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R22, the HCFC most widely used in refrigeration and air-conditioning systems in the last years, is phas-
ing-out. R422D, a zero ozone-depleting mixture of R125, R134a and R600a (65.1%/31.5%/3.4% by weight,
respectively), has been recently proposed as a drop-in substitute. For energy consumption calculations
and temperature control, it is of primary importance to estimate operating conditions after substitution.
To determine pressure drop in the evaporator and piping line to the compressor, in this paper the exper-
imental adiabatic pressure gradients during flow boiling of R422D are reported for a circular smooth hor-
izontal tube (3.00 mm inner radius) in a range of operating conditions of interest for dry-expansion
evaporators.

The data are used to establish the best predictive method for calculations and its accuracy: the Moreno-
Quibèn and Thome method provided the best predictions for the whole database and also for the segre-
gated data in the annular flow regime.

Finally, the experimental data have been compared with the adiabatic pressure gradients of both R22
and its much used alternative R407C available in the literature.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

R22 is still widely used as working fluid in the majority of sys-
tems for air-conditioning and refrigeration. The political decisions
[1,2] that scheduled its phase-out, due to its high ozone depletion
potential (ODP), have been forced through major changes. During
last years, new trends in the use of refrigerants established
depending on the application field, as highlighted in [3–5].

The substitution of R22 is an operation that interests a lot of
plants which are expected still working after its phase-out. The
drop-in candidates for R22 have been checked for environmental
and safety requirements, compatibility with lubricant oil, filters,
sealing; moreover they have thermodynamic properties, like vapor
pressure curve, vapor density, heat of vaporization and volumetric
refrigerating capacity comparable to R22. Among the candidates, to
establish the best substitute in a specified system it is necessary to
estimate energy consumptions after the substitution. Conse-
quently, the new balancing point of components has to be deter-
mined, requiring pressure drop and heat transfer calculations
inside heat exchangers.

R407C, largely used to retrofit R22, have got a special attention
from the industry with the expectation of similar energy efficiency
without major changes in the system. R407C is a ternary blend of
ll rights reserved.

: +39 081 2390364.
).
HFC compounds (23% of R32, 25% of R125 and 52% of R134a by
weight). It has no chlorine content and a modest GWP (1650). It
is non-flammable and non-toxic. Its main thermophysical proper-
ties are close to those of R22, but it has the disadvantage of not
being suitable with mineral or alkylbenzene oils. However, in com-
parison with R22, experimental tests carried out with R407C have
pointed out a reduction in the energetic performances with a larger
environmental impact [6].

Many companies have expended much effort to develop and to
identify the refrigerants able to increase the energy efficiency of a
refrigerating system, depending on its application. In air-condi-
tioning systems by direct expansion, the refrigerant R422D (com-
mercially known as ISCEON MO29) has been recently proposed
as a drop-in refrigerant to R22. R422D, originally designed to re-
place R22 in existing direct expansion water chiller systems, actu-
ally is also used in residential and commercial air-conditioning and
low and medium temperature refrigeration systems. In spite of
R407C, R422D is compatible with traditional and new lubricants,
including mineral oils, alkylbenzene and polyol ester: no change
of lubricant type during retrofit of R22 is required. Only minor
equipment modifications such as for sealing, filter drier or expan-
sion device adjustments could be required in some applications.
R422D is a non-ozone-depleting, non-flammable, non-toxic, ter-
nary mixtures of R125, R134a and R600a (65.1%/31.5%/3.4% by
weight, respectively). The small percentage of isobutane promotes
adequate oil return in properly piped systems with oil separators.

http://dx.doi.org/10.1016/j.enconman.2009.06.001
mailto:antonio.rosato@unina.it
http://www.sciencedirect.com/science/journal/01968904
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Nomenclature

Latin letters
A annular flow
C parameter in Lockhart and Martinelli’s equation
COP coefficient of performance
D dryout
G refrigerant mass flux (kg/m2 s)
GWP global warming potential
I intermittent flow
i specific enthalpy (kJ/kg)
ilv latent heat of vaporization (kJ/kg)
L length (m)
M mist flow
_m mass flow rate (kg/s)

n number of points
ODP ozone-depleting potential
p pressure (bar)
_Q power (W)
r radius (m)
R electrical resistance (X)
sd standard deviation (%)
t temperature (K)
V voltage (V)
_V volume flow (m3/s)
w velocity (m/s)
x vapor quality
X Martinelli parameter
z abscissa along the tube (m).

Greeks
d uncertainty
D difference

ei error (%)
�e mean error (%)
j�ej mean absolute error (%)
/ two-phase multiplier
k predicted percentage within ± 30% deviation
l dynamic viscosity (lPas)
q density (kg/m3)

Subscripts
A annular flow
ATS adiabatic test section
cr critical
DTS diabatic test section
exp experimental
i inner
I intermittent flow
in inlet
in_evap evaporator inlet
l liquid
lo corresponding to the liquid phase flowing alone
M mist flow
o outer
PH preheater
pred predicted
S slug flow
SW stratified-wavy flow
sat saturation for R22, bubble-point for R407C and R422D
tt turbulent–turbulent flow
v vapor
vo corresponding to the vapor phase flowing alone

Table 1
Properties of refrigerants at 0 �C.

Refrigerant R22 R407C R422D

Flammability/toxicity NO/no NO/no NO/no
ODP 0.055 0 0
GWP 1700 1650 2230
Molar mass (kg/kmol) 86.5 86.2 109.9
tcr (�C) 96.1 86.0 79.5
pcr (bar) 49.9 46.3 39.0
psat (bar) 5.0 5.7 5.4
psat/pcr 0.10 0.12 0.14
ql (kg/m3) 1281.5 1236.2 1250.3
qv (kg/m3) 21.2 22.8 30.9
qv/ql 0.017 0.018 0.025
ll (lPa s) 216.0 212.1 221.1
lv (lPa s) 11.4 12.1 11.8
ll/lv 19.0 17.6 18.7
ilv (kJ/kg) 205.0 217.3 150.6
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In comparison to R22, R422D has a higher GWP (2230), it is more
expensive and reacts with aluminium.

Recently Dispenza et al. [7] have compared experimentally the
performances of R22 and R422D as working fluids in vapor com-
pression refrigerating plants. The results are reported at the same
conditions at the evaporator in terms of refrigerating load and sec-
ondary fluid temperature. The COP of R422D is lower than R22 by
about 25% at higher evaporating temperatures. By a cross compar-
ison of the works in [6,7], we could retain that, for evaporating
temperatures of air-conditioning systems, performances of
R422D and R407C are comparable.

The results of a bibliographic research showed that there are
many experimental studies on flow boiling of refrigerant HFC mix-
tures [8], while no data on R422D two-phase pressure drops are
available. As a consequence, there are no special prediction methods
for R422D and it is not sure if the available correlations apply well to
this fluid. Besides, it is not available a flow pattern map to predict
the two-phase flow transitions developed specifically for R422D.

In this article, the attention is focused on the pressure drop esti-
mation inside evaporators. Preliminarily the properties of R422D
that influence two-phase pressure drops will be discussed and
compared to those of R22 and R407C. Then the experimental adia-
batic pressure gradients of R422D during flow boiling in a smooth,
horizontal, circular stainless steel tube with an inner radius of
3.00 mm are reported: 15 tests were carried out obtaining 163
experimental points in operating conditions commonly encoun-
tered in dry-expansion evaporators. The refrigerant mass flux var-
ied within the range from 198 to 350 kg/m2 s, the evaporating
pressures within the range from 4.0 to 7.8 bar (bubble-point tem-
perature within the range from �9.2 to 11.8 �C) and the vapor
quality within the range from 0.13 to 0.99.
The results of a statistical comparison to predictive methods are
reported in order to establish the best one for R422D pressure drop
calculations.

Finally, the obtained R422D experimental data are compared
with adiabatic pressure gradients available in literature for R22
and R407C in similar operating conditions (tube geometry and in-
ner diameter, evaporating temperature, refrigerant mass flux).

2. Thermodynamic analysis

Table 1 compares the characteristics of R422D that influence
two-phase pressure drops with those of R22 and R407C. All values
have been obtained by means of REFPROP 7.0 [9].
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The empirical method of Jung and Radermacher [10] considers
two-phase pressure drops inversely proportional to the reduced
pressure: from table 1 it results that R22 and R407C have a reduced
pressure 28% and 11% lower than R422D.

The vapor to liquid density ratio influences the transition
among the different flow regimes (at decreasing the vapor to liquid
density ratio the vapor quality corresponding to the flow regime
transitions ‘‘I–A”, ‘‘A–D” and ‘‘D–M” becomes larger [11,12]) and
thus the pressure drops. Besides a higher density ratio of vapor
to liquid results in a smaller change in velocity for a fixed mass
flow rate during evaporation.

Moreover two-phase frictional pressure gradients can be ob-
tained from the single-phase pressure gradients:

dp
dz

� �
two-phase

¼ /l
dp
dz

� �
lo

ð1Þ

dp
dz

� �
two-phase

¼ /v
dp
dz

� �
vo

ð2Þ

Lockhart and Martinelli [13] proposed a generalized correlation
method to predict the two-phase multipliers /l and /v based on
adiabatic two-phase flow experiments:

/l ¼ 1þ C
X
þ 1

X2

� �1=2

/v ¼ ð1þ CX þ X2Þ1=2

where X is the Martinelli parameter and C is a constant depending
of the flow regime associated to the vapor and liquid phase. For cir-
cular smooth tubes and turbulent–turbulent flow it results

X ¼ Xtt ¼ qv
ql

� �0:5 ll
lv

� �0:1
1�x

x

� �0:9 and C = 20. At increasing Xtt, /l de-

creases, while /v becomes larger. From Table 1 it can be observed
that, compared to R422D, R22 and R407C have a lower qv

ql
(33%

and 25%, respectively). Regarding the dependence of Xtt from liquid
to vapor viscosity ratio, there are no obvious difference among the
fluids. From Eqs. (1) and (2), using Blasius correlation [14] to calcu-
late pressure drop in turbulent single-phase flow and assuming the
same refrigerant mass flow rate, it can be obtained:

ðDpÞtwo-phase;R422D

ðDpÞtwo-phase;R22ðR407CÞ
¼ lR422D

lR22ðR407CÞ

 !1
4 qR22ðR407CÞ

qR422D

� �
/R422D

/R22ðR407CÞ

 !

ð3Þ
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Fig. 1. Comparison of R422D two-phase pressure drops with those of R22 and
R407C at the same refrigerant mass flux using the Lockart–Martinelli correlation
[13].
From Fig. 1 it results that expected two-phase pressure drops of
R422D should be lower than those corresponding to R22 and
R407C for all values of vapor quality. The differences become more
evident using Eq. (2). The results showed in Fig. 1 are due to the
fact that, for all values of vapor quality, /1;R422D is lower than
/1;R22 and /1;R407C, while R22 and R407C show a /v larger than that
pertaining to R422D. However the two-phase pressure drop ratio
obtained in Eq. (3) is dependent not only from the two-phase mul-
tipliers, but also from the density and the viscosity of the fluids. A
higher density results in a smaller velocity for a fixed mass flow
rate during evaporation and, compared to R22 and R407C, R422D
has about the same liquid density, but a vapor density larger
(31% and 26%, respectively). Concerning the viscosity, it is impor-
tant to consider that a higher viscosity, particularly of the liquid
phase, results in larger pressure drop: the liquid and vapor viscos-
ities of R422D are almost equal to those of the other fluids (2–4% of
percentage difference).

Eq. (3) has been obtained hypothesizing the same refrigerant
mass flow rate. However in a refrigeration system, the mass flow
rate is connected to the desired cooling capacity through the heat
of vaporization, so that the fluid velocity in a circular tube at a gi-
ven cooling capacity can be expressed as:

w ¼
_V

pr2 ¼
_m

qpr2 ¼
_Q

qpr2ðiv � iin evapÞ
¼

_Q
qpr2ifgð1� xin evapÞ

Combining Blasius correlation [14] and Eqs. (1) and (2), and
assuming the same refrigerating power, one can obtain:

ðDpÞtwo-phase;R422D

ðDpÞtwo-phase;R22ðR407CÞ
¼ lR422D

lR22ðR407CÞ

 !1
4 qR22ðR407CÞ

qR422D

� �
/R422D

/R22ðR407CÞ

 !

� ilv;R22ðR407CÞ

ilv;R422D

� �7
4 1� xin evap;R22ðR407CÞ

1� xin evap;R422D

� �7
4

where xin_evap is calculated under the following conditions: evapora-
tion temperature of 0 �C, condensing temperature of 40 �C, no
superheat at the compressor inlet and no subcooling at the con-
denser outlet, no heat losses to the ambient and no pressure drop
in the pipelines and heat exchangers. From Fig. 2 it is evident that
expected two-phase pressure drops of R422D should be larger than
those corresponding to R22 and R407C for all values of vapor qual-
ity. The differences are due to the fact that, compared to R422D, R22
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Fig. 2. Comparison of R422D two-phase pressure drops with those of R22 and
R407C at the same refrigerating power using the Lockart–Martinelli correlation
[13].
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and R407C have much higher latent heat of evaporation (36% and
44%, respectively) and much lower vapor quality at the evaporator
inlet (38% and 22%, respectively). On the other hand, we have to
consider that R422D has a slope of the vapor pressure curve slightly
higher than that of R22: this gives a smaller temperature change for
a given pressure drop in the evaporator.
3. Experimental plant

A schematic view of the plant is shown in Fig. 3. The experimen-
tal apparatus allows to measure the local pressure gradient during
flow boiling. The refrigerant loop consists of a magnetic gear pump,
a preheater, an adiabatic and a diabatic test section, a shell-and-
tube heat exchanger, a brazed plate heat exchanger and a tube-
in-tube subcooler.

The magnetic gear pump drives the fluid coming from the liquid
reservoir. The refrigerant mass flux can be modified varying the
electric motor speed by an inverter. The refrigerant, in sub-cooled
conditions, passes first through the preheater where heat is sup-
plied to the fluid by fibreglass heating tapes (four fibreglass heat-
ing tapes with a nominal power of 830 W at 240 V (AC) for each
one); changing the voltage it is possible to modify the thermal
power and to obtain the desired quality at the adiabatic test sec-
tions inlet. After the preheater, the fluid flows through the diabatic
test section and then enters the adiabatic test section: it is a
1000.0 mm (d(LATS)=0.5 mm), circular, smooth, horizontal, stainless
steel (type AISI 304) tube with an inner radius of 3.00 mm
(d(ri,ATS) = 0.05 mm) and an outer radius of 4.00 mm (d(ro,ATS)=0.05
mm). The refrigerant then exits this test section and condenses in a
shell-and-tube heat exchanger and in a brazed plate heat exchan-
ger. Before returning to the pump, the refrigerant is sub-cooled in a
tube-in-tube heat exchanger. The coolant is an auxiliary fluid
(TEMPER) contained in a storage tank of 200 dm3. It can be chilled
down to �30 �C by a R404A auxiliary refrigerating plant and it is
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circulated by a magnetic gear pump connected to an inverter. By
adjusting the refrigerant charge, the TEMPER inlet temperature
and mass flow rate, it is possible to modify and hold constant the
refrigerant evaporating pressure in the test section. To avoid heat
gains, heavy insulation was provided for all parts of the plant.
4. Data acquisition, data reduction and uncertainty analysis

Table 2 summarizes the measurement characteristics of the
plant instrumentation. For data acquisition and storage, a personal
computer connected with a 16 bit resolution data acquisition sys-
tem, provided with a software for monitoring experimental values,
is used. The logging of signals from all the sensors is performed on
all the channels for 100 s with 1.0 Hz acquisition frequency and the
average values of each channel are stored. If the deviation of each
value from its average value is lower than a fixed quantity, steady-
state conditions are assumed.

The total pressure drop DpATS over the adiabatic test section is
measured by one of two different piezoelectric differential pres-
sure transducers (operating ranges: 0–10 kPa and 0–100 kPa,
uncertainty: 0.075% of full scale) depending on the test conditions.
The frictional pressure drop is assumed to be equal to the total
pressure drop, since there is no change in static head and it was
verified that the change of momentum between phases can be ne-
glected in the operating conditions of this study.

The vapor quality at the inlet of the adiabatic test section is ob-
tained evaluating the specific enthalpy iin,ATS and the absolute pres-
sure pin,ATS.

iin,ATS is calculated from an energy balance between the inlet of
the preheater and the inlet of the adiabatic test section, assuming
negligible the heat gain in the piping between the preheater and
the diabatic test section and between the two test sections:

iin;ATS ¼ iin;PH þ
_Q PH

_m
þ

_QDTS
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Table 2
Measurement equipment.

Measurement Device Calibration range Uncertainty

DpATS Piezoelectric differential pressure transducer 0–10 kPa ±0.075% of full scale
Piezoelectric differential pressure transducer 0–100 kPa ±0.075% of full scale

pin,ATS Piezoelectric absolute pressure transducer 0–50 bar ±0.1% of full scale
tin,PH Probe resistance thermometer Pt100 �50–100 �C ±0.15 �C
pin,PH Piezoelectric absolute pressure transducer 0–50 bar ±0.1% of range
QPH Wattmeter 0–3600 W ±0.2% of reading + 0.02% of full scale
VDTS Electronic voltage transducer 0–10 V ±0.19% of reading + 0.01% of full scale
m Coriolis mass flow meter 0–1.8 kg s�1 ±0.05% of reading
psat Piezoelectric absolute pressure transducer 0–50 bar ±0.1% of full scale
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The specific enthalpy at the inlet of the preheater is evaluated
from the absolute pressure pin,PH and temperature tin,PH. The heat-
ing power _QPH provided to the refrigerant in the preheater is mea-
sured with a wattmeter, while the heating power _Q DTS supplied to
the fluid in the diabatic test section is determined as V2

DTS
RDTS

, where
RDTS is the electrical resistance of the heated channel
(0.030209 X ± 0.045 mX at �4.90 �C and 0.039159 ± 0.056 mX at
35.00 �C) and VDTS is the voltage measured at the diabatic test sec-
tion. The refrigerant mass flow rate _m is measured by a Coriolis ef-
fect mass flow meter working in the liquid line.

The absolute pressure pin,ATS is directly measured by means of a
piezoelectric absolute pressure transducer.

All the thermodynamic properties are calculated by the soft-
ware REFPROP [10].

The uncertainties for the pressure gradient and for the vapor
quality at the inlet of the adiabatic test section were calculated
according to the single-sample uncertainty analysis suggested by
Moffat [15].
5. Preliminary tests

The reliability of the measurements was verified through three
different checks: (i) single-phase R134a pressure drop measure-
ments, (ii) single-phase energy balance and (iii) repeatability of
the measurements.

Twenty experiments were carried out with mass velocities
ranging from 701 to 1005 kg/m2 s covering a range of Reynolds
numbers from 13,251 up to 22,066 (turbulent flow).

The R134a liquid phase pressure drops have been measured and
compared with those obtained with the Blasius correlation [14]
which is valid for smooth tubes and turbulent flow. The compari-
son has been characterized by the following parameters:
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From Fig. 4, it can be seen that Blasius correlation [14] predicts
the experimental data with a mean error of 0.8%, an absolute mean
error of 3.4% and a standard deviation equal to 7.3%.

The energy balance absolute mean error was always less than
3.5%, which is a good result for this type of experiments.

The measurement repeatability was investigated in a fixed
operating condition (G � 300 kg/m2 s, psat � 3.5 bar) four times:
Fig. 5 shows a good agreement of the adiabatic pressure gradient
data. The performed preliminary tests showed an instrumentation
calibration and overall system performance consistent with the de-
sired accuracy.

6. Experimental results

In this work R422D adiabatic pressure gradient were experi-
mentally evaluated. We carried out 15 tests obtaining 163 points.
The experiments were performed varying the refrigerant mass
fluxes within the range from 198 to 350 kg/m2 s, the evaporating
pressures within the range from 4.0 to 7.8 bar (bubble-point tem-
perature within the range from �9.2 to 11.8 �C) and the vapor
quality within the range from 0.13 to 0.99.
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Fig. 5. Pressure gradients of R134a as a function of vapor quality: a fixed operating
condition (G � 300 kg/m2 s and psat � 3.5 bar) investigated four times.



Table 3
The operating conditions.

G (kg/m2 s) psat (bar) tsat (�C) DxS DxI DxA DxSW DxM Dxexp

198 6.3 4.7 0.01–0.25 0.25–0.40 0.40–0.89 0.89–0.97 0.97–0.98 0.27–0.99
200 4.1 �8.5 0.01–0.22 0.22–0.35 0.35–0.90 0.90–0.97 0.97–0.98 0.26–0.91
205 4.8 �3.8 0.01–0.22 0.22–0.37 0.37–0.90 0.90–0.97 0.97–0.98 0.36–0.99
249 6.3 4.7 0.01–0.15 0.15–0.40 0.40–0.92 0.92–0.97 0.97–0.98 0.2–0.98
250 4.8 �3.8 0.01–0.15 0.15–0.37 0.37–0.93 0.93–0.97 0.97–0.98 0.31–0.98
252 4.1 �8.5 0.01–0.14 0.14–0.35 0.35–0.93 0.93–0.97 0.97–0.98 0.35–0.99
294 4.1 �8.5 0.01–0.10 0.10–0.35 0.35–0.94 0.94–0.97 0.97–0.98 0.17–0.98
300 4.0 �9.2 0.01–0.10 0.10–0.34 0.34–0.95 0.95–0.97 0.97–0.98 0.17–0.90
300 4.8 �3.8 0.01–0.10 0.10–0.34 0.34–0.95 0.95–0.97 0.97–0.98 0.17–0.92
301 6.3 4.7 0.01–0.10 0.10–0.40 0.40–0.94 0.94–0.97 0.97–0.98 0.18–0.93
301 7.8 11.8 0.01–0.10 0.10–0.43 0.43–0.94 0.94–0.97 0.97–0.98 0.14–0.99
346 4.0 �9.2 0.01–0.08 0.08–0.34 0.34–0.96 0.96–0.97 0.97–0.98 0.19–0.65
349 4.8 �3.8 0.01–0.08 0.08–0.37 0.37–0.95 0.95–0.97 0.97–0.98 0.15–0.88
350 6.3 4.7 0.01–0.07 0.07–0.40 0.40–0.95 0.95–0.97 0.97–0.98 0.13–0.89
350 7.8 11.8 0.01–0.06 0.06–0.43 0.43–0.95 0.95–0.97 0.97–0.98 0.15–0.94
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The operating conditions investigated are summarized in Table
3: in this table, the refrigerant mass flux, the evaporating pressure
(and the corresponding bubble-point temperature) and the vapor
quality range are specified for each test. The relative measurement
uncertainty in the evaluation of the pressure gradients ranges be-
tween 1.4% and 4.6%, while the uncertainty in the evaluation of the
vapor quality at the inlet of the test section is always lower than
3.3%.

Since the pressure gradients are influenced by the liquid and va-
por phase distributions, the flow patterns have been identified by a
flow pattern map [16,17], even if it has not been developed specif-
ically for R422D. In Table 3 the range of vapor qualities correspond-
ing to the different flow regimes are also reported for each
operating condition. The results showed that, for the considered
operating conditions, the flow pattern map does not allow the
stratified flow, the stratified and slug flow and the dryout; a lim-
ited number of cases returns mist (seven points) or stratified-wavy
(five points) flow regime. None experimental point is in the slug
flow regime. Intermittent flow regime is the flow regime for 43
points. In the most of cases (108 points) the flow regime is annular
(67% of the experimental database).

Fig. 6 depicts the pressure gradient of R422D as a function of va-
por quality at varying refrigerant mass flux from 198 to 350 kg/
m2 s for: (a) tsat = �8.5 �C, (b) tsat = �3.8 �C, (c) tsat = 4.7 �C and (d)
tsat = 11.8 �C.

As expected, the bubble-point temperature strongly influences
the pressure gradients for a fixed refrigerant mass flux: increasing
the bubble-point temperature the pressure gradients decrease
(mainly for values of vapor quality lower than about 85%). Indeed,
as the evaporating pressure increases, the liquid viscosity de-
creases and the liquid density becomes higher (the increase of
the liquid density leads to the rise of vapor–liquid mixture and,
therefore, to the decrease of the refrigerant velocity). From
tsat = �8.5 �C to tsat = 4.7 �C the R422D liquid viscosity and density
become about 20% lower and 50% higher, respectively. Similar con-
siderations can be repeated for the trends observed at tsat � �9 �C,
that have not been reported in this figure. Besides, the plots clearly
show that the increase of the mass flow rate, for fixed thermody-
namic properties, increases the pressure gradients because the
mean velocity of the vapor–liquid mixture becomes higher.

Concerning the influence of vapor quality, it can be noticed the
characteristic rise in two-phase frictional pressure gradient with
rising vapor quality, a peak at high vapor quality, and the subse-
quent falloff as the vapor quality approaches 100%. In fact for
low vapor qualities the flow regime is, in most cases, intermittent
in the tested operating conditions. In this flow regime the pressure
drops are mainly influenced from the friction of the liquid along
the tube wall. When the quality increases, the flow regime tends
to become annular and slope of the pressure gradient curve in-
creases. For higher vapor quality, between about 65% and 90%,
the liquid thickness dries, the friction reduces and, as a conse-
quence, pressure gradient decreases. It is interesting to notice that
in each operating condition there is not an increasing trend with
vapor quality after the falloff, so the transition to mist flow proba-
bly never occurred.
7. Comparison with predictive methods

Many predictive methods have been developed over the past
decades: however, there are no such prediction methods based
on R422D experimental data. To determine the best predictive
method for the tested operating conditions, the R422D experimen-
tal data were compared to the phenomenological method of
Moreno-Quibèn and Thome [18] and to the empirical methods of
Friedel [19], Grönnerud [20], Müller-Steinaghen and Heck [21]
and Jung and Radermacher [22].

The results for the whole database and for the segregated data
by flow regimes (annular and intermittent) are reported in Table
4. To segregate the data by flow regime the flow pattern map by
Wojtan et al. [16,17] was used.

For the entire database, it can be observed that all correlations,
except Müller-Steinaghen and Heck method, tend to overpredict
the experimental data. Even if Friedel method gave the best mean
error (2.7%), Moreno-Quibèn and Thome correlation provided the
lowest absolute mean error (32%) and is able to predict the 77.3%
of data within ± 30%; Jung and Radermacher correlation produces
the worst predictions with an absolute mean error of 70.5%. For
all methods the standard deviation is high: that one corresponding
to Moreno-Quibèn and Thome method is 85.2% and not very differ-
ent from those of Grönnerud (75.4%) and Müller-Steinaghen and
Heck (78.1%) methods. However the above considerations were af-
fected by the data distribution with respect to the flow regimes.
The analysis for each flow regime showed different results. In the
intermittent region, the method by Müller-Steinaghen and Heck
granted the more reliable predictions. Results by Moreno-Quibèn
and Thome method were the best in the annular flow regime both
for mean error (9.3%) and absolute mean error (16.1%); however its
standard deviation (20.0%) is slightly higher than that one corre-
sponding to Friedel and Müller-Steinaghen and Heck correlations
(14.0%).

To evaluate how well the predictive methods captured the
trends of the pressure drop function, a direct comparison of the
methods and the experimental data was carried out: from the anal-
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Fig. 6. Pressure gradient of R422D as a function of vapor quality at refrigerant mass flux of about 200 kg/m2 s, 250 kg/m2 s, 300 kg/m2 s and 350 kg/m2 s for: (a) tsat = �8.5 �C,
(b) tsat = �3.8 �C, (c) tsat = 4.7 �C and (d) tsat = 11.8 �C.

Table 4
Results of statistical comparison between the predicted and the experimental pressure drops.

Number of points Predictive method �e (%) j�ej (%) sd (%) k (%)

Whole database
163 Moreno and Thome [18] 22.7 32.0 85.2 77.3

Friedel [19] 2.7 41.9 116.4 58.9
Grönnerud [20] 36.8 43.5 75.4 49.1
Müller-Steinaghen and Heck [21] �7.5 37.7 78.1 49.7
Jung-Radermacher [22] 69.9 70.5 115.7 35.6

Intermittent flow regime
43 Moreno and Thome [18] 57.3 75.4 159.9 –

Friedel [19] 75.8 86.7 212.6 –
Grönnerud [20] 47.6 64.9 138.1 –
Müller-Steinaghen and Heck [21] 27.9 60.9 140.2 –
Jung-Radermacher [22] 122.4 124.6 211.0 –

Annular flow regime
108 Moreno and Thome [18] 9.3 16.1 20.0 –

Friedel [19] �25.6 27.1 14.0 –
Grönnerud [20] 29.4 32.7 28.8 –
Müller-Steinaghen and Heck [21] �27.2 27.7 14.3 –
Jung-Radermacher [22] 46.0 46.0 32.4 –
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ysis it was observed that in most cases the Moreno-Quibèn and
Thome method best captures the trends in all the range of vapor
qualities, even if in some cases it tends to overpredicts the value
of vapor quality corresponding to the maximum pressure drop.
8. Comparison of R22 and R407C to R422D pressure drops

In the following we compared our R422D data with the exper-
imental pressure gradients of R22 and R407C available in literature
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obtained in the same set of operating conditions (evaporating tem-
perature, refrigerant mass flow rate) from adiabatic experiments.
We analyzed only works with horizontal, smooth, circular test
tube.

Fig. 7 shows the comparison of pressure gradients measured in
this study with those obtained by Wang et al. [23] for R22 at sim-
ilar evaporating temperature and refrigerant mass flux with a test
tube inner diameter of 7.92 mm. Taking into account the differ-
ences in the tube inner diameter and bubble-point temperature,
we can conclude that, for the operating conditions tested, the
R22 pressure gradients are slightly higher than those of R422D.

In Fig. 8 the comparison of pressure gradients obtained in this
study with those measured by Wang and Chiang [23] for R407C
for two different operating conditions is reported. It can be easily
observed that R422D pressure gradients are slightly higher than
those corresponding to R407C, mainly for medium–high vapor
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Fig. 7. Comparison of pressure gradients measured in this study with those
obtained by Wang et al. [23] for R22 at G = 200 and 300 kg/m2 s, tsat = 5.9 �C and
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Fig. 8. Comparison of pressure gradients measured in this study with those
obtained by Wang et al. [23] for R407C at G = 200 and 300 kg/m2 s, tsat = 1.7 �C,
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qualities: it may be caused by the different tube inner diameter,
even though the evaporating temperature corresponding to the
Wang et al. experiments is quite lower than that pertaining to
our tests.
9. Conclusions

The scheduled phase-out of HCFCs, particularly R22, has
prompted industry to identify new possible alternative. R422D
has been recently proposed as a drop-in refrigerant to R22: it is a
zero ozone-depleting, non-flammable, non-toxic, zeotropic ternary
mixture of R125, R134a and R600a (65.1%/31.5%/3.4% by weight,
respectively) that can be used to retrofit R22 without change of lu-
bricant type.

In this paper the experimental adiabatic pressure gradients dur-
ing flow boiling of R422D were reported. Preliminary tests have
ensured appropriate instrumentation calibration and overall sys-
tem performance of the apparatus. The experiments on R422D
were carried out in a range of operating conditions of interest for
the dry-expansion evaporator for air-conditioning systems show-
ing the dependence of mass flow rate (from 198 to 350 kg/m2 s)
and evaporating temperature (from �9.2 to 11.8 �C) in a 3.00 inner
radius circular smooth horizontal stainless steel tube.

The results were compared against pressure drop predictive
methods and the Moreno-Quibèn and Thome method provided
the best results.
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