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M A J O R A R T I C L E

Rotavirus Induces a Biphasic Enterotoxic
and Cytotoxic Response in Human-Derived
Intestinal Enterocytes, Which Is Inhibited
by Human Immunoglobulins
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Gaetano Polito,1 Franco Maria Ruggeri,2 and Alfredo Guarino1
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The mechanisms of diarrhea due to rotavirus infection in humans are not fully understood; no specific therapy
is available, but orally administered human serum immunoglobulins are effective in blocking stool output.
We aimed to investigate the effect of rotavirus on ion transport and the role of NSP4 in human-derived
enterocytes, and to test the efficacy of human serum immunoglobulin in a model of rotavirus infection. Soon
after infection, rotavirus induces active chloride secretion in enterocytes. This effect is evident before viral
replication leads to cell damage and correlates with NSP4 production. Inhibition of NSP4 prevents the early
secretory phase but not cell damage. Incubation with human serum immunoglobulin blocks both ion secretion
and cell damage. Rotavirus exerts an early NSP4-dependent ion secretion and subsequent tissue damage. The
combined enterotoxic and cytotoxic effects may be responsible for the increased severity of diarrhea due to
rotavirus infection, and both are counteracted by human serum immunoglobulin.

Acute gastroenteritis is a major cause of pediatric mor-

tality in developing countries and morbidity in more-

developed areas, and rotavirus is the most frequent eti-

ologic agent of gastroenteritis in children [1, 2]. Despite

the social and medical costs related to rotavirus gas-

troenteritis, no specific therapy is currently available.

Much effort has been put into the development of a

safe and effective vaccine, and currently, 2 different

vaccines are available [3, 4].
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Rotavirus gastroenteritis is more severe than that

caused by other common pathogens, but the reasons

for such increased severity are not fully understood [5].

Rotavirus infects mature enterocytes of small intestinal

villi, inducing a wide array of functional and structural

damages [6, 7]. Several lines of evidence suggest that

the destruction of enterocytes and malabsorption can-

not completely explain the pathogenesis of rotavirus

infection [8–11]. Moreover, early watery diarrhea oc-

curs prior to the detection of villous blunting and other

histological changes [11–14]. More recently, studies

from animal models led to the identification of novel

mechanisms responsible for intestinal secretion during

rotavirus infection. Rotavirus-infected cells release a

nonstructural protein encoded by the virus, called

NSP4, which is able to stimulate age-related and cal-

cium-dependent chloride secretion in mice [15, 16].

However, a complete demonstration of the sequence of

events taking place during rotavirus infection and lead-

ing to diarrhea is still lacking.

NSP4 is a glycoprotein that interacts with the viral
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capsid during rotavirus morphogenesis [17]. Viral sequencing

demonstrated high variability, which allowed the definition of

5 NSP4 genetic groups. However, genetic sequencing of NSP4

demonstrated that the variability is mainly located to the C-

terminal region of the peptide, between amino acids 110 and

140 in viruses from different species and strains, and this region

is important in the virulence of rotavirus [18, 19]. Despite of

the importance of NSP4 in the pathophysiology of rotavirus

diarrhea in animal models, attempts to detect NSP4 in human-

derived models have not been successful, and its role in human

disease remains to be elucidated [20].

Rotavirus infects Caco-2 cells, a human intestinal epithelial

cell line, and induces a cytotoxic effect with cell lysis and loss

of tissue integrity [21]. We previously demonstrated that human

serum immunoglobulins (Igs) counteract rotaviral infection in

Caco-2 cells, reducing cell damage through a direct anti-ro-

tavirus action [22]. The clinical use of enterally administered

Igs was proposed for severe and protracted rotaviral diarrhea

[23]. Subsequently, Igs efficacy was shown in children with

acute rotaviral diarrhea and in human immunodeficiency vi-

rus–infected children [24, 25]. Intriguingly, the effect of Igs was

remarkably evident in the very early phases of the disease [24].

In the present study, we investigated the direct effects of

rotavirus on transepithelial ion transport, and we were able to

set up a model of rotaviral diarrhea in vitro, to investigate the

role of NSP4. Finally we tested the efficacy of human serum

Igs in this model of rotavirus infection in vitro.

MATERIALS AND METHODS

Study design. The study was performed to clarify the se-

quence of events taking place at the level of the enterocyte that

are potentially responsible for diarrhea after rotavirus infection.

In the first part of the study, with use of the Ussing chamber

system, we addressed the effect of rotavirus on ion transport

and cell viability, namely the capacity of rotavirus to induce

chloride secretion and cell damage. Because Ca2+ is reported

to play a key role in rotavirus infection, we investigated the

involvement of Ca2+ in the electrical effects induced by rota-

virus. Subsequently, we investigated the mechanism of enter-

otoxicity. Because NSP4 was recognized to act as an enterotox-

in, we performed experiments to detect this peptide in rota-

virus-infected cells. Finally, neutralization experiments were

performed with human serum Igs and with specific anti-NSP4

antibodies.

Cell culture. Caco-2 cells were obtained from the Ameri-

can Type Culture Collection. Cells were grown in high glucose

Dulbecco’s modified eagle medium with 10% fetal calf serum,

1% nonessential amino acids, 50 mU/mL penicillin, and 50

mg/mL streptomycin, as described elsewhere [26]. Caco-2 cells

were grown for 15–18 days after confluence on nontransparent

polycarbonate Transwell filters (pore size, 0.4 mM) (Costar Ita-

lia). All studies were performed at passages 25–40.

Virus strain and infection protocol. The simian rotavirus

strain SA11 is well characterized and is able to replicate to high

titers in Caco-2 cells [27, 28]. Virus activation and cell infec-

tions were performed in differentiated Caco-2 cells as reported

elsewhere [22]. Briefly, the virus was activated with 20 mg/mL

trypsin for 30 min at 37�C. Confluent monolayers of Caco-2

cells were washed twice and incubated overnight in fetal calf

serum–free medium before virus infection. Viral suspension

was added to the apical side of the cell monolayer. After 60

min of incubation at 37�C, the cells were rinsed 3 times and

incubated in fetal calf serum–free medium for the established

times after infection. The time after infection was started after

removal of the excess viral particles. Viral load was determined

by plaque forming unit (PFU) assay with MA104 cells, as de-

scribed elsewhere [29].

Ion transport studies. Ion transport studies were per-

formed in an Ussing chamber model, as reported elsewhere

[26]. Briefly, cells were grown in monolayers on uncoated poly-

carbonate transwell filters. The filter area was 4.9 cm2. Each

filter was mounted in the chamber (WPI) as a flat sheet between

the mucosal and the serosal compartments. Each compartment

contained 5 mL of Ringer’s solution with the following com-

position: NaCl, 114 mmol/L; KCl, 5 mmol/L; Na2HPO4, 1.65

mmol/L; NaH2PO4, 0.3 mmol/L; CaCl2, 1.25 mmol/L; MgCl2,

1.1 mmol/L; NaHCO3, 25 mmol/L; and glucose, 10 mmol/L.

This solution was constantly gassed with 5% CO2, 95% O2 and

maintained at 37�C through a thermostat-regulated circulating

pump.

Infection with rotavirus was performed with 5 PFUs of virus

per cell. The following electrical parameters were measured at

different time points after infection, as described elsewhere [30]:

transepithelial potential difference (PD), short-circuit current

(Isc), and tissue ionic conductance (G). Isc is expressed as mi-

croamperes per square centimeter (mA/cm2), G is expressed as

millisiemens per square centimeter (mS/cm2), and PD is ex-

pressed as millivolts (mV). Cell viability was evaluated at the

end of each experiment by the absence of significant loss in G

(!20% vs the baseline value) and by measuring the electrical

response to the serosal addition of theophylline (5 mmol/L).

Cells were considered to be viable and the experiment was

considered to be reliable when an Isc increase 15.0 mA/cm2 was

observed after theophylline addition.

To investigate the role of Cl� in the electrical response, SO4
2-

was substituted for Cl� at an equimolar concentration. We also

used the Cl� channel inhibitor 5-nitro-2–3-(3-phenylpropyl-

amino) benzoic acid (NPPB) as described elsewhere [31]. Cells

were incubated with NPPB (100 nmol/L) for 30 min before

being mounted in Ussing chambers.

In experiments investigating the role of Ca2+, a modified
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Ringer’s solution was used, with Mg2+ substituted for Ca2+ at

equimolar concentration, to bathe the mucosal side of the filter.

The modified Ringer’s solution had the following composition:

Na2HPO4, 1.65 mmol/L; NaH2PO4, 0.3 mmol/L; NaHCO3, 25

mmol/L; NaCl, 53 mmol/L; KCl, 5 mmol/L; Na2SO4, 30.5 mmol/

L; MgCl2, 2.35 mmol/L; glucose, 10 mmol/L; and mannitol, 30.5

mmol/L. In addition, we used the membrane-permeant Ca2+

chelator 1,2-bis(2-aminophenoxy)ethane N,N,N’,N’-tetraacetic

acid/acetoxymethyl ester (BAPTA/AM), as reported elsewhere

[31]. Cells were pretreated with 20 mmol/L BAPTA/AM on both

the mucosal and serosal sides, 30 min before being mounted in

Ussing chambers. To further investigate the role of Ca2+, we used

Bay K8644 as a Ca2+ inhibitor; we added 1 mmol/L of Bay K8644

20 min before mounting filters in Ussing chambers [32]. This

compound acts as a specific agonist of L-type Ca2+ channels,

causing depletion of intracellular Ca2+ stores [33].

Transepithelial resistance measurements. Transepithelial

resistance of cell monolayers grown on filters was measured

using a Millicel-ERS resistance monitoring apparatus (Milli-

pore). The net resistance was calculated by subtracting the

background from the actual value and multiplying the value

obtained by the area of the filter (4.9 cm2). The resistance was

expressed in ohms/cm2. Transepithelial resistance was measured

at 1 h intervals for the first 6 h after infection, then at 6 h

intervals for the first 24 h, and subsequently every 12 h for 3

days.

Chamber fluids and immunoprecipitation studies. Rota-

virus-infected and noninfected cells and chamber fluids were

separately collected at different time points after infection.

Chamber fluids were filtered through a 0.45-mm Millipore

membrane to get rid of cell debris. For experiments in Ussing

chambers, 500-mL aliquots of chamber fluids were collected

and normalized by protein content.

Cells were lysed by 3 cycles of freezing-thawing, then cen-

trifuged at 10,000 g for 3 min, and pellets were discarded. One

mL of the supernatant was diluted in 1 mL of 2� radioim-

munoprecipitation assay buffer (1% sodium deoxycholate, 2%

NP-40, 300 mmol/L NaCl, 100 mmol/L Tris pH 7.5, 0.2%

sodium dodecyl sulfate, 1 mg/mL aprotinin, 0.5 mg/mL leupep-

tin, 0.7 mg/mL pepstatin A, and 100 mg/mL phenylmethylsul-

fonyl fluoride). Immunoprecipitation was performed with 20

mL of rabbit polyclonal anti-NSP4fl antibody for 2 h at 4�C.

Subsequently, 50 mL protein-A sepharose were added for 1 h

at 4�C. Protein-A sepharose beads were centrifuged at 10,000

g for 30 s, the supernatant was removed, and the beads were

then washed 5 times with 1 mL of 1� radioimmunoprecipi-

tation assay buffer. The beads were again centrifuged, and 100

mL of 2� radioimmunoprecipitation assay buffer was added to

each sample, which were then incubated for 30 min at 37�C.

The supernatants were separated by 14% sodium dodecyl sul-

fate–polyacrylamide gel electrophoresis and were electrotrans-

ferred to nitrocellulose membranes (�2). The membranes were

blotted with a different anti-NSP4 antibody (anti-NSP4114–135)

(1:1000) and with horseradish peroxidase-conjugated goat anti-

rabbit IgG. Antibody-specific proteins were visualized by chem-

iluminescence (Pierce), followed by exposure with Kodak X-

Omat film.

Neutralization experiments. After rotavirus infection, Ca-

co-2 cells were incubated with either human serum immu-

noglobulin preparation (1:5000) or both anti-NSP4 antibod-

ies (1:1000). Both human Igs and anti-NSP4 antibodies were

added 1 h after infection to both rotavirus infected and non-

infected cells. To investigate the effect of neutralization exper-

iments on ion secretion, we measured Isc modification at 2 h

after infection as an outcome parameter, because this was the

time point when the maximal enterotoxic rotavirus effect was

evident. To investigate the effect of neutralization experiments

on cell damage, we measured transepithelial resistance modi-

fication at 36 h after infection as an outcome parameter, be-

cause this was the time point when the maximal cytotoxic

rotavirus effect was evident.

Data collection and statistical analysis. All experiments

on ion transport involving the Ussing chamber system and

transepithelial resistance measurements were performed by �1

operator, whereas data recording, collection, and analysis were

blindly performed by a different scientist. Similarly, the results

of all other experiments were all blindly analyzed by a scientist

other than the one who performed the experiments.

All experiments were performed in triplicate and repeated

at least 3 times. Numerical data are expressed as mean values

� standard error of the mean. Data were analyzed using the

2-tailed student’s t test.

Antibodies and reagents. All reagents were obtained from

Sigma if not otherwise stated. Human serum Igs were obtained

from a single commercially available batch for intravenous use,

with the following specific neutralizing titers: Rotavirus strain

Wa (serotype 1), 1:800; strain DS-1 (serotype 2), 1:1600; strain

Price (serotype 3), 1:3200; strain ST-3 (serotype 4), 1:1600.

Specific titers were determined as reported elsewhere [24]. Two

different anti-NSP4 antibodies were used. One was a rabbit

polyclonal antibody raised against a full length form of NSP4

(anti-NSP4fl) and was kindly supplied by L. Svensson (Uni-

versity of Linköping, Sweden). The second one was a gift from

A. W. C. Einerhand (Erasmus MC-Sophia Children’s Hospital,

Rotterdam, the Netherlands) and was also a rabbit polyclonal

antibody raised against amino acids 114–135 of NSP4 from

SA11 strain (anti-NSP4114–135) [11].

RESULTS

Rotavirus infection induces an early chloride secretion, which

precedes tissue damage, in Caco-2 cells. Caco-2 cells infected

with rotavirus and mounted in Ussing chambers, showed an
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Figure 2. Sequential electrical modification induced by rotavirus in
Caco-2 cells. Rotavirus stimulates ion secretion in the early phases of
infection, as demonstrated by an increase in short circuit current (Isc)
(black squares). At the same time points after infection, tissue integrity
remains preserved, with transepithelial resistance (TER) (white diamonds)
remaining unaffected. At later time points, ion secretion is no longer
evident, whereas rotavirus begins to damage epithelial integrity, as dem-
onstrated by decrease in TER.

Figure 1. Short circuit current (Isc) modifications in rotavirus-infected
Caco-2 cells. Rotavirus is able to induce a time-dependent Isc increase
in enterocytes, which is consistent with anion secretion. Isc increase is
evident at 1 h after infection, peaks at 2 h after infection, and then
slowly decreases. Data are mean values � standard deviation of at
least 5 experiments. * .P ! .05

increase in Isc, compared with noninfected cells, which is con-

sistent with anion secretion (figure 1). The increase in Isc was

statistically significant at 1 h after infection, reaching a peak

after 2 h and then slowly decreasing. At 12 h after infection,

electrical evidence of active ion secretion was no longer detected

(figure 1). The secretory effect observed in rotavirus-infected

cells showed a common pattern with a progressive increase in

Isc, which is consistent with a persistent secretory tone.

To make sure that the electrical effect was dependent on

anion secretion rather than cation absorption, experiments

were performed using Cl�-free Ringer’s solution at 2 h after

infection, this being the time point corresponding to the max-

imal effect on Isc. Without Cl�, the electrical effect was virtually

abolished (DIsc, vs with normal Ringer’s0.5 � 0.5 2.8 � 0.9

solution; ). To investigate the role of Cl� in greater detail,P ! .05

we measured Isc modification in the presence of the Cl� channel

inhibitor NPPB. NPPB completely inhibited the secretory effect

of rotavirus (DIsc, vs with normal Ringer’s0.3 � 0.3 2.8 � 0.9

solution; ). Thus, the effect of rotavirus on Isc was entirelyP ! .05

attributable to transepithelial Cl� secretion.

Time course of the enterotoxic and cytotoxic effects in ro-

tavirus-infected cells. We analyzed together the time course

of the effects on ion secretion (reflected by Isc) and on tissue

integrity (reflected by transepithelial resistance) (figure 2). Tran-

sepithelial resistance did not change in the first few hours after

infection. Subsequently, after switching off secretion, starting

from 24 h after infection, the cytotoxic effect of the virus became

evident, as demonstrated by the decrease in transepithelial re-

sistance (figure 2). These electrical modifications account for a

sequence of distinct enterotoxic and cytotoxic mechanisms of

rotaviral diarrhea.

Role of calcium in rotavirus-mediated secretion. Rotavirus

infection in calcium-free Ringer’s solution failed to demon-

strated significant ion secretion (DIsc, vs0.6 � 0.4 2.8 � 0.9

with normal Ringer’s solution; ). Preincubation of cellsP ! .05

with both the calcium chelator BAPTA as well as the L-type

calcium channel inhibitor Bay K8644 was able to block rota-

virus-induced secretion (DIsc, and , respec-0.4 � 0.2 0.5 � 0.2

tively; , compared with standard Ringer’s solution). ThisP ! .05

suggests that the secretory effect of rotavirus is Ca2+ dependent.

In addition, specific inhibition of L-type Ca2+ channels com-

pletely blocked the electrical effects exerted by rotavirus, sug-

gesting that a major role in ion secretion is played by these

type of channels. This set of experiments was performed at 2

h after infection, because this time point corresponded to the

maximal effect on Isc.

Dependency on the viral load of rotavirus-mediated

secretion. We tested the effects of increasing loads of rotavirus

on ion secretion. Chloride secretion was detected after infection

with 1 PFU/cell (DIsc, ) and linearly increased with1.05 � 0.56

infection with 5 PFU/cell (DIsc, ; , compared2.8 � 0.95 P ! .01

with 1 PFU/cell) and 25 PFU/cell (DIsc, ; ,4.22 � 2.25 P ! .05

compared with 5 PFU/cell, and , compared with 1 PFU/P ! .01

cell). No further increase was observed at 50 PFU/cell, which

indicated a saturation pattern. In all other characterization ex-

periments, a single dose of 5 PFU/cell was used.

Chamber fluids from rotavirus-infected cells stimulate ion

secretion in noninfected cells. We investigated the presence

of enterotoxic moieties by adding aliquots of chamber fluids,

obtained from rotavirus-infected cells at different times after

infection, to the apical compartment of noninfected Caco-2

cells (figure 3). Their effect was compared with that of chamber

fluids from noninfected enterocytes and from cells challenged

with rotavirus but in which rotavirus was neither activated with

trypsin nor allowed enough time to enter the cell. Isc was mea-

sured for 30 min. Chamber fluid from cells collected at 2 h

after infection was able to induce ion secretion in noninfected

cells (figure 3). The effect was further enhanced with the fluid

collected at 24 h after infection. No electrical effect was ob-
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Figure 3. Enterotoxic effect of chamber fluids from rotavirus (RV)–
infected cells. We investigated the presence of enterotoxic moieties re-
leased by RV-infected cells. Chamber fluids of RV-infected cells were
added to the apical compartment of noninfected enterocytes in the Ussing
chamber system. No secretory response was observed with chamber fluids
from control cells and from cells in which RV had not been allowed
enough time to efficiently infect (T0). In contrast, chamber fluids from
cells at 2 (T2) and 24 (T24) h after infection were able to stimulate ion
secretion in noninfected Caco-2 cells. * , compared with control;P ! .05
** , compared with control. Isc, short circuit current.P ! .01

Figure 4. NSP4 detection in Caco-2 enterocytes infected with rotavirus.
The demonstration of NSP4 production in Caco-2 cells infected with
rotavirus was performed by western blot (WB) in cell lysates (top panel)
and after immunoprecipitation (IP) (bottom panel). WB showed NSP4 from
cells at 6 h after infection and a stronger band at 24 h after infection.
Increased sensitivity was obtained by immunoprecipitation, allowed the
detection of NSP4 starting at 1 h after infection and allowed detection
with a stronger signal at later time points.

served when rotavirus was not allowed to effectively infect cells

(figure 3).

NSP4 production by Caco-2 cells infected with rotavirus.

Western blotting with lysates from cells at different time points

after infection showed NSP4 at 6 h after infection, and a stron-

ger signal was evident at 24 h after infection (figure 4). Im-

munoprecipitation experiments were also performed to en-

hance the sensitivity of detection, and this second set of

experiments revealed the presence of NSP4 as early as 1 h af-

ter infection. At 24 h after infection, production of NSP4 was

further increased (figure 4). We also performed experiments in

cell supernatants, but NSP4 was inconsistently detected (data

not shown).

Effect of human Igs and anti-NSP4 antibodies on rotavirus

cytotoxic and enterotoxic effects. Human Igs were added to

rotavirus-infected cells at 1 h after infection, and filters were

mounted in Ussing chambers. Incubation with Igs completely

abolished rotavirus-induced secretion at all time points (figure

5). In parallel experiments, human Igs were effective in the

inhibition of both anion secretion and transepithelial resistance

decrease (figure 6). Next, we tested the effect of incubation with

specific anti-NSP4 antibodies after rotavirus infection. Anti-

NSP4114–135 Igs were effective in completely abolishing ion se-

cretion induced by rotavirus infection (figure 6A). No effect

was observed for anti-NSP4t. In contrast to human Igs, addition

of anti-NSP4114–135 and anti-NSP4fl did not affect cell damage

induced by rotavirus infection (figure 6B).

DISCUSSION

Rotavirus causes diarrhea through multiple mechanisms. There

is convincing evidence, mainly from animal models, of a de-

creased absorption of electrolytes and glucose/amino acids dur-

ing rotavirus diarrhea [6, 7]. Furthermore, enzymatic activities

of the brush border are markedly decreased, and paracellular

permeability is increased [6, 7]. Recently, secretory mechanisms

have been also described and associated with a viral enterotoxin

(NSP4) or with the stimulation of the enteric nervous system

[15, 34]. It is a common clinical observation that rotavirus

diarrhea occurs with an abrupt onset and massive fluid loss,

followed by a milder and more prolonged phase, possibly with

transient carbohydrate intolerance and nutrient malabsorption.

This clinical pattern is consistent with data from animal models,

in which histological changes are preceded by diarrhea induced

by rotavirus [11–14].

We set up an experimental model of rotavirus infection in

fully differentiated Caco-2 cells, and we were able to detect and

characterize a rotavirus-induced enterotoxic effect in entero-

cytes, in the early phases of infection. The enterotoxic effect

consisted of Cl� secretion with a Ca2+-dependent mechanism.

The role of calcium in our model is consistent with previous

observations in other models where Ca2+ is required for both

rotavirus internalization and ion secretion [35]. Following early

ion secretion, cell lysis and tissue damage were observed, as

demonstrated by the decrease in transepithelial resistance. Thus,

in our model of rotavirus infection in vitro, a biphasic response

is observed, which parallels the distinct clinical phases. This is

the first experimental evidence, to our knowledge, of the se-

quential secretory and osmotic pathway of diarrhea in a hu-
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Figure 5. Inhibition of rotavirus (RV)–induced ion secretion by human
serum immunoglobulins (Igs). Addition of human serum Igs to RV-infected
cells was able to completely abolish the increase in short circuit current
(Isc) induced by RV (white triangles), compared with RV-infected cells
(black squares). Inhibition of ion secretion was evident at all time points
after infection.

Figure 6. Differential effects of human serum immunoglobulins (Igs)
and specific anti-NSP4 antibodies on ion secretion and cell damage in-
duced by rotavirus (RV) in Caco-2 cells. A, The effect on ion secretion
of human serum Igs and anti-NSP4114–135 antibodies was addressed by
their addition to RV-infected enterocytes and subsequent Isc measure-
ments. Results were compared with noninfected (control) and RV-infected
cells. Both human serum Igs (RV + Ig) and specific anti-NSP4114–135 (RV
+ anti-NSP4) antibodies were able to block RV-induced ion secretion.
* , compared with RB-infected, and P p not significant, comparedP ! .01
with control. B, The effect on cell damage of human serum Igs and anti-
NSP4114–135 antibodies was addressed by their addition to RV-infected
enterocytes and subsequent transepithelial resistance (TER) measure-
ments. Results were compared with noninfected (control) and RV-infected
cells. Human serum Igs (RV + Ig) were able to prevent RV-induced cell
damage, whereas specific anti-NSP4114–135 (RV + anti-NSP4) antibodies
did not modify the decreased in TER exerted by RV. * , comparedP ! .01
with RB-infected; ** , compared with vs RV + Ig, and P p notP ! .01
significant, compared with RV-infected. Isc, short circuit current.

man-derived model. The dual mechanism may well explain the

increased severity of rotavirus diarrhea, compared with that

induced by other agents.

Because functional evidence of the enterotoxic effect sug-

gested that NSP4 could be involved, we looked for direct proof

of its role. The first evidence came from the secretory effect of

chamber fluids from rotavirus-infected cells when added to

noninfected Caco-2 monolayers. This is the typical effect ob-

served by enterotoxins with a Ca2+-dependent chloride secre-

tion. Direct NSP4 detection led to the demonstration of its

presence in the very early phases of infection, coinciding with

ion secretion observed in Ussing chambers. The detection of

NSP4 in cell lysates, and not in chamber fluids, from infected

cells may be ascribed to different experimental conditions in

the 2 sets of experiments. A recent study failed to demonstrate

ion secretion in rotavirus-infected Caco-2 cells [36]. However,

a different rotavirus strain was used, which may account for

the production of different nontoxic NSP4 variants [19, 37].

Moreover, in our model, the secretory peak was detected at 2

h after infection, whereas in the other study, events were in-

vestigated 4–24 h after infection, when most of ion secretion

has already occurred [36].

The more direct evidence pointing to the role of NSP4 was

the abrogation of rotavirus-induced ion secretion by anti-NSP4

antibodies. Next, we tested the efficacy of human Igs in this

model of rotavirus infection in vitro. Igs are effective in re-

ducing the duration and intensity of diarrhea when orally ad-

ministered to children with acute rotavirus gastroenteritis [23,

24]. We previously suggested that specific anti-rotavirus anti-

bodies were responsible for the inactivation and clearance of

rotavirus [22]. Here, we show that the early secretion induced

by rotavirus is completely inhibited by human Igs. This effect

is in keeping with the clinical observation that orally admin-

istered Igs have a potent therapeutic effect in the very early

phases of rotavirus diarrhea [23]. Thus, Igs are effective on

both the enterotoxic and the cytotoxic effects exerted by ro-

tavirus in this in vitro model of infection. A possible expla-

nation would be the presence of anti-NSP4 antibodies in hu-

man serum preparations, though this remains to be investigated.

A major issue in the study of recently released and potential

rotavirus vaccines is the definition of reliable and consistent cor-

relates of protection [38–40]. Our results support the concept

that anti-VP4 and VP7 antibodies may be insufficiently correlat-

ed to an effective anti-rotavirus condition, because of a potential

role of anti-NSP4 Ig.

In conclusion, for the first time, to our knowledge, we di-

rectly demonstrated that rotavirus diarrhea has dual secretory

and osmotic mechanism, and that the virus strikes the enter-

ocyte with a precise chronological sequence. NSP4 is a central
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factor in ion secretion in human-derived enterocytes, and hu-

man Igs are able to effectively block both phases of diarrhea.

This study supports the concept that local immune response

and specific anti-NSP4 humoral response should be investi-

gated as candidate correlates of protection in rotavirus diarrhea

and of vaccination.
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