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Abstract

In this note we present some results on the Calkin-Wilf tree of irreducible frac-
tions, giving an insight on the duality relating it to the Stern-Brocot tree, and
proving noncommutative versions of known results relating labels of the Calkin-
Wilf trees to hyperbinary expansions of positive integers. The main tool is the
Christoffel tree introduced in a paper by Berstel and de Luca.

1 Introduction

The Stern-Brocot tree is a well-known infinite binary tree containing all positive rational
numbers, or more precisely all irreducible fractions. It has been studied for decades
because of its many useful properties which span topics like number theory, combinatorics
and theoretical computer science. For instance, it is deeply connected with continued
fractions, and it is a binary search tree for the positive rational numbers.

A closely related tree (already considered in [5] under the name of Raney tree) was
recently studied by Calkin and Wilf [9]. While lacking the binary search tree property,
the so-called Calkin-Wilf tree is arguably easier to generate using a simple recurrence; its
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nth fraction in a breadth-first visit (i.e., root first, then its child nodes left to right, then
their children and so on) is given by b(n− 1)/b(n), where the sequence (b(n))n≥0 satisfies
b(0) = 0, b(2n + 1) = b(n), and b(2n + 2) = b(n) + b(n + 1) for all n ≥ 0. The Stern
diatomic sequence (b(n))n≥0 was first considered in [13]; b(n) was characterized in [9] as
the number of hyperbinary expansions of the integer n, i.e., the number of ways n can be
written as a sum of powers of 2, where each power appears at most twice.

The duality between these two binary trees of fractions (see [5]) can be characterized
in terms of continued fraction expansions, or simply as follows: a node in the Stern-Brocot
tree is labeled by the irreducible fraction p/q if and only if the corresponding node in the
Calkin-Wilf tree is p′/q′, where 0 < p′, q′ < p + q and

pp′ ≡ qq′ ≡ 1 (mod p + q) . (1)

That is, p′ and q′ are the multiplicative inverses, modulo p + q, of p and q respectively.
Following [5], both trees can be viewed as specializations of a tree formed by ordered

pairs of binary words, the Christoffel tree. This allows to identify the above duality
with a well-known involution on Christoffel words (see [7]), and to give non-commutative
interpretations for the properties of the two fraction trees. In this note we mainly focus
on the duality and the sequence b(n).

In the remainder of this section, we set some notation and review basic definitions
and known results on the Stern-Brocot and Calkin-Wilf trees. In Section 2 we consider
Christoffel words and the Christoffel tree, proving that corresponding fractions p/q, p′/q′

in the Stern-Brocot and Calkin-Wilf tree satisfy (1). In Section 3 we establish non-
commutative recurrences for the Christoffel trees, defining a sequence of Christoffel words
(f(n))n≥1 which corresponds to the previously mentioned (b(n))n≥0; in Theorem 3.1 we
show that f(n) encodes the relative lengths of the (reversed) hyperbinary expansions of
n, taken in inverse lexicographic order.

The authors thank Jacques Labelle for bringing the article [9] to their attention. The
first author thanks LaCIM and UQAM for their generous support during his stay in
2009–2010.

1.1 The Stern-Brocot tree

The Stern-Brocot tree was introduced independently in [13, 8]. It is a complete, infinite
binary tree of positive irreducible fractions, having the binary search property: each
fraction is larger than all its left descendants, and smaller than its right descendants. It
can be constructed by iterating the mediant operation: if p/q and p′/q′ are the two closest
ancestors (above and) to the left and to the right of a node (one being its parent), then its
label is (p + p′)/(q + q′). In order for this to make sense, the left and right “ancestors” of
the root are defined respectively as 0/1 and 1/0. For instance, the fraction 3/4 is obtained
as the mediant of 2/3 (its parent) and 1/1 (the closest ancestor above and to the right of
3/4).

Let L and R denote, respectively, left and right moves down the tree, so that every
word over the alphabet {L, R} represents exactly one node of the tree (the empty word
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Figure 1: The Stern-Brocot tree
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corresponding to the root). The following proposition shows that the Stern-Brocot tree
is deeply related to continued fractions:

Proposition 1.1 (see [11, 5]). Let p/q be the label of a node in the Stern-Brocot tree
which is represented by the word Ra0La1 · · ·Ran, with a0, an ≥ 0 and ai > 0 for 0 < i < n.
Then p/q has the continued fraction expansion [a0, a1, . . . , an + 1], i.e.

p

q
= a0 +

1

a1 +
1

. . . +
1

an + 1

.

For more details about the Stern-Brocot tree, the reader is referred to [11].

1.2 The Calkin-Wilf tree

In [9], Calkin and Wilf examined a different binary tree comprising all irreducible fractions,
generated by the following rules: the root is 1/1, and every node p/q has p

p+q
as its left

child and p+q

q
as its right child. This tree had already been considered some years earlier by

Berstel and de Luca [5], who named it the Raney tree in view of a paper by Raney [12]. We
mention that natural k-ary generalizations of the Stern-Brocot and Raney trees, related
to factors of episturmian words, were recently introduced by de Luca and Zamboni in [10].

Enumerating the fractions of the Calkin-Wilf tree, one easily notices that the de-
nominator of any fraction appears to be equal to the numerator of the next one in a
breadth-first visit. The following proposition, proved in [9], shows that this is actually
true, thus summarizing two basic properties of the Calkin-Wilf tree:
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Figure 2: The Calkin-Wilf tree
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Proposition 1.2 ([9], see also [1]). Every positive irreducible fraction appears exactly
once in the Calkin-Wilf tree, and there exists a sequence of integers (b(n))n≥0 such that
the nth fraction of the tree is given by b(n − 1)/b(n).

A hyperbinary expansion of the positive integer n is a word w = x1x2 · · ·xk with xi ∈
{0, 1, 2} for 1 ≤ i ≤ k, such that n =

∑k

i=1
xi2

k−i. Hence the usual binary representation
of n is a hyperbinary expansion (the only one not containing the digit 2). As a less trivial
example, the hyperbinary expansions of n = 14 are: 1110, 1102, 1022, and 222.

Proposition 1.3 ([9]). The value of b(n) satisfies the recurrence b(2n+1) = b(n), b(2n+
2) = b(n) + b(n + 1) for all n ≥ 0, and gives the number of hyperbinary expansions of n.

The following table gives the first values of b(n):

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
b(n) 1 1 2 1 3 2 3 1 4 3 5 2 5 3 4 1

Following [6, Chapter 5] we define the map ν2 : {0, 1}∗ → N which interprets words
as integers in base 2, i.e., if w = a0a1 · · ·an with ai ∈ {0, 1} for 0 ≤ i ≤ n, then
ν2(w) =

∑n

i=0
ai2

n−i. We recall that given a semiring R, a function f : N → R is said to
be 2-regular over R if the formal power series

Sf =
∑

w∈{0,1}∗

f(ν2(w))w ∈ R〈〈0, 1〉〉

is rational, that is, if there exist a positive integer n, a morphism µ : {0, 1}∗ → Rn×n, and
two matrices λ ∈ R1×n, γ ∈ Rn×1 such that for all w one has f(ν2(w)) = λµ(w)γ. The
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integer n, called dimension of the linear representation (λ, µ, γ), also gives the number of
states of a weighted automaton recognizing the series Sf .

In [2], Allouche and Shallit defined regular sequences and proved (see also [4, 3]) that
the function b considered above is regular over Z. We now give a slightly different proof,
establishing regularity over N and specifying the dimension.

Proposition 1.4. The function b is 2-regular over N, and has a linear representation of
dimension 2.

Proof. First, note that the function b(n) satisfies, for any n ≥ 0 (assuming b(−1) = 0
conventionally):

b(0) = 1

b(2n) = b(n − 1) + b(n)

b(2n + 1) = b(n) .

Let c(n) = b(n − 1) for n ≥ 0. Recall that (see [6]) for a function h : N → N, one defines
(0 ◦ h)(n) = h(2n) and (1 ◦ h)(n) = h(2n + 1). We have

(0 ◦ b)(n) = b(2n) = c(n) + b(n) ,

(1 ◦ b)(n) = b(2n + 1) = b(n) ,

(0 ◦ c)(n) = c(2n) = b(2n − 1) = b(2(n − 1) + 1) = b(n − 1) = c(n) ,

(1 ◦ c)(n) = c(2n + 1) = b(2n) = c(n) + b(n) .

Thus 0 ◦ b = b + c, 1 ◦ b = b, 0 ◦ c = c, 1 ◦ c = b + c. It follows that the series Sb defined
for any word w ∈ {0, 1}∗ by (Sb, w) = b(ν2(w)) is rational over the semiring N and has
the representation (λ, µ, γ), with

λ =
(

1 0
)
, γ =

(
1
0

)

, and

µ(0) =

(
1 0
1 1

)

, µ(1) =

(
1 1
0 1

)

.

This concludes our proof.

Figure 3: A weighted automaton recognizing Sb =
∑

w b(ν2(w))w

b c
1

0,1

0

0,1
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2 The Christoffel tree

Let us now consider a tree of ordered pairs of binary words, defined as follows: (a, b) is the
root, and every node (u, v) has (u, uv) and (uv, u) as its left and right child, respectively
(the product of two words being their concatenation). This tree was introduced in [5]
as the Christoffel tree; its labels are exactly all Christoffel pairs, i.e., all pairs (u, v) of
Christoffel words such that u < v in lexicographic order (with a < b) and uv is again a
Christoffel word. We recall (see also [7]) that the Christoffel word of slope p/q over the
alphabet {a, b} ordered by a < b is a word w = x1x2 · · ·xn of length n = p + q, such that
for 1 ≤ i ≤ n the letter xi is a if

ip mod n > (i − 1)p mod n

and b otherwise. Every Christoffel word w which is nontrivial (i.e., of length greater than
1) admits a unique decomposition w = w1w2 such that w1 and w2 are Christoffel words
and w1 < w2 in lexicographic order.

We also recall that the length of a word w is denoted by |w|, whereas if x is a letter,
|w|x denotes the number of occurrences of the letter x in w. Thus if w is a word over the
alphabet {a, b}, then |w| = |w|a + |w|b; furthermore, the slope of a Christoffel word w is
given by |w|b/|w|a.

Figure 4: The Christoffel tree
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Note that the analogy with the Calkin-Wilf tree is almost perfect, in that for all nodes
except for the rightmost ones of each level, the second term of the pair equals the first
term of the next node to the right; however, the rightmost pair in the kth level of the
tree is (abk−1, b) whereas the first pair in the next level is (a, akb). Formally, we prove the
following (cf. [9, 1] in the case of the Calkin-Wilf tree):

Lemma 2.1. If (x, y) and (x′, y′) are consecutive nodes on the same level of the Christoffel
tree, then y = x′.
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Proof. This is certainly true by definition if (x, y) is a left child (in particular, it is true
for the second node of the tree). Then suppose (x, y) is a right child; its parent has to
be (xy−1, y), whereas (x′, y′) is the left child of (x′, x′−1y′). The two parents are also
consecutive, so that by induction we get y = x′ as desired.

We can still define a map f(n), analogous to b(n), giving the right term of the nth
pair in the visit. This way, the n-th node in the Christoffel tree is (a, f(n)) if n is a power
of 2 (that is, if the node is on the leftmost branch), and (f(n − 1), f(n)) otherwise, in
view of the previous Lemma.

Theorem 2.2. The map f can be defined by the following rules:

1. f(2k) = akb for all k ≥ 0,

2. f(2n + 1) = f(n),

3. f(2n) = f(n − 1)f(n) if n is not a power of 2.

Proof. The first equation describes the leftmost branch of the tree, whose nodes are of
the form (a, akb) as an immediate consequence of the definition.

The second equation describes right children, which have the same right term as their
parent, again by definition.

Finally, the last equation describes left children of nodes that are not on the leftmost
branch. Suppose this parent is the n-th node, so that its label is (f(n − 1), f(n)) by
induction. Then its left child is the 2n-th node, and by definition it is labeled by (f(n −
1), f(n − 1)f(n)). This proves the third equation and hence the theorem.

Along with Proposition 1.3, this implies that for all n ≥ 1, |f(n)| = b(n). The following
table gives the first values of f :

n 1 2 3 4 5 6 7 8 9 10 11 12
f(n) b ab b aab ab abb b aaab aab aabab ab ababb

The following basic theorem by Berstel and de Luca shows that the Calkin-Wilf and
Stern-Brocot trees can be viewed as specializations of the Christoffel tree:

Theorem 2.3 ([5]). Let (u, v) be the label of a node in the Christoffel tree. Then |u|/|v|
is the corresponding node in the Calkin-Wilf (Raney) tree, and |uv|b/|uv|a is the corre-
sponding node in the Stern-Brocot tree.

Moreover, in [5] it is implicitly shown that the fraction obtained following a path (a
word W ∈ {L, R}∗) on the Stern-Brocot tree is also obtained by following the reverse
path W̃ on the Calkin-Wilf tree. In conjunction with Proposition 1.1, this gives:

Proposition 2.4 ([5]). Let p/q be the label of a node in the Calkin-Wilf tree which is
represented by the word Ra0La1 · · ·Ran, with a0, an ≥ 0 and ai > 0 for 0 < i < n. Then
p/q has the continued fraction expansion [an, an−1, . . . , a0 + 1].
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The two last results are examples of the duality occurring between the two trees of
fractions, which can be seen as a consequence of the duality between Christoffel words
which was explored in detail in [7]. For instance, consider the following lemma, proved
in [7]:

Lemma 2.5. Let w be a Christoffel word with |w| > 1, and let w = w1w2 be its factor-
ization in an increasing product of Christoffel words. Let p/q be the slope of w, and let
p′ = |w1|, q′ = |w2|. Then

pp′ ≡ qq′ ≡ 1 (mod |w|) .

Using Theorem 2.3 and the definition of the Christoffel tree, this implies the following

Corollary 2.6. Let p/q be a fraction in the Stern-Brocot tree, and let p′/q′ be the label
of the corresponding node in the Calkin-Wilf tree. Then p + q = p′ + q′ and

pp′ ≡ qq′ ≡ 1 (mod p + q) .

This can also be inferred more directly from the following result, which is [7, Corollary
3.3]:

Proposition 2.7. Let p/q and p′/q′ be two positive irreducible fractions. Then the paths
leading to them in the Stern-Brocot tree are reverses of each other if and only if p + q =
p′ + q′ and pp′ ≡ qq′ ≡ 1 (mod p + q).

3 Main results

Let us remark that the hyperbinary expansions of a natural number n have just two possi-
ble lengths. Indeed, a hyperbinary expansion of n cannot be longer than the usual binary
representation of length ℓ = ⌊log2 n⌋ + 1; furthermore, n cannot have a representation
of length ℓ − 2, since the greatest integer having such an expansion is 2 · (2ℓ−2 − 1) =
2ℓ−1 − 2 ≤ n − 2.

Thus we can naturally classify hyperbinary expansions of n as long or short, respec-
tively of length ℓ and ℓ − 1.

Theorem 3.1. Let n > 0 be an integer. Then f(n) is the word obtained by sorting the
reversed hyperbinary expansions of n in reverse lexicographic order, and then mapping
each short (resp., long) expansion to the letter a (resp., b).

Proof. If n = 2k for some k ≥ 0, then n has b(n) = k + 1 hyperbinary expansions. The
only long one is the binary expansion, 1 0 · · ·0

︸ ︷︷ ︸

k

. The other k short expansions are of the

form
1 · · ·1
︸ ︷︷ ︸

i

2 0 · · ·0
︸ ︷︷ ︸

k−1−i

,
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for 0 ≤ i < k. Among the reversals, the long one is also the smallest in lexicographic
order (hence the greatest in reverse lex order), so that by mapping short expansions to a
and the long one to b, we get the word akb = f(n).

We now prove the statement by induction on n. If n = 2m+1, then each hyperbinary
expansion of n can be written as w1, where w is an expansion of m < n. Trivially, adding
a 1 to the left of all reversed expansions of m does not change their order, nor their type
(long or short). Hence the word obtained is the same, which by induction is f(m) = f(n).

If n = 2m and m is not a power of 2, then the hyperbinary expansions of n are either
of the form w0 with w an expansion of m, or of the form w′2 with w′ an expansion of
m − 1. Clearly the reversals of the latter come before the ones of the former, in the
inverse lexicographic order; moreover, as adding a 2 or a 0 to the left does not change the
relative lengths of the expansions, nor their lexicographic ordering, we obtain the word
f(m − 1)f(m) = f(n).

Example. The reversed expansions of n = 20, in reverse lexicographic order, are:

expansion type
2121 a (short)
2102 a
21001 b (long)
0221 a
0202 a
02001 b
0012 a
00101 b

and we have f(20) = aabaabab.

We conclude with a few remarks. The restriction of our function f gives a bijection
between even positive integers and Christoffel words of length greater than 1. Indeed,
as already observed in Section 2, the labels of the Christoffel tree are exactly all dis-
tinct Christoffel pairs, and every nontrivial Christoffel word is the product of the two
components of exactly one Christoffel pair; this shows the bijection between nontrivial
Christoffel words and nodes of the Christoffel tree, which in turn are in a bijection with
their left children (even indexed nodes).

The equation f(2n) = f(n − 1)f(n) gives the standard factorization of a nontrivial
Christoffel word in an increasing product of two Christoffel words, and the proof of our
last theorem gives a further interpretation of this factorization: the first factor f(n − 1)
comes from hyperbinary expansions of 2n ending in 2, and the second factor f(n) is given
by the expansions ending in 0.
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