
An Effective Approach for Injecting Faults in
Wireless Sensor Network Operating Systems

Marcello Cinque, Domenico Cotroneo, Catello Di Martino, Alessandro Testa
Dipartimento di Informatica e Sistemistica, Universita’ di Napoli Federico II,

Via Claudio 21, 80125 Napoli, Italy - ph: +39 081 7683812, fax: +39 0817683816
{macinque,cotroneo,catello.dimartino,a.testa}@unina.it

Abstract

This paper presents an effective approach for injecting
faults/errors in WSN nodes operating systems. The ap-
proach is based on the injection of faults at the assem-
bly level. Results show that depending on the concurrency
model and on the memory management, the operating sys-
tems react to injected errors differently, indicating that
fault containment strategies and hang-checking assertions
should be implemented to avoid spreading and activations
of errors.

1 Introduction

This paper presents an effective approach for injecting
faults/errors in Wireless Sensor Networks (WSN) operat-
ing systems (OS) and investigates how two of the com-
monly adopted WSN operating systems, namely TinyOS
[1] and MantisOS [2], react in presence of realistic
faults/errors.
TinyOS [1] is an open-source operating system for WSNs.
It features a component-based architecture which enables
rapid implementation while minimizing code size. The
concurrency model is based on tasks and events.
MantisOS [2] is a light-weight multithreaded operating
system for WSNs. Differently from TinyOS, it features a
more complex concurrency model, based on preemptively
time-sliced multithreading. In addition, semaphores are
provided to handle shared resources and to synchronize
application threads with device drivers, which also run as
threads.
The approach, presented briefly in section 2, is imple-
mented in a framework, named AVR-INJECT [3] in
charge of automating injection campaigns and outcome
analysis, making it possible to effectively compare WSN
OSs under a broad range of errors. Fault injection is used
to stress the operating systems.
Several papers have proposed approaches and tools related
to fault injection in WSN.
In [4] authors adopt a simulation-based fault injection ap-
proach to inject communication faults in the WSN gate-
ways. In [5] the toolSympathyis proposed. It provides
facilities to detect and debug failures in sensor networks.
It includes an algorithm to localize the root-causes of man-
ifested failures. The presented studies propose ad hoc so-

This work has been partially supported by the Regione Campania
in the context of the project Misura 3.17 POR 2000/2006, “REMOAM -
Reti di sensori per il monitoraggio dei rischi ambientali”.

lutions for injecting faults but no injection tools specif-
ically targeting WSNs. In addition, these studies focus
on a high level of abstraction, considering the fault of the
whole node or problems in the communication neglecting
the potential erratic behavior of damaged/faulty devices.
On the other hand, our goal is to study in detail the behav-
ior of the actual OS code running on a WSN node, under
realistic low-level faults, such as bit flips.
The paper ends with a presentation of the fault injection
campaign on TinyOS and MantisOS. The objective is to
compare the fault sensitivity of the two operating sys-
tems. Above 2,500 injections are performed in the pro-
cessor registers and OS code, i.e., data, stack, and code
area. We classify campaign outcomes with respect to
four classes: crash, hang, unknown errors, and not man-
ifested. The analysis provides quantitative and detailed
insight into OSs behavior under faults.

2 The Fault Injection Approach

The basic idea of the approach is to perform the injec-
tion by modifying atarget instructionof the original as-
sembly code (including the operating system code) which
aim is to produce the effects of the injected fault on the
target instruction by means of aperturbation function.
Several assembly-level perturbation functions are defined
in the framework, depending onwhat, whereand when
the fault is injected. Regarding the types of faults to be
injected, we assume Single Event Upsets (SEUs), also
known as bit flips [6], as fault model, for the following
motivations. First, the incidence of SEUs in real micropro-
cessors is increasing as the scale of integration increases
and the die voltage decrease. Second, they are more likely
to appear in harsh environments which are subjected to en-
vironmental disturbances, such as the environments where
WSNs are commonly deployed [7].
Finally, SEUs can be easily implemented in the assem-
bly code, and leads to easily understandable results. The
framework can be however extended considering other
fault models with different lead of abstraction, such as,
stuck-at-zero and stuck-at-value. As for the fault location,
the framework takes into account three possible choices,
based on the architecture of the AVR processor, namely:
data memory, code memory, and internal processor regis-
ters.

3 Experimental Results

In this section we report some of the results achievable
with AVR-INJECT aiming to show the potentiality of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca - Università degli studi di Napoli Federico II

https://core.ac.uk/display/55037899?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Table 1:Breakdown of campaign outcomes

Outcome

Operating System
TinyOS MantisOS

Total
Injection Area

Total
Injection Area

Code Memory SP SR Code Memory SP SR
Crash 221 17.8% 34.8% 9.0% 52.5% 3.6% 204 15.5% 2.9% 7.8% 85.3% 3.9%
Hang 338 27.3% 28.7% 21.3% 50.0% 0.0% 73 5.5% 12.3% 0.0% 21.9% 65.8%
Unknown 176 14.2% 33.0% 51.7% 6.3% 9.1% 553 41.9% 49.4% 21.7% 14.5% 14.5%
Not Manifested 505 40.7% 15.8% 28.7% 0.0% 55.4% 490 37.1% 29.4% 2.0% 34.3% 34.3%
Total Activations 1240 100.0% 1320 100.0%

the implemented fault injection approach. Results are
extracted from the execution of two campaigns on TinyOS
and MantisOS operating systems. A total of 2,560 fault
injections have been performed by the tool in about
12 hours on a Intel P4 machine, CPU Clock 3.5 GHz,
2048 MB RAM, equipped with Linux, kernel 2.6.18. In
order to provide a simple yet effective case study for the
tool, we selected a simple target application executing
a periodic lighting of the leds installed on the sensor
node. In the performed campaigns, the fault is randomly
introduced in the system by the tool, which generates all
the parameters (i.e. bit to flip, activation time, location).

3.1 Outcome Classification

AVR-INJECT is able to classify the outcome of an in-
jection. In particular, the following outcomes have been
observed (and classified by the tool) in our experiments:
- Crash: the sensor stops working, and no more instruc-
tions are executed by the processor.
- Hang: the sensor does not deliver any meaningful
output, even if it is active.
- Unknown: the execution of the instrumented code
diverges from the Golden Copy (GC) in one or more
intervals, then it returns to work normally.
- Not manifested: the target instruction is executed, but it
does not cause a visible abnormal impact on the sensor.

Table 2: A subset of TinyOS function analyzed in the performed campaign (N.M.= Not Manifested)

Procedure Hang Crash Unknown Total N.M. Hit ratio
C M SP SR C M SP SR C M SP SR

CC1000 write() (radio) 4 / / 0 2 / / 0 2 / / 0 8 16 33.0%
nescatomicend 0 / 6 / 0 / 2 / 8 0 0 / 16 0 100.0%

VirtualizeTimerC StartOneShotAt() 0 32 / 0 0 0 / 0 32 0 / 0 64 32 67.0%
TimerCtrl getInterruptFlag() 48 / 7 / 0 / 1 / 0 / 0 / 56 0 100.0%
VirtualizeTimerC fireTimers() 0 / / 0 32 / / 0 0 / / 0 32 8 80.0%
VirtualizeTimerC fired() 0 13 3 / 24 15 5 / 0 4 0 / 64 0 100.0%
Timer0Async stabiliseTimer() 0 / 3 / 0 / 5 / 0 / 0 / 8 48 14.0%

nescatomicstart 0 / 25 / 1 / 15 / 7 / 0 / 48 0 100.0%
VirtualizeTimerC getNow() / 8 5 / / 0 3 / / 0 0 / 16 0 100.0%
VirtualizeTimerC startPeriodic() / 0 4 0 / 0 3 0 / 0 1 0 8 32 20.0%
Timer0 isr() (vect 15) / 8 11 / / 0 13 / / 0 0 / 32 48 40.0%
GeneralIOPinP set() / 0 5 / / 0 3 / / 8 0 / 16 0 100.0%

Table 3:A subset of MantisOS functions analyzed in the performed campaign (N.M.= Not Manifested)

Procedure Hang Crash Unknown Total N.M. Hit ratio
C M SP SR C M SP SR C M SP SR

hardwareid init 6 / 2 48 0 / 5 0 10 / 0 0 70 1 98.6%
mosmemalloc 0 / 0 0 0 / 8 8 64 / 0 0 80 16 83.3%
dispatcher / 0 0 0 / 0 40 0 / 24 0 8 72 160 31.0%
mos threadnew / 0 0 0 / 0 24 0 / 8 32 24 88 8 91.7%
dispatcherisr (vect 12) / 0 0 / / 0 24 / / 56 0 / 80 8 90.9%
mosmutexunlock / 0 0 / / 8 8 / / 0 0 / 16 0 100.0%
mossempostdispatch / 0 1 / / 0 15 / / 0 0 / 16 8 66.7%
com init / 0 5 / / 0 3 / / 8 0 / 16 0 100.0%

3.2 Outcome Analysis

Table 1 shows the breakdown of the outcomes of the
two fault injection campaigns on TinyOS and MantisOS.
TinyOS and MantisOS present a comparable amount of
Crash(17.8% and 15.5% of the total injections, respec-
tively) andNot Manifestedoutcomes, 40.7% and 37.1% of
the total injections, respectively. However, a different per-
spective is provided by looking at the injection areas. In
MantisOS the larger amount of crashes is obtained when
injecting errors in the SP register (85.0% of the overall
crashes), while in TinyOS crashes are mainly caused by
injections in code (34.8%) and in the SP register (52.5%).
The observed differences can be explained by the dispar-
ity in the way MantisOS and TinyOS manage the memory
and for the different concurrency model adopted. More
specifically, in MantisOS all threads stack frames are in
the higher part of the memory and operating systems data
structures (e.g., threads and drivers tables) are in the lower
part of the memory. SP register injection primarily result
in Stack overflow, i.e., a corruption of the frame pointers
stored on the stack. As a result, the threads attend to ac-
cess memory beyond the currently allocated space for the
stack. Consequently, an injection in the SP register may
cause an alteration of the OS data structures likely caus-
ing a crash. Another possible cause is due to the MantisOS
multithreading. Threads use their stack to save the context
at a context switch. Hence, an injection in the SP register
is very likely to force a wrong store/load of the context on
the stack, e.g., a wrong value stored or loaded for the PC
register, which we observed to cause a crash in the 98.0%
of the cases.

Differently from the crashes, MantisOS and TinyOS
present different values forHangs and Unknown out-
comes, which respectively constitute the 27.3% (338) and
14.2% (176) of total error activations (1240) for TinyOS
against the 5.5% (73) and 41.9% (553) accounted for
MantisOS (over a total of 1320 activations). In TinyOS
the 50.0% ofHangsmanifests after an injection in the SP
register, while injections performed in the code area and in
memory account for 29.0% and 21.0%, respectively. The
higher hang rate due to SP register errors is mainly due
to wrong return address fetched from the stack which is
likely to cause infinite loops between the caller and the
callee function. This effect is mitigated in Mantis thanks
to the time-sliced multithreading which prevents a thread
to hang. As another source of hangs, TinyOS is very sen-
sitive to errors injected in code and memory area.

3.3 Operating Systems Analysis

The AVR-INJECT framework enables also the detailed
study of OSs by performing the injection during the execu-
tion of OSs functions. A subset of TinyOS and MantisOS
primitives studied in the performed fault injection cam-
paign is shown in Tables 2 and 3. More specifically AVR-
INJECT can inject faults/errors when a targeted function
of the OS is executed. This analysis results useful for eval-
uating the robustness of OS components/functions to in-

jected errors. Tables 2 shows the impact of error injected
in the Code Area (C), Memory Area (M), SP register (SP)
and SR Register (SR) on TinyOS functions, reporting the
hit ratio of the injections (i.e., the number of activated and
manifested failures due to faults/errors injected) and the
number of not manifested outcomes (N.M.) accounted in
the performed campaigns. The results of a similar analy-
sis for MantisOS are shown in Table 3.
For instance, concerning TinyOS (Table 2), the most crit-
ical OS functions are those related to Timers and IO man-
agement, such as VirtualizeTimerC, Timer0 functions, and
GeneralIOPins set() function. Concerning MantisOS (Ta-
ble 3), the most critical OS functions are those related
to the management and scheduling of threads, such as
mos threadnew, dispatcherisr and dispatcher functions.

4 Conclusions and Future Work

This paper presented the benefits of using assembly
level fault injection for comparing operating systems for
WSNs. Main findings are: (i) the multi-threading con-
currency model of MantisOS decreases the probability of
hangs and improves the detectability; (ii) I/O and timers
management are critical in TinyOS, while the simplified
concurrency management decreases the possibility of fail
silent violations, related to failures classified as unknown.
Future work will be devoted to develop a JTAG inter-
face for the AVR-INJECT framework, in order to perform
real world case study with realistic workload and several
nodes.

References

[1] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse,
A. Woo, D. Gay, J. Hill, M. Welsh, E. Brewer, et al. TinyOS: An op-
erating system for wireless sensor networks.Ambient Intelligence by
W. Weber, J. Rabaey, and E. Aarts. 2005. Springer; 1 edition (April
19), 2005.

[2] Shah Bhatti, James Carlson, Hui Dai, Jing Deng, Jeff Rose,An-
mol Sheth, Brian Shucker, Charles Gruenwald, Adam Torgerson,
and Richard Han. Mantis os: an embedded multithreaded operat-
ing system for wireless micro sensor platforms.Mob. Netw. Appl.,
10(4):563–579, 2005.

[3] Marcello Cinque, Domenico Cotroneo, Catello Di Martino,Stefano
Russo, and Alessandro Testa. Avr-inject: A tool for injecting faults
in wireless sensor nodes. InIPDPS ’09: Proceedings of the 2009
IEEE International Symposium on Parallel&Distributed Process-
ing, pages 1–8, Rome,Italy, 2009. IEEE Computer Society.

[4] G. Gupta and M. Younis. Fault-tolerant clustering of wireless sensor
networks.IEEE, 2003.

[5] Nithya Ramanathan, Kevin Chang, Rahul Kapur, Lewis Girod, Ed-
die Kohler, and Deborah Estrin. Sympathy for the sensor network
debugger. InSenSys ’05: Proceedings of the 3rd international con-
ference on Embedded networked sensor systems, pages 255–267,
New York, NY, USA, 2005. ACM.

[6] J.H. Barton, E.W. Czeck, Z.Z. Segall, and D.P. Siewiorek. Fault
injection experiments using fiat.Computers, IEEE Transactions on,
39(4):575–582, Apr 1990.

[7] J. Polastre, R. Szewczyk, A. Mainwaring, D. Culler, and J. An-
derson. Analysis of wireless sensor networks for habitat monitor-
ing.Wireless sensor networks.399–423. Kluwer Academic Publish-
ers, Norwell, MA, USA, 2004.

