Characteristic morphisms of generalized episturmian words

Michelangelo Bucci, Aldo de Luca, and Alessandro De Luca
Dipartimento di Matematica e Applicazioni "R. Caccioppoli"
Università degli Studi di Napoli Federico II
Via Cintia, Monte S. Angelo, I-80126 Napoli, Italy
\{micbucci, aldo.deluca, alessandro.deluca\}@unina.it

Abstract

In a recent paper with L. Q. Zamboni, the authors introduced the class of ϑ-episturmian words. An infinite word over A is standard ϑ episturmian, where ϑ is an involutory antimorphism of A^{*}, if its set of factors is closed under ϑ and its left special factors are prefixes. When ϑ is the reversal operator, one obtains the usual standard episturmian words. In this paper, we introduce and study ϑ-characteristic morphisms, that is, morphisms which map standard episturmian words into standard ϑ episturmian words. They are a natural extension of standard episturmian morphisms. The main result of the paper is a characterization of these morphisms when they are injective. In order to prove this result, we also introduce and study a class of biprefix codes which are overlap-free, i.e., any two code words do not overlap properly, and normal, i.e., no proper suffix (prefix) of any code-word is left (right) special in the code. A further result is that any standard ϑ-episturmian word is a morphic image, by an injective ϑ-characteristic morphism, of a standard episturmian word.

Introduction

The study of combinatorial and structural properties of finite and infinite words is a subject of great interest, with many applications in mathematics, physics, computer science, and biology (see for instance [2, 14]). In this framework, Sturmian words play a central role, since they are the aperiodic infinite words of minimal "complexity" (see [2]). By definition, Sturmian words are on a binary alphabet; some natural extensions to the case of an alphabet with more than two letters have been given in [9, 12], introducing the class of the so-called episturmian words.

Several extensions of standard episturmian words are possible. For example, in [10] a generalization was obtained by making suitable hypotheses on the lengths of palindromic prefixes of an infinite word; in $[8,5,4,6]$ different extensions were introduced, all based on the replacement of the reversal operator R by an arbitrary involutory antimorphism ϑ of the free monoid A^{*}. In particular, the so called ϑ-standard and standard ϑ-episturmian words were studied. An
infinite word over A is standard ϑ-episturmian if its set of factors is closed under ϑ and its left special factors are prefixes.

In this paper we introduce and study ϑ-characteristic morphisms, a natural extension of standard episturmian morphisms, which map all standard episturmian words on an alphabet X to standard ϑ-episturmian words over some alphabet A. When $X=A$ and $\vartheta=R$, one obtains the usual standard episturmian morphisms (cf. [9, 12, 11]). Beside being interesting by themselves, such morphisms are also a powerful tool for constructing nontrivial examples of standard ϑ-episturmian words and for studying their properties.

In Section 2 we introduce ϑ-characteristic morphisms and prove some of their structural properties (mainly concerning the images of letters). In Section 3 our main results are given. A first theorem is a characterization of injective ϑ characteristic morphisms such that the images of the letters are unbordered ϑ-palindromes. The section concludes with a full characterization (cf. Theorem 3.13) of all injective ϑ-characteristic morphisms, to whose proof Section 5 is dedicated. This result, which solves a problem posed in [4], is very useful to construct nontrivial examples of ϑ-characteristic morphisms and then of standard ϑ-episturmian words. Moreover, one has a quite simple procedure to decide whether a given injective morphism is ϑ-characteristic.

In Section 4 we study some properties of two classes of codes: the overlapfree codes, i.e., codes whose any two elements do not overlap properly, and the normal codes, i.e., codes in which no proper nonempty prefix (suffix) which is not a code-word, appears followed (preceded) by two different letters. The family of biprefix, overlap-free, and normal codes appears to be deeply connected with ϑ-characteristic morphisms, and especially useful for the proof of our main result.

In Section 6, we prove that every standard ϑ-episturmian word is a morphic image of a standard episturmian word under a suitable injective ϑ-characteristic morphism. This solves another question asked in [4].

A short version of this work was presented at the Developments in Language Theory conference, held in Kyoto in September 2008 [3].

1 Preliminaries

Let A be a nonempty finite set, or alphabet. In the following, A^{*} (resp. A^{+}) will denote the free monoid (resp. semigroup) generated by A. The elements of A are called letters and those of A^{*} words. The identity element of A^{*} is called empty word and it is denoted by ε. A word $w \in A^{+}$can be written uniquely as a product of letters $w=a_{1} a_{2} \cdots a_{n}$, with $a_{i} \in A, i=1, \ldots, n$. The integer n is called the length of w and is denoted by $|w|$. The length of ε is conventionally 0 . For any $a \in A,|w|_{a}$ denotes the number of occurrences of a in the word w. For any nonempty word w, we will denote by w^{f} and w^{ℓ} respectively the first and the last letter of w.

A word u is a factor of $w \in A^{*}$ if $w=r u s$ for some words r and s. In the special case $r=\varepsilon$ (resp. $s=\varepsilon$), u is called a prefix (resp. suffix) of w. A factor u of w is proper if $u \neq w$. We denote respectively by Fact w, Pref w, and Suff w the sets of all factors, prefixes, and suffixes of the word w. For $Y \subseteq A^{*}$, Pref Y, Suff Y, and Fact Y will denote respectively the sets of prefixes, suffixes, and factors of all the words of Y.

A factor of w is called a border of w if it is both a prefix and a suffix of w. A word is called unbordered if its only proper border is ε. A positive integer p is a period of $w=a_{1} \cdots a_{n}$ if whenever $1 \leq i, j \leq|w|$ one has that

$$
i \equiv j \quad(\bmod p) \Longrightarrow a_{i}=a_{j}
$$

As is well known [13], a word w has a period $p \leq|w|$ if and only if it has a border of length $|w|-p$. Thus a nonempty word w is unbordered if and only if its minimal period is $|w|$. We recall the famous theorem of Fine and Wilf, stating that if a word w has two periods p and q, and $|w| \geq p+q-\operatorname{gcd}(p, q)$, then w has also the period $\operatorname{gcd}(p, q)$ (cf. [13]).

A word $w \in A^{+}$is primitive if it cannot be written as a power u^{k} with $k>1$. As is well known (cf. [13]), any nonempty word w is a power of a unique primitive word, also called the primitive root of w.

A right-infinite word over the alphabet A, called infinite word for short, is a mapping $x: \mathbb{N}_{+} \longrightarrow A$, where \mathbb{N}_{+}is the set of positive integers. One can represent x as

$$
x=x_{1} x_{2} \cdots x_{n} \cdots,
$$

where for any $i>0, x_{i}=x(i) \in A$. A (finite) factor of x is either the empty word or any sequence $u=x_{i} \cdots x_{j}$ with $i \leq j$, i.e., any block of consecutive letters of x. If $i=1$, then u is a prefix of x. We shall denote by $x_{[n]}$ the prefix of x of length n, and by Fact x and Pref x the sets of finite factors and prefixes of x respectively. The set of all infinite words over A is denoted by A^{ω}. We also set $A^{\infty}=A^{*} \cup A^{\omega}$. For any $Y \subseteq A^{*}, Y^{\omega}$ denotes the set of infinite words which can be factorized by the elements of Y. If $w \in A^{\infty}$, alph w will denote the set of letters occurring in w.

Let $w \in A^{\infty}$. An occurrence of a factor u in w is any pair $(\lambda, \rho) \in A^{*} \times A^{\infty}$ such that $w=\lambda u \rho$. If $v \in A^{*}$ is a prefix of w, then $v^{-1} w$ denotes the unique word $u \in A^{\infty}$ such that $v u=w$.

A factor u of w is called right special if there exist $a, b \in A, a \neq b$, such that $u a$ and $u b$ are both factors of w. Symmetrically, u is said left special if $a u, b u \in$ Fact w. A word u is called a right (resp. left) special factor of a set $Y \subseteq A^{*}$ if there exist letters $a, b \in A$ such that $a \neq b$ and $u a, u b \in$ Fact Y (resp. $a u, b u \in \operatorname{Fact} Y$). We denote by $R S Y$ (resp. $L S Y$) the set of right (resp. left) special factors of Y.

The reversal of a word $w=a_{1} a_{2} \cdots a_{n}$, with $a_{i} \in A$ for $1 \leq i \leq n$, is the word $\tilde{w}=a_{n} \cdots a_{1}$. One sets $\tilde{\varepsilon}=\varepsilon$. A palindrome is a word which equals its reversal. We shall denote by $P A L(A)$, or $P A L$ when no confusion arises, the set of all palindromes over A.

A morphism (resp. antimorphism) from A^{*} to the free monoid B^{*} is any $\operatorname{map} \varphi: A^{*} \rightarrow B^{*}$ such that $\varphi(u v)=\varphi(u) \varphi(v)($ resp. $\varphi(u v)=\varphi(v) \varphi(u))$ for all $u, v \in A^{*}$. The morphism (resp. antimorphism) φ is nonerasing if for any $a \in A, \varphi(a) \neq \varepsilon$. A morphism φ can be naturally extended to A^{ω} by setting for any $x=x_{1} x_{2} \cdots x_{n} \cdots \in A^{\omega}$,

$$
\varphi(x)=\varphi\left(x_{1}\right) \varphi\left(x_{2}\right) \cdots \varphi\left(x_{n}\right) \cdots
$$

A code over A is a subset Z of A^{+}such that every word of Z^{+}admits a unique factorization by the elements of Z (cf. [1]). A subset of A^{+}with the property that none of its elements is a proper prefix (resp. suffix) of any other
is trivially a code, usually called a prefix (resp. suffix) code. We recall that if Z is a prefix code, then Z^{*} is left unitary, i.e., for all $p \in Z^{*}$ and $w \in A^{*}$, $p w \in Z^{*}$ implies $w \in Z^{*}$. A biprefix code is a code which is both prefix and suffix. We say that a code Z over A is overlap-free if no two of its elements overlap properly, i.e., if for all $u, v \in Z$, Suff $u \cap \operatorname{Pref} v \subseteq\{\varepsilon, u, v\}$.

For instance, let $Z_{1}=\{a, b a c, a b c\}$ and $Z_{2}=\{a, b a c, c b a\}$. One has that Z_{1} is an overlap-free and suffix code, whereas Z_{2} is a prefix code which is not overlap-free as $b a c$ and $c b a$ overlap properly.

A code $Z \subseteq A^{+}$will be called right normal if it satisfies the following condition:

$$
\begin{equation*}
(\operatorname{Pref} Z \backslash Z) \cap R S Z \subseteq\{\varepsilon\}, \tag{1}
\end{equation*}
$$

i.e., any proper and nonempty prefix u of any word of Z such that $u \notin Z$ is not right special in Z. In a symmetric way, a code Z is called left normal if it satisfies the condition

$$
\begin{equation*}
(\operatorname{Suff} Z \backslash Z) \cap L S Z \subseteq\{\varepsilon\} . \tag{2}
\end{equation*}
$$

A code Z is called normal if it is right and left normal.
As an example, the code $Z_{1}=\{a, a b, b b\}$ is right normal but not left normal; the code $Z_{2}=\{a, a b a, a a b\}$ is normal. The code $Z_{3}=\{a, c a d, b a c a d a d\}$ is biprefix, overlap-free, and right normal, and the code $Z_{4}=\{a, b a d c\}$ is biprefix, overlap-free, and normal.

The following proposition and lemma will be useful in the sequel.
Proposition 1.1. Let Z be a biprefix, overlap-free, and right normal (resp. left normal) code. Then:

1. if $z \in Z$ is such that $z=\lambda v \rho$, with $\lambda, \rho \in A^{*}$ and v a nonempty prefix (resp. suffix) of $z^{\prime} \in Z$, then λz^{\prime} (resp. $z^{\prime} \rho$) is a prefix (resp. suffix) of z, proper if $z \neq z^{\prime}$.
2. for $z_{1}, z_{2} \in Z$, if $z_{1}^{f}=z_{2}^{f}$ (resp. $z_{1}^{\ell}=z_{2}^{\ell}$), then $z_{1}=z_{2}$.

Proof. Let $z=\lambda v \rho$ with $v \in \operatorname{Pref} z^{\prime}$ and $v \neq \varepsilon$. If $v=z^{\prime}$, there is nothing to prove. Suppose then that v is a proper prefix of z^{\prime}. Since Z is a prefix code, any proper nonempty prefix of z^{\prime}, such as v, is not an element of Z; moreover, it is not right special in Z, since Z is right normal. Therefore, to prove the first statement it is sufficient to show that $|v \rho| \geq\left|z^{\prime}\right|$, where the inequality is strict if $z \neq z^{\prime}$. Indeed, if $|v \rho|<\left|z^{\prime}\right|$, then a proper prefix of z^{\prime} would be a suffix of z, which is impossible as Z is an overlap-free code. If $|v \rho|=\left|z^{\prime}\right|$, then $z^{\prime} \in \operatorname{Suff} z$, so that $z^{\prime}=z$ as Z is a suffix code.

Let us now prove the second statement. Let $z_{1}, z_{2} \in Z$ with $z_{1}^{f}=z_{2}^{f}$. By contradiction, suppose $z_{1} \neq z_{2}$. By the preceding statement, we derive that z_{1} is a proper prefix of z_{2} and z_{2} is a proper prefix of z_{1}, which is clearly absurd. The symmetrical claims can be analogously proved.

From the preceding proposition, a biprefix, overlap-free, and normal code satisfies both properties 1 and 2 and their symmetrical statements. Some further properties of such codes will be given in Section 4.

Lemma 1.2. Let $g: B^{*} \rightarrow A^{*}$ be an injective morphism such that $g(B)=Z$ is a prefix code. Then for all $p \in B^{*}$ and $q \in B^{\infty}$ one has that p is a prefix of q if and only if $g(p)$ is a prefix of $g(q)$.

Proof. The 'only if' part is trivial. Therefore, let us prove the 'if' part. Let us first suppose $q \in B^{*}$, so that $g(q)=g(p) \zeta$ for some $\zeta \in A^{*}$. Since $g(p), g(q) \in Z^{*}$ and Z^{*} is left unitary, it follows that $\zeta \in Z^{*}$. Therefore, there exists, and is unique, $r \in B^{*}$ such that $g(r)=\zeta$. Hence $g(q)=g(p) g(r)=g(p r)$. Since g is injective one has $q=p r$ which proves the assertion in this case. If $q \in B^{\omega}$, there exists a prefix $q_{[n]}$ of q such that $g(p) \in \operatorname{Pref} g\left(q_{[n]}\right)$. By the previous argument, it follows that p is a prefix of $q_{[n]}$ and then of q.

1.1 Standard episturmian words and morphisms

We recall (cf. [9, 12]) that an infinite word $t \in A^{\omega}$ is standard episturmian if it is closed under reversal (that is, if $w \in$ Fact t then $\tilde{w} \in$ Fact t) and each of its left special factors is a prefix of t. We denote by $\operatorname{SEpi}(A)$, or by $S E p i$ when there is no ambiguity, the set of all standard episturmian words over the alphabet A.

Given a word $w \in A^{*}$, we denote by $w^{(+)}$its right palindrome closure, i.e., the shortest palindrome having w as a prefix (cf. [7]). If Q is the longest palindromic suffix of w and $w=s Q$, then $w^{(+)}=s Q \tilde{s}$. For instance, if $w=a b a c b c a$, then $w^{(+)}=a b a c b c a b a$.

We define the iterated palindrome closure operator ${ }^{1} \psi: A^{*} \rightarrow A^{*}$ by setting $\psi(\varepsilon)=\varepsilon$ and $\psi(v a)=(\psi(v) a)^{(+)}$for any $a \in A$ and $v \in A^{*}$. From the definition, one easily obtains that the map ψ is injective. Moreover, for any $u, v \in A^{*}$, one has $\psi(u v) \in \psi(u) A^{*} \cap A^{*} \psi(u)$. The operator ψ can then be naturally extended to A^{ω} by setting, for any infinite word x,

$$
\psi(x)=\lim _{n \rightarrow \infty} \psi\left(x_{[n]}\right) .
$$

The following fundamental result was proved in [9]:
Theorem 1.3. An infinite word t is standard episturmian over A if and only if there exists $\Delta \in A^{\omega}$ such that $t=\psi(\Delta)$.

For any $t \in S E p i$, there exists a unique Δ such that $t=\psi(\Delta)$. This Δ is called the directive word of t. If every letter of A occurs infinitely often in Δ, the word t is called a (standard) Arnoux-Rauzy word. In the case of a binary alphabet, an Arnoux-Rauzy word is usually called a standard Sturmian word (cf. [2]).
Example 1.4. Let $A=\{a, b\}$ and $\Delta=(a b)^{\omega}$. The word $\psi(\Delta)$ is the famous Fibonacci word

$$
\mathrm{f}=a b a a b a b a a b a a b a b a a b a b a \cdots .
$$

If $A=\{a, b, c\}$ and $\Delta=(a b c)^{\omega}$, then $\psi(\Delta)$ is the so-called Tribonacci word

$$
\tau=a b a c a b a a b a c a b a b a c a b a a b a c a b a c a \cdots .
$$

A letter $a \in A$ is said to be separating for $w \in A^{\infty}$ if it occurs in each factor of w of length 2 . We recall the following well known result from [9]:

Proposition 1.5. Let t be a standard episturmian word and a be its first letter. Then a is separating for t.

[^0]For instance, the letter a is separating for f and τ.
We report here some properties of the operator ψ which will be useful in the sequel. The first one is known (see for instance [7, 9]); we give a proof for the sake of completeness.

Proposition 1.6. For all $u, v \in A^{*}, u$ is a prefix of v if and only if $\psi(u)$ is a prefix of $\psi(v)$.

Proof. If u is a prefix of v, from the definition of the operator ψ, one has that $\psi(v) \in \psi(u) A^{*} \cap A^{*} \psi(u)$, so that $\psi(u)$ is a prefix (and a suffix) of $\psi(v)$. Let us now suppose that $\psi(u)$ is a prefix of $\psi(v)$. If $\psi(u)=\psi(v)$, then, since ψ is injective, one has $u=v$. Hence, suppose that $\psi(u)$ is a proper prefix of $\psi(v)$. If $u=\varepsilon$, the result is trivial. Hence we can suppose that $u, v \in A^{+}$. Let $v=a_{1} \cdots a_{n}$ and i be the integer such that $1 \leq i \leq n-1$ and

$$
\left|\psi\left(a_{1} \cdots a_{i}\right)\right| \leq|\psi(u)|<\left|\psi\left(a_{1} \cdots a_{i+1}\right)\right| .
$$

If $\left|\psi\left(a_{1} \cdots a_{i}\right)\right|<|\psi(u)|$, then $\psi\left(a_{1} \cdots a_{i}\right) a_{i+1}$ is a prefix of the palindrome $\psi(u)$, so that one would have:

$$
\left|\psi\left(a_{1} \cdots a_{i+1}\right)\right|=\left|\left(\psi\left(a_{1} \cdots a_{i}\right) a_{i+1}\right)^{(+)}\right| \leq|\psi(u)|<\left|\psi\left(a_{1} \cdots a_{i+1}\right)\right|
$$

which is a contradiction. Therefore $\left|\psi\left(a_{1} \cdots a_{i}\right)\right|=|\psi(u)|$, that implies $\psi\left(a_{1} \cdots a_{i}\right)=$ $\psi(u)$ and $u=a_{1} \cdots a_{i}$.

Proposition 1.7. Let $x \in A \cup\{\varepsilon\}$, $w^{\prime} \in A^{*}$, and $w \in w^{\prime} A^{*}$. Then $\psi\left(w^{\prime} x\right)$ is a factor of $\psi(w x)$.

Proof. By the previous proposition, $\psi\left(w^{\prime}\right)$ is a prefix of $\psi(w)$. This solves the case $x=\varepsilon$. For $x \in A$, we prove the result by induction on $n=|w|-\left|w^{\prime}\right|$.

The assertion is trivial for $n=0$. Let then $n \geq 1$ and write $w=u a$ with $a \in A$ and $u \in A^{*}$. As $w^{\prime} \in \operatorname{Pref} u$ and $|u|-\left|w^{\prime}\right|=n-1$, we can assume by induction that $\psi\left(w^{\prime} x\right)$ is a factor of $\psi(u x)$. Hence it suffices to show that $\psi(u x) \in \operatorname{Fact} \psi(w x)$. We can write

$$
\psi(w)=(\psi(u) a)^{(+)}=\psi(u) a v=\tilde{v} a \psi(u)
$$

for some $v \in A^{*}$, so that $\psi(w x)=(\tilde{v} a \psi(u) x)^{(+)}$. Since $\psi(u)$ is the longest proper palindromic prefix and suffix of $\psi(w)$, if $x \neq a$ it follows that the longest palindromic suffixes of $\psi(u) x$ and $\psi(w) x$ must coincide, so that $\psi(u x)=(\psi(u) x)^{(+)}$ is a factor of $\psi(w x)$, as desired.

If $x=a$, then $\psi(u x)=\psi(w)$ is trivially a factor of $\psi(w x)$. This concludes the proof.

The following proposition was proved in [9, Theorem 6].
Proposition 1.8. Let $x \in A, u \in A^{*}$, and $\Delta \in A^{\omega}$. Then $\psi(u) x$ is a factor of $\psi(u \Delta)$ if and only if x occurs in Δ.

For each $a \in A$, let $\mu_{a}: A^{*} \rightarrow A^{*}$ be the morphism defined by $\mu_{a}(a)=a$ and $\mu_{a}(b)=a b$ for all $b \in A \backslash\{a\}$. If $a_{1}, \ldots, a_{n} \in A$, we set $\mu_{w}=\mu_{a_{1}} \circ \cdots \circ \mu_{a_{n}}$ (in particular, $\mu_{\varepsilon}=\operatorname{id}_{A}$). The next proposition, proved in [11], shows a connection between these morphisms and iterated palindrome closure.

Proposition 1.9. For any $w, v \in A^{*}, \psi(w v)=\mu_{w}(\psi(v)) \psi(w)$.
By the preceding proposition, if $v \in A^{\omega}$ then one has

$$
\begin{aligned}
\psi(w v) & =\lim _{n \rightarrow \infty} \psi\left(w v_{[n]}\right)=\lim _{n \rightarrow \infty} \mu_{w}\left(\psi\left(v_{[n]}\right)\right) \psi(w) \\
& =\lim _{n \rightarrow \infty} \mu_{w}\left(\psi\left(v_{[n]}\right)\right)=\mu_{w}(\psi(v)) .
\end{aligned}
$$

Thus, for any $w \in A^{*}$ and $v \in A^{\omega}$ we have

$$
\begin{equation*}
\psi(w v)=\mu_{w}(\psi(v)) . \tag{3}
\end{equation*}
$$

Corollary 1.10. For any $t \in A^{\omega}$ and $w \in A^{*}, \psi(w)$ is a prefix of $\mu_{w}(t)$.
Proof. Let $t=t_{1} t_{2} \cdots t_{n} \cdots$, with $t_{i} \in A$ for $i \geq 1$. We prove that $\psi(w)$ is a prefix of $\mu_{w}\left(t_{[n]}\right)$ for all n such that $\left|\mu_{w}\left(t_{[n]}\right)\right| \geq|\psi(w)|$. Indeed, by Proposition 1.9 we have, for all $i \geq 1, \mu_{w}\left(t_{i}\right) \psi(w)=\psi\left(w t_{i}\right)=\psi(w) \xi_{i}$ for some $\xi_{i} \in A^{*}$. Hence

$$
\mu_{w}\left(t_{[n]}\right) \psi(w)=\mu_{w}\left(t_{1}\right) \cdots \mu_{w}\left(t_{n}\right) \psi(w)=\psi(w) \xi_{1} \cdots \xi_{n}
$$

and this shows that $\psi(w)$ is a prefix of $\mu_{w}\left(t_{[n]}\right)$.
From the definition of the morphism $\mu_{a}, a \in A$, it is easy to prove the following:

Proposition 1.11. Let $w \in A^{\infty}$ and a be its first letter. Then a is separating for w if and only if there exists $\alpha \in A^{\infty}$ such that $w=\mu_{a}(\alpha)$.

For instance, the letter a is separating for the word $w=a b a c a a a c a b a$, and one has $w=\mu_{a}(b c a a c b a)$.

We recall (cf. $[9,12,11]$) that a standard episturmian morphism of A^{*} is any composition $\mu_{w} \circ \sigma$, with $w \in A^{*}$ and $\sigma: A^{*} \rightarrow A^{*}$ a morphism extending to A^{*} a permutation on the alphabet A. All these morphisms are injective. The set \mathcal{E} of standard episturmian morphisms is a monoid under map composition. The importance of standard episturmian morphisms, and the reason for their name, lie in the following (see $[9,12]$):

Theorem 1.12. An injective morphism $\varphi: A^{*} \rightarrow A^{*}$ is standard episturmian if and only if $\varphi(S E p i) \subseteq S E p i$, that is, if and only if it maps every standard episturmian word over A into a standard episturmian word over A.

A pure standard episturmian morphism is just a μ_{w} for some $w \in A^{*}$. Trivially, the set of pure standard episturmian morphisms is the submonoid of \mathcal{E} generated by the set $\left\{\mu_{a} \mid a \in A\right\}$. The following was proved in [9]:

Proposition 1.13. Let $t \in A^{\omega}$ and $a \in A$. Then $\mu_{a}(t)$ is a standard episturmian word if and only if so is t.

1.2 Involutory antimorphisms and pseudopalindromes

An involutory antimorphism of A^{*} is any antimorphism $\vartheta: A^{*} \rightarrow A^{*}$ such that $\vartheta \circ \vartheta=\mathrm{id}$. The simplest example is the reversal operator:

$$
\begin{aligned}
R: A^{*} & \longrightarrow A^{*} \\
w & \longmapsto \tilde{w} .
\end{aligned}
$$

Any involutory antimorphism ϑ satisfies $\vartheta=\tau \circ R=R \circ \tau$ for some morphism $\tau: A^{*} \rightarrow A^{*}$ extending an involution of A. Conversely, if τ is such a morphism, then $\vartheta=\tau \circ R=R \circ \tau$ is an involutory antimorphism of A^{*}.

Let ϑ be an involutory antimorphism of A^{*}. We call ϑ-palindrome any fixed point of ϑ, i.e., any word w such that $w=\vartheta(w)$, and denote by $P A L_{\vartheta}$ the set of all ϑ-palindromes. We observe that $\varepsilon \in P A L_{\vartheta}$ by definition, and that R-palindromes are exactly the usual palindromes. If one makes no reference to the antimorphism ϑ, a ϑ-palindrome is called a pseudopalindrome.

Some general properties of pseudopalindromes, mainly related to conjugacy and periodicity, have been studied in [8]. We mention here the following lemma, which will be useful in the sequel:

Lemma 1.14. Let w be in $P A L_{\vartheta}$. If p is a period of w, then each factor of w of length p is in $P A L_{\vartheta}^{2}$.

For instance, let $A=\{a, b\}$ and let $\vartheta(a)=b, \vartheta(b)=a$. The word $w=$ babaababbaba is a ϑ-palindrome, having the periods 8 and 10. Any factor of w of length 8 or 10 belongs to $P A L_{\vartheta}^{2}$; as an example, $a b a a b a b b=(a b)(a a b a b b) \in$ $P A L_{\vartheta}^{2}$.

For any involutory antimorphism ϑ, one can define the (right) ϑ-palindrome closure operator: for any $w \in A^{*}, w^{\oplus \vartheta}$ denotes the shortest ϑ-palindrome having w as a prefix.

In the following, we shall fix an involutory antimorphism ϑ of A^{*}, and use the notation \bar{w} for $\vartheta(w)$. We shall also drop the subscript ϑ from the ϑ-palindrome closure operator ${ }^{\oplus} \vartheta$ when no confusion arises. As one easily verifies (cf. [8]), if Q is the longest ϑ-palindromic suffix of w and $w=s Q$, then

$$
w^{\oplus}=s Q \bar{s}
$$

Example 1.15. Let $A=\{a, b, c\}$ and ϑ be defined as $\bar{a}=b, \bar{c}=c$. If $w=a b a c a b c$, then $Q=c a b c$ and $w^{\oplus}=a b a c a b c b a b$.

We can naturally define the iterated ϑ-palindrome closure operator ψ_{ϑ} : $A^{*} \rightarrow P A L_{\vartheta}$ by $\psi_{\vartheta}(\varepsilon)=\varepsilon$ and

$$
\psi_{\vartheta}(u a)=\left(\psi_{\vartheta}(u) a\right)^{\oplus}
$$

for $u \in A^{*}, a \in A$. For any $u, v \in A^{*}$ one has $\psi_{\vartheta}(u v) \in \psi_{\vartheta}(u) A^{*} \cap A^{*} \psi_{\vartheta}(u)$, so that ψ_{ϑ} can be extended to infinite words too. More precisely, if $\Delta=$ $x_{1} x_{2} \cdots x_{n} \cdots \in A^{\omega}$ with $x_{i} \in A$ for $i \geq 1$, then

$$
\psi_{\vartheta}(\Delta)=\lim _{n \rightarrow \infty} \psi_{\vartheta}\left(\Delta_{[n]}\right)
$$

The word Δ is called the directive word of $\psi_{\vartheta}(\Delta)$, and $s=\psi_{\vartheta}(\Delta)$ the ϑ-standard word directed by Δ. The class of ϑ-standard words was introduced in [8]; some interesting results about such words are in [5].

We denote by \mathcal{P}_{ϑ} the set of unbordered ϑ-palindromes. We remark that \mathcal{P}_{ϑ} is a biprefix code. This means that every word of \mathcal{P}_{ϑ} is neither a prefix nor a suffix of any other element of \mathcal{P}_{ϑ}. We observe that $\mathcal{P}_{R}=A$. The following result was proved in [4]:
Proposition 1.16. $P A L_{\vartheta}^{*}=\mathcal{P}_{\vartheta}^{*}$.

This can be equivalently stated as follows: every ϑ-palindrome can be uniquely factorized by the elements of \mathcal{P}_{ϑ}. For instance, the ϑ-palindrome abacabcbab of Example 1.15 is factorizable as $a b \cdot a c a b c b \cdot a b$, with $a c a b c b, a b \in \mathcal{P}_{\vartheta}$.

Since \mathcal{P}_{ϑ} is a code, the map

$$
\begin{array}{rll}
f: \mathcal{P}_{\vartheta} & \longrightarrow & A \tag{4}\\
\pi & \longmapsto & \pi^{f}
\end{array}
$$

can be extended (uniquely) to a morphism $f: \mathcal{P}_{\vartheta}^{*} \rightarrow A^{*}$. Moreover, since \mathcal{P}_{ϑ} is a prefix code, any word in $\mathcal{P}_{\vartheta}^{\omega}$ can be uniquely factorized by the elements of \mathcal{P}_{ϑ}, so that f can be naturally extended to $\mathcal{P}_{\vartheta}^{\omega}$.

Proposition 1.17. Let $\varphi: X^{*} \rightarrow A^{*}$ be an injective morphism such that $\varphi(X) \subseteq \mathcal{P}_{\vartheta}$. Then, for any $w \in X^{*}$:

1. $\varphi(\tilde{w})=\overline{\varphi(w)}$,
2. $w \in P A L \Longleftrightarrow \varphi(w) \in P A L_{\vartheta}$,
3. $\varphi\left(w^{(+)}\right)=\varphi(w)^{\oplus}$.

Proof. The first statement is trivially true for $w=\varepsilon$. If $w=x_{1} \cdots x_{n}$ with $x_{i} \in X$ for $i=1, \ldots, n$, then since $\varphi(X) \subseteq \mathcal{P}_{\vartheta} \subseteq P A L_{\vartheta}$,

$$
\varphi(\tilde{w})=\varphi\left(x_{n}\right) \cdots \varphi\left(x_{1}\right)=\overline{\varphi\left(x_{n}\right)} \cdots \overline{\varphi\left(x_{1}\right)}=\overline{\varphi(w)}
$$

As φ is injective, statement 2 easily follows from 1.
Finally, let $\varphi(w)=v Q$ where $v \in A^{*}$ and Q is the longest ϑ-palindromic suffix of $\varphi(w)$. Since $\varphi(w), Q \in \mathcal{P}_{\vartheta}^{*}$ and \mathcal{P}_{ϑ} is a biprefix code, we have $v \in \mathcal{P}_{\vartheta}^{*}$. This implies, as φ is injective, that there exist $w_{1}, w_{2} \in X^{*}$ such that $w=w_{1} w_{2}$, $\varphi\left(w_{1}\right)=v$, and $\varphi\left(w_{2}\right)=Q$. By 2, w_{2} is the longest palindromic suffix of w. Hence, by 1 :

$$
\varphi\left(w^{(+)}\right)=\varphi\left(w_{1} w_{2} \tilde{w}_{1}\right)=v Q \bar{v}=\varphi(w)^{\oplus}
$$

as desired.
Example 1.18. Let $X=\{a, b, c\}, A=\{a, b, c, d, e\}$, and ϑ be defined in A as $\bar{a}=b, \bar{c}=c$, and $\bar{d}=e$. Let $\varphi: X^{*} \rightarrow A^{*}$ be the injective morphism defined by $\varphi(a)=a b, \varphi(b)=b a, \varphi(c)=d c e$. One has $\varphi(X) \subseteq \mathcal{P}_{\vartheta}$ and

$$
\varphi\left((a b c)^{(+)}\right)=\varphi(a b c b a)=a b b a d c e b a a b=(\varphi(a b c))^{\oplus}
$$

1.3 Standard ϑ-episturmian words

In [4] standard ϑ-episturmian words were naturally defined by substituting, in the definition of standard episturmian words, the closure under reversal with the closure under ϑ. Thus an infinite word s is standard ϑ-episturmian if it satisfies the following two conditions:

1. for any $w \in$ Fact s, one has $\bar{w} \in$ Fact s,
2. for any left special factor w of s, one has $w \in \operatorname{Pref} s$.

We denote by $S E p i_{\vartheta}$ the set of all standard ϑ-episturmian words on the alphabet A. The following two propositions, proved in [4], give methods for constructing standard ϑ-episturmian words.

Proposition 1.19. Let s be a ϑ-standard word over A, and $B=\operatorname{alph}(\Delta(s))$. Then s is standard ϑ-episturmian if and only if

$$
x \in B, x \neq \bar{x} \Longrightarrow \bar{x} \notin B
$$

Example 1.20. Let $A=\{a, b, c, d, e\}, \Delta=(a c d)^{\omega}$, and ϑ be defined by $\bar{a}=b$, $\bar{c}=c$, and $\bar{d}=e$. The ϑ-standard word $\psi_{\vartheta}(\Delta)=a b c a b d e a b c a b a \cdots$ is standard ϑ-episturmian.

Proposition 1.21. Let $\varphi: X^{*} \rightarrow A^{*}$ be a nonerasing morphism such that

1. $\varphi(x) \in P A L_{\vartheta}$ for all $x \in X$,
2. $\operatorname{alph} \varphi(x) \cap \operatorname{alph} \varphi(y)=\emptyset$ if $x, y \in X$ and $x \neq y$,
3. $|\varphi(x)|_{a} \leq 1$ for all $x \in X$ and $a \in A$.

Then for any standard episturmian word $t \in X^{\omega}, s=\varphi(t)$ is a standard ϑ episturmian word.

Example 1.22. Let $A=\{a, b, c, d, e\}, \bar{a}=b, \bar{c}=c, \bar{d}=e, X=\{x, y\}$, and $s=$ $g(t)$, where $t=x x y x x x y x x x y x x y \cdots \in \operatorname{SEp} i(X), \Delta(t)=(x x y)^{\omega}, g(x)=a c b$, and $g(y)=d e$, so that

$$
\begin{equation*}
s=a c b a c b d e a c b a c b a c b d e \cdots . \tag{5}
\end{equation*}
$$

By the previous proposition, the word s is standard ϑ-episturmian, but it is not ϑ-standard, as $a^{\oplus}=a b \notin \operatorname{Pref} s$.

It is easy to prove (see [4]) that every standard ϑ-episturmian word has infinitely many ϑ-palindromic prefixes. By Proposition 1.16, they all admit a unique factorization by the elements of \mathcal{P}_{ϑ}. Since \mathcal{P}_{ϑ} is a prefix code, this implies the following:

Proposition 1.23. Every standard ϑ-episturmian word s admits a (unique) factorization by the elements of \mathcal{P}_{ϑ}, that is,

$$
s=\pi_{1} \pi_{2} \cdots \pi_{n} \cdots
$$

where $\pi_{i} \in \mathcal{P}_{\vartheta}$ for $i \geq 1$.
For a given standard ϑ-episturmian word s, such factorization will be called canonical in the sequel. For instance, in the case of the standard ϑ-episturmian word of Example 1.22, the canonical factorization is:

$$
a c b \cdot a c b \cdot d e \cdot a c b \cdot a c b \cdot a c b \cdot d e \cdots .
$$

The following important lemma was proved in [4]:
Lemma 1.24. Let s be a standard ϑ-episturmian word, and $s=\pi_{1} \cdots \pi_{n} \cdots$ be its canonical factorization. For all $i \geq 1$, any proper and nonempty prefix of π_{i} is not right special in s.

In the following, for a given standard ϑ-episturmian word s we shall denote by

$$
\begin{equation*}
\Pi_{s}=\left\{\pi_{n} \mid n \geq 1\right\} \tag{6}
\end{equation*}
$$

the set of words of \mathcal{P}_{ϑ} appearing in its canonical factorization $s=\pi_{1} \pi_{2} \cdots$.
Theorem 1.25. Let $s \in S E p i_{\vartheta}$. Then Π_{s} is a normal code.
Proof. Any nonempty prefix p of a word of Π_{s} does not belong to Π_{s}, since Π_{s} is a biprefix code. Moreover, $p \notin R S \Pi_{s}$ as otherwise it would be a right special factor of s, and this is excluded by Lemma 1.24. Hence Π_{s} is a right normal code. Since s is closed under ϑ and $\Pi_{s} \subseteq P A L_{\vartheta}$, it follows that Π_{s} is also left normal.

The following result shows that no two words of Π_{s} overlap properly.
Theorem 1.26. Let $s \in S E p i_{\vartheta}$. Then Π_{s} is an overlap-free code.
Proof. If card $\Pi_{s}=1$ the statement is trivial since an element of \mathcal{P}_{ϑ} cannot overlap properly with itself as it is unbordered. Let then $\pi, \pi^{\prime} \in \Pi_{s}$ be such that $\pi \neq \pi^{\prime}$. By contradiction, let us suppose that there exists a nonempty $u \in \operatorname{Suff} \pi \cap \operatorname{Pref} \pi^{\prime}$ (which we can assume without loss of generality, since it occurs if and only if $\left.\bar{u} \in \operatorname{Suff} \pi^{\prime} \cap \operatorname{Pref} \pi\right)$. We have $|\pi| \geq 2|u|$ and $\left|\pi^{\prime}\right| \geq 2|u|$, for otherwise u would overlap properly with \bar{u} and so it would have a nonempty ϑ-palindromic prefix (or suffix), which is absurd. Then there exist $v, v^{\prime} \in P A L_{\vartheta}$ such that $\pi=\bar{u} v u$ and $\pi^{\prime}=u v^{\prime} \bar{u}$.

Without loss of generality, we can assume that π occurs before π^{\prime} in the canonical factorization of s, so that there exists $\lambda \in\left(\Pi_{s} \backslash\left\{\pi^{\prime}\right\}\right)^{*}$ such that $\lambda \pi \in \operatorname{Pref} s$. Since by Lemma 1.24 any proper prefix of π cannot be right special in s, each occurrence of \bar{u} must be followed by $v u$; the same argument applies to π^{\prime}, so each occurrence of u in s must be followed by $v^{\prime} \bar{u}$. Therefore we have

$$
s=\lambda\left(\bar{u} v u v^{\prime}\right)^{\omega}=\lambda\left(\pi v^{\prime}\right)^{\omega} .
$$

As v^{\prime} is a ϑ-palindromic proper factor of π^{\prime}, it must be in $\left(\mathcal{P}_{\vartheta} \backslash\left\{\pi^{\prime}\right\}\right)^{*}$, as well as πv^{\prime} and, by definition, λ. Thus we have obtained that $s \in\left(\Pi_{s} \backslash\left\{\pi^{\prime}\right\}\right)^{\omega}$, and so $\pi^{\prime} \notin \Pi_{s}$, which is clearly a contradiction. Then π and π^{\prime} cannot overlap properly.

The following theorem, proved in [4, Theorem 5.5], shows, in particular, that any standard ϑ-episturmian word is a morphic image, by a suitable injective morphism, of a standard episturmian word. We report here a direct proof based on the previous results.

Theorem 1.27. Let s be a standard ϑ-episturmian word, and f be the map defined in (4). Then $f(s)$ is a standard episturmian word, and the restriction of f to Π_{s} is injective, i.e., if π_{i} and π_{j} occur in the factorization of s over \mathcal{P}_{ϑ}, and $\pi_{i}^{f}=\pi_{j}^{f}$, then $\pi_{i}=\pi_{j}$.

Proof. Since $s \in S E p i_{\vartheta}$, by Theorems 1.25 and 1.26 the code Π_{s} is biprefix, overlap-free, and normal. By Proposition 1.1, the restriction to Π_{s} of the map f defined by (4) is injective. Let $B=f\left(\Pi_{s}\right) \subseteq A$ and denote by $g: B^{*} \rightarrow A^{*}$ the injective morphism defined by $g\left(\pi^{f}\right)=\pi$ for any $\pi^{f} \in B$. One has $s=g(t)$ for
some $t \in B^{\omega}$. Let us now show that $t \in \operatorname{SEpi}(B)$. Indeed, since s has infinitely many ϑ-palindromic prefixes, by Proposition 1.17 it follows that t has infinitely many palindromic prefixes, so that it is closed under reversal. Let now w be a left special factor of t, and let $a, b \in B, a \neq b$, be such that $a w, b w \in$ Fact t. Thus $g(a) g(w), g(b) g(w) \in$ Fact s. Since $g(a)^{f} \neq g(b)^{f}$, we have $g(a)^{\ell} \neq g(b)^{\ell}$, so that $g(w)$ is a left special factor of s, and then a prefix of it. From Lemma 1.2 it follows $w \in \operatorname{Pref} t$.

2 Characteristic morphisms

Let X be a finite alphabet. A morphism $\varphi: X^{*} \rightarrow A^{*}$ will be called ϑ characteristic if

$$
\varphi(S E p i(X)) \subseteq S E p i_{\vartheta},
$$

i.e., φ maps any standard episturmian word over the alphabet X in a standard ϑ episturmian word on the alphabet A. Following this terminology, Theorem 1.12 can be reformulated by saying that an injective morphism $\varphi: A^{*} \rightarrow A^{*}$ is standard episturmian if and only if it is R-characteristic.

For instance, every morphism $\varphi: X^{*} \rightarrow A^{*}$ satisfying the conditions of Proposition 1.21 is ϑ-characteristic (and injective). A trivial example of a noninjective ϑ-characteristic morphism is the constant morphism $\varphi: x \in X \mapsto a \in$ A, where a is a fixed ϑ-palindromic letter.

Let $X=\{x, y\}, A=\{a, b, c\}, \vartheta$ defined by $\bar{a}=a, \bar{b}=c$, and $\varphi: X^{*} \rightarrow A^{*}$ be the injective morphism such that $\varphi(x)=a, \varphi(y)=b a c$. If t is any standard episturmian word beginning in $y^{2} x$, then $s=\varphi(t)$ begins with bacbaca, so that a is a left special factor of s which is not a prefix of s. Thus s is not ϑ-episturmian and therefore φ is not ϑ-characteristic.

In this section we shall prove some results concerning the structure of ϑ characteristic morphisms.

Proposition 2.1. Let $\varphi: X^{*} \rightarrow A^{*}$ be a ϑ-characteristic morphism. For each x in $X, \varphi(x) \in P A L_{\vartheta}^{2}$.

Proof. It is clear that $|\varphi(x)|$ is a period of each prefix of $\varphi\left(x^{\omega}\right)$. Since $\varphi\left(x^{\omega}\right)$ is in $S E p i_{\vartheta}$, it has infinitely many ϑ-palindromic prefixes (see [4]). Then, from Lemma 1.14 the statement follows.

Let $\varphi: X^{*} \rightarrow A^{*}$ be a morphism such that $\varphi(X) \subseteq \mathcal{P}_{\vartheta}^{*}$. For any $x \in X$, let $\varphi(x)=\pi_{1}^{(x)} \cdots \pi_{r_{x}}^{(x)}$ be the unique factorization of $\varphi(x)$ by the elements of \mathcal{P}_{ϑ}. We set

$$
\begin{equation*}
\Pi(\varphi)=\left\{\pi \in \mathcal{P}_{\vartheta} \mid \exists x \in X, \exists i: 1 \leq i \leq r_{x} \text { and } \pi=\pi_{i}^{(x)}\right\} \tag{7}
\end{equation*}
$$

If φ is a ϑ-characteristic morphism, then by Propositions 2.1 and 1.16 , we have $\varphi(X) \subseteq P A L_{\vartheta}^{2} \subseteq \mathcal{P}_{\vartheta}^{*}$, so that $\Pi(\varphi)$ is well defined.

Proposition 2.2. Let $\varphi: X^{*} \rightarrow A^{*}$ be a ϑ-characteristic morphism. Then $\Pi(\varphi)$ is an overlap-free and normal code.

Proof. Let $t \in S E p i(X)$ be such that alph $t=X$, and consider $s=\varphi(t) \in$ $S E p i_{\vartheta}$. Then the set $\Pi(\varphi)$ equals Π_{s}, as defined in (6). The result follows from Theorems 1.25 and 1.26.

Proposition 2.3. Let $\varphi: X^{*} \rightarrow A^{*}$ be a ϑ-characteristic morphism. If there exist two letters $x, y \in X$ such that $\varphi(x)^{f} \neq \varphi(y)^{f}$, then $\varphi(X) \subseteq P A L_{\vartheta}$.

Proof. Set $w=\varphi\left(\left(x^{2} y\right)^{\omega}\right)$. Clearly $\varphi(x)$ is a right special factor of w, since it appears followed both by $\varphi(x)$ and $\varphi(y)$. As w is in $S E p i_{\vartheta}$, being the image of the standard episturmian word $\left(x^{2} y\right)^{\omega}$, we have that $\overline{\varphi(x)}$ is a left special factor, and thus a prefix, of w. But also $\varphi(x)$ is a prefix of w, then it must be $\varphi(x)=\overline{\varphi(x)}$, i.e., $\varphi(x) \in P A L_{\vartheta}$. The same argument can be applied to $\varphi(y)$, setting $w^{\prime}=\varphi\left(\left(y^{2} x\right)^{\omega}\right)$.

Now let $z \in X$. Then $\varphi(z)^{f}$ cannot be equal to both $\varphi(x)^{f}$ and $\varphi(y)^{f}$. Therefore, by applying the same argument, we obtain $\varphi(z) \in P A L_{\vartheta}$. From this the assertion follows.

Proposition 2.4. Let $\varphi: X^{*} \rightarrow A^{*}$ be a ϑ-characteristic morphism. If for $x, y \in X$, Suff $\varphi(x) \cap \operatorname{Suff} \varphi(y) \neq\{\varepsilon\}$, then $\varphi(x y)=\varphi(y x)$, that is, both $\varphi(x)$ and $\varphi(y)$ are powers of a word of A^{*}.
Proof. If $\varphi(x y) \neq \varphi(y x)$, since Suff $\varphi(x) \cap \operatorname{Suff} \varphi(y) \neq\{\varepsilon\}$, there exists a common proper suffix h of $\varphi(x y)$ and $\varphi(y x)$, with $h \neq \varepsilon$. Let h be the longest of such suffixes. Then there exist $v, u \in A^{+}$such that

$$
\begin{equation*}
\varphi(x y)=v h \quad \text { and } \quad \varphi(y x)=u h \tag{8}
\end{equation*}
$$

with $v^{\ell} \neq u^{\ell}$. Let s be a standard episturmian word whose directive word can be written as $\Delta=x y^{2} x \lambda$, with $\lambda \in X^{\omega}$, so that $s=x y x y x x y x y x t$, with $t \in X^{\omega}$. Thus

$$
\varphi(s)=\varphi(x y) \varphi(x y) \alpha=\varphi(x) \varphi(y x) \varphi(y x) \varphi(x y) \beta
$$

for some $\alpha, \beta \in A^{\omega}$. By (8), it follows

$$
\varphi(s)=v \underline{v v} h \alpha=\varphi(x) u h u \underline{v v} h \beta .
$$

The underlined occurrences of $h v$ are preceded by different letters, namely v^{ℓ} and u^{ℓ}. Since $\varphi(s) \in S E p i_{\vartheta}$, this implies $h v \in \operatorname{Pref} \varphi(s)$ and then

$$
\begin{equation*}
h v=v h \tag{9}
\end{equation*}
$$

In a perfectly symmetric way, by considering an episturmian word s^{\prime} whose directive word Δ^{\prime} has $y x^{2} y$ as a prefix, we obtain that $u h=h u$. Hence u and h are powers of a common primitive word w; by (9), the same can be said about v and h. Since the primitive root of a nonempty word is unique, it follows that u and v are both powers of w. As $|u|=|v|$ by definition, we obtain $u=v$ and then $\varphi(x y)=\varphi(y x)$, which is a contradiction.

Corollary 2.5. If $\varphi: X^{*} \rightarrow A^{*}$ is an injective ϑ-characteristic morphism, then $\varphi(X)$ is a suffix code.
Proof. It is clear that if φ is injective, then for all $x, y \in X, x \neq y$, one has $\varphi(x y) \neq \varphi(y x)$; from Proposition 2.4 it follows $\operatorname{Suff} \varphi(x) \cap \operatorname{Suff} \varphi(y)=\{\varepsilon\}$. Thus, for all $x, y \in X$, if $x \neq y$, then $\varphi(x) \notin \operatorname{Suff} \varphi(y)$, and the statement follows.

Proposition 2.6. Let $\varphi: X^{*} \rightarrow A^{*}$ be a ϑ-characteristic morphism. Then for each $x, y \in X$, either

$$
\operatorname{alph} \varphi(x) \cap \operatorname{alph} \varphi(y)=\emptyset
$$

or

$$
\varphi(x)^{f}=\varphi(y)^{f}
$$

Proof. Let $\operatorname{alph} \varphi(x) \cap \operatorname{alph} \varphi(y) \neq \emptyset$ and $\varphi(x)^{f} \neq \varphi(y)^{f}$. We set p as the longest prefix of $\varphi(x)$ such that $\operatorname{alph} p \cap \operatorname{alph} \varphi(y)=\emptyset$ and $c \in A$ such that $p c \in \operatorname{Pref} \varphi(x)$. Let then p^{\prime} be the longest prefix of $\varphi(y)$ in which c does not appear, i.e., such that $c \notin \operatorname{alph} p^{\prime}$. Since we have assumed that $\varphi(x)^{f} \neq \varphi(y)^{f}$, it cannot be $p=p^{\prime}=\varepsilon$. Let us suppose that both $p \neq \varepsilon$ and $p^{\prime} \neq \varepsilon$. In this case we have that c is left special in $(\varphi(x y))^{\omega}$, since it appears preceded both by p and p^{\prime} and, from the definition of p, alph $p \cap \operatorname{alph} p^{\prime}=\emptyset$. We reach a contradiction, since c should be a prefix of $\varphi(x y)^{\omega}$ which is in $S E p i_{\vartheta}$, and thus a prefix of $\varphi(x)$.

We then have that either $p \neq \varepsilon$ and $p^{\prime}=\varepsilon$ or $p=\varepsilon$ and $p^{\prime} \neq \varepsilon$. In the first case we set $z=x$ and $z^{\prime}=y$, otherwise we set $z^{\prime}=x$ and $z=y$. Thus we can write

$$
\begin{equation*}
\varphi(z)=\lambda c \gamma, \quad \varphi\left(z^{\prime}\right)=c \gamma^{\prime} \tag{10}
\end{equation*}
$$

with $\lambda \in A^{+}, c \notin \operatorname{alph} \lambda$, and $\gamma, \gamma^{\prime} \in A^{*}$. For each nonnegative integer n, $\left(z^{n} z^{\prime}\right)^{\omega}$ and $\left(z^{\prime n} z\right)^{\omega}$ are standard episturmian words, so that $\left(\varphi\left(z^{n} z^{\prime}\right)\right)^{\omega}$ and $\left(\varphi\left(z^{\prime n} z\right)\right)^{\omega}$ are in $S E p i_{\vartheta}$. Moreover, since

$$
\left(\varphi\left(z z^{\prime}\right)\right)^{\omega}=\varphi\left(z^{\prime}\right)^{-1}\left(\varphi\left(z^{\prime} z\right)\right)^{\omega} \quad \text { and } \quad\left(\varphi\left(z^{\prime} z\right)\right)^{\omega}=\varphi(z)^{-1}\left(\varphi\left(z z^{\prime}\right)\right)^{\omega}
$$

it is clear that $\left(\varphi\left(z z^{\prime}\right)\right)^{\omega}$ and $\left(\varphi\left(z^{\prime} z\right)\right)^{\omega}$ have the same set of factors, so that each left special factor of $\left(\varphi\left(z z^{\prime}\right)\right)^{\omega}$ is a left special factor of $\left(\varphi\left(z^{\prime} z\right)\right)^{\omega}$ and vice versa.

Let w be a nonempty left special factor of $\left(\varphi\left(z^{\prime} z\right)\right)^{\omega}$; then w is also a prefix. As noted above, w has to be a left special factor (and thus a prefix) of $\left(\varphi\left(z z^{\prime}\right)\right)^{\omega}$. Thus w is a common prefix of $\left(\varphi\left(z^{\prime} z\right)\right)^{\omega}$ and $\left(\varphi\left(z z^{\prime}\right)\right)^{\omega}$, which is a contradiction since the first word begins with c whereas the second begins with λ, which does not contain c. Therefore $\varphi\left(z^{\prime} z\right)^{\omega}$ has no left special factor different from ε; since each right special factor of a word in $S E p i_{\vartheta}$ is the ϑ-image of a left special factor, it is clear that $\left(\varphi\left(z^{\prime} z\right)\right)^{\omega}$ has no special factor different from ε.

Hence each factor of $\left(\varphi\left(z^{\prime} z\right)\right)^{\omega}$ can be extended in a unique way both to the left and to the right, so that by (10) we can write

$$
\left(\varphi\left(z^{\prime} z\right)\right)^{\omega}=c \gamma^{\prime} \lambda c \cdots
$$

and, as stated above, each occurrence of c must be followed by $\gamma^{\prime} \lambda c$, which yields that

$$
\left(\varphi\left(z^{\prime} z\right)\right)^{\omega}=\left(c \gamma^{\prime} \lambda\right)^{\omega}=\left(\varphi\left(z^{\prime}\right) \lambda\right)^{\omega}
$$

so that this infinite word has the two periods $\left|\varphi\left(z^{\prime} z\right)\right|$ and $\left|\varphi\left(z^{\prime}\right) \lambda\right|$. From the theorem of Fine and Wilf, one derives $\varphi\left(z^{\prime} z\right)\left(\varphi\left(z^{\prime}\right) \lambda\right)=\left(\varphi\left(z^{\prime}\right) \lambda\right) \varphi\left(z^{\prime} z\right)$, so that

$$
\begin{equation*}
\varphi\left(z z^{\prime}\right) \lambda=\lambda \varphi\left(z^{\prime} z\right) \tag{11}
\end{equation*}
$$

The preceding equation tells us that λ is a suffix of $\lambda \varphi\left(z^{\prime} z\right)$ and so, as $|\varphi(z)|>|\lambda|$, it must be a suffix of $\varphi(z)$; since λ does not contain any c, it has to be a suffix of γ, so that we can write

$$
\begin{equation*}
\varphi(z)=\lambda c g \lambda \tag{12}
\end{equation*}
$$

for some word g. Substituting in (11), it follows

$$
\varphi\left(z z^{\prime}\right)=\lambda \varphi\left(z^{\prime}\right) \lambda c g
$$

From the preceding equation, we have

$$
\begin{equation*}
\left(\varphi\left(z^{\prime 2} z\right)\right)^{\omega}=\varphi\left(z^{\prime}\right) \varphi\left(z^{\prime}\right) \lambda \varphi\left(z^{\prime}\right) \lambda c g \cdots \tag{13}
\end{equation*}
$$

From (12), $\varphi(z)^{\ell}=\lambda^{\ell}$. Proposition 2.4 ensures that $\lambda^{\ell}=\varphi(z)^{\ell}$ must be different from $\varphi\left(z^{\prime}\right)^{\ell}$, otherwise we would obtain $\varphi\left(z z^{\prime}\right)=\varphi\left(z^{\prime} z\right)$ which would imply c is a prefix of $\varphi(z)$, which is a contradiction. Thus, from (13), we have that $\varphi\left(z^{\prime}\right) \lambda$ is a left special factor of $\varphi\left(z^{\prime 2} z\right)^{\omega}$ and this implies that $\varphi\left(z^{\prime}\right) \lambda$ is a prefix of $\varphi\left(z^{\prime}\right)^{2} \varphi(z)$, from which we obtain that λ is a prefix of $\varphi\left(z^{\prime} z\right)=c \gamma^{\prime} \varphi(z)$, that is a contradiction, since λ does not contain any occurrence of c. Thus the initial assumption that alph $\varphi(x) \cap \operatorname{alph} \varphi(y) \neq \emptyset$ and $\varphi(x)^{f} \neq \varphi(y)^{f}$, leads in any case to a contradiction.

Proposition 2.7. Let $\varphi: X^{*} \rightarrow A^{*}$ be a ϑ-characteristic morphism. If $x, y \in X$ and $\varphi(x), \varphi(y) \in P A L_{\vartheta}$, then either alph $\varphi(x) \cap \operatorname{alph} \varphi(y)=\emptyset$ or $\varphi(x y)=\varphi(y x)$. In particular, if φ is injective and $\varphi(X) \subseteq P A L_{\vartheta}$, then for all $x, y \in X$ with $x \neq y$ we have alph $\varphi(x) \cap \operatorname{alph} \varphi(y)=\emptyset$.

Proof. If alph $\varphi(x) \cap$ alph $\varphi(y) \neq \emptyset$, from Proposition 2.6 we obtain, as $\varphi(x), \varphi(y) \in$ $P A L_{\vartheta}$, that $\overline{\varphi(x)^{\ell}}=\varphi(x)^{f}=\varphi(y)^{f}=\overline{\varphi(y)^{\ell}}$. Then $\varphi(x)^{\ell}=\varphi(y)^{\ell}$ and, from Proposition 2.4, we have that $\varphi(x y)=\varphi(y x)$.

If φ is injective, then for all $x, y \in X$ with $x \neq y$ we have $\varphi(x y) \neq \varphi(y x)$ so that the assertion follows.

Corollary 2.8. Let $\varphi: X^{*} \rightarrow A^{*}$ be an injective ϑ-characteristic morphism such that $\varphi(X) \subseteq P A L_{\vartheta}$ and card $X \geq 2$. Then $\varphi(X) \subseteq \mathcal{P}_{\vartheta}$.

Proof. Let $x, y \in X$ with $x \neq y$. Since φ is injective, we have from Proposition 2.7 that alph $\varphi(x) \cap \operatorname{alph} \varphi(y)=\emptyset$. Let u be a proper border of $\varphi(x)$. Then there exist two nonempty words v and w such that

$$
\varphi(x)=u v=w u
$$

Since alph $\varphi(x) \cap \operatorname{alph} \varphi(y)=\emptyset$, we have $\varphi(y)^{\ell} \neq w^{\ell}$; thus

$$
\varphi(y x)^{\omega}=\varphi(y) u v \varphi(y) w u \varphi(y) \cdots
$$

shows that u is a left special factor in $\varphi(y x)^{\omega}$, but this would imply that u is a prefix of $\varphi(y x)$. As alph $u \cap \operatorname{alph} \varphi(y)=\emptyset$, it follows $u=\varepsilon$, i.e., $\varphi(x) \in \mathcal{P}_{\vartheta}$. The same argument applies to $\varphi(y)$.

The following lemma will be useful in the next section.
Lemma 2.9. Let $\varphi: X^{*} \rightarrow A^{*}$ be a ϑ-characteristic morphism. Then for each $x \in X$ and for any $a \in A$,

$$
|\varphi(x)|_{a}>1 \Longrightarrow|\varphi(x)|_{\varphi(x)^{f}}>1
$$

Proof. Let b be the first letter of $\varphi(x)$ such that $|\varphi(x)|_{b}>1$. Then we can write

$$
\varphi(x)=v b w b w^{\prime}
$$

with $w, w^{\prime} \in A^{*}, b \notin(\operatorname{alph} v \cup \operatorname{alph} w)$, and $|\varphi(x)|_{c}=1$ for each c in alph v. If $v \neq \varepsilon$, then we have that $v^{\ell} \neq(b w)^{\ell}$, but that means that b is left special in $\varphi\left(x^{\omega}\right)$, which is a contradiction, since each left special factor of $\varphi\left(x^{\omega}\right)$ is a prefix and b is not in alph v. Then it must be $v=\varepsilon$ and $b=\varphi(x)^{f}$.

3 Main results

The first result of this section is a characterization of injective ϑ-characteristic morphisms such that the image of any letter is an unbordered ϑ-palindrome.

Theorem 3.1. Let $\varphi: X^{*} \rightarrow A^{*}$ be an injective morphism such that for any $x \in X, \varphi(x) \in \mathcal{P}_{\vartheta}$. Then φ is ϑ-characteristic if and only if the following two conditions hold:

1. alph $\varphi(x) \cap \operatorname{alph} \varphi(y)=\emptyset$, for any x, y in X such that $x \neq y$.
2. for any $x \in X$ and $a \in A,|\varphi(x)|_{a} \leq 1$.

Proof. Let φ be ϑ-characteristic. Since φ is injective, from Proposition 2.7 we have that if $x \neq y$, then alph $\varphi(x) \cap \operatorname{alph} \varphi(y)=\emptyset$. Thus condition 1 holds. Let us now prove that condition 2 is satisfied. This is certainly true if $|\varphi(x)| \leq 2$, as $\varphi(x) \in \mathcal{P}_{\vartheta}$. Let us then suppose $|\varphi(x)|>2$. We can write

$$
\varphi(x)=a x_{1} \cdots x_{n} b
$$

with $x_{i} \in A, i=1, \ldots, n, \bar{a}=b$, and $a \neq b$.
Let us prove that for any $i=1, \ldots, n, x_{i} \notin\{a, b\}$. By contradiction, suppose that b has an internal occurrence in $\varphi(x)$, and consider its first occurrence. Since $\varphi(x)$ is a ϑ-palindrome, we can write

$$
\varphi(x)=a x_{1} \cdots x_{i} b \lambda=\bar{\lambda} a \bar{x}_{i} \cdots \bar{x}_{1} b
$$

with $\lambda \in A^{*}, 1 \leq i<n$, and $x_{j} \neq b$ for $j=1, \ldots, i$.
We now consider the standard ϑ-episturmian word $s=\varphi\left(x^{\omega}\right)$, whose first letter is a. We have that no letter $\bar{x}_{j}, j=1, \ldots, i$, is left special in s, as otherwise $\bar{x}_{j}=a$ that implies $x_{j}=b$, which is absurd. Also b cannot be left special since otherwise $b=a$. Thus it follows that $x_{i}=\bar{x}_{1}, x_{i-1}=\bar{x}_{2}, \ldots, x_{1}=\bar{x}_{i}$. Hence, $a x_{1} \cdots x_{i} b$ is a proper border of $\varphi(x)$, which is a contradiction. From this, since $\varphi(x)$ is a ϑ-palindrome, one derives that there is no internal occurrence of a in $\varphi(x)$ as well.

Finally, any letter of $\varphi(x)$ cannot occur more than once. This is a consequence of Lemma 2.9, since otherwise the first letter of $\varphi(x)$, namely a, would reoccur in $\varphi(x)$. Thus condition 2 holds.

Conversely, let us now suppose that conditions 1 and 2 hold; Proposition 1.21 ensures then that φ is ϑ-characteristic.

A different proof of Theorem 3.1 will be given at the end of this section, as a consequence of a full characterization of injective ϑ-characteristic morphisms, given in Theorem 3.13.

Remark. In the "if" part of Theorem 3.1 the requirement $\varphi(X) \subseteq \mathcal{P}_{\vartheta}$ can be replaced by $\varphi(X) \subseteq P A L_{\vartheta}$, as condition 2 implies that $\varphi(x)$ is unbordered for any $x \in X$, so that $\varphi(X) \subseteq \mathcal{P}_{\vartheta}$. In the "only if" part, in view of Corollary 2.8, one can replace $\varphi(X) \subseteq \mathcal{P}_{\vartheta}$ by $\varphi(X) \subseteq P A L_{\vartheta}$ under the hypothesis that $\operatorname{card} X \geq 2$.
Example 3.2. Let X, A, ϑ, and g be defined as in Example 1.22. Then the morphism g is ϑ-characteristic.

As an immediate consequence of Theorem 3.1, we obtain:
Corollary 3.3. Let $\zeta: X^{*} \rightarrow B^{*}$ be an R-characteristic morphism, $g: B^{*} \rightarrow$ A^{*} be an injective morphism satisfying $g(B) \subseteq \mathcal{P}_{\vartheta}$ and the two conditions in the statement of Theorem 3.1. Then $\varphi=g \circ \zeta$ is ϑ-characteristic.

Example 3.4. Let X, A, ϑ, and g be defined as in Example 1.22, and let ζ be the endomorphism of X^{*} such that $\zeta(x)=x y$ and $\zeta(y)=x y x$. Since $\zeta=\mu_{x y} \circ \sigma$, where $\sigma(x)=y$ and $\sigma(y)=x, \zeta$ is a standard episturmian morphism. Hence the morphism $\varphi: X^{*} \rightarrow A^{*}$ given by

$$
\varphi(x)=a c b d e, \quad \varphi(y)=a c b d e a c b
$$

is ϑ-characteristic, as $\varphi=g \circ \zeta$.
Theorem 3.5. Let $\varphi: X^{*} \rightarrow A^{*}$ be a ϑ-characteristic morphism. Then there exist $B \subseteq A$, a morphism $\zeta: X^{*} \rightarrow B^{*}$, and a morphism $g: B^{*} \rightarrow A^{*}$ such that:

1. ζ is R-characteristic,
2. $g(B)=\Pi(\varphi)$, with $g(b) \in b A^{*}$ for all $b \in B$,
3. $\varphi=g \circ \zeta$.

Figure 1: A commutative diagram describing Theorem 3.5

Proof (see Fig. 1). Set $\Pi=\Pi(\varphi)$, as defined in (7), and let $B=f(\Pi) \subseteq A$, where f is the morphism considered in (4). Let $\varphi_{\mid}: X^{*} \rightarrow \Pi^{*}$ and $f_{\mid}: \Pi^{*} \rightarrow B^{*}$ be the restrictions of φ and f, respectively. Setting $\zeta=f_{\mid} \circ \varphi_{\mid}: X^{*} \rightarrow B^{*}$, by Theorem 1.27 one derives $\zeta(\operatorname{SEpi}(X)) \subseteq \operatorname{SEpi}(B)$, i.e., ζ is R-characteristic.

Let $t \in \operatorname{SEpi}(X)$ be such that alph $t=X$, and consider $s=\varphi(t) \in S E p i_{\vartheta}$. Since Π equals Π_{s}, as defined in (6), by Theorem 1.27 the morphism f is injective
over Π, so that f_{\mid}is bijective. Set $g=\iota \circ f_{\mid}^{-1}$, where $\iota: \Pi^{*} \rightarrow A^{*}$ is the inclusion map. Then $g(B)=\Pi$, and $g(b) \in b A^{*}$ for all $b \in B$. Furthermore, we have

$$
\varphi=\iota \circ \varphi_{\mid}=\iota \circ\left(f_{\mid}^{-1} \circ f_{\mid}\right) \circ \varphi_{\mid}=\left(\iota \circ f_{\mid}^{-1}\right) \circ\left(f_{\mid} \circ \varphi_{\mid}\right)=g \circ \zeta
$$

as desired.
Example 3.6. Let $X=\{x, y\}, A=\{a, b, c\}$, and ϑ be the antimorphism of A^{*} such that $\bar{a}=a$ and $\bar{b}=c$. The morphism $\varphi: X^{*} \rightarrow A^{*}$ defined by $\varphi(x)=a$ and $\varphi(y)=a b a c$ is ϑ-characteristic (this will be clear after Theorem 3.13, see Example 3.14), and it can be decomposed as $\varphi=g \circ \zeta$, where $\zeta: X^{*} \rightarrow$ B^{*} (with $B=\{a, b\}$) is the morphism such that $\zeta(x)=a$ and $\zeta(y)=a b$, while $g: B^{*} \rightarrow A^{*}$ is defined by $g(a)=a$ and $g(b)=b a c$. We remark that $\zeta(S E p i(X)) \subseteq \operatorname{SEpi}(B)$, but $g(\operatorname{SEpi}(B)) \nsubseteq S E p i_{\vartheta}$ as it can be verified using Theorem 3.1. Observe that this example shows that not all ϑ-characteristic morphisms can be constructed as in Corollary 3.3.

Proposition 3.7. Let $\zeta: X^{*} \rightarrow A^{*}$ be an injective morphism. Then ζ is R characteristic if and only if it can be decomposed as $\zeta=\mu_{w} \circ \eta$, where $w \in A^{*}$ and $\eta: X^{*} \rightarrow A^{*}$ is an injective literal morphism.

Proof. Let $\zeta=\mu_{w} \circ \eta$, with $w \in A^{*}$ and η an injective literal morphism. Then η is trivially R-characteristic and μ_{w} is R-characteristic too, by Theorem 1.12. Therefore also their composition ζ is R-characteristic.

Conversely, let us first suppose that $\zeta(X) \subseteq a_{1} A^{*}$ for some $a_{1} \in A$. Then for any $t \in \operatorname{SEpi}(X), \zeta(t)$ is a standard episturmian word beginning with a_{1}, so that by Proposition 1.5 the letter a_{1} is separating for $\zeta(t)$. In particular a_{1} is separating for each $\zeta(x)(x \in X)$; by Proposition 1.11 there exists a morphism $\alpha_{1}: X^{*} \rightarrow A^{*}$ such that $\zeta=\mu_{a_{1}} \circ \alpha_{1}$. Since $t \in \operatorname{SEpi}(X), \mu_{a_{1}}\left(\alpha_{1}(t)\right)$ is a standard episturmian word over A, so that by Proposition 1.13 the word $\alpha_{1}(t)$ is also a standard episturmian word over A. Thus α_{1} is injective and R characteristic, and we can iterate the above argument to find new letters $a_{i} \in A$ and R-characteristic morphisms α_{i} such that $\zeta=\mu_{a_{1}} \circ \cdots \circ \mu_{a_{i}} \circ \alpha_{i}$, as long as all images of letters under α_{i} have the same first letter.

If card $X>1$, since ζ is injective, we eventually obtain the following decomposition:

$$
\begin{equation*}
\zeta=\mu_{a_{1}} \circ \mu_{a_{2}} \circ \cdots \circ \mu_{a_{n}} \circ \eta=\mu_{w} \circ \eta, \tag{14}
\end{equation*}
$$

where $a_{1}, \ldots, a_{n} \in A, w=a_{1} \cdots a_{n}$, and $\eta=\alpha_{n}$ is such that $\eta(x)^{f} \neq \eta(y)^{f}$ for some $x, y \in X$. If the original requirement $\zeta(X) \subseteq a_{1} A^{*}$ is not met by any a_{1}, that is, if $\zeta(x)^{f} \neq \zeta(y)^{f}$ for some $x, y \in X$, we can still fit in (14) choosing $n=0$ and $w=\varepsilon$.

Let then $x, y \in X$ be such that $\eta(x)^{f} \neq \eta(y)^{f}$. Since η is R-characteristic, by Proposition 2.3 we obtain $\eta(X) \subseteq P A L$. Moreover, since η is injective, by Corollary 2.8 we have $\eta(X) \subseteq \mathcal{P}_{R}=A$, so that η is an injective literal morphism.

In the case $X=\{x\}$, the lengths of the words $\alpha_{i}(x)$ for $i \geq 1$ are decreasing. Hence eventually we find an $n \geq 1$ such that $\alpha_{n}(x) \in A$ and the assertion is proved, for

$$
\zeta=\mu_{a_{1}} \circ \cdots \circ \mu_{a_{n}} \circ \alpha_{n}=\mu_{w} \circ \alpha_{n},
$$

with $w=a_{1} \cdots a_{n} \in A^{*}$ and $\alpha_{n}: X^{*} \rightarrow A^{*}$ an injective literal morphism.

Example 3.8. Let $X=\{x, y\}, A=\{a, b, c\}$, and $\zeta: X^{*} \rightarrow A^{*}$ be defined by:

$$
\zeta(x)=a b a c a b a a b a c a b=\mu_{a}(b c b a b c b) \quad \text { and } \quad \zeta(y)=a b a c a b a=\mu_{a}(b c b a),
$$

so that $\alpha_{1}(x)=b c b a b c b$ and $\alpha_{1}(y)=b c b a$. Then $\zeta(x)$ can be rewritten also as

$$
\zeta(x)=\mu_{a}\left(\alpha_{1}(x)\right)=\left(\mu_{a} \circ \mu_{b}\right)(c a c b)=\left(\mu_{a} \circ \mu_{b} \circ \mu_{c}\right)(a b)=\mu_{a b c a}(b) .
$$

In a similar way, one obtains $\zeta(y)=\mu_{a b c a}(a)$. Hence, setting $\eta(x)=b$ and $\eta(y)=a$, the morphism $\zeta=\mu_{a b c a} \circ \eta$ is R-characteristic, in view of the preceding proposition.

From Theorem 3.5 and Proposition 3.7 one derives the following:
Corollary 3.9. Every injective ϑ-characteristic morphism $\varphi: X^{*} \rightarrow A^{*}$ can be decomposed as

$$
\begin{equation*}
\varphi=g \circ \mu_{w} \circ \eta, \tag{15}
\end{equation*}
$$

where $\eta: X^{*} \rightarrow B^{*}$ is an injective literal morphism, $\mu_{w}: B^{*} \rightarrow B^{*}$ is a pure standard episturmian morphism (with $w \in B^{*}$), and $g: B^{*} \rightarrow A^{*}$ is an injective morphism such that $g(B)=\Pi(\varphi)$.

Remarks.

1. From the preceding result, we have in particular that if $\varphi: X^{*} \rightarrow A^{*}$ is an injective ϑ-characteristic morphism, then $\operatorname{card} X \leq \operatorname{card} A$.
2. Theorem 3.5 and Proposition 3.7 show that a decomposition (15) can always be chosen so that $B=\operatorname{alph} w \cup \eta(X) \subseteq A$ and $g(b) \in b A^{*} \cap \mathcal{P}_{\vartheta}$ for each $b \in B$.
3. Corollary 3.9 shows that the code $\varphi(X)$, which is a suffix code by Corollary 2.5 , is in fact the composition (by means of g) [1] of the code $\mu_{w}(\eta(X)) \subseteq$ B^{*} and the biprefix, overlap-free, and normal code $g(B) \subseteq A^{*}$.
4. From the proof of Proposition 3.7, one easily obtains that if $\operatorname{card} X>1$, the decomposition (15) is unique.

Proposition 3.10. Let $\varphi: X^{*} \rightarrow A^{*}$ be an injective ϑ-characteristic morphism, decomposed as in (15), and ψ be the iterated palindrome closure operator. The word $u=g(\psi(w))$ is a ϑ-palindrome such that for each $x \in X$,

$$
\begin{equation*}
\varphi(x) u=(u g(\eta(x)))^{\oplus}, \tag{16}
\end{equation*}
$$

and $\varphi(x)$ is either a prefix of u or equal to $u g(\eta(x))$.
Proof. Since $\psi(w)$ is a palindrome and the injective morphism g is such that $g(B) \subseteq \mathcal{P}_{\vartheta}$, we have $u \in P A L_{\vartheta}$ in view of Proposition 1.17. Let $x \in X$ and set $b=\eta(x)$. We have

$$
\varphi(x) u=g\left(\mu_{w}(\eta(x)) \psi(w)\right)=g\left(\mu_{w}(b) \psi(w)\right)
$$

By Propositions 1.9 and 1.17 we obtain

$$
g\left(\mu_{w}(b) \psi(w)\right)=g(\psi(w b))=g\left((\psi(w) b)^{(+)}\right)=(g(\psi(w) b))^{\oplus}=(u g(b))^{\oplus}
$$

and (16) follows. Thus, since $g(b)$ is a ϑ-palindromic suffix of $u g(b)$, we derive $|\varphi(x)| \leq|u g(b)|$. By Proposition 2.1, $\varphi(x) \in \mathcal{P}_{\vartheta}^{*}$. Therefore it can be either equal to $u g(b)$ or a prefix of u. Indeed, if $\varphi(x)=u r$ with r a nonempty proper prefix of $g(b) \in \mathcal{P}_{\vartheta}$, then $r \in \mathcal{P}_{\vartheta}^{*}$, as $\mathcal{P}_{\vartheta}^{*}$ is left unitary. This gives rise to a contradiction because \mathcal{P}_{ϑ} is a biprefix code.

Corollary 3.11. Under the same hypotheses and with the same notation as in Proposition 3.10, if $x_{1}, x_{2} \in X$ are such that $\left|\varphi\left(x_{1}\right)\right| \leq\left|\varphi\left(x_{2}\right)\right|$, then either $\varphi\left(x_{1}\right) \in \operatorname{Pref} \varphi\left(x_{2}\right)$, or $\varphi\left(x_{1}\right)$ and $\varphi\left(x_{2}\right)$ do not overlap, i.e.,

$$
\operatorname{Suff} \varphi\left(x_{1}\right) \cap \operatorname{Pref} \varphi\left(x_{2}\right)=\operatorname{Suff} \varphi\left(x_{2}\right) \cap \operatorname{Pref} \varphi\left(x_{1}\right)=\{\varepsilon\}
$$

Proof. For $i=1,2$, let us set $b_{i}=\eta\left(x_{i}\right)$. By Proposition 3.10, $\varphi\left(x_{i}\right)$ is either a prefix of u or equal to $u g\left(b_{i}\right)$.

If $\varphi\left(x_{1}\right)$ is a prefix of u, then it is a prefix of $\varphi\left(x_{2}\right)$ too, as $\left|\varphi\left(x_{1}\right)\right| \leq\left|\varphi\left(x_{2}\right)\right|$. Let us then suppose that

$$
\begin{equation*}
\varphi\left(x_{i}\right)=u g\left(b_{i}\right) \quad \text { for } i=1,2 . \tag{17}
\end{equation*}
$$

Now let v be an element of $\operatorname{Suff} \varphi\left(x_{1}\right) \cap \operatorname{Pref} \varphi\left(x_{2}\right)$. Since $\varphi\left(x_{2}\right) \in \mathcal{P}_{\vartheta}^{*}$, we can write $v=v^{\prime} \lambda$, where v^{\prime} is the longest word of $\mathcal{P}_{\vartheta}^{*} \cap \operatorname{Pref} v$. Then λ is a proper prefix of a word π occurring in the unique factorization of $\varphi\left(x_{2}\right)$ over \mathcal{P}_{ϑ}. If λ was nonempty, π would overlap with some word π^{\prime} of the factorization of $\varphi\left(x_{1}\right)$ over \mathcal{P}_{ϑ}. This is absurd, since for any $t \in \operatorname{SEpi}(X)$ such that $x_{1}, x_{2} \in \operatorname{alph} t$, both π and π^{\prime} would be in $\Pi_{\varphi(t)}$, which is overlap-free by Theorem 1.26. Hence $\lambda=\varepsilon$ and $v \in \mathcal{P}_{\vartheta}^{*}$. Therefore by (17) we have $v=g(\xi)$, where ξ is an element of $\operatorname{Suff}\left(\psi(w) b_{1}\right) \cap \operatorname{Pref}\left(\psi(w) b_{2}\right)$.

By Proposition 3.10, (17) is equivalent to $\left(u g\left(b_{i}\right)\right)^{\oplus}=u g\left(b_{i}\right) u, i=1,2$. Since for $i=1,2$ the word $g\left(b_{i}\right)$ is an unbordered ϑ-palindrome, any ϑ-palindromic suffix of $u g\left(b_{i}\right)$ longer than $g\left(b_{i}\right)$ can be written as $g\left(b_{i}\right) \xi_{i} g\left(b_{i}\right)$, with ξ_{i} a ϑ palindromic suffix of u. Hence (17) holds for $i=1,2$ if and only if u has no ϑ-palindromic suffixes preceded respectively by $g\left(b_{1}\right)$ or $g\left(b_{2}\right)$. By Proposition 1.17, this implies that for $i=1,2, \psi(w)$ has no palindromic suffix preceded by b_{i}, so that $b_{i} \notin \operatorname{alph} w=\operatorname{alph} \psi(w)$. Therefore, since $b_{1} \neq b_{2}$, the only word in $\operatorname{Suff}\left(\psi(w) b_{1}\right) \cap \operatorname{Pref}\left(\psi(w) b_{2}\right)$ is ε. Hence $v=g(\varepsilon)=\varepsilon$.

The same argument can be used to prove that $\operatorname{Suff} \varphi\left(x_{2}\right) \cap \operatorname{Pref} \varphi\left(x_{1}\right)=$ $\{\varepsilon\}$.

Example 3.12. Let $X=\{x, y\}, A=\{a, b, c, d, e\}, B=\{a, d\}$, and ϑ be defined by $\bar{a}=b, \bar{c}=c$, and $\bar{d}=e$. As we have seen in Example 3.4, the morphism $\varphi: X^{*} \rightarrow A^{*}$ defined by $\varphi(x)=a c b d e$ and $\varphi(y)=a c b d e a c b$ is ϑ-characteristic. We can decompose φ as $\varphi=g \circ \mu_{a d} \circ \eta$, where $g: B^{*} \rightarrow A^{*}$ is defined by $g(a)=a c b \in \mathcal{P}_{\vartheta}, g(d)=d e \in \mathcal{P}_{\vartheta}$, and η is such that $\eta(x)=d$ and $\eta(y)=a$. We have $u=g(\psi(a d))=g(a d a)=a c b d e a c b$, and

$$
\varphi(x) u=\text { acbdeacbdeacb }=(\text { acbdeacbde })^{\oplus}=(u g(\eta(x)))^{\oplus} .
$$

Similarly, $\varphi(y) u=(u g(\eta(y)))^{\oplus}$. In this case, $\varphi(x)$ is a prefix of $\varphi(y)$.
The following basic theorem gives a characterization of all injective ϑ-characteristic morphisms.

Theorem 3.13. Let $\varphi: X^{*} \rightarrow A^{*}$ be an injective morphism. Then φ is ϑ characteristic if and only if it is decomposable as

$$
\varphi=g \circ \mu_{w} \circ \eta
$$

as in (15), with $B=\operatorname{alph} w \cup \eta(X)$ and $g(B)=\Pi \subseteq \mathcal{P}_{\vartheta}$ satisfying the following conditions:

1. Π is an overlap-free and normal code,
2. $L S(\{g(\psi(w))\} \cup \Pi) \subseteq \operatorname{Pref} g(\psi(w))$,
3. if $b, c \in A \backslash \operatorname{Suff} \Pi$ and $v \in \Pi^{*}$ are such that bv $\bar{c} \in$ Fact Π, then $v=$ $g\left(\psi\left(w^{\prime} x\right)\right)$, with $w^{\prime} \in \operatorname{Pref} w$ and $x \in\{\varepsilon\} \cup(B \backslash \eta(X))$.

The proof of this theorem, which is rather cumbersome, will be given in Section 5, using some results on biprefix, overlap-free, and normal codes that will be proved in Section 4. We conclude this section by giving some examples and a remark related to Theorem 3.13; moreover, from this theorem we derive a different proof of Theorem 3.1.
Example 3.14. Let $A=\{a, b, c\}, X=\{x, y\}, B=\{a, b\}$, and let ϑ and $\varphi: X^{*} \rightarrow$ A^{*} be defined as in Example 3.6, namely $\bar{a}=a, \bar{b}=c$, and $\varphi=g \circ \mu_{a} \circ \eta$, where $\eta(x)=a, \eta(y)=b$, and $g: B^{*} \rightarrow A^{*}$ is defined by $g(a)=a$ and $g(b)=b a c$. Then $\Pi=g(B)=\{a, b a c\}$ is an overlap-free code and satisfies:

- (Suff $\Pi \backslash \Pi) \cap L S \Pi=\{\varepsilon\}$, so that Π is normal,
- $L S(\{g(\psi(a))\} \cup \Pi)=L S(\{a\} \cup \Pi)=\{\varepsilon\} \subseteq \operatorname{Pref} a$.

The only word verifying the hypotheses of condition 3 is $b a c=b a \bar{b}=g(b) \in \Pi$, with $a \in \Pi^{*}$ and $b \notin$ Suff Π. Since $a=g(\psi(a))$ and $B \backslash \eta(X)=\emptyset$, also condition 3 of Theorem 3.13 is satisfied. Hence φ is ϑ-characteristic.
Example 3.15. Let $X=\{x, y\}, A=\{a, b, c\}, \vartheta$ be such that $\bar{a}=a, \bar{b}=c$, and the morphism $\varphi: X^{*} \rightarrow A^{*}$ be defined by $\varphi(x)=a$ and $\varphi(y)=a b a a c$. In this case we have $\varphi=g \circ \mu_{a} \circ \eta$, where $B=\{a, b\}, g(a)=a, g(b)=b a a c$, $\eta(x)=a$, and $\eta(y)=b$. Then the morphism φ is not ϑ-characteristic. Indeed, if t is any standard episturmian word starting with $y x y$, then $\varphi(t)$ has the prefix abaacaabaac, so that $a a$ is a left special factor of $\varphi(t)$ but not a prefix of it.

In fact, condition 3 of Theorem 3.13 is not satisfied in this case, since baac $=$ $b a a \bar{b}=g(b), b \notin \operatorname{Suff} \Pi, a a \in \Pi^{*}, B \backslash \eta(X)=\emptyset$, and

$$
a a \notin\left\{g\left(\psi\left(w^{\prime}\right)\right) \mid w^{\prime} \in \operatorname{Pref} a\right\}=\{\varepsilon, a\} .
$$

If we choose $X^{\prime}=\{y\}$ with $\eta^{\prime}(y)=b$, then

$$
g\left(\mu_{a}\left(\eta^{\prime}\left(y^{\omega}\right)\right)\right)=(a b a a c)^{\omega} \in S E p i_{\vartheta},
$$

so that $\varphi^{\prime}=g \circ \mu_{a} \circ \eta^{\prime}$ is ϑ-characteristic. In this case $B=$ alph $a \cup \eta^{\prime}\left(X^{\prime}\right)$, $B \backslash \eta^{\prime}\left(X^{\prime}\right)=\{a\}$, and $a a=g(\psi(a a))=g(a a)$, so that condition 3 is satisfied.
Example 3.16. Let $X=\{x, y\}, A=\{a, b, c, d, e, h\}$, and ϑ be the antimorphism over A defined by $\bar{a}=a, \bar{b}=c, \bar{d}=e, \bar{h}=h$. Let also $w=a d b \in A^{*}$, $B=\{a, b, d\}=\operatorname{alph} w$, and $\eta: X^{*} \rightarrow B^{*}$ be defined by $\eta(x)=a$ and $\eta(y)=b$.

Finally, set $g(a)=a, g(d)=d a h a e$, and $g(b)=$ badahaeadahaeac. Then the morphism $\varphi=g \circ \mu_{w} \circ \eta$ is such that

$$
\varphi(y)=\text { adahaeabadahaeadahaeac } \quad \text { and } \quad \varphi(x)=\varphi(y) \text { adahaea },
$$

and it is ϑ-characteristic as the code $\Pi=g(B)$ and the word $u=g(\psi(w))=$ $g($ adabada $)=\varphi(x)$ satisfy all three conditions of Theorem 3.13.
Remark. Let us observe that Theorem 3.13 gives an effective procedure to decide whether, for a given ϑ, an injective morphism $\varphi: X^{*} \rightarrow A^{*}$ is ϑ characteristic. The procedure runs in the following steps:

1. Check whether $\varphi(X) \subseteq \mathcal{P}_{\vartheta}^{*}$.
2. If the previous condition is satisfied, then compute $\Pi=\Pi(\varphi)$.
3. Verify that Π is overlap-free and normal.
4. Compute $B=f(\Pi)$ and then the morphism $g: B^{*} \rightarrow A^{*}$ given by $g(B)=$ Π.
5. Since $\varphi=g \circ \zeta$, verify that ζ is R-characteristic, i.e., there exists $w \in B^{*}$ such that $\zeta=\mu_{w} \circ \eta$, where η is a literal morphism from X^{*} to B^{*}. This can be always simply done, following the argument used in the proof of Proposition 3.7.
6. Compute $g(\psi(w))$ and verify that conditions 2 and 3 of Theorem 3.13 are satisfied. This can also be effectively done.

We now give a new proof of Theorem 3.1, based on Theorem 3.13.
Proof of Theorem 3.1. Let $\varphi: X^{*} \rightarrow A^{*}$ be an injective morphism such that $\varphi(X)=\Pi \subseteq \mathcal{P}_{\vartheta}$ and satisfying conditions 1 and 2 of Theorem 3.1. In this case we can assume $w=\varepsilon$, so that $B=\eta(X), u=g(\psi(w))=\varepsilon$, and $\varphi=g \circ \eta$. Hence $\Pi=g(B)=\varphi(X)$. The code Π is overlap-free by conditions 1 and 2 . Since any letter of A occurs at most once in any word of Π, we have $L S(\{\varepsilon\} \cup \Pi) \subseteq\{\varepsilon\}=$ Pref u, whence

$$
(\text { Suff } \Pi \backslash \Pi) \cap L S \Pi \subseteq\{\varepsilon\},
$$

i.e., Π is a left normal, and therefore normal, code. Let $b, c \in A \backslash$ Suff Π, and $v \in \Pi^{*}$ be such that $b v \bar{c} \in$ Fact π for some $\pi \in \Pi$. This implies $v=\varepsilon=g(\psi(\varepsilon))$, because the equation $v=\pi_{1} \cdots \pi_{k}$ with $\pi_{1}, \ldots, \pi_{k} \in \Pi$ would violate condition 1 of Theorem 3.1. Thus all the hypotheses of Theorem 3.13 are satisfied for $w=\varepsilon$, so that $\varphi=g \circ \mu_{\varepsilon} \circ \eta$ is ϑ-characteristic.

Conversely, let $\varphi: X^{*} \rightarrow A^{*}$ be an injective ϑ-characteristic morphism such that $\varphi(X)=\Pi \subseteq \mathcal{P}_{\vartheta}$. We can take $w=\varepsilon, B=\eta(X) \subseteq A$ and write $\varphi=g \circ \eta$, so that $g(B)=\varphi(X)=\Pi$. Since $u=\varepsilon$, by Theorem 3.13 we have

$$
\begin{equation*}
L S(\{\varepsilon\} \cup \Pi) \subseteq\{\varepsilon\} \tag{18}
\end{equation*}
$$

and, as $B \backslash \eta(X)=\emptyset$, for all $b, c \in A \backslash$ Suff Π and $v \in \Pi^{*}$,

$$
\begin{equation*}
b v \bar{c} \in \text { Fact } \Pi \Longrightarrow v=g(\psi(\varepsilon))=\varepsilon \tag{19}
\end{equation*}
$$

Moreover, since $\Pi=\Pi(\varphi)$, we have that Π is normal and overlap-free by Proposition 2.2.

Now let $a \in A$ and suppose $a \in \operatorname{alph} \pi$ for some $\pi \in \Pi$. We will show that any two occurrences of a in the words of Π coincide, so that a has exactly one occurrence in Π. Let then $\pi_{1}, \pi_{2} \in \Pi$ be such that

$$
\pi_{1}=\lambda_{1} a \rho_{1} \quad \text { and } \quad \pi_{2}=\lambda_{2} a \rho_{2}
$$

for some $\lambda_{1}, \lambda_{2}, \rho_{1}, \rho_{2} \in A^{*}$, and let us first prove that $\lambda_{1}=\lambda_{2}$.
Let s be the longest common suffix of λ_{1} and λ_{2}, and let $\lambda_{i}=\lambda_{i}^{\prime} s$ for $i=1,2$. If both λ_{1}^{\prime} and λ_{2}^{\prime} were nonempty, their last letters would differ by the definition of s, and therefore $s a$ would be in $L S \Pi$, contradicting (18).

Next, we may assume $\lambda_{1}^{\prime}=\varepsilon$ and $\lambda_{2}^{\prime} \neq \varepsilon$, without loss of generality. Then $s a \in \operatorname{Pref} \pi_{1}$, so that by Proposition 1.1 we obtain $\lambda_{2}^{\prime} \pi_{1} \in \operatorname{Pref} \pi_{2}$; in particular, we have $\pi_{1} \neq \pi_{2}$. Let then r be the longest word of $\Pi^{*} \cap$ Suff λ_{2}^{\prime}, and set $\lambda_{2}^{\prime}=\xi r$. Since $\lambda_{2}^{\prime} \neq \varepsilon$ and Π is a biprefix code, we have $\xi \neq \varepsilon$. Furthermore, ξ^{ℓ} is not a suffix of any word of Π, for if π^{\prime} were such a word, by Proposition 1.1 we would derive that $\pi^{\prime} \in$ Suff ξ, contradicting the definition of r.

Let us now write $\pi_{2}=\xi r \pi_{1} \delta$. The word δ is nonempty since Π is a biprefix code. Let r^{\prime} be the longest word in $\Pi^{*} \cap \operatorname{Pref} \delta$ and set $\delta=r^{\prime} \zeta$. Since Π is a biprefix code, $\zeta \neq \varepsilon$. By Proposition 1.1, we derive that $\zeta^{f} \notin \operatorname{Pref} \Pi$. By (19), we obtain that $r \pi_{1} r^{\prime}=\varepsilon$, which is absurd.

Thus $\lambda_{1}^{\prime}=\lambda_{2}^{\prime}=\varepsilon$, whence $\lambda_{1}=\lambda_{2}$ as desired. From $\lambda_{1} a=\lambda_{2} a$ it follows $\pi_{1}^{f}=\pi_{2}^{f}$, so that by Proposition 1.1 we have $\pi_{1}=\pi_{2}$ and hence $\rho_{1}=\rho_{2}$. Therefore, the two (generic) occurrences of a we have considered are the same.

We have thus proved that every letter of A occurs at most once among all the words of $\Pi=\varphi(X)$, so that conditions 1 and 2 of Theorem 3.1 are satisfied.

4 Some properties of normal codes

In this section, we analyse some properties of left (or right) normal codes, under some additional requirements such as being suffix, prefix, or overlap-free. A first noteworthy result was already given in Section 1 (cf. Proposition 1.1). We stress that all statements of the following propositions can be applied to codes which are biprefix, overlap-free, and normal.

Lemma 4.1. Let Z be a left normal and suffix code over A. For any $a, b \in A$, $a \neq b, \lambda \in A^{+}$, if $a \lambda, b \lambda \in \operatorname{Fact} Z^{*}$ and $\lambda \notin \operatorname{Pref} Z^{*}$, then $a \lambda, b \lambda \in \operatorname{Fact} Z$.

Proof. By symmetry, it suffices to prove that $a \lambda \in$ Fact Z. By hypothesis there exist words $v, \zeta \in A^{*}$ such that $v a \lambda \zeta=z_{1} \cdots z_{n}$, with $n \geq 1$ and $z_{i} \in Z$, $i=1, \ldots, n$. If $n=1$, then $a \lambda \in$ Fact Z and we are done. Then suppose $n>1$, and write:

$$
\begin{equation*}
v a=z_{1} \cdots z_{h} \delta, \quad \delta \lambda \zeta=z_{h+1} \cdots z_{n}, \quad z_{h+1}=\delta \xi=z \tag{20}
\end{equation*}
$$

with $\delta \in A^{*}, h \geq 0$, and $\xi \neq \varepsilon$. Let us observe that $\delta \neq \varepsilon$, for otherwise $\lambda \in \operatorname{Pref} Z^{*}$, contradicting the hypothesis on λ.

If $|\delta \lambda| \leq|z|$, then since $a=\delta^{\ell}$, we have $a \lambda \in$ Fact Z and we are done. Therefore, suppose $|\delta \lambda|>|z|$. This implies that ξ is a proper prefix of λ, and by (20), a proper suffix of z. Moreover, as $a=\delta^{\ell}$, we have $a \xi \in$ Fact Z.

Since $b \lambda \in$ Fact Z^{*}, in a symmetric way one derives that either $b \lambda \in$ Fact Z, or there exists $\xi^{\prime} \neq \varepsilon$ which is a proper prefix of λ and a proper suffix of a word
$z^{\prime} \in Z$. In the first case we have $b \lambda \in \operatorname{Fact} Z$, so that $a \xi, b \xi \in \operatorname{Fact} Z$, whence $\xi \in \operatorname{Suff} Z \cap L S Z$, and $\xi \notin Z$ since Z is a suffix code. We reach a contradiction since $\xi \neq \varepsilon$ and Z is left normal.

In the second case, ξ and ξ^{\prime} are both prefixes of λ. Let $\hat{\xi}$ be in $\left\{\xi, \xi^{\prime}\right\}$ with minimal length. Then $a \hat{\xi}, b \hat{\xi} \in \operatorname{Fact} Z$, so that $\hat{\xi} \in \operatorname{Suff} Z \cap L S Z$. Since $\hat{\xi} \notin Z$, as Z is a suffix code, we reach again a contradiction because $\hat{\xi} \neq \varepsilon$ and Z is left normal. Therefore, the only possibility is that $a \lambda \in$ Fact Z.

Proposition 4.2. Let Z be a suffix, left normal, and overlap-free code over A, and let $a, b \in A, v \in A^{*}, \lambda \in A^{+}$be such that $a \neq b$, va $\notin Z^{*}$, va入 $\in \operatorname{Pref} Z^{*}$, and $b \lambda \in$ Fact Z^{*}. Then $a \lambda \in$ Fact Z.

Proof. Since va $\in \operatorname{Pref} Z^{*}$, there exists $\zeta \in A^{*}$ such that va $\boldsymbol{v a}=z_{1} \cdots z_{n}$, $n \geq 1, z_{i} \in Z, i=1, \ldots, n$. Then we can assume that (20) holds for suitable $h \geq 0, \delta \in A^{*}$, and $\xi \in A^{+}$. We have $n>1$, for otherwise the statement is trivial, and $\delta \neq \varepsilon$ since $v a \notin Z^{*}$. As $\delta^{\ell}=a$, if $|\delta \lambda| \leq|z|$ we obtain $a \lambda \in$ Fact Z and we are done. Therefore assume $|\delta \lambda|>|z|$. In this case ξ is a proper prefix of λ and a proper suffix of z. If $\lambda \in \operatorname{Pref} Z^{*}$ we reach a contradiction, since $\xi \in \operatorname{Suff} Z \cap \operatorname{Pref} Z^{*}$ and this contradicts the hypothesis that Z is a suffix and overlap-free code. Thus $\lambda \notin \operatorname{Pref} Z^{*}$; this implies, by the previous lemma, that $a \lambda \in \operatorname{Fact} Z$.

Proposition 4.3. Let Z be a biprefix, overlap-free, and right normal code over A. If $\lambda \in \operatorname{Pref} Z^{*} \backslash\{\varepsilon\}$, then there exists a unique word $u=z_{1} \cdots z_{k}$ with $k \geq 1$ and $z_{i} \in Z, i=1, \ldots, k$, such that

$$
\begin{equation*}
u=z_{1} \cdots z_{k}=\lambda \zeta, \quad z_{1} \cdots z_{k-1} \delta=\lambda \tag{21}
\end{equation*}
$$

where $\delta \in A^{+}$and $\zeta \in A^{*}$.
Proof. Let us suppose that there exist $h \geq 1$ and words $z_{1}^{\prime}, \ldots, z_{h}^{\prime} \in Z$ such that

$$
\begin{equation*}
z_{1}^{\prime} \cdots z_{h}^{\prime}=\lambda \zeta^{\prime}, \quad z_{1}^{\prime} \cdots z_{h-1}^{\prime} \delta^{\prime}=\lambda \tag{22}
\end{equation*}
$$

with $\zeta^{\prime} \in A^{*}$ and $\delta^{\prime} \in A^{+}$. From (21) and (22) one obtains $u=z_{1} \cdots z_{k}=$ $z_{1}^{\prime} \cdots z_{h-1}^{\prime} \delta^{\prime} \zeta$ and $z_{1}^{\prime} \cdots z_{h}^{\prime}=z_{1} \cdots z_{k-1} \delta \zeta^{\prime}$, with $z_{k}=\delta \zeta$ and $z_{h}^{\prime}=\delta^{\prime} \zeta^{\prime}$. Since Z is a biprefix code, we derive $h=k$ and consequently $z_{i}=z_{i}^{\prime}$ for $i=1, \ldots, k-1$. Indeed, if $h \neq k$, we would derive by cancellation that $\delta^{\prime} \zeta=\varepsilon$ or $\delta \zeta^{\prime}=\varepsilon$, which is absurd as $\delta, \delta^{\prime} \in A^{+}$.

Hence we obtain $z_{k}=\delta^{\prime} \zeta=\delta \zeta$, whence $\delta=\delta^{\prime}$. Thus δ is a common nonempty prefix of z_{k} and z_{k}^{\prime}. Since Z is right normal, by Proposition 1.1 we obtain that z_{k} is a prefix of z_{k}^{\prime} and vice versa, i.e., $z_{k}=z_{k}^{\prime}$.

Proposition 4.4. Let Z be a biprefix, overlap-free, and normal code over A. If $u \in Z^{*} \backslash\{\varepsilon\}$ is a proper factor of $z \in Z$, then there exist $p, q \in Z^{*}, h, h^{\prime} \in A^{+}$ such that $h^{\ell} \notin \operatorname{Suff} Z,\left(h^{\prime}\right)^{f} \notin \operatorname{Pref} Z$, and

$$
z=h p u q h^{\prime} .
$$

Proof. Since u is a proper factor of $z \in Z$, there exist $\xi, \xi^{\prime} \in A^{*}$ such that $z=\xi u \xi^{\prime}$; moreover, ξ and ξ^{\prime} are both nonempty as Z is a biprefix code. Let p (resp. q) be the longest word in $\operatorname{Suff} \xi \cap Z^{*}$ (resp. Pref $\xi^{\prime} \cap Z^{*}$), and write

$$
z=\xi u \xi^{\prime}=h p u q h^{\prime}
$$

for some $h, h^{\prime} \in A^{*}$. Since u and $h p$ are nonempty and Z is a biprefix code, one derives that h and h^{\prime} cannot be empty. Moreover, $h^{\ell} \notin \operatorname{Suff} Z$ and $\left(h^{\prime}\right)^{f} \notin$ $\operatorname{Pref} Z$, for otherwise the maximality of p and q would be contradicted using Proposition 1.1.

5 Proof of Theorem 3.13

In order to prove the theorem, we need the following lemma.
Lemma 5.1. Let $t \in \operatorname{SEpi}(B)$ with $\operatorname{alph} t=B$, and let $s=g(t)$ be a standard ϑ-episturmian word over A, with $g: B^{*} \rightarrow A^{*}$ an injective morphism such that $g(B) \subseteq \mathcal{P}_{\vartheta}$. Suppose that $b, c \in A \backslash \operatorname{Suff} \Pi_{s}$ and $v \in \Pi_{s}^{*}$ are such that $b v \bar{c} \in$ Fact $_{s}$. Then there exists $\delta \in B^{*}$ such that $v=g(\psi(\delta))$.
Proof. Let $\pi \in \Pi_{s}$ be such that $b v \bar{c} \in$ Fact π. By definition, we have $\Pi_{s}=g(B)$, so that, since $v \in \Pi_{s}^{*}$, we can write $v=g(\xi)$ for some $\xi \in B^{*}$. We have to prove that $\xi=\psi(\delta)$ for some $\delta \in B^{*}$. This is trivial for $\xi=\varepsilon$. Let then $\psi\left(\delta^{\prime}\right)$ be the longest prefix in $\psi\left(B^{*}\right)$ of ξ, and assume by contradiction that $\xi \neq \psi\left(\delta^{\prime}\right)$, so that $\psi\left(\delta^{\prime}\right) a \in \operatorname{Pref} \xi$ for some $a \in B$. We shall prove that $\psi\left(\delta^{\prime} a\right)=\left(\psi\left(\delta^{\prime}\right) a\right)^{(+)} \in \operatorname{Pref} \xi$, contradicting the maximality of $\psi\left(\delta^{\prime}\right)$.

Since $g\left(\psi\left(\delta^{\prime}\right)\right)$ is a prefix of v, we have $b g\left(\psi\left(\delta^{\prime}\right)\right) \in$ Fact $\pi \subseteq$ Fact s. Moreover $g\left(\psi\left(\delta^{\prime}\right) a\right) \in \operatorname{Pref} v \subseteq$ Fact π. By Proposition 1.17 and since π is a ϑ-palindrome, we have

$$
g\left(a \psi\left(\delta^{\prime}\right)\right)=\overline{g\left(\psi\left(\delta^{\prime}\right) a\right)} \in \operatorname{Fact} \pi
$$

Thus $g\left(\psi\left(\delta^{\prime}\right)\right)$, being preceded in s both by $b \notin \operatorname{Suff} \Pi_{s}$ and by $(g(a))^{\ell} \in \operatorname{Suff} \Pi_{s}$, is a left special factor of s, and hence a prefix of it.

Suppose first that $a \notin \operatorname{alph} \delta^{\prime}$, so that $\psi\left(\delta^{\prime} a\right)=\psi\left(\delta^{\prime}\right) a \psi\left(\delta^{\prime}\right)$. Let λ be the longest prefix of $\psi\left(\delta^{\prime}\right)$ such that $\psi\left(\delta^{\prime}\right) a \lambda$ is a prefix of ξ. Then $g\left(\psi\left(\delta^{\prime}\right) a \lambda\right)$ is followed in $v \bar{c}$ by some letter x, i.e.,

$$
\begin{equation*}
g\left(\psi\left(\delta^{\prime}\right) a \lambda\right) x \in \operatorname{Pref}(v \bar{c}) . \tag{23}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
g(\lambda) x \notin \operatorname{Pref} g\left(\psi\left(\delta^{\prime}\right)\right) \tag{24}
\end{equation*}
$$

Indeed, assume the contrary. Then x is a prefix of $g(\lambda)^{-1} g\left(\psi\left(\delta^{\prime}\right)\right)$, which is in Π^{*} since Π is a biprefix code. Hence $x \in \operatorname{Pref} g(d)$ for some $d \in B$ such that $g(\lambda d) \in$ Pref $g\left(\psi\left(\delta^{\prime}\right)\right)$, and then $\lambda d \in \operatorname{Pref} \psi\left(\delta^{\prime}\right)$ by Lemma 1.2. As $\bar{c} \notin \operatorname{Pref} \Pi$, we obtain $x \neq \bar{c}$, so that by (23) it follows $g\left(\psi\left(\delta^{\prime}\right) a \lambda\right) x \in \operatorname{Pref} v$. Therefore $g\left(\psi\left(\delta^{\prime}\right) a \lambda d\right) \in$ Pref v by Proposition 1.1, so that $\psi\left(\delta^{\prime}\right) a \lambda d \in \operatorname{Pref} \xi$ by Lemma 1.2. This is a contradiction because of our choice of λ.

Let us prove that $\lambda=\psi\left(\delta^{\prime}\right)$. Indeed, since $\tilde{\lambda} \in \operatorname{Suff} \psi\left(\delta^{\prime}\right)$, by (23) the word $g(\tilde{\lambda} a \lambda) x$ is a factor of π, and so is its image under ϑ, that is $\bar{x} g(\tilde{\lambda} a \lambda)$. By contradiction, suppose $|\lambda|<\left|\psi\left(\delta^{\prime}\right)\right|$. By $(24), \bar{x} g(\tilde{\lambda}) \notin \operatorname{Suff} g\left(\psi\left(\delta^{\prime}\right)\right)$, so that the suffix $g(\lambda a \lambda)$ of $g\left(\psi\left(\delta^{\prime}\right) a \lambda\right)$ is preceded by a letter which is not \bar{x}. Thus $g(\tilde{\lambda} a \lambda)$ is a left special factor of $\pi \in$ Fact s, and hence a prefix of s. As we have previously seen, $g\left(\psi\left(\delta^{\prime}\right)\right)$ is a prefix of s too, so that, as $|\lambda|<\left|\psi\left(\delta^{\prime}\right)\right|$, it follows by Lemma 1.2 that $\tilde{\lambda} a$ is a prefix of $\psi\left(\delta^{\prime}\right)$, contradicting the hypothesis that $a \notin \operatorname{alph} \delta^{\prime}$. Thus $\lambda=\psi\left(\delta^{\prime}\right)$, so that $\psi\left(\delta^{\prime} a\right) \in \operatorname{Pref} \xi$, as we claimed.

Now let us assume $a \in \operatorname{alph} \delta^{\prime}$ instead, and write $\delta^{\prime}=\gamma a \gamma^{\prime}$ with $a \notin \operatorname{alph} \gamma^{\prime}$, so that $\psi\left(\delta^{\prime}\right)=\psi(\gamma) a \rho=\tilde{\rho} a \psi(\gamma)$ and $\psi(\gamma)$ is the longest palindromic prefix (resp. suffix) of $\psi\left(\delta^{\prime}\right)$ followed (resp. preceded) by a. Thus

$$
\psi\left(\delta^{\prime} a\right)=\tilde{\rho} a \psi(\gamma) a \rho=\psi\left(\delta^{\prime}\right) a \rho .
$$

Let $\lambda \in \operatorname{Pref} \rho$ and $x \in A$ be such that (23) holds and $g(\lambda) x \notin \operatorname{Pref} g(\rho)$. With the same argument as above, one can show that if $|\lambda|<|\rho|$, then $g(\tilde{\lambda} a \psi(\gamma) a \lambda)$ is a left special factor, and then a prefix, of s. Since $g\left(\psi\left(\delta^{\prime}\right)\right)$ is a prefix of s too, and $|\tilde{\lambda} a \psi(\gamma) a| \leq|\rho a \psi(\gamma)|=\left|\psi\left(\delta^{\prime}\right)\right|$, by Lemma 1.2 we obtain $\tilde{\lambda} a \psi(\gamma) a \in \operatorname{Pref} \psi\left(\delta^{\prime}\right)$. Since $\tilde{\lambda}$ is a suffix of $\tilde{\rho}, \tilde{\lambda} a \psi(\gamma)$ is a suffix, and then a border, of $\psi\left(\delta^{\prime}\right)$. This is absurd since $\psi(\gamma)$ is the longest border of $\psi\left(\delta^{\prime}\right)$ followed by a. Thus $\lambda=\rho$, showing that $\psi\left(\delta^{\prime} a\right)$ is a prefix of ξ also in this case. The proof is complete.

We can now proceed with the proof of Theorem 3.13.

5.1 Necessity

The decomposition (15) with $B=$ alph $w \cup \eta(X)$ follows from Corollary 3.9 and subsequent remark.

Since $\Pi=g(B) \subseteq \mathcal{P}_{\vartheta}$ and φ is ϑ-characteristic, one has by Theorem 3.5 that $\Pi=\Pi(\varphi)$ as defined by (7), so that it is overlap-free and normal by Proposition 2.2.

Let us set $u=g(\psi(w))$, and prove that condition 2 holds. We first suppose that card $X \geq 2$, and that $a, a^{\prime} \in \eta(X)$ are distinct letters. Let Δ be an infinite word such that alph $\Delta=\eta(X)$. Setting $t_{a}=\psi(w a \Delta)$ and $t_{a^{\prime}}=\psi\left(w a^{\prime} \Delta\right)$, by (3) we have

$$
t_{a}=\mu_{w}(\psi(a \Delta)) \quad \text { and } \quad t_{a^{\prime}}=\mu_{w}\left(\psi\left(a^{\prime} \Delta\right)\right),
$$

so that, setting $s_{y}=g\left(t_{y}\right)$ for $y \in\left\{a, a^{\prime}\right\}$, we obtain

$$
s_{y}=g\left(\mu_{w}(\psi(y \Delta))\right) \in S E p i_{\vartheta}
$$

as $\psi(y \Delta) \in \eta(\operatorname{SEpi}(X)) \subseteq \operatorname{SEpi}(B)$ and $\varphi=g \circ \mu_{w} \circ \eta$ is ϑ-characteristic. By Corollary 1.10 and (3), one obtains that the longest common prefix of t_{a} and $t_{a^{\prime}}$ is $\psi(w)$. As alph $\Delta=\eta(X)$ and $B=\operatorname{alph} w \cup \eta(X)$, we have alph $t_{a}=$ alph $t_{a^{\prime}}=B$, so that $\Pi_{s_{a}}=\Pi_{s_{a^{\prime}}}=\Pi$. Since g is injective, by Theorem 1.27 we have $g(a)^{f} \neq g\left(a^{\prime}\right)^{f}$, so that the longest common prefix of s_{a} and $s_{a^{\prime}}$ is $u=g(\psi(w))$. Any word of $L S(\{u\} \cup \Pi)$, being a left special factor of both s_{a} and $s_{a^{\prime}}$, has to be a common prefix of s_{a} and $s_{a^{\prime}}$, and hence a prefix of u.

Now let us suppose $X=\{z\}$ and denote $\eta(z)$ by a. In this case we have

$$
\varphi(S E p i(X))=\left\{g\left(\mu_{w}\left(a^{\omega}\right)\right)\right\}=\left\{\left(g\left(\mu_{w}(a)\right)\right)^{\omega}\right\}
$$

Let us set $s=\left(g\left(\mu_{w}(a)\right)\right)^{\omega} \in S E p i_{\vartheta}$. By Corollary 1.10, $u=g(\psi(w))$ is a prefix of s. Let $\lambda \in L S(\{u\} \cup \Pi)$. Since $\Pi=\Pi_{s}$, the word λ is a left special factor of the ϑ-episturmian word s, so that we have $\lambda \in \operatorname{Pref} s$.

If $a \in \operatorname{alph} w$, then $B=\{a\} \cup \operatorname{alph} w=\operatorname{alph} w=\operatorname{alph} \psi(w)$, so that $\Pi \subseteq$ Fact u. This implies $|\lambda| \leq|u|$ and then $\lambda \in \operatorname{Pref} u$ as desired.

If $a \notin \operatorname{alph} w$, then by Proposition 3.10 we obtain $\varphi(z)=g\left(\mu_{w}(a)\right)=u g(a)$, because $\varphi(z) \notin \operatorname{Pref} u$ otherwise by Lemma 1.2 we would obtain $\mu_{w}(a) \in$ Pref $\psi(w)$, that implies $a \in \operatorname{alph} w$. Hence $s=(u g(a))^{\omega}$. Since $\Pi \subseteq\{g(a)\} \cup$

Fact u, we have $|\lambda| \leq|u g(a)|$, so that $\lambda \in \operatorname{Pref}(u g(a))$. Again, if λ is a proper prefix of u we are done, so let us suppose that $\lambda=u \lambda^{\prime}$ for some $\lambda^{\prime} \in \operatorname{Pref} g(a)$, and that λ is a left special factor of $g(a)$. Then the prefix λ^{\prime} of $g(a)$ is repeated in $g(a)$. The longest repeated prefix p of $g(a)$ is either a right special factor or a border of $g(a)$. Both possibilities imply $p=\varepsilon$, since $g(a)$ is unbordered and Π is a biprefix and normal code. As $\lambda^{\prime} \in \operatorname{Pref} p$, it follows $\lambda^{\prime}=\varepsilon$. This proves condition 2.

Finally, let us prove condition 3. Let $b, c \in A \backslash \operatorname{Suff} \Pi, v \in \Pi^{*}$, and $\pi \in$ Π be such that $b v \bar{c} \in \operatorname{Fact} \pi$. Let $t^{\prime} \in \operatorname{SEpi}(X)$ with alph $t^{\prime}=X$, and set $t=\mu_{w}\left(\eta\left(t^{\prime}\right)\right), s_{1}=g(t)$. Since φ is ϑ-characteristic, $s_{1}=\varphi\left(t^{\prime}\right)$ is standard ϑ-episturmian. By Lemma 5.1, we have $v=g(\psi(\delta))$ for some $\delta \in B^{*}$. If $\delta=\varepsilon$ we are done, as condition 3 is trivially satisfied for $w^{\prime}=x=\varepsilon$; let us then write $\delta=\delta^{\prime} a$ for some $a \in B$. The words $b g\left(\psi\left(\delta^{\prime}\right)\right)$ and $g\left(a \psi\left(\delta^{\prime}\right)\right)$ are both factors of the ϑ-palindrome π; indeed, $\psi\left(\delta^{\prime} a\right)$ begins with $\psi\left(\delta^{\prime}\right) a$ and terminates with $a \psi\left(\delta^{\prime}\right)$. Hence $g\left(\psi\left(\delta^{\prime}\right)\right)$ is left special in π as $b \notin \operatorname{Suff} \Pi$ is different from $(g(a))^{\ell} \in \operatorname{Suff} \Pi$. Therefore $g\left(\psi\left(\delta^{\prime}\right)\right)$ is a prefix of $g(\psi(w))$, as we have already proved condition 2. Since g is injective and Π is a biprefix code, by Lemma 1.2 it follows $\psi\left(\delta^{\prime}\right) \in \operatorname{Pref} \psi(w)$, so that $\delta^{\prime} \in \operatorname{Pref} w$ by Proposition 1.6. Hence, we can write $\delta=w^{\prime} x$ with $w^{\prime} \in \operatorname{Pref} w$ and x either equal to a (if $\delta^{\prime} a \notin \operatorname{Pref} w$) or to ε. It remains to show that if $w^{\prime} x \notin \operatorname{Pref} w$, then $x \notin \eta(X)$.

Let us first assume that $\eta(X)=\{x\}$. In this case we have $s_{1}=g\left(\mu_{w}\left(\eta\left(t^{\prime}\right)\right)\right)=$ $g\left(\psi\left(w x^{\omega}\right)\right)$ by (3). Since $b v=b g\left(\psi\left(w^{\prime} x\right)\right) \in$ Fact $\pi, g(x)$ is a proper factor of π. Then, as $B=\{x\} \cup \operatorname{alph} w$ and $g(x) \neq \pi$, we must have $\pi \in g(\operatorname{alph} w)$, so that $b v \in \operatorname{Fact} g(\psi(w))$ as alph $w=\operatorname{alph} \psi(w)$. By Proposition 1.7, $\psi\left(w^{\prime} x\right)$ is a factor of $\psi(w x)$. We can then write $\psi(w x)=\zeta \psi\left(w^{\prime} x\right) \zeta^{\prime}$ for some $\zeta, \zeta^{\prime} \in$ B^{*}. If ζ were empty, by Proposition 1.6 we obtain $w^{\prime} x \in \operatorname{Pref}(w x)$. Since $w^{\prime} x \notin \operatorname{Pref} w$ we would derive $w=w^{\prime}$, which is a contradiction since we proved that $b v=b g\left(\psi\left(w^{\prime} x\right)\right) \in \operatorname{Fact} g(\psi(w))$. Therefore $\zeta \neq \varepsilon$, and v is left special in s, being preceded both by $(g(\zeta))^{\ell}$ and by $b \notin$ Suff Π. This implies that v is a prefix of s and then of $g(\psi(w))$ as $|v| \leq|g(\psi(w))|$. By Lemma 1.2, it follows $\psi\left(w^{\prime} x\right) \in \operatorname{Pref} \psi(w)$ and then $w^{\prime} x \in \operatorname{Pref} w$ by Proposition 1.6, which is a contradiction.

Suppose now that there exists $y \in \eta(X) \backslash\{x\}$, and let $\Delta \in \eta(X)^{\omega}$ with alph $\Delta=\eta(X)$. The word $s_{2}=g(\psi(w y x \Delta))$ is equal to $g\left(\mu_{w}(\psi(y x \Delta))\right)$ by (3), and is then standard ϑ-episturmian since $\varphi=g \circ \mu_{w} \circ \eta$ is ϑ-characteristic. By applying Proposition 1.7 to w^{\prime} and $w y \in w^{\prime} A^{*}$, we obtain $\psi\left(w^{\prime} x\right) \in \operatorname{Fact} \psi(w y x)$. We can write $\psi(w y x)=\zeta \psi\left(w^{\prime} x\right) \zeta^{\prime}$ for some $\zeta, \zeta^{\prime} \in B^{*}$. As $w^{\prime} x \notin \operatorname{Pref} w$ and $x \neq y$, we have by Proposition 1.6 that $\psi\left(w^{\prime} x\right) \notin \operatorname{Pref} \psi(w y)$, so that $\zeta \neq \varepsilon$. Hence $v=g\left(\psi\left(w^{\prime} x\right)\right)$ is left special in s_{2}, being preceded both by $(g(\zeta))^{\ell}$ and by $b \notin$ Suff Π. This implies that v is a prefix of s_{2} and then of $g(\psi(w y))$; by Lemma 1.2, this is absurd since $\psi\left(w^{\prime} x\right) \notin \operatorname{Pref} \psi(w y)$.

5.2 Sufficiency

Let $t^{\prime} \in \operatorname{SEpi}(\eta(X))$ and $t=\mu_{w}\left(t^{\prime}\right) \in \operatorname{SEpi}(B)$. Since $g(B)=\Pi \subseteq \mathcal{P}_{\vartheta}$, by Proposition 1.17 it follows that $g(t)$ has infinitely many ϑ-palindromic prefixes, so that it is closed under ϑ.

Thus, in order to prove that $g(t) \in S E p i_{\vartheta}$, it is sufficient to show that any nonempty left special factor λ of $g(t)$ is in Pref $g(t)$. Since λ is left special, there
exist $a, a^{\prime} \in A, a \neq a^{\prime}, v, v^{\prime} \in A^{*}$, and $r, r^{\prime} \in A^{\omega}$, such that

$$
\begin{equation*}
g(t)=v a \lambda r=v^{\prime} a^{\prime} \lambda r^{\prime} . \tag{25}
\end{equation*}
$$

The word $g(t)$ can be uniquely factorized by the elements of Π. Therefore, va入 and $v^{\prime} a^{\prime} \lambda$ are in Pref Π^{*}. We consider three different cases.

Case 1: $v a \notin \Pi^{*}, v^{\prime} a^{\prime} \notin \Pi^{*}$.
Since Π is a biprefix (as it is a subset of \mathcal{P}_{ϑ}), overlap-free, and normal code, by Proposition 4.2 we have $a \lambda, a^{\prime} \lambda \in$ Fact Π. Therefore, by condition 2 of Theorem 3.13, it follows $\lambda \in L S \Pi \subseteq \operatorname{Pref} g(\psi(w))$, so that it is a prefix of $g(t)$ since by Corollary 1.10, $\psi(w)$ is a prefix of $t=\mu_{w}\left(t^{\prime}\right)$.

Case 2: $v a \in \Pi^{*}, v^{\prime} a^{\prime} \in \Pi^{*}$.
From (25), we have $\lambda \in \operatorname{Pref} \Pi^{*}$. By Proposition 4.3, there exists a unique word $\lambda^{\prime} \in \Pi^{*}$ such that $\lambda^{\prime}=\pi_{1} \cdots \pi_{k}=\lambda \zeta$ and $\pi_{1} \cdots \pi_{k-1} \delta=\lambda$, with $k \geq 1, \pi_{i} \in \Pi$ for $i=1, \ldots, k, \delta \in A^{+}$, and $\zeta \in A^{*}$.

Since g is injective, there exist and are unique the words $\tau, \gamma, \gamma^{\prime} \in B^{*}$ such that $g(\tau)=\lambda^{\prime}, g(\gamma)=v a, g\left(\gamma^{\prime}\right)=v^{\prime} a^{\prime}$. Moreover, we have $g(\gamma \tau)=v a \lambda^{\prime}=$ $v a \lambda \zeta \in \operatorname{Pref} g(t)$ and $g\left(\gamma^{\prime} \tau\right)=v^{\prime} a^{\prime} \lambda^{\prime}=v^{\prime} a^{\prime} \lambda \zeta \in \operatorname{Pref} g(t)$. By Lemma 1.2, we derive $\gamma \tau, \gamma^{\prime} \tau \in \operatorname{Pref} t$. Setting $\alpha=\gamma^{\ell}, \alpha^{\prime}=\gamma^{\prime \ell}$, we obtain $\alpha \tau, \alpha^{\prime} \tau \in$ Fact t, and $\alpha \neq \alpha^{\prime}$ as $a \neq a^{\prime}$. Hence τ is a left special factor of t; since $t \in \operatorname{SEpi}(B)$, we have $\tau \in \operatorname{Pref} t$, so that $g(\tau)=\lambda^{\prime} \in \operatorname{Pref} g(t)$. As λ is a prefix of λ^{\prime}, it follows $\lambda \in \operatorname{Pref} g(t)$.

Case 3: $v a \notin \Pi^{*}, v^{\prime} a^{\prime} \in \Pi^{*}$ (resp. $\left.v a \in \Pi^{*}, v^{\prime} a^{\prime} \notin \Pi^{*}\right)$.
We shall consider only the case when $v a \notin \Pi^{*}$ and $v^{\prime} a^{\prime} \in \Pi^{*}$, as the symmetric case can be similarly dealt with.

Since $v^{\prime} a^{\prime} \in \Pi^{*}$, by (25) we have $\lambda \in \operatorname{Pref} \Pi^{*}$. By Proposition 4.3, there exists a unique word $\lambda^{\prime} \in \Pi^{*}$ such that $\lambda^{\prime}=\pi_{1} \cdots \pi_{k}=\lambda \zeta$ and $\pi_{1} \cdots \pi_{k-1} \delta=\lambda$, with $k \geq 1, \pi_{i} \in \Pi$ for $i=1, \ldots, k, \delta \in A^{+}$, and $\zeta \in A^{*}$. By the uniqueness of $\lambda^{\prime}, v^{\prime} a^{\prime} \lambda^{\prime}$ is a prefix of $g(t)$.

By (25) we have $v a \pi_{1} \cdots \pi_{k-1} \delta \in \operatorname{Pref} g(t)$. By Proposition 4.2, $a \lambda \in$ Fact Π, so that there exist $\xi, \xi^{\prime} \in A^{*}, \pi \in \Pi$, such that

$$
\xi a \lambda \xi^{\prime}=\xi a \pi_{1} \cdots \pi_{k-1} \delta \xi^{\prime}=\pi \in \Pi
$$

Since δ is a nonempty prefix of π_{k}, it follows from Proposition 1.1 that $\pi=$ $\xi a \pi_{1} \cdots \pi_{k} \xi^{\prime \prime}=\xi a \lambda^{\prime} \xi^{\prime \prime}$, with $\xi^{\prime \prime} \in A^{*}$. By Proposition 4.4, we can write

$$
\pi=\xi a \lambda^{\prime} \xi^{\prime \prime}=h p \lambda^{\prime} q h^{\prime}
$$

with $h, h^{\prime} \in A^{+}, p, q \in \Pi^{*}, b=h^{\ell} \notin \operatorname{Suff} \Pi$, and $\bar{c}=\left(h^{\prime}\right)^{f} \notin \operatorname{Pref} \Pi$.
By condition 3, we have $p \lambda^{\prime} q=g\left(\psi\left(w^{\prime} x\right)\right)$ for some $w^{\prime} \in \operatorname{Pref} w$ and $x \in$ $\{\varepsilon\} \cup(B \backslash \eta(X))$. Since $p, \lambda^{\prime}, q \in \Pi^{*}$ and g is injective, we derive $\lambda^{\prime}=g(\tau)$ for some $\tau \in \operatorname{Fact} \psi\left(w^{\prime} x\right)$. We will show that λ^{\prime} is a prefix of $g(t)$, which proves the assertion as $\lambda \in \operatorname{Pref} \lambda^{\prime}$.

Suppose first that $p=\varepsilon$, so that $a=b$ and $\tau \in \operatorname{Pref} \psi\left(w^{\prime} x\right)$. If $\tau \in$ $\operatorname{Pref} \psi\left(w^{\prime}\right)$, then $\lambda^{\prime} \in g\left(\operatorname{Pref} \psi\left(w^{\prime}\right)\right) \subseteq \operatorname{Pref} g\left(\psi\left(w^{\prime}\right)\right) \subseteq \operatorname{Pref} g(\psi(w))$, and we are
done as $g(\psi(w)) \in \operatorname{Pref} g(t)$. Let us then assume $x \neq \varepsilon$, so that $x \in B \backslash \eta(X)$, and $\psi\left(w^{\prime}\right) x \in \operatorname{Pref} \tau$. Moreover, we can assume $w^{\prime} x \notin \operatorname{Pref} w$, for otherwise we would derive $\lambda^{\prime} \in \operatorname{Pref} g(\psi(w))$ again. Let $\Delta \in \eta(X)^{\omega}$ be the directive word of t^{\prime}, so that by (3) we have $t=\psi(w \Delta)$. Since $w^{\prime} \in \operatorname{Pref} w$, we can write $w \Delta=w^{\prime} \Delta^{\prime}$ for some $\Delta^{\prime} \in B^{\omega}$, so that $t=\psi\left(w^{\prime} \Delta^{\prime}\right)$.

We have already observed that $v^{\prime} a^{\prime} \lambda^{\prime} \in \operatorname{Pref} g(t)$; as $v^{\prime} a^{\prime} \in \Pi^{*}$, by Lemma 1.2 one derives that τ is a factor of t. Since $\psi\left(w^{\prime}\right) x \in \operatorname{Pref} \tau$, it follows $\psi\left(w^{\prime}\right) x \in$ Fact $\psi\left(w^{\prime} \Delta^{\prime}\right)$; by Proposition 1.8, we obtain $x \in \operatorname{alph} \Delta^{\prime}$. This implies, since $x \notin \eta(X)$, that $w \neq w^{\prime}$, and we can write $w=w^{\prime} \sigma x \sigma^{\prime}$ for some $\sigma, \sigma^{\prime} \in B^{*}$. By Proposition 1.7, $\psi\left(w^{\prime} x\right)$ is a factor of $\psi\left(w^{\prime} \sigma x\right)$ and hence of $\psi(w)$, so that, since $\tau \in \operatorname{Pref} \psi\left(w^{\prime} x\right)$, we have $\tau \in \operatorname{Fact} \psi(w)$. Hence we have either $\tau \in \operatorname{Pref} \psi(w)$, so that $\lambda^{\prime} \in \operatorname{Pref} g(\psi(w))$ and we are done, or there exists a letter y such that $y \tau \in$ Fact $\psi(w)$, so that $d \lambda^{\prime} \in \operatorname{Fact} g(\psi(w))$ with $d=(g(y))^{\ell} \in \operatorname{Suff} \Pi$. In the latter case, since $a=b \notin$ Suff Π and $a \lambda^{\prime} \in$ Fact Π, we have by condition 2 that $\lambda^{\prime} \in \operatorname{Pref} g(\psi(w))$. Since $g(\psi(w))$ is a prefix of $g(t)$, in the case $p=\varepsilon$ the assertion is proved.

If $p \neq \varepsilon$, we have $a \in \operatorname{Suff} \Pi$. Let then $\alpha, \alpha^{\prime} \in B$ be such that $(g(\alpha))^{\ell}=a$ and $\left(g\left(\alpha^{\prime}\right)\right)^{\ell}=a^{\prime}$; as $a \neq a^{\prime}$, we have $\alpha \neq \alpha^{\prime}$. Since $p \lambda^{\prime}$ is a prefix of $g\left(\psi\left(w^{\prime} x\right)\right)$, $p \in \Pi^{*}$, and $p^{\ell}=(g(\alpha))^{\ell}=a$, by Lemma 1.2 one derives that $\alpha \tau$ is a factor of $\psi\left(w^{\prime} x\right)$. Moreover, as $v^{\prime} a^{\prime} \lambda^{\prime} \in \operatorname{Pref} g(t)$ and $v^{\prime} a^{\prime} \in \Pi^{*}$, we derive that $\alpha^{\prime} \tau$ is a factor of t.

Let then δ^{\prime} be any prefix of the directive word Δ of t^{\prime}, such that $\alpha^{\prime} \tau \in$ Fact $\psi\left(w \delta^{\prime}\right)$. By Proposition 1.7, $\psi\left(w \delta^{\prime} x\right)$ contains $\psi\left(w^{\prime} x\right)$, and hence $\alpha \tau$, as a factor. Thus τ is a left special factor of $\psi\left(w \delta^{\prime} x\right)$ and then of the standard episturmian word $\psi\left(w \delta^{\prime} x^{\omega}\right)$; as $|\tau|<\left|\psi\left(w \delta^{\prime}\right)\right|$, it follows $\tau \in \operatorname{Pref} \psi\left(w \delta^{\prime}\right)$ and then $\tau \in \operatorname{Pref} t$, so that $\lambda^{\prime} \in \operatorname{Pref} g(t)$. The proof is now complete.

6 Further results and concluding remarks

Theorem 1.27 shows that every standard ϑ-episturmian word is a morphic image, under a suitable injective morphism, of some standard episturmian word. The following theorem improves upon this, showing that the morphism can always be taken to be ϑ-characteristic.

Theorem 6.1. Let s be a standard ϑ-episturmian word over A. Then there exists $X \subseteq A, t^{\prime} \in \operatorname{SEpi}(X)$ and an injective ϑ-characteristic morphism φ : $X^{*} \rightarrow A^{*}$ such that $s=\varphi\left(t^{\prime}\right)$.

Proof. Set $\Pi=\Pi_{s}$. By Theorem 1.27, the restriction to Π of the map $f: w \in$ $\mathcal{P}_{\vartheta} \mapsto w^{f} \in A$ is injective. Hence, setting $B=f(\Pi) \subseteq A$, we can define an injective morphism g sending any letter $x \in B$ to the only word of Π beginning with x. We have $s=g(t)$, where $t=f(s) \in \operatorname{SEpi}(B)$ by Theorem 1.27.

Let now $w \in B^{*}$ be the longest word such that $\psi(w) \in \operatorname{Pref} t$ and $g(\psi(w)) \in$ Fact Π. Such a word certainly exists, as $\varepsilon=\psi(\varepsilon) \in \operatorname{Pref} t$ and $\varepsilon=g(\psi(\varepsilon)) \in$ Fact Π. Since $\psi(w) \in \operatorname{Pref} t$, we can write t as $\psi(w \Delta)$ for some $\Delta \in B^{\omega}$; let us set

$$
X=\operatorname{alph} \Delta \subseteq B \quad \text { and } \quad t^{\prime}=\psi(\Delta) \in \operatorname{SEp} i(X) .
$$

By (3) we obtain $s=\varphi\left(t^{\prime}\right)$, where $\varphi=g \circ \mu_{w} \circ \eta$ and η is the inclusion map of X in B, i.e., $\eta(X)=X$.

Let us now show that φ is ϑ-characteristic. We have $B=X \cup \operatorname{alph} w$, and $g(B)=\Pi_{s} \subseteq \mathcal{P}_{\vartheta}$ is a biprefix code. By Theorems 1.25 and $1.26, \Pi$ is also normal and overlap-free, so that condition 1 of Theorem 3.13 is satisfied.

Let us first prove that φ meets condition 3 of that theorem. Indeed, if $v \in \Pi^{*}$ and $b, c \in A \backslash$ Suff Π are such that $b v \bar{c} \in$ Fact π with $\pi \in \Pi$, then by Lemma 5.1 we have $v=g(\psi(\delta))$ for some $\delta \in B^{*}$. If $\delta=\varepsilon$ we are done; let us then write $\delta=\delta^{\prime} a$ for some $a \in B$. The words $b g\left(\psi\left(\delta^{\prime}\right)\right)$ and $g\left(a \psi\left(\delta^{\prime}\right)\right)$ are both factors of the ϑ-palindrome π, so that $g\left(\psi\left(\delta^{\prime}\right)\right)$ is left special in π as $b \notin$ Suff Π is different from $(g(a))^{\ell}$. Therefore $g\left(\psi\left(\delta^{\prime}\right)\right) \in \operatorname{Pref} g(t)$, so that by Lemma 1.2 we have $\psi\left(\delta^{\prime}\right) \in \operatorname{Pref} t$. Since $g\left(\psi\left(\delta^{\prime}\right)\right) \in$ Fact Π, from the maximality condition on w it follows $\left|\delta^{\prime}\right| \leq|w|$. Moreover, as $\psi(w) \in \operatorname{Pref} t$, by Proposition 1.6 it follows $\delta^{\prime} \in \operatorname{Pref} w$. Hence, we can write $\delta=w^{\prime} x$ with $w^{\prime} \in \operatorname{Pref} w$ and x either equal to a (if $\delta^{\prime} a \notin \operatorname{Pref} w$) or to ε.

In order to prove condition 3 , it remains to show that if $w^{\prime} x \notin \operatorname{Pref} w$, then $x \notin X$. By contradiction, assume $x \in X=\operatorname{alph} \Delta$ and write $\Delta=\xi x \Delta^{\prime}$ for some $\xi \in(X \backslash\{x\})^{*}$ and $\Delta^{\prime} \in X^{\omega}$. From (3), it follows $t=\psi\left(w \xi x \Delta^{\prime}\right)$. By applying Proposition 1.7 to w^{\prime} and $w \xi \in w^{\prime} B^{*}$, we obtain $\psi\left(w^{\prime} x\right) \in \operatorname{Fact} \psi(w \xi x)$; let us write $\psi(w \xi x)=\zeta \psi\left(w^{\prime} x\right) \zeta^{\prime}$ for some $\zeta, \zeta^{\prime} \in B^{*}$. We claim that $\zeta \neq \varepsilon$, i.e., $\psi\left(w^{\prime} x\right) \notin \operatorname{Pref} \psi(w \xi x)$. Indeed, assume the contrary. Then $w^{\prime} x \in \operatorname{Pref}(w \xi x)$ by Proposition 1.6, so that $w^{\prime}=w$ and $\xi=\varepsilon$ since $w^{\prime} x \notin \operatorname{Pref} w$ and $x \notin \operatorname{alph} \xi$. Thus $g(\psi(w x))=g(\psi(\delta))=v \in$ Fact Π and $\psi(w x) \in \operatorname{Pref} t$, but this contradicts the maximality of w. Therefore $\zeta \neq \varepsilon$, so that $g\left(\psi\left(w^{\prime} x\right)\right)$ is left special in s, being preceded both by $b \notin$ Suff Π and by $(g(\zeta))^{\ell} \in$ Suff Π. Hence $g\left(\psi\left(w^{\prime} x\right)\right)$ is a prefix of s, and then of $g(\psi(w \xi x))$. By Lemma 1.2, we obtain $\psi\left(w^{\prime} x\right) \in \operatorname{Pref} \psi(w \xi x)$, a contradiction. Thus φ satisfies condition 3 of Theorem 3.13.

Finally, let $u=g(\psi(w)) \in \operatorname{Pref} s$ and let us prove that $L S(\{u\} \cup \Pi) \subseteq \operatorname{Pref} u$. Any word $\lambda \in L S(\{u\} \cup \Pi)$ is left special in s, and hence a prefix of it. If λ is a factor of u, then $|\lambda| \leq|u|$, so that $\lambda \in \operatorname{Pref} u$ as desired.

Let then $\lambda \in L S \Pi$, with $\lambda \neq \varepsilon$. Since $\lambda \in \operatorname{Pref} s$, we have $\lambda \in \operatorname{Pref} \Pi^{*}$, so that by Proposition 4.3 there exists a unique $\lambda^{\prime}=\pi_{1} \pi_{2} \cdots \pi_{k} \in \Pi^{*}$ (with $k \geq 1$ and $\pi_{i} \in \Pi$ for $\left.i=1, \ldots, k\right)$ such that $\lambda \in \operatorname{Pref} \lambda^{\prime}$ and $\pi_{1} \cdots \pi_{k-1} \in \operatorname{Pref} \lambda$. Because of its uniqueness, λ^{\prime} has to be a prefix of s. Moreover, as a consequence of Proposition 1.1, every occurrence of λ as a factor of any $\pi \in \Pi$ can be extended to the right to $\lambda^{\prime} \in$ Fact π, so that $\lambda^{\prime} \in L S \Pi$. As $\lambda^{\prime} \in \Pi^{*}$, we can write $\lambda^{\prime}=g(\tau) \in \operatorname{Pref} g(t)$ for some $\tau \in B^{*}$. By Lemma 1.2, τ is a prefix of t.

As $\lambda^{\prime} \in L S \Pi$, it is a proper factor of some $\pi \in \Pi$. By Proposition 4.4, we can write $\pi=h p \lambda^{\prime} q h^{\prime}$ with $h, h^{\prime} \in A^{+}, p, q \in \Pi^{*}, b=h^{\ell} \notin \operatorname{Suff} \Pi$, and $\bar{c}=\left(h^{\prime}\right)^{f} \notin \operatorname{Pref} \Pi$. Therefore, as we have already proved that condition 3 of Theorem 3.13 is satisfied, $p \lambda^{\prime} q=g\left(\psi\left(w^{\prime} x\right)\right)$ for suitable $w^{\prime} \in \operatorname{Pref} w$ and $x \in\{\varepsilon\} \cup(B \backslash X)$. As $p \in \Pi^{*}$, this implies $\tau \in$ Fact $\psi\left(w^{\prime} x\right)$.

We claim that $\tau \in \operatorname{Pref} \psi(w)$, so that $\lambda \in \operatorname{Pref} \lambda^{\prime}$ is a prefix of u. Indeed, suppose this is not the case, so that, since $\tau \in \operatorname{Pref} t$, one has $\psi(w) d \in \operatorname{Pref} \tau$ where d is the first letter of Δ. Then $\psi(w) d \in \operatorname{Fact} \psi\left(w^{\prime} x\right)$. This is absurd if $w^{\prime} x \in \operatorname{Pref} w$, as $|\psi(w) d|>\left|\psi\left(w^{\prime} x\right)\right|$ in that case. If $w^{\prime} x \notin \operatorname{Pref} w$, since $w^{\prime} \in \operatorname{Pref} w$ we can write $w=w^{\prime} y w^{\prime \prime}$ for some letter $y \neq x$ and $w^{\prime \prime} \in B^{*}$. Then $\psi\left(w^{\prime}\right) y$ is a prefix of $\psi(w) d \in$ Fact $\psi\left(w^{\prime} x\right) \subseteq$ Fact $\psi\left(w^{\prime} x^{\omega}\right)$. As $y \notin \operatorname{alph} x^{\omega}$, we reach a contradiction by Proposition 1.8. Hence all conditions of Theorem 3.13 are met, so that φ is ϑ-characteristic.

Let us consider the family $S W_{\vartheta}(N)$, introduced in [4], of all words $w \in A^{\omega}$
which are closed under ϑ and such that every left special factor of w whose length is at least N is a prefix of w. Moreover, $S W_{\vartheta}$ will denote the class of words which are in $S W_{\vartheta}(N)$ for some $N \geq 0$. One has that $S W_{\vartheta}(0)=S E p i_{\vartheta}$. It has been proved in [4] that the family of ϑ-standard words is included in $S W_{\vartheta}(3)$, and that $S W_{\vartheta}$ coincides with the family of ϑ-standard words with seed introduced in $[8,5]$.

Proposition 6.2. Let $\varphi: X^{*} \rightarrow A^{*}$ be an injective morphism decomposable as $\varphi=g \circ \mu_{w} \circ \eta$ where $w \in B^{*}, B=\operatorname{alph} w \cup \eta(X), \eta$ a literal morphism, and g is an injective morphism such that $g(B)=\Pi \subseteq \mathcal{P}_{\vartheta}$. If Π is overlap-free and normal, then $\varphi(S E p i(X)) \subseteq S W_{\vartheta}(N)$ with $N=\max \{|\pi| \mid \pi \in \Pi\}$.

Proof. The proof is very similar to the sufficiency of Theorem 3.13 (see Section 5.2). Using the same notation, suppose that λ is a left special factor of $g(t)$ of length $|\lambda| \geq N$ where $t=\mu_{w}\left(t^{\prime}\right) \in \operatorname{SEpi}(B)$ and $t^{\prime} \in \operatorname{SEpi}(\eta(X))$. One has that Cases 1 and 3 cannot occur since otherwise one would derive $a \lambda \in$ Fact Π that implies $|\lambda|<N$, which is a contradiction. It remains to consider Case 2. By using exactly the same argument one obtains that λ is a prefix of $g(t)$. Finally, since $g(t)$ has infinitely many ϑ-palindromic prefixes one has that $g(t)$ is closed under ϑ.

In the previous sections we have introduced and studied ϑ-characteristic morphisms and their strict link with normal and overlap-free codes, especially in the biprefix case. Many interesting properties have been proved; in particular, the characterization of injective ϑ-characteristic morphisms given by Theorem 3.13 is a powerful tool for constructing standard ϑ-episturmian words.

Some natural problems could be the subject of further investigation. A first problem is to give a characterization of the endomorphisms of A^{*} such that $\varphi\left(S E p i_{\vartheta}\right) \subseteq S E p i_{\vartheta}$. A second, quite general problem is to characterize the injective morphisms $\varphi: X^{*} \rightarrow A^{*}$ such that $\varphi(X) \subseteq Z^{*}$, where Z is a biprefix, overlap-free, and normal code, with the condition that if $t \in X^{\omega}$ is such that any its left special factor is a prefix of t, then $\varphi(t) \in A^{\omega}$ satisfies the same property. Theorem 3.13 gives a characterization of these morphisms in the special case $Z \subseteq \mathcal{P}_{\vartheta}$ and t closed under reversal.

Finally, we think that the classes of codes considered here (i.e., normal and overlap-free codes, both in the biprefix and general case) and their combinatorial properties would deserve a deeper analysis.

References

[1] J. Berstel and D. Perrin. Theory of Codes. Academic Press, New York, 1985.
[2] J. Berstel and P. Séébold. Sturmian words. In M. Lothaire, editor, Algebraic Combinatorics on Words. Cambridge University Press, Cambridge UK, 2002. Chapter 2.
[3] M. Bucci, A. de Luca, and A. De Luca. On a generalization of standard episturmian morphisms. In M. Ito and M. Toyama, editors, DLT 2008, volume 5257 of Lecture Notes in Computer Science, pages 158-169. Springer, 2008.
[4] M. Bucci, A. de Luca, A. De Luca, and L. Q. Zamboni. On different generalizations of episturmian words. Theoretical Computer Science, 393:23-36, 2008.
[5] M. Bucci, A. de Luca, A. De Luca, and L. Q. Zamboni. On some problems related to palindrome closure. Theoretical Informatics and Applications, 42:679700, 2008.
[6] M. Bucci, A. de Luca, A. De Luca, and L. Q. Zamboni. On θ-episturmian words European Journal of Combinatorics, to appear, 2008.
[7] A. de Luca. Sturmian words: structure, combinatorics, and their arithmetics. Theoretical Computer Science, 183:45-82, 1997.
[8] A. de Luca and A. De Luca. Pseudopalindrome closure operators in free monoids. Theoretical Computer Science, 362:282-300, 2006.
[9] X. Droubay, J. Justin, and G. Pirillo. Episturmian words and some constructions of de Luca and Rauzy. Theoretical Computer Science, 255:539-553, 2001.
[10] S. Fischler. Palindromic prefixes and episturmian words. Journal of Combinatorial Theory, Series A, 113:1281-1304, 2006
[11] J. Justin. Episturmian morphisms and a Galois theorem on continued fractions. Theoretical Informatics and Applications, 39:207-215, 2005.
[12] J. Justin and G. Pirillo. Episturmian words and episturmian morphisms. Theoretical Computer Science, 276:281-313, 2002.
[13] M. Lothaire. Combinatorics on Words. Addison-Wesley, Reading MA, 1983.
[14] M. Lothaire. Applied Combinatorics on Words. Cambridge University Press, Cambridge UK, 2005.

[^0]: ${ }^{1}$ This operator is denoted by $P a l$ in [11] and other papers.

