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Abstract 

The structures of the capsular polysaccharides (CPSs) of the two clinical isolates Acinetobacter 

baumannii SMAL and MG1 were elucidated. Hot phenol/water extractions of the dry biomasses, 

followed by enzymatic digestions and repeated ultracentrifugations led to the isolation of 

polysaccharides which were negative in Western blot analysis utilizing an anti-lipid A antibody, 

thus proving that they were not the LPS O-antigens but CPSs. Their structures were established on 

the basis of NMR spectroscopy and GC-MS analyses. The A. baumannii MG1 CPS consisted of a 

linear aminopolysaccharide with acyl substitution heterogeneity at the N-4 amino group of 

QuipN4N:  

 

4)--D-GlcpNAc-(14)--L-GalpNAcA-(13)--D-QuipNAc4NR-(1 

R= 3-hydroxybutyrryl or acetyl 
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The repeating unit of the CPS produced by strain SMAL is a pentasaccharide, already reported for 

the O-antigen moiety from A. baumannii strain ATCC 17961:  

  

    -D-GlcpNAc3NAcA-(1 

 ↓ 

 4) 

6)--D-Glcp-(13)--D-GalpNAc-(13)--D-Galp-(1 

 6) 

 ↑ 

  -D-GlcpNAc-(1 
 

 

 

Keywords: Acinetobacter baumannii; Capsular polysaccharide; Western Blot; structural analysis 

 

Abbreviations: AP: alkaline phosphatase; BCIP: 5-bromo-4-chloro-3-indolylphosphate toluidine 

salt; CPS: capsular polysaccharide; HB: (S)-3-hydroxybutyrryl; LOS: lipooligosaccharide; LPS: 

lipopolysaccharide; NBT: nitro-blue tetrazolium chloride; PCP: 90% phenol-chloroform-light 

petroleum; PVDF: polyvinylidene difluoride; D-QuiN4N: bacillosamine; UC: ultracentrifugation  
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1. Introduction 

Acinetobacter baumannii is an opportunistic Gram-negative bacterium and considered the most 

common human pathogen species within its genus, followed by A. lwoffii and A. haemolyticus. This 

bacterium is widely distributed in nature and is extraordinarily adaptable to a variety of 

environmental conditions, e.g., it may colonize a variety of hospital surfaces such as surgical drains 

or aeration filters.1 It is generally considered an opportunistic pathogen in immuno-compromised 

patients causing severe nosocomial, bloodstream, pneumonia, or urinary tract infections, and 

septicemia.2 

The propensity of this organism to develop drug-resistance3 (against carbapenem, beta-lactam, and 

tetracycline antibiotics) and the lack of development of new drugs to treat infections have resulted 

in a significant increase in Acinetobacter-related studies.4 In this regard, the study of the main outer 

membrane components, lipopolysaccharides (LPSs) and capsular polysaccharides (CPSs) is of high 

importance, since these cell wall components may help to prevent bacterial killing and lyses. 

The LPS is composed of the lipid A which is inserted in the bacterial outer membrane and 

substituted by the core region which in turn bears a third, optional region, termed the O-specific 

side chain (OPS, or O-antigen). Consequently, LPSs are classified as S- or R-form (also called 

lipooligosaccharide, LOS), depending on the presence or absence of the O-antigen, respectively. In 

addition to LPS, Acinetobacter bacteria can be surrounded by a thick polysaccharide layer, named 

capsule or K-antigen. 

So far, the LPS structures from several Acinetobacter species have been described, and the 

occurrence of both, R-5,6 and S-form LPSs was reported.7,8 Additionally, more than 10 surface 

polysaccharides were isolated from different A. baumannii strains,9 but in most cases it was not 

clear whether they originated  from CPSs or OPSs. Thus, to date, only two CPSs from 

Acinetobacter species have been clearly defined, namely those of A. calcoaceticus BD410 and to A. 

lwoffii F78.11 
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In this article, the CPS of two clinical isolates of A. baumannii, SMAL and MG1, were investigated 

disclosing the occurrence of two different capsular polysaccharides. These data extend the basis for 

the development of an Acinetobacter serotyping scheme, analogous to that currently used for 

Escherichia coli isolates. 
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2. Results and Discussion 

2.1 Isolation and chemical analysis of supernatants and sediments from A. baumannii MG1 

and SMAL obtained by ultracentrifugation. 

Freeze-dried cells of A. baumannii MG1 and SMAL were treated with aqueous 90% phenol-

chloroform-light petroleum (PCP)12 to extract R-form LPS, and the remaining pellets were 

successively extracted according to the hot phenol/water method.13 The water phases were further 

purified, i.e. nucleic acid and protein contaminants were removed by enzymatic digestion and the 

resulting solutions were dialyzed and subjected to several cycles of ultracentrifugation (UC). Sugar 

analysis of the UC sediments gave the same compositions as identified for the LOSs from the two 

A. baumannii strains, namely D-Glc, D-GalN, D-GlcN, and 3-deoxy-D-manno-oct-2-ulosonic acid 

(Kdo).  

The monosaccharide composition of the UC supernatant from A. baumannii MG1 comprised L-

GalNA, D-QuiN4N (bacillosamine), and D-GlcN. The absolute configuration of QuiN4N was 

assigned using the same sugar obtained from the CPS produced by A. lwoffii F7811 as standard, and 

similarly the GalNA butylglycoside was compared to the analogue derivative obtained from the 

LPS of Halomonas pantelleriensis.14 Furthermore, after weak methanolysis and acetylation, GC-MS 

analysis showed the presence of QuinN4N substituted at N-4 by (S)-3-hydroxybutyrryl group (HB). 

The substituted position was assigned on the basis of the retention time and mass spectrum 

analogies with the same residue identified in the CPS of A. lwoffii F78.11 The sugar composition of 

the UC supernatant from A. baumannii SMAL revealed the presence of D-Gal, D-Glc, D-GlcN, D-

GalN, and 2,3-diacetoamido-2,3-dideoxy-glucuronic acid (DAGA).  

 

2.2 Electrophoretic and Western Blot analysis of UC supernatant and sediment from A. 

baumannii MG1 and SMAL 

The sediments and supernatants from UC were analyzed by SDS-PAGE. The gel was first fixed 

with Alcian blue15 then with silver nitrate,16 and disclosed the occurrence of LOS molecules in the 
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sediment (figure 1), whereas the supernatants contained high molecular mass material which was 

sensitive to Alcian blue (figure 2, lines 1-4) and identified as CPS. Here, the presence of  LOS was 

negligible and was detected only after having overloaded the gel (figure 2, lines 5 and 6). 

In order to exclude that the isolated polysaccharides might originate from LPS, the CPS preparation 

was subjected to Western blot analysis developed after mild acid hydrolysis of the membrane with 

the monoclonal antibody (mAb) A6,17 which specifically recognizes the free bisphosphorylated 

diglucosamine backbone of lipid A. This antibody had been used earlier for the identification of 

non-stainable S-form LPS in various Acinetobacter strains and LOS in A. lwoffii F78.11 The CPS 

isolated from A. baumannii MG1 and SMAL did not bind mAb A6 (figure 3, lines 2 and 3). Only 

when applied in high amounts (figure 3, lines 4 and 5), a very faint smear appeared at the bottom of 

the membrane, with a migration similar to that observed for the purified LOS (figure 3, lines 6 and 

7), confirming its occurrence in trace amounts. The lack of reaction of mAb A6 with the material in 

the upper part of the gel pointed at the presence of a CPS in both, A. baumannii MG1 and SMAL. 

 

2.3 Spectroscopical analyses of the CPS from A. baumanni MG1 

In order to establish the structure of the repeating unit of the CPS of A. baumannii MG1, the UC 

supernatant was analyzed by NMR spectroscopy.  The 1H NMR spectrum (figure 4) contained 

several diagnostic signals: three anomeric ones (5.30-4.50 ppm), and those of four N-acetyl methyl 

protons (approx. 2.00 ppm) and two methyl signals (approx. 1.2 ppm). Of the latter, the most 

intense signal originated from H-6 of the bacillosamine, and the other one was related to HB present 

in non-stoichiometric amounts. The sugar residues were labeled with a letter (A-C) in order of their 

decreasing anomeric chemical shifts, and D corresponded to HB. By analysis of the 2D NMR 

spectra of the polysaccharide all proton and carbon chemical shifts could be assigned (table 1). 

Residue A was classified as a O-4 substituted -GalpNAcA. The galacto stereochemistry was 

identified by the weak scalar correlations in both the COSY and TOCSY spectra of H-4 to its 

vicinal protons (H-3 and H-5), the -configuration was established on the basis of the chemical 
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shift (5.21 ppm) and of the broad singlet shape of the H-1 signal. The chemical shifts of the ring 

carbons identified one nitrogen-bearing carbon, namely C-2 (50.4 ppm), which was N-acetylated as 

proven by the H-2 deshielded chemical shift and by the presence of N-acetyl signals in the proton 

spectrum. The C-4 signal appeared in the low field region of the HSQC spectrum (79.7 ppm) 

proving glycosylation at this position, and H-5 displayed a long-range correlation with a carbon at 

175.1 ppm, confirming the uronic acid feature of this residue. 

Similar considerations identified B as a O-4 substituted 2-acetamido-2-deoxy--glucopyranose. 

With regard to unit C (bacillosamine), the multiplicity of the anomeric proton could not be assigned 

since it appeared as a very broad singlet at 4.60 ppm. Therefore, the -configuration was suggested 

from both the 1H and 13C anomeric chemical shifts and confirmed by the NOE contacts (figure 5) of 

H-1 to both, H-3 and H-5, due to the axial orientation of these three protons. The examination of the 

carbon chemical shifts of this residue identified two nitrogen bearing carbons, i.e. C-2 and C-4 

(both at 57.9 ppm), and the glycosylation site on C-3 (76.8 ppm). 

Using the same approach, the HB residue was completely assigned and, based on the GC-MS data, 

found to substitute the amino group at C-4 of residue C. Information regarding the substitution 

degree at N-4 of C was deduced from the integration of two groups of signals in the high field 

region of the proton spectrum (figure 4), namely the broad peak at 2.33 ppm, which accounted for 

the two methylene protons of HB (Area1), and the two methyl groups (Area2) at 1.24 (H-4 protons 

of HB) and 1.17 ppm (H-6 protons of C). At this regard, methyl signal at 1.17 ppm comprehended 

the methyl protons from all the bacillosamine residues present in the polymer, regardless their 

acylation state on the nitrogen at C-4, that could be either acetylated or substituted with the HB unit. 

This methyl signal could not be integrated directly in the proton spectrum, but its contribute to 

Area2 was deduced applying formula 1: both Area1 and Area2 were normalized with respect to the 

number of protons they represented (two and three, respectively), so that (Area2)/3 represented the 

number of HB residues plus those of bacillosamine, while (Area1)/2 reflected the total number of 

HB moieties. In this way, the bacillosamine amount was deduced subtracting Area1 from Area2 and 
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this value was then compared with that of the HB residue (Area1) yielding an overall substitution 

degree of 19% (see formula 1). 

The analysis of the NOESY spectrum (figure 5) showed a spatial proximity between H-1 of A and 

H-3 of C, H-1 of B and H-4 of A, and H-1 of C and H-4 of B, and thus, disclosed the sequence 

between the three residues as reported in figure 6a. 

Finally, CPS 1H NMR and HSQC spectra were recorded in 10 mM deuterated HCl (data not shown). 

Under this condition a large low field shift was found for H-5 resonance and to a lesser extent for  

H-1 signals of the GalpNAcA residue, suggesting that the carboxylic group of this residue was in 

the free form and amidated, for instance. 

 

2.4 Structural analysis of the CPS from A. baumannii clinical isolated SMAL 

The proton NMR spectrum of the CPS produced by strain SMAL showed five anomeric signals and 

a crowded carbinolic area, together with the occurrence of four N-acetyl methyl signals. The 

analysis of the 2D NMR spectra was impaired by the high number of signals, many of which 

overlapped, and from their broad shape which resulted in poor quality spectra. These problems were 

circumvented by studying the deacetylated CPS and recording the sample under alkaline conditions 

causing the shift of the amino-geminal protons to high field region of the spectrum. 

The five anomeric signals were labeled A - E in decreasing order of their chemical shifts, and the 

attribution of the 2D homo- and heteronuclear spectra (table 2) followed the strategy described 

above for the MG1 CPS and characterized the structure of the repeating unit (figure 7a). 

On the basis of the above information and considering that the alkaline treatment removed the pre-

existing acetyl groups, the structure of the repeating unit of the O-deacylated CPS produced from A. 

baumannii SMAL was as shown in figure 7b. This repeating unit was identical to that previously 

reported for A. baumannii strain ATCC 17961.18 

 

3. Conclusions 
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In the course of this study, carbohydrate material produced from two A. baumannii clinical isolates, 

MG1 and SMAL, was studied with the purpose to establish their location in the cell envelope 

together with their structures. 

Western blot analysis classified these materials as CPSs and the extensive use of NMR 

spectroscopy determined the carbohydrate sequence of each repeating unit. With regard to A. 

baumannii MG1, the repeating unit of the capsular structure is constituted by three different amino 

sugars (figure 6a) and it is quite similar to the O-antigen of the LPS from another strain of A. 

baumannii (figure 6b).19 Indeed, both polymers possess a -bacillosamine residue acylated non-

stoichiometrically with HB at N-4, but they differ in the absolute configuration of the GalpNA 

residue and the acetylation at O-6 of the GlcpN unit, which is absent in the MG1 CPS.  

As far as A. baumannii SMAL is concerned, its CPS is constituted of a pentasaccharide repeating 

unit (figure 7b), rich in amino sugars, as was often found in CPS or O-antigens from this bacterial 

species. The structure of this polysaccharide is not new, and it was recently reported for the O-

antigen of another A. baumannii strain, ATCC 17961.18 

The structures of the CPSs from A. baumannii MG1 and SMAL may contribute to the establishment 

of a serotyping scheme for this bacterium.  

 

4. Experimental 

4.1 Bacteria growth and CPS isolation 

A. baumannii strains SMAL and MG1 were cultivated in Luria Broth (LB) medium at 28°C and 

cells were collected by centrifugation (9 800 g, 20 min, 4°C), washed sequentially with distilled 

water, ethanol, acetone, and ethyl ether, then suspended in water and freeze-dried. 

For each strain, the isolation of the  LOS was performed on dry cells by PCP (2:8:5 v/v/v) 

extraction.12 After removal of the light solvents under vacuum, the LOS was precipitated from the 

phenol with water and washed with aqueous 80% phenol and acetone. The precipitate was 

suspended in water and lyophilized (strain SMAL yield 0.8% gLOS/gcells; strain MG1 yield 0.7% 
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gLOS/gcells). The remaining cell pellet was extracted according to the hot phenol/water protocol,13 

and water and phenol phases were dialyzed and freeze dried. In both cases, preliminary chemical 

and electrophoretic analysis revealed the presence of polysaccharide material in the water phases 

(strain SMAL yield 22% gLOS/gcells, strain MG1 yield 20% gLOS/gcells). The phenol phases were not 

investigated. 

The CPS were purified from nucleic acid, proteins and LOS by enzymatic treatment and repeated 

ultracentrifugations: for each strain, the crude water extract was solved in the digestion buffer (100 

mM TRIS, 50 mM NaCl, 10 mM MgCl2, buffer at pH 7.5) at a concentration of 5 mg/mL, and 

treated with DNAse (Roche, Germany 04716728001) at 37 °C overnight, successively Proteinase K 

(Roche, Germany 03115836001) was added and the solution left at 56 °C for 4 h. After dialysis and 

freeze-drying, enzyme-treated water phase (30 mg from each strain) was solved in distilled water 

and ultracentrifuged (105 000 g, 4°C for 12 h). The LOS-containing sediment was suspended in 

water and ultracentrifuged again at the same conditions. This sediment was lyophilized and used for 

further analysis (strain SMAL yield 9 mg, strain MG1 13 mg). The CPS-containing supernatants 

were combined and ultracentrifugated (500 000 g, 4°C, 48 h), the supernatant, namely the purified 

CPS, was freeze-dried and finally used for the chemical analyses (strain SMAL yield 18 mg, strain 

MG1 yield 15 mg). 

 

4.2 Chemical Analyses 

Monosaccharide compositional analysis (acetylated methyl glycosides) and absolute configuration 

analysis (octyl or butyl glycosides) were performed as reported elsewhere.20 

Monosaccharide derivatives were recognized on the basis of their GC-MS spectrum fragmentation 

pattern and by comparison of their retention time with that of authentic standards. At this regards, L-

GalpNA, and D-bacillosamine reference compounds were obtained from the LPS of Halomonas 

pantelleriensis14 and CPS of A. lwoffii F78, respectively.11 
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All samples were analysed with a Hewelett-Packard 5890 GC-MS instrument, equipped with a 

SPB-5 capillary column (Supelco, 30 m x 0.25 mm i.d., flow rate, 0.8 mL/min, He as carrier gas) 

and the temperature program: 150 °C for 5 min, 150→300 °C at 10 °C/min, 300 °C for 12 min; 

electronic impact mass spectra were recorded with an ionization energy of 70 eV and an ionizing 

current of 0.2 mA. 

 

4.3 SDS-PAGE and immunodetection analysis 

The sediments and supernatants obtained after UC were subjected to SDS-PAGE21 and Western 

Blot using the anti-lipid A  monoclonal antibody (mAb) A6.17 Discontinuous SDS-PAGE was 

performed on a miniprotean gel system (Bio-Rad) with a 5% stacking gel. The separating gel 

composition was optimized for the type of molecule screened, i.e. 15% for LOS and 8% (top half) 

and 15% (bottom half) for CPS. Samples were run at constant voltage (150 V), and gels were silver 

stained,16 applying Alcian blue first, as fixative.15 

Western blot analysis was accomplished using a Biorad Trans Blot Cell System and a PVDF 

membrane (pore size 0.45 μm). The membrane blotting was performed in Trans-Buffer (Tris 2.4 

g/L, glycin 11.5 g/L, 15% methanol) for 16 h, 10°C, 26 V. The membrane was incubated with 1% 

AcOH (100°C, 2h) to cleave the Kdo glycosidic linkage which was required because mAb A6 is 

specific for free lipid A. 

For Western blot detection, the membrane  was washed with Tris-Tween buffer (3 x 30 min; Tris 

1.21 g/L, Tween 20 0.5 ml/L, pH 8.0) then blocked for 1 h in Tris-Tween buffer with evaporated 

defatted milk (5%) and incubated for 1 h with mAb A6 (diluition 1:200) in dilution buffer 

(Na2HPO4 1.78 g/L, NaCl 8.77 g/L, Tween 20 0.5 ml/L, pH 7.4) and 2% of evaporated defatted 

milk. The membrane was then washed with Tris-Tween buffer (3 x 15 min) and incubated for 1 h 

with the secondary antibody alkaline phosphatase (AP)-conjugated goat anti-mouse IgG (Jackson 

ImmunoResearch cod. 115-055-003, dilution 1:1000). Finally, the membrane was rinsed with Tris-

Tween buffer (2x15 min) first and then with PBS, followed by washing with AP-buffer (10 min, 0.1 
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M NaHCO3, 1 mM MgCl26 H2O, pH 9.0) and treatment with a solution containing NBT (Biomol 

06428, 50 mg/mL in 70% DMF) and BCIP (Biomol 02291, 50 mg/mL in DMF), 2:1, v/v, in AP-

buffer, until the color developed. 

. 

4.5 Deacylation of CPS from A. baumannii SMAL 

Deacylation of both CPS was performed treating the sample (10 mg) with 4 M KOH (1 mL) at 

120°C for 16 h. After neutralization, the sample was desalted by SEC chromatography (Biogel P2, 

Biorad, 1.5 x 120 cm, eluent 50 mM NH4HCO3, flow rate 0.2 mL/min), from which it was 

recovered in the void volume of the column. 

 

4.6 NMR spectroscopy 

Homo-and heteronuclear spectra of the CPS from A. baumannii MG1 were recorded in deuterated 

water (D2O)  using Varian Inova 500 MHz spectrometer equipped with a inverse z-gradient probe 

(Consortium INCA, L488/92, Cluster 11) operating at 298 K. With regard to the CPS of A. 

baumannii SMAL, spectra were acquired on a Bruker 600 MHz equipped with a cryo probe; the 

fully deacetylated capsule (5 mg in 600 l of 30 mM NaOD in D2O) was measured at 291 K. 

Chemical shifts are expressed in ppm relative to internal acetone (1H at 2.225 ppm, 13C at 31.45 

ppm). Two-dimensional spectra (DQ-COSY, TOCSY, NOESY, gHSQC and gHMBC) were 

measured using the standard Varian or Bruker software. For the homonuclear experiment, 512 FIDs 

of 2048 complex data points were collected, with 40 scans per FID, a mixing time of 120 or 200 ms 

was applied for the TOCSY and NOESY spectra, respectively. For the HSQC and HMBC spectra, 

256 FIDS of 2048 complex points were acquired with 50 scans per FID. Processing of the Varian 

and Bruker data and analysis was performed with Bruker TopSpin 2.1 program. 
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Figure Legends 

 

Figure 1: SDS-PAGE (stacking gel 5%, separating gel 15 %), stained with Alcian blue and silver 

nitrate procedure) of the UC sediments; 1: A. b. SMAL (2 μg); 2: A. b. MG1 (2 μg); 3: E. coli O16 

LPS (2 μg)  

 

Figure 2: SDS-PAGE (Stacking gel 5%, separating gel 8 and 15 %) of the UC supernatants; lines 1 

and 2 are stained only with Alcian blue; lines 3-6 are silver stained applying Alcian blue as fixative 

first. 1: A. b. SMAL (1 μg); 2: A. bMG1 (1 μg); 3 and 5: A. b SMAL (1 and 3 μg); 4 and 6: A.b 

MG1 (1and 3 μg).  

 

Figure 3: Western blot of the UC supernatants (lines 2-5) and sediments (lines 6-7) from A. 

baumannii SMAL and MG1, detected with mAb A6. 1: LPS E. coli O16 (8 μg); 2 and 4: UC 

supernatant of A. b. SMAL (5 and 25 μg); 3 and 5: UC supernatant of A. baumannii MG1 (5 and 25 

μg); 6 and 7: UC sediments from A. baumannii SMAL and MG1, respectively (3 μg each).  

 

Figure 4: (500 MHz, 298 K) 1H NMR spectrum in D2O of the capsular polysaccharide from A. 

baumannii MG1. Comparison of Area1 and Area2 according to formula 1, suggested a substitution 

degree with HB at N-4 of the bacillosamine residue of 19%.  

 

Figure 5: The anomeric area of the NOESY spectrum (500 MHz, 298 K) of the CPS from A. 

baumannii MG1 in D2O, the inset shows the NOE contacts identified for residue C. The broad 

anomeric signal of C induced the same pattern in the NOE densities, which appeared large and 

flattened on the baseline; these signals were recognized by amplifying the area of interest, as 
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indicated in the inset. The intra-residue NOE C1,3 may be overestimated due to the coincidence of 

the signals from H-3 of C with H-3 of B. 

 

Figure 6. a) structure of the repeating unit of the capsular polysaccharide from A. baumannii MG1. 

R is HB (19 %) or Acetyl; b) structure of the O-antigen produced from A. baumannii strain 24, R is 

HB or Acetyl. 

 

Figure 7. Structure of the repeating unit of the capsular polysaccharide isolated from  A. baumannii 

SMAL, in its not (a) or acetylated form (b); residue labels reflect those used in the NMR 

assignment. 

 

 



Figure 1: SDS-PAGE (stacking gel 5%, separating gel 15 %, stained with Alcian blue and silver 
nitrate procedure) of ultracentrifuge sediments; 1: A. b. SMAL (2 μg); 2: A.b. MG1 (2 μg); 3: E. coli 
O16 LPS (2 μg)
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1 2 3



Figure 2: SDS-PAGE (Stacking gel 5%, separating gel 8 and 15 %) of ultracentrifuge supernatants; lines 
1 and 2

 

are stained only with Alcian blue; lines 3-6

 

are silver stained applying Alcian blue as fixative 
first. 1: A.b. SMAL (1 μg); 2: A.b MG1 (1 μg); 3

 

and 5: A.b SMAL (1 and 3 μg); 4

 

and 6: A.b MG1 (1 and 
3 μg).

8 %

15 %
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Figure 3: Western blot of ultracentrifuge (UC) supernatants (lines 2-5) and sediments (lines 
6-7) from A. baumannii SMAL and MG1, detected with mAb

 

A6. 1: LPS E. coli O16 (8 μg); 
2

 

and 4: UC supernatant of A. baumannii SMAL (5 and 25 μg); 3

 

and 5: UC supernatant of 
A. baumannii MG1 (5 and 25 μg); 6

 

and 7: UC sediments from A. baumannii SMAL and 
MG1, respectively (3 μg

 

each).
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Figure 4: (500 MHz, 298 K) 1H NMR spectrum of the capsular polysaccharide from A. baumannii 
MG1. Area1

 

represents the integration of the methylene protons from HBA (residue D, Area1

 

); Area2

 

accounts for  all the methyl signals and comprehends H-4s from HBA  (D

 

residue) and H-6s from 
bacillosamine

 

(C

 

residue) regardless the type of N-substitution at C-4  of this last unit (HBA or 
acetyl). Comparison of Area1

 

and Area2

 

according to formula 1,  suggested a substitution degree with 
HBA at N-4 of the bacillosamine

 

residue of 19%.
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Figure 5: The anomeric area of the NOESY spectrum (500 MHz, 298 K) of the CPS from A. 
baumannii MG1, the inset shows the NOE contacts identified for residue C. The broad anomeric 
signal of C

 

induced the same pattern in the NOE densities, which appeared large and flattened on 
the baseline; these signals were recognized by amplifying the area of interest, as indicated in the 
inset. The intra-residue NOE C1,3 maybe overestimated due to the coincidence of the signals from 
H-3 of C

 

with H-3 of B.



Figure 6. a) structure

 

of the repeating unit of the capsular polysaccharide from

 

A. 
baumannii MG1. R is

 

HBA (19 %) or Acetyl; b) structure of the O-antigen produced from 
A. baumannii strain 24, R is HBA or Acetyl.
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Figure 7. Structure of the repeating unit of the capsular polysaccharide isolated from  A. baumannii 
SMAL, in its

 

not

 

(a) or acetylated

 

form

 

(b).
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