H=h2I, where h is the window size of the 

Mean-Shift. It is clear that the latter case is the only 

bandwidth parameter need to be provided before 

Mean-Shift operation.  

After introducing (7) and (8.1) into the kernel density 

estimator (3), the proximate expression of (3) is  
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which quality can be measured by the mean of the square 

errors between the densities and their integrated over the 

domain. 

The Mean-Shift operation finds the peak value in the 

feature space and then classifies relevant feature points in 

the nearby area. In the density estimator model, different 

peak values can belong to different maximum density 

areas, which mean the modes are located among the zeros 

of the gradient 0)( =∇ xf . This can be explained in the 

following expression: 
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where k’ is the derivative of the profile k. Therefore 

transform the formula (10) into 

).(
2

)(
2

)(ˆ

,

2

1
2

,

1

2

2

,

x
xx

xx
xxx

Gh

i
n

i
d

dk

n

i

i

id

dk

h,K

m
h

g
nh

c

h
g

nh

c
f

























 −
=













 −
−=∇

∑

∑

=
+

=
+

  

(12) 

As proven by Comaniciu et al. [25] that the Mean-Shift 

vector mh,G (x) can be expressed as: 

 ( )
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where K and G are kernels with respective profiles k and g. 



F. A. Author et al. / Preparation of Papers for International Journal of Automation and Computing 

where h is the bandwidth of the kernel used, and c is the 

normalization constant. (13) indicates that the Mean-Shift 

vector is aligned with the local gradient estimate, hence it 

can be used to detect the local maxima of this distribution 
[26]. The main difference between MS and other nonlinear 

clustering methods is how the information in the spatial and 

range domains is treated to obtain the filtered image. 

Basically, MS can be seen as an adaptive gradient 

ascendant method. 

For 2D image processing, it is usually referred to the 

space coordinates and the colour value of the 2D pixels in 

the feature space. Consequently, the feature space 

generated is a 5D space (x,y,r,g,b), in which (x,y) denotes 

the space coordinates and (r,g,b) the colour of the pixel. 

These five elements represent a single point xi in the feature 

space. After all pixels are mapped, the multivariate kernel 

density estimator developed by Duda and Hart [24] can be 

deployed for the MS arithmetic.  

In the case of STV, this analytical mechanism can still 

be applied, but the pixel will be replaced by voxel as 

studied element. The feature space will become a 6D space 

define as (x,y,t,r,g,b), where (x,y,t) denotes the space 

coordinates and (r,g,b) the color of voxels. The identical 

multivariate kernel density estimation can then follow suit. 

5 Experiment result 

To assess the devised STV feature model and the 

corresponding segmentation and clustering operations, a set 

of experiments have been designed and carried out to 

evaluate the system performances. The software tools and 

Application Programming Interface (API) used in those 

experiments include, MATLAB, LabVIEW, OpenCV, 

OpenQVis and the system prototype is implemented in 

VC++ on a AMD Athlon 2.62GHz GPU with 2G RAM. 

5.1 STV array structure 

A short video clip was captured using NI 1411 image 

acquisition card connected to a colour CCTV, with a frame 

rate at 10 fps and a frame size of 640 by 480. This 

experiment defines the pre-suspicion mechanism through 

restricting the interested region only on moving objects in 

the video. It then composes STV shapes by assembling the 

moving contours. As mentioned in Section 3, these steps 

must be completed before each STV cube is established. 

The output should contain a series of STV arrays and each 

small STV element should contain only one event with 

non-rigid moving contour. Fig.4 shows this algorithm in a 

state transition diagram. In this algorithm, the moving 

object is abstracted directly through removing the static 

background. This background was identified by the 

“median background” technique [27] and was calculated by 

capturing 100 frames on a 100ms separation.  

Following the “capture a frame” operation, a 

FBF-based image processing was performed to find the 

canny edge [28] for the contour in the absolute- difference 

image. The high and low-threshold is set at 70% and 30% 

of the maximum pixel value. The size of the Gaussian 

smoothing filter was 9 by 9, and the result of which is 

shown in the Fig.5. 

Another important feature in this algorithm is the logic 

flags which control the state transition and are marked as 

“Pre-suspicion?” and “Operation Completion?” in Fig.4. 

After concluding on whether the current frame contains 

moving contours in the “Pre-suspicion” phase, different 

process combinations of these flags will lead to different 

transition directions. 

5.2 Voxel-based segmentation 

This research had initially focused on evaluating the 

K-Mean and MS clustering operations on the STV 

segmentation. Three STV volumes were constructed for 

this purpose - “Waving one hand”, “Waving both hands” 

and “Walking” events - as shown in Fig.6.  

The K-Mean method adopted in this experiment is 

 

Fig. 4  Pre-suspicion algorithm 

 
Fig. 5  Result of STV array 
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based on the intensity of the gray-level for each voxel. The 

approach is a natural extension of the 2D-based pixel 

operations since the only difference is the extra dimension 

introduced by the voxel. It can be readily handled by the 

vector expressions of most of the classic clustering 

algorithms. The devised 3D algorithm can be explained in 

the following pseudo code. 

1. Define the value of k=n. This value n is the number 

of clusters. 

2. Initialize the distribution of each cluster. These 

centers of clusters should be distributed equably in 

the 3D feature space. 

3. While (center of each cluster is still changing) 

a) Compare each feature point with all the centers 

of cluster. 

b) Put the feature point p into cluster Ci if the 

distance between p and center of Ci is the 

shortest. 

c) Remove the center to a new position if new 

element p is put into this cluster. 

End While 

4. Show the clustering result 

End of the algorithm 

The actual experiment result is illustrated in Fig.7. The 

time consumption of the operations is shown in Fig.8. It is 

clear that even for the relative simple operations such as 

K-Mean to be applied on the 3D volume space, the average 

time cost is substantial. Some anticipated solutions for 

alleviating this problem will be discussed in the last 

section. 

The Mean-Shift (MS) clustering technique has also 

been experimented in this project. As discussed in Section 

4, the voxel-based MS will extend the feature space from 

5D to 6D. The MS algorithm developed in this experiment 

is based on Dorin Comaniciu and Peter Meer`s work [25]. 

The results can be seen in Fig.9.A, 9.B and 9.C (with both 

the Hr and Hs set at 32) representing the waving one hand, 

waning both hands and walking events, respectively. 

6 Conclusion and future works 

The main research aim of this project is to realize video 

volume-based event detection and to investigate the 

relevant key techniques, which have led the design and 

development of a general framework of the study. The 

investigation can be divided into two main phases: 3D 

segmentation and 3D template mapping. The work reported 

in this paper has focused on the prior, in which the main 

contribution is a clear guideline for extracting 3D features 

from the volumetric data structure.  

This project has introduced the STV structure for 

handling video contents and the construction of a 

pre-suspicion STV array to introduce an efficient way to 

analyze the STV event shapes. Based on established 2D 

image processing techniques such as the K-Means and MS, 

a number of clustering and segmentation techniques have 

been successfully transformed into the 3Dvolume space. 

One of the anticipated key tasks in the future is to devise an 

efficient template mapping technique which can be applied 

to the pre-built STV feature volumes for event 

identification in large digital video repositories. 

As evident in the experiments detailed in Section 5.2, 

the complex volume data structure has introduced 

substantial time-consumption when processing the STV. It 

is well known that the K-Mean method is an efficient 

segmentation technique in 2D image processing. However, 

when applied into 3D domain, the performance deteriorated 

rapidly. For more complex operations, such as the 

Mean-Shift, this contains many iterative steps, the run time 

of the algorithmic steps become even more intolerable. One 

 

Fig. 6  Original STV contains different events 

 

Fig. 7  3D K-Mean Segmentation result 

 

Fig. 8  Time consumption of voxel-based K-Mean 

segmentation 

 

Fig. 9  Voxel-based MS operation 
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of the potential solutions for solving this problem is 

through hardware acceleration, for example, to employ the 

Graphics Processing Unit (GPU) for accelerating the 

computation [29]. It is understood in this research that most 

STV processing techniques handle each voxel using the 

same arithmetic operations, which can be realized in 

programmable GPU streams in the SIMD (Single 

Instruction Multiple Data) processing mode. The 

acceleration factor has been proven in many early studies. 

For example, comparing to the CPU-dominant approach, 

the Meer's [30] state-of-the-art Bayesian background 

generation and foreground detection experiments have 

witnessed up to  20 times performance boost. 
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