
IEEE Communications Magazine • September 2010158 0163-6804/10/$25.00 © 2010 IEEE

1 Agilent HP, Candelate-
ch, IXIA, Skaion, Omni-
cor, Spirinet,
ZTI-Telecom, …

2 Linux Familiar,
Snapgear, Montavista,
UCLinux, Openwrt, …

3 ARM, XScale, Cell,
Cavium, …

INTRODUCTION

Research on computer networks has always
relied on synthetic traffic generation, that is,
injection of packets into a network in a controlled
fashion. This is usually done to perform a mea-
surement experiment replicating traffic generat-
ed by common network applications or by the
control plane: examples are the generation of
average packet rates (or bit rates) for the analy-
sis of devices under test, or the reproduction of
background traffic to experiment with network
protocols under different load conditions. More-
over, the validity of statistical approaches for the
study of computer networks has brought about
significant work in several fields that often inter-
sect, making crucial the ability to perform exper-
iments with synthetic traffic replicating precise
statistical properties [1–4].

Traffic generators are implemented over both
hardware and software platforms. Hardware
platforms are typically more precise and expen-
sive, reach better performance, and are generally
developed by firms;1 software platforms are less
precise, cheaper, and generally developed by
research units or universities. Moreover, soft-
ware traffic generators are often open source
and freeware. Most of the time, researchers in

the networking field use software platforms, not
only for economical reasons, but mainly for their
flexibility:
• Easy deployability of multiple nodes (even

hundreds) to reproduce distributed scenar-
ios

• Ability to rapidly modify and extend the
code for a specific research purpose, adding
new features, statistical models, and sup-
port of new operating systems2 and hard-
ware platforms3

• Possibility to perform more realistic experi-
ments and test actual implementations by
running on top of real operating systems
and network protocol stacks
On the other hand, while for hardware traffic

generators it is common practice to have detailed
datasheets containing certified information such
as confidence intervals of the imposed values
(e.g., bit rate), software platforms cannot pro-
vide the same information. This is because their
metrological properties (i.e., accuracy of the traf-
fic generation process) depend on the commer-
cial off-the-shelf (COTS) hardware used, the
operating system adopted, and the status of the
host used for traffic generation. Therefore, in a
measurement experiment lacking a preliminary
analysis of such metrological properties, the ref-
erence (i.e., injected input) remains uncertain,
and consequently results could be invalidated.
This statement has opened and stimulated fresh
discussions during recent flagship events in the
networking community. The problem, indeed, is
that studies of the networking research commu-
nity often rely on the use of software generation
platforms, and they take for granted the imposed
traffic profile. Understanding their accuracy is
therefore a fundamental aspect to be considered
[5], as they are actually used as measurement
and experimentation instruments. This work
points the attention on if and how much these
tools can be reliable in generating the user-
requested traffic profiles, a problem underesti-
mated in literature.

TRAFFIC GENERATION AND
NETWORKING RESEARCH

Approaches for the quantitative evaluation of
the performance of computer networks can be
classified into three categories: analytic, simula-
tive, and experimental. In spite of the great inter-

ABSTRACT

Networking research often relies on synthetic
traffic generation in its experimental activities;
from generation of realistic workload to active
measurements. Often researchers adopt soft-
ware-based generators because of their flexibili-
ty. However, despite the increasing number of
features (e.g., replication of complex traffic
models), they are still suffering problems that
can undermine the correctness of experiments:
what is generated is sometimes far from what is
requested by the operator. In this article, by ana-
lyzing four of the most used packet-level traffic
generators in literature, we show how they fail to
follow the requested profiles. Moreover, we
identify and discuss key concepts affecting their
accuracy as well as mechanisms commonly
adopted to improve it. This contribution goes
toward improving the knowledge researchers
and practitioners should have of the tools used
in experimental works, and at the same time
illustrates some directions for the use and design
of software-based traffic generators.

ACCEPTED FROM OPEN CALL

Alessio Botta, Alberto Dainotti, and Antonio Pescapé, University of Napoli Federico II

Do You Trust Your Software-Based
Traffic Generator?

PESCAPE LAYOUT 8/23/10 4:32 PM Page 158

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca - Università degli studi di Napoli Federico II

https://core.ac.uk/display/55055609?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IEEE Communications Magazine • September 2010 159

est in the first two approaches, in the last years
passive and active experimental measurements
have been largely used in both locally4 and geo-
graphically5 distributed testbeds. As for the
active ones, we notice that the attention is usual-
ly paid only to the output [6], that is, the results
provided by the active tool, whereas few or no
considerations at all are made on the quality of
the input. It is the authors’ opinion that this is
probably a consequence of active measurement
software not being recognized as measurement
instruments. However, if such input is uncertain
some of the foundations of the experimental
approach fail:
• The repeatability of the same experiment

may be impracticable.
• A comparison between two different experi-

ments may be infeasible.
• The results may be related to wrong

assumptions.
In traffic generation the statistical profiles to

be followed are carefully chosen according to
models derived from theoretical or experimental
studies [7], but no attention is usually paid to
what is actually injected into the network. In
this work we focus on the accuracy of genera-
tion defined as the measure of the difference
between the requested traffic profiles (i.e.,
imposed rates and statistical distributions) and
those actually generated, emphasizing the need
for more rigor when choosing and using such
tools. We consider four of the software-based
traffic generators most widely used by the scien-
tific community, and we show some of their cur-
rent limitations, in our opinion too often
underestimated by researchers. We identify

some key concepts affecting accuracy and, more
generally, undermining the basis of the experi-
mental method. In addition, we illustrate com-
mon counter measures to adhere to the imposed
traffic profiles.

The networking research community is now
mature enough to consider this issue, particular-
ly relevant in experimentations such as (see Fig.
1 for a reference scenario):
• Comparison of different transport protocols

carrying realistic traffic loads and under
realistic background traffic

• Testing of quality of service and routing
architectures

• Active measurements of link delay (and
other parameters) using Poisson probing

• Queue performance analysis of intermedi-
ate nodes when serving multiple flows of
realistic traffic

• Estimation of available bandwidth
• Testing of statistical-based anomaly and

intrusion detection systems
The large amount of work using software-

based traffic generators testifies that they are
heavily adopted in the networking research field:
querying the IEEE search engine6 for published
papers matching the string traffic generator
reported an average of 30 per year until 2001
and jumps to about 150 since 2002, with a peak
of about 200 in 2005. In addition, a simple search
on both Google and Google Scholar of works
using only the four traffic generators used in this
work results in a very large number of papers,
tutorials, and technical reports (see the last col-
umn of Table 1 for the actual numbers as of July
2008).

Figure 1. Possible scenarios used for experimentations.

Servers

MPLS
network

Desktop PC
IEEE 802.11

Cable/ADSL
connection

Cellular
network

Internet

Ethernet

Ethernet
W

orkstations

Ethernet

4 Orbit Testbed:
http://www.orbit-lab.org/;
DETERlab Testbed:
http://www.isi.edu/deter/

5 Planetlab:
http://www.planet-
lab.org/; OneLab:
http://www.one-lab.org/

6 http://ieeexplore.ieee.org

We focus on the
accuracy of genera-
tion defined as the

measure of the
difference between
the requested traffic
profiles (i.e., imposed
rates and statistical
distributions) and

those actually gener-
ated, emphasizing
the need for more

rigor when choosing
and using such tools.

PESCAPE LAYOUT 8/23/10 4:32 PM Page 159

IEEE Communications Magazine • September 2010160

PLAYING WITH TRAFFIC GENERATORS

While a comprehensive list of traffic generators
is reported on the ICIR website,7 the following
list represents a smart taxonomy underlining
both their architectural features and the abstrac-
tion layer at which they work:

Application-level traffic generators: They
emulate the behavior of specific network appli-
cations in terms of the traffic they produce.
Surge8 (capable of generating traffic by emulat-
ing the interactions between hundreds of web
clients and servers) is an example of this catego-
ry.

Flow-level traffic generators: They are used
when the replication of realistic traffic is request-
ed only at the flow level (e.g., number of packets
and bytes transferred, flow duration). For exam-
ple, Harpoon9 uses a set of statistical parameters
that can be automatically extracted from Cisco
Netflow traces.

Packet-level traffic generators: With this term
we refer to generators based on packets Inter
departure time (IDT) and packet size (PS). The
size of each packet sent, as well as the time
elapsed between subsequent packets, are chosen
by the user, typically by setting a statistical distri-
bution for both variables. A lot of largely used
traffic generators work at the packet level,10 and
they can also be used as active measurement
tools (e.g., the delay and jitter experienced by
each packet can be recorded). In this category
also fall generators that do not operate with
standard sockets but typically forge packets
starting from layer 2 to upper layers and genera-
tors used as bandwidth measurement tools.
Examples of the first category are Brute11 and
KUTE,12 working at the kernel level, or Pkt-
Gen13 and IXPKTGEN14 specifically developed
for network processor architectures. Examples of
the second category are Iperf15 andNetperf16:
such tools usually work by sending as much traf-
fic as possible to measure network performance,
but they are not strictly considered traffic gener-
ators because they cannot generate specific traf-
fic profiles requested by the operator.

Closed-loop and multilevel traffic generators:

Several frameworks (e.g., Swing)17 have been
proposed to take into account the interactions
among multiple layers of the protocol stack
(users, sessions, connections, and network char-
acteristics). Research works regarding their
design have been presented, whereas these kinds
of software are usually not made available to the
scientific community, or (due to their complexi-
ty) are rarely used to conduct experimental
researchs.

In this work we have chosen some of the
most widely used packet-level traffic generators,
without considering both generators forging
packets at layer 2 and bandwidth measurement
tools: we are interested in traffic generators that
inject synthetic traffic in a realistic fashion and
use the protocol stack of the operating system
on which they run as a common network appli-
cation would do.

Table 1 contains the main features and addi-
tional information on the four considered plat-
forms: TG18 from ISI, MGEN19 from the U.S.
Naval Research Laboratory, RUDE/CRUDE20

from Tampere University of Technology, and D-
ITG21 from the University of Napoli. For our
tests we used two Pentium IV machines,
equipped with Linux 2.6.15 and connected back-
to-back with a cross cable to their PCI Gigabit
Ethernet interfaces (see the dotted red line in
Fig. 1). We switched off all the unnecessary
applications, such as X-Windows. Obviously,
many other OS-level processes were still compet-
ing for resources. With this simple testbed, we
analyzed the ability of the generators to replicate
the traffic profiles requested by the operator in
terms of both imposed bit rate (and packet rate)
and statistical distributions of packet IDT. We
found that they generate traffic profiles that are
very different from what is supposed to be inject-
ed into the network. To obtain the results report-
ed in Figs. 2–5, we analyzed the log files
produced by each traffic generator related to the
packets sent: the values reported in the following
represent an upper bound for what is observable
on the network or at the receiving side. From
such log files we extracted the sequence number,
size, and sending time for each generated pack-

Table 1. Traffic generators considered in the experimental evaluation.

Traffic
generators

Operating
systems

Network
protocols

Transport
protocols Available distributions Measured

parameters
Hits on Google and
Google Scholar

MGEN
Linux, FreeBSD,
NetBSD, Solaris
SunOS, SGI, DEC

IPv4 UDP, TCP Constant, exponential, on/off
Throughput,
packet loss,
delay, jitter

473

TG Linux, FreeBSD,
Solaris SunOS IPv4 UDP, TCP Constant, uniform,

exponential, on/off

Throughput,
packet loss,
delay, jitter

125

RUDE/
CRUDE

Linux, Solaris
SunOS, and FreeBSD IPv4 UDP Constant

Throughput,
packet loss,
delay, jitter

286

D-ITG

Linux, Windows,
Linux Familiar,
Montavista,
Snapgear

IPv4, IPv6
UDP, TCP,
DCCP,
SCTP, ICMP

Constant, uniform, exponen-
tial, pareto, cauchy, normal,
poisson, gamma, on/off

Throughput,
packet loss,
delay, jitter

300

7 http://www.icir.org/mod-
els/traffic generators.html

8 http://cs-www.bu.edu/fac-
ulty/crovella/links.html

9 http://pages.cs.wisc.edu/
~jsommers/harpoon/

10 TG, MGEN, RUDE/
CRUDE, D-ITG, UDP-
gen, Traffic, PacGen,
NTGen, UDPGenerator,
IPGen, Poisson Traffic
Generator, MxTraf

11 http://netgroup-serv.iet.
unipi.it/brute/

12 http://caia.swin.edu.au/
genius/tools/kute

13 http://www.tnt.dist.unige.
it/np/index.php/PktGen

14 http://protocols.netlab.
uky.edu/~esp/pktgen/

15 http://dast.nlanr.net/
Projects/Iperf/

16 http://www.netperf.org/
netperf/

17 http://www.cs.ucsd.edu/
~kvishwanath/Swing/

18 http://www.postel.org/
tg/tg.htm

19 http://cs.itd.nrl.navy.mil/
work/mgen/index.php

20 http://rude.sourceforge.net/

21 http://www.grid.unina.
it/software/ITG

PESCAPE LAYOUT 8/23/10 4:32 PM Page 160

IEEE Communications Magazine • September 2010 161

et. This allows us to evaluate the number of
packets and bytes generated as well as the pack-
et IDT.

Figure 2 reports bit and packet rates achieved
by the four considered traffic generators (y axis)
sketched against the expected behavior (x axis).
The points reported in the diagrams represent
the average values over experiments 2 min long.
To evaluate the tools working in their best con-
ditions, we used the minimum PS allowed by
each generator (from 16 to 20 bytes) for the
packet rate, and the maximum PS (i.e., 1472
bytes of UDP payload) for the bit rate. As
regards the packet rate (right plot of Fig. 2)
when asked to generate from 60 to 160 kpack-
ets/s, starting from a certain point, all the gener-
ators significantly deviate from the expected
behavior. More precisely, we can observe that
the generators behave differently. TG and
MGEN after reaching their maximum values, at
about 70 kpackets/s, saturate to a fixed packet
rate as the requested rate increases.
RUDE/CRUDE after reaching the maximum
value, presents a decreasing packet rate. D-ITG
starts to deviate from the expected behavior at
about 130 kpackets/s. These differences testify
that beyond hardware constraints, software
design has a significant impact on the ability of
the generators to match the requested packet
rate.

As for the bit rate, the right plot of Fig. 2
shows the results we obtained when the tools
were asked to generate from 350 Mb/s to 1 Gb/s.
Also in this case, we observe a departure from
the requested rate starting from a certain point
(500 Mb/s), which looks like a saturation of the
throughput capabilities of all the generators, and
a different behavior of the considered genera-
tors. It is interesting to note that, working with
full packets, this saturation point corresponds to
a packets per second value much lower than that
achieved in the packet rate tests, which were
made with minimum-sized packets (e.g., 500
Mb/s correspond to 44 kpackets/s). This high-
lights a difference between software-based traffic

generators and architectures with application-
specific hardware, which treat packets as single
units, using dedicated buffers. Filling packets
and copying their content is an expensive opera-
tion in software-based generators; thus, strate-
gies that contain CPU usage can significantly
relieve the system and improve accuracy.

Both analyses testify that, in experiments
requiring the injection of a specific throughput
(in terms of packets or bytes), we cannot take
for granted a value that could be, in certain
cases, different from the one imposed, and there-
fore that ill-behaved generators can affect the
results of an experiment.

In experiments requiring the replication of
realistic traffic profiles (e.g., voice or video traf-
fic), the generation of traffic with specific statis-
tical distributions of IDT and PS is crucial.
While for PS it is obvious that the actually gen-
erated values are identical to those imposed, for
IDT this is not true because several factors can
affect correct timing when sending packets. The
resulting traffic profile may therefore be very
different from what was needed by the experi-
ment. This also applies to active measurements:
recently, in the research community the subject
of exponentially-distributed packet probing in
active measurements has been given new atten-
tion. It is widely accepted indeed, that a method-
ology using Poisson processes should guarantee
unbiased estimation, for example when measur-
ing delay on network paths. In [8] it has been
argued that more important than unbiased esti-
mation is the minimization of the mean-square
error (MSE), which depends on both the estima-
tion bias and variance. And, in terms of MSE,
Poisson probing is not necessarily optimal. This
has generated a lot of discussion and new
research activities. Despite its relevance, this dis-
cussion neglects that actual tools used by
researchers and practitioners may not reliably
replicate the requested statistical properties.
Indeed, as we show in the rest of this section,
even if a specific distribution is chosen, the gen-
eration process can be poisoned.

Figure 2. Achievable packet-and bit-rate.

Imposed packet-rate [pps]
Packet rate

0.7

x 105

0.6

0.7

0.6

A
ch

ie
ve

d
pa

ck
et

-r
at

e
[p

ps
]

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
x 105

Imposed packet-rate [bps]
Bit-rate

x 105

3.5

4.7

3.5

A
ch

ie
ve

d
bi

t-
ra

te
 [b

ps
]

5.9

7.1

8.2

9.4

1.6

9.4 10.6
x 105

8.27.15.94.7

Expected
mgen
ditg
tg
rude

Expected
mgen
ditg
tg
rude

PESCAPE LAYOUT 8/23/10 4:32 PM Page 161

IEEE Communications Magazine • September 2010162

Figure 3 reports some distributions of IDT
produced by the considered generators com-
pared against the imposed ones. Such figures
allow to be verifed the real values of IDT gener-
ated by the tools. The top plot reports the results
obtained when generating 8 Mb/s of constant bit
rate traffic by using about 1950 packets/s with

512 bytes of UDP payload. Even at such a low
rate, TG and MGEN with polling mode
disabled22 (mgen p-off in the figure) are not
able to strictly follow the imposed IDT. Indeed,
for both tools the IDT attain values that are
either very small (i.e., < 10 s) or around 4 ms.
The middle plot shows exponentially distributed
IDT with 1 Mb/s average bit rate. Again, MGEN
without polling and TG are not able to follow
the analytical distribution, and present spikes all
over the reported range. The bottom plot reports
the same distribution but with 8 Mb/s of average
rate (i.e., about 1950 packets/s). In this case the
output of MGEN without polling and TG resem-
bles a bimodal distribution, which is very differ-
ent from the expected one.

It is worth noting that the packet and bit
rates here considered are much lower than those
for which the generators started to deviate from
the requested behavior in the achievable
throughput tests. This means that the IDT gen-
eration process is often poisoned even starting
from such low rates (i.e., within the stable work-
ing range of the generator). Indeed, as the
requested rate becomes higher all four of the
generators increasingly deviate from the expect-
ed distribution. This phenomenon is quantita-
tively observable in Fig. 4, where a discrepancy
measure (2) [9] between the obtained empirical
distributions and the imposed one is reported
for constant, exponential, and uniform distribu-
tions.

We conclude that, also for IDT distributions
(and consequently for the traffic profiles), we
cannot take for granted distributions that could
be very different from those imposed; then
again, ill-behaved generators can affect the
results of an experiment.

TRAFFIC GENERATORS:
LOOKING INTO THE BOX

A closer look at the traffic generators consid-
ered, when running in practice, shows a complex
scenario with several tasks competing for hard-
ware resources and managed by the operating
system (OS). Aside from the main task a box
generating synthetic traffic should ideally do —
injecting packets into the network on time —
other concurrent tasks are sources of what we
define as external and internal interference. By
external we mean interference between genera-
tion and other processes on the same machine;
by internal we mean interferences among differ-
ent tasks carried out by the traffic generator
(time-stamping, logging, calculations, etc.). The
impact of both types of interference is dual and
it results in inaccuracies in the packet/byte rate
generated and the distributions of IDT such as
those highlighted in the previous section. First,
they consume resources, reducing the availability
of CPU time and buses. Second, they interfere,
depending on the choices made by the OS sched-
uler, with the correct timing of sending packets.
This can be observed in an imprecision of the

Figure 3. Accuracy of generated PDFs (at low rates).

Inter departure time (s)

Constant (8 Mb/s)

1

0.2

Pr
ob

ab
ili

ty
 d

en
si

ty

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 104

x 10-3

x 10-3

0 2 3 4 5

Inter departure time (s)

Exponential (1 Mb/s)

0.01

50

0

Pr
ob

ab
ili

ty
 d

en
si

ty

100

150

200

250

300

350

400

450

0 0.02 0.03 0.04 0.05

Inter departure time (s)

Exponential (8 Mb/s)

1

1000

0

Pr
ob

ab
ili

ty
 d

en
si

ty

2000

3000

4000

5000

6000

7000

8000

9000

0 2 3 4 5

D-ITG
tg
mgen p-off
mgen p-on
rude
analytic

D-ITG
tg
mgen p-off
mgen p-on
analytic

D-ITG
tg
mgen p-off
mgen p-on
analytic

22 The option is called precise off in the tool docu-
mentation.

PESCAPE LAYOUT 8/23/10 4:32 PM Page 162

IEEE Communications Magazine • September 2010 163

select() (or sleep()) calls that are used by
the generators to set the IDT timers.

In order to look in more detail at such phe-
nomena, we added probes to the code of the
generators that verify the result of each
select() call, examined the number of context
switches, and studied several mechanisms that
are implemented in the generators for improving
accuracy.

External interference typically delays the
return from a select() call when a context
switch happens. In the case of D-ITG generat-
ing 590 Mb/s throughput (with logging dis-
abled), we observed that the number of times
the select() call returned in late (20 s was
set, whereas around 40 s elapsed before the
call returned) is proportional to the number of
context switches (every 90 ms). Running a
graphical user interface waiting for user login
doubled the entity of such delays without chang-
ing the number of their occurrences or the num-
ber of context switches. The imprecision of the
select() timeout due to context switches is
also visible at much lower rates. In Fig. 3 we
consider rates from 1 to 8 Mb/s and focus on
the statistical distributions of IDT instead of
throughput: the IDT distributions obtained by
MGEN p-off and TG show several imprecise
select() timeouts at multiples of about 4 ms.
This behavior can be explained with the schedul-
ing operated by the OS under such relatively
low load conditions. The process is typically
descheduled from the CPU when the select()
is called and the control is returned to the pro-
cess within a certain amount of time, also
depending on the slices the scheduler is assign-
ing to processes under the current load condi-
tions. To overcome this problem, both D-ITG
and MGEN (with the option p-on enabled)
implement a polling mechanism, for timeouts
smaller than 10 ms, which cycles until the expi-
ration of the timeout instead of calling a
select(). This is to force the process to stay
on the CPU. The results are visible in Figs. 3
and 4: the obtained IDT distributions become
very close to the analytical, and remain accurate
for different rates.

As for internal interference, in Fig. 2 we
observe that all traffic generators reach a differ-
ent throughput boundary. While there are obvi-
ously hardware constraints, the practical limit of
the boxes used in our experiments is much high-
er than the results achieved by all generators: by
piping data from memory into the netcat utility23

we achieved an average throughput of about 900
Mb/s. This shows that, aside from external inter-
ference and hardware constraints, there are limi-
tations of the software generators due both to
their software design and the tasks they must
complete. Such traffic generators indeed have to
perform several operations. First, they usually
set each IDT as a sample of a statistical distribu-
tion and, even when the IDTs are constant, the
generator is in charge of verifying the amount of
time elapsed before sending each new packet.
Moreover, the generators typically fill packet
contents with useful information, such as IDs
and timestamps, instead of simply copying data
from memory. Finally, because such tools are
used for conducting experiments, they need to

log information regarding the sent and received
packets. The impact of logging data to disk is
particularly high: by enabling logging in D-ITG
generating a 590 Mb/s throughput (Fig. 2) we
observe a dramatic increase of delayed returns
from the select() call (about 1000/s instead
of 15), whereas the number of context switches
does not increase notably — this was expected
because the interference is internal. Traffic gen-
erators try to reduce the impact of logging by
enabling optimized mechanisms. D-ITG tem-
porarily stores the logging information related to

Figure 4. Accuracy of the IDT measured with the 2 (at different rates).

Bit rate (Mb/s)
Constant

21

0.05

λ2

0.1

0.15

0.2

0.25

0.3

4 8 16 32 64 128 256 512

Bit rate (Mb/s)
Exponential

21

λ2

50

100

150

200

4 8 16 32 64 128 256 512

Bit rate (Mb/s)

Uniform

21

λ2

50

100

150

200

4 8 16 32 64 128 256 512

ditg
mgen p-off
mgen p-on
tg
rude

ditg
mgen p-off
mgen p-on
tg

ditg
tg

23 The command nc –c
‘cat /dev/mem’ –u
192.168.1.2 9 copies 4-
kBytes blocks from mem-
ory and sends them as
UDP payload to the dis-
card service of the receiver
box.

PESCAPE LAYOUT 8/23/10 4:32 PM Page 163

IEEE Communications Magazine • September 2010164

a set of packets in a memory buffer, which is
dumped on disk when full. Moreover, to reduce
the quantity of data to be dumped and the num-
ber of operations to be made, both D-ITG and
TG dump data directly in binary format (instead
of text format as traffic generators sometimes
do), which must then be decoded at the end of
the experiment.

To cope with the delayed returns from the
select() and in order to achieve a higher
throughput, some of the considered generators
(e.g., D-ITG, MGEN, and TG) implement a
mechanism we call IDT recovery: the amount of
delay is checked each time the select()
returns; if the delay is so high that new packets
should have been sent during that time in order
to satisfy the requested throughput, such pack-
ets are immediately sent without any timeout.
This way, the actual average packet rate gets
closer to the requested one. For the example
reported earlier — D-ITG with logging enabled
and 590 Mb/s average throughput — we verified
that the IDT recovery mechanism is used almost
each time a delayed return from the select()
happens, with an average of two packets recov-
ered each time. When the imposed rate is
instead of 710 Mb/s (the first point of the satu-
ration limit in Fig. 2), we observe that the gen-
erator is constantly in IDT recovery mode,
meaning that the generation cycle (which
includes all the tasks the generator must carry
out) is never able to send packets in time (about
16 s per IDT).

The analysis here presented has shown that
there are several sources of interference affect-
ing accuracy, which are not easy to track down
and not completely controllable. Moreover, their
existence and characteristics depend on the
operating conditions (e.g., traffic load generat-
ed) as well as the hardware and OS configura-
tion. Some traffic generators implement
mechanisms to improve accuracy, which partially
counter some of them. The understanding of
such issues and partial countermeasures can help
the researcher in properly conducting an experi-
ment involving synthetic traffic generation.

DISCUSSION

To overcome the limitations of simulative and
analytical studies [10], experimental approaches
are adopted in several contexts of networking
research. In such approaches the need for soft-
ware-based traffic generators, capable generating
synthetic — but realistic — network traffic, is
often indisputable. The analysis here presented
has shown how the accuracy of these tools is
sometimes far from what is expected. This can
heavily affect experimental results without oper-
ator awareness. As an example, let us consider a
simple situation: the measurement of the jitter
over a network link. The evaluation of jitter is
particularly important in studies related to the
quality of service (QoS) of network architec-
tures. More precisely, it represents a crucial
parameter in the case of multimedia communi-
cations. Inaccurate jitter measurements can
bring about:
• Incorrect quantitative performance evalua-

tion of QoS parameters
• Erroneous channel models
• Wrong assumptions on the user-perceived

QoS
As probing traffic we use a traffic profile with

exponential IDT and PS (512-byte average), and
we observe the difference between the ideal case
and a real (but inappropriate) one by simulating
both the traffic generation process and the net-
work under test with ns2. In the top plot of Fig. 5
we show the two IDT distributions we used: an
exponential distribution, and the one obtained
from the logs of TG. The average bit rate is
equal to 8 Mb/s in both cases. The bottom plot of
Fig. 5 shows the probability density function
(PDF) of the jitter experienced by the packets in
the two situations when traversing a single duplex
link with drop tail behavior and implementing an
M/M/1 queue. Even in such a straightforward
configuration as this (a single link, a single node
generating traffic, etc.), it is clear that the impact
of inaccurate traffic profiles can significantly alter
the results of the measurement. The two PDFs of
the jitter are quite different. In addition, other

Figure 5. Jitter measured with probing traffic having accurate and inaccurate exponential IDT.

Inter departure time [s]

PDF of the IDT

10

2000

0

Pr
ob

ab
ili

ty
 d

en
si

ty

4000

6000

8000

10000

12000

2 3 4 5
x 10-3 Inter departure time [s]

PDF of the IDT

10

200

0

Pr
ob

ab
ili

ty
 d

en
si

ty

400

600

800

1000

1200

2 3 4 6
x 10-3

5

Real exponential
Exponential of TG Real exponential

Exponential of TG

PESCAPE LAYOUT 8/23/10 4:32 PM Page 164

IEEE Communications Magazine • September 2010 165

statistics are different: the average is equal to
8.1e – 04s in the ideal case and equal to 13.0e –
04s in the case of TG, whereas the autocorrela-
tion is respectively equal to 0.0052 and 0.0464,
respectively.

Aside from the presence of relevant devia-
tions from the requested traffic profiles, we have
also shown that traffic generators implement
mechanisms that allow accuracy to be improved
under some circumstances. Operators should be
aware not only of their existence, but also of
their relation to the problems they are trying to
counter and thus their potential impact on the
experiment. Indeed, their improper use may
even cause a further degradation of accuracy.
An example is the IDT recovery mechanism
explained in the previous section: while such
mechanism is effective in reaching an average
throughput closer to the requested one, it may
negatively impact accuracy of the distribution of
the IDT. It is evident, indeed, that the IDT
recovery makes the traffic generator ignore the
IDT values extracted from the analytical distri-
bution instead causing bursts of packets. This is
why such a feature can be optionally enabled in
some generators (e.g., D-ITG).

CONCLUSION
We think the investigation provided in this arti-
cle highlights issues often underestimated by
researchers and practitioners, and can help them
increase their attention in experimental studies
comprising traffic generators and in general
using active measurement approaches. We have
pointed out the lack of accuracy of current traf-
fic generators and that, despite the adopted
countermeasures, generated traffic profiles can
still be very different from those requested. The
analysis here provided is useful to:
• Understand some hidden mechanisms of

traffic generation
• Design and implement more precise traffic

generation platforms
• Improve the awareness of users and give

guidelines to properly choose and use soft-
ware-based traffic generators
Therefore, a researcher can either improve

accuracy by properly choosing and configuring
the right tool, or assess if an incorrect or uncer-
tain input invalidates the specific experimental
setup.

REFERENCES
[1] F. Dressler, “Policy-Based Traffic Generation for IP-Based

Networks,” IEEE INFOCOM, Apr. 2006.
[2] K. V. Vishwanath and A. Vahdat, “Realistic and Respon-

sive Network Traffic Generation,” ACM SIGCOMM
Comp. Commun. Rev., vol. 36, no. 4, Oct. 2006, pp.
111–22.

[3] A. Botta, A. Dainotti, and A. Pescapé, “Multi-Protocol
and Multi-Platform Traffic Generation and Measure-
ment,” IEEE INFOCOM, Demo session, May 2007.

[4] L. Ciavattone, A. Morton, and G. Ramachandran, “Stan-
dardized Active Measurements on a Tier 1 IP Back-
bone,” IEEE Commun. Mag., vol. 41, no.6, June 2003,
pp. 90–97.

[5] M. Paredes-Farrera, M. Fleury, and M. Ghanbari, “Preci-
sion and Accuracy of Network Traffic Generators for
Packet-by-Packet Traffic Analysis,” 2nd Int’l.
TridentCom, Barcelona, Spain, Mar. 2006.

[6] F. Michaut and F. Lepage “Application-Oriented Net-
work Metrology: Metrics and Active Measurement
Tools,” IEEE Commun. Surveys & Tutorials, vol. 7, no. 2,
Apr. 2005.

[7] C. Williamson, “Internet Traffic Measurement,” IEEE
Internet Comp., vol. 5, no.6, Nov./Dec. 2001, pp.
70–74.

[8] F. Baccelli et al., “The Role of PASTA in Network Mea-
surement,” ACM SIGCOMM Comp. Commun. Rev., vol.
36, no. 4, Oct. 2006.

[9] S. Pederson and M. Johnson, “Estimating Model Dis-
crepancy,” Technometrics, vol. 32, no. 3, Aug. 1990,
pp. 305–14.

[10] S. Floyd and V. Paxson, “Difficulties in Simulating the
Internet,” IEEE/ACM Trans. Net., vol. 9, no. 4, Feb.
2001, pp. 392–403.

BIOGRAPHIES
ALESSIO BOTTA [M] received his M.S. Laurea degree in
telecommunications engineering in 2004 from the Universi-
ty of Napoli Federico II, Italy and his Ph.D. in computer
engineering and systems from the same university. From
February to August 2009 he visited the Networking and
Security Department at Eurécom, Sophia Antipolis, France,
working on the monitoring of 3G networks. Currently he
holds a post-doctoral position at the Department of Com-
puter Engineering and Systems of the University of Napoli
Federico II. His research interests fall in the area of net-
working, with specific regard to network monitoring and
measurements.

ALBERTO DAINOTTI [M] received his M.S. Laurea degree in
computer engineering in 2004 from the University of
Napoli Federico II. In 2008 he received his Ph.D. in comput-
er engineering and systems from the same university. From
July 2007 to February 2008 he visited the Cooperative
Association for Internet Data Analysis (CAIDA) at the Uni-
versity of California, San Diego, working on traffic classifi-
cation and analysis of malware traffic. Currently he works
as a post-doctoral at the Department of Computer Engi-
neering and Systems of the University of Napoli Federico II.
His research interests fall in the areas of network measure-
ments, traffic analysis, and network security.

ANTONIO PESCAPÉ [SM] (pescape@unina.it) is an Assistant
Professor at the Department of Computer Engineering and
Systems of the University of Napoli Federico II. He received
his M.S. Laurea degree in computer engineering and his
Ph.D. in computer engineering and systems, both from the
University of Napoli Federico II. His research interests are in
the networking field with focus on models and algorithms
for Internet traffic, network measurements and manage-
ment of heterogeneous IP networks, and network security.
He has coauthored over 80 journal and conference publica-
tions. He has served and serves on several technical pro-
gram committees of IEEE and ACM conferences (IEEE
GLOBECOM, IEEE ICC, IEEE WCNC, IEEE HPSR, etc.). He also
serves as an Editorial Board Member of IEEE Communica-
tions Survey & Tutorials and was Guest Editor for Comput-
er Networks (Special Issue on Traffic Classification and Its
Applications to Modern Networks).

We have pointed out
the lack of

accuracy of current
traffic generators
and that, despite

the adopted
countermeasures,
generated traffic

profiles can still be
very different from
those requested.

PESCAPE LAYOUT 8/23/10 4:32 PM Page 165

