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Abstract: The 5-lipoxygenase (5-LO) pathway is responsible for the production of leukotrienes (LTs), inflammatory lipid 

mediators which play a role in innate immunity. More recently, a pivotal role of LTs in ischemia-reperfusion and shock 

injury has been suggested. Infact, these pathological conditions are characterized by a severe neutrophil infiltration that 

gives rise to tissue injury and 5-LO metabolites control neutrophil recruitment in injured tissue by the modulation of adhe-

sion molecule expression. The aim of this review is to analyze the results reported in the literature on the role of 5-LO 

pathway, with particular regard to LTs, in these pathological conditions. A better understanding of the mechanisms under-

lying the role of the 5-LO enzyme and/or its metabolites in the regulation of neutrophil trafficking, might open new per-

spectives in the therapy of organ dysfunction and/or injury associated with shock and ischemia-reperfusion injury.  
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1. LEUKOTRIENES 

1.1. Leukotriene Biosynthesis 

 Leukotrienes (LTs) (“leuko” from white blood cells and 
“trienes” three conjugated double bonds) are products of the 
5-lipoxygenase (5-LO) pathway. The biosynthetic pathway 
of LTs initiates with the migration of 5-LO and cytosolic 
phospholipase A2 (cPLA2) to the nucleus, where cPLA2 lib-
erates arachidonic acid AA from phospholipids, which is 
then transferred by an integral membrane protein 5-
lipoxygenase-activating protein (FLAP) to 5-LO. For full 
activity 5-LO requires cofactors (calcium and ATP) and in-
teraction with other proteins besides FLAP, such as the coac-
tosin-like protein (CLP), which stimulates 5-LO activity and 
colocalizes with the enzyme [1]. The production of LTs be-
gins with the insertion by 5-LO of molecular O2 at carbon-5 
of AA to produce 5-hydroperoxyeicosatetraenoic acid (5-
HPETE). Five-HPETE can be reduced to 5-hydroxyeico-
satetraenoic acid (5-HETE), which can be in turn dehydro-
genated to 5-oxo-ETE. Moreover, 5-LO catalyzes a second 
enzymatic step, the conversion of 5-HPETE to leukotriene 
A4 (LTA4), an unstable intermediate [2] that can be catalyti-
cally converted to leukotriene B4 (LTB4) by LTA4 hydrolase 
[3] or can be conjugated with reduced glutathione by leukot-
riene C4 (LTC4) synthase (LTC4S). LTB4 and LTC4 are ex-
ported from the cell by specific transporter proteins. 
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The LTC4 is subjected to extracellular cleavage of the glu-
tamic acid (through a -glutamyl transpeptidase) and subse-
quently of the glycine moiety (through a dipeptidase), to 
provide respectively leukotriene D4 (LTD4) and E4 (LTE4) 
[4].  

 Interestingly, it has been demonstrated that there are alle-
lic variants of the coding and promoter regions of the genes 
encoding for the enzymes involved in LT biosynthesis, such 
as 5-LO [5], FLAP [6], LTA4 hydrolase [7] and LTC4S [8]. 

 The LT synthesis is regulated by different mechanisms 
involving: a) the amount of free arachidonate released by 
PLA2 from cell-membrane phospholipids, [9, 10], b) the 
availability of small molecules (e.g. ATP), c) the level and 
the catalytic activity of each of the proteins involved in the 
5-LO pathway, and, d) the 5-LO post-translational modifica-
tions [e.g. phosphorylation by p38 kinase-dependent mito-
gen-activated protein kinase (MAPK) [11], phosphorylation 
on Ser 663 by extracellular signal-regulated kinase (ERK)] 
[12]. Another variable that influences LT synthesis is the 
intracellular localization of 5-LO. In resting cells, 5-LO oc-
curs as a soluble enzyme either in the cytosol or in the nu-
cleus, depending on the cell type [12]. In neutrophils, cyto-
plasmic 5-LO associates with the endoplasmatic reticulum 
and with the outer nuclear membrane, whereas in dendritic 
cells or in alveolar macrophages has an intranuclear localiza-
tion that seems to be correlated with a higher capacity for LT 
generation [13]. Cell stimulation by various agonists causes 
5-LO translocation from soluble compartments to the nuclear 
membrane and the consequent LT generation. LTs are pre-
dominantly synthesized by inflammatory cells like polymor-
phonuclear leukocytes (PMNs), monocytes, macrophages, 
mast cells and dendritic cells [for review see 14]. Although 
non leukocyte cells (like endothelial cells) generally do not 
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have sufficient 5-LO and FLAP to synthesize appreciable 
amounts of LTs, such cells expressing only LTA4-
metabolizing enzymes can take up leukocyte-derived LTA4 
and metabolize it into bioactive LTs, a process that is termed 
“transcellular biosynthesis”[15].  

1.2. Leukotriene Receptors and Biological Effects 

 LTs exert their actions through seven-transmembrane G 
protein coupled receptors consisting of 2 subclasses: recep-
tors activated by LTB4 (BLT receptors) and cysteinyl LT 
(cysLT) receptors, activated by the cysLTs (LTC4, LTD4 and 
LTE4) [16].  

 These receptors, after binding to LTs, interact with G 
proteins, thereby eliciting increases in intracellular calcium 
and reductions in intracellular cyclic AMP [for review see 
14]. These proximal signals activate downstream kinase cas-
cades in ways that alter various cellular activities, ranging 
from motility to transcriptional activation.  

 The BLT receptors are denoted BLT1 and BLT2, based on 
their affinity for the agonist [17]. In particular, LTB4 acting 
through BLT1 can cause chemotaxis, degranulation, adhesion 
and an enhancement of the neutrophil survival. Although 
BLT1 was long known to be a neutrophil chemoattractant 
receptor, recent studies identified BLT1 expression in 
macrophages, smooth muscle cells, endothelial cells, acti-
vated T-cells, mast cells, eosinophils and basophils [for re-
view see 14]. Functional expression of BLT1 on both mature 
and immature dendritic cells has been recently demonstrated 
supporting a direct effect of LTB4 in the control of adaptive 
immune responses [18]. The use of knockout (KO) mice for 
BLT1, generated in several laboratories, have been funda-
mental in defining a critical role for this receptor in diverse 
inflammatory diseases, such as atherosclerosis [19], asthma, 
autoimmune uveitis and arthritis [for review see 20]. In con-
trast, the function and biological activities of BLT2 are com-
pletely unknown, although this receptor is expressed on neu-
trophils, macrophages, T lymphocyte, mast cells, B lympho-
cyte, eosinophils, dendritic cells and hematopoietic progeni-
tor cells [for review see 14]. Moreover, this receptor has 
been shown to be expressed widely in humans being with the 
highest expression in spleen and peripheral blood leukocytes 
[21]. However, varying results has been reported as regard to 
murine BLT2 expression [22-24]. Recently, it has been re-
ported that BLT2 expression portends worse clinical parame-
ters for ovarian cancer [25].  

 The receptors activated by the cysLTs are referred to as 
CysLT1 and CysLT2 [26]. CysLT1, [27] mediates sustained 
bronchoconstriction, mucus secretion, and edema in the air-
ways. Selective antagonists of CysLT1, that are approved for 
the treatment of asthma, block the proasthmatic effects of 
CysLT1 stimulation. Experiments in mice that are deficient 
in CysLT2 [28] or that overexpress CysLT2 in the lungs [29] 
indicate that CysLT2 does not mediate bronchoconstriction 
but, rather, contributes to inflammation, vascular permeabil-
ity and tissue fibrosis. There are no known specific antago-
nists of CysLT2. Interestingly, certain reported actions of 
cysLTs are not readily explained by either CysLT1 or 
CysLT2, raising the possibility of the presence of CysLT1–
CysLT2 heterodimers or additional receptors [30]. One can-

didate is G protein –coupled receptor 17 (GPR17), a dual-
uracil nucleotide–cysLT receptor [31].  

1.3. Leukotrienes and Diseases 

 LTs play an integral role in the pathophysiology of 
asthma. In fact, the role of LTs in this disease has been vali-
dated in clinical trials of anti-LT agents. In particular, the 
anti-LT therapy (zileuton, a 5-LO inhibitor [32], and monte-
lukast or zafirlukast [33, 34], CysLT1 antagonists) improve 
pulmonary function, decreases daytime and nocturnal bron-
choconstriction episodes and increases quality of life in chil-
dren and adults with asthma. Recently, it has been demon-
strated that anti-LT agents exert beneficial effects on other 
diseases commonly associated with asthma (exercise induced 
asthma, rhinitis, chronic obstructive pulmonary disease, in-
terstitial lung disease, chronic urticaria, atopic dermatitis, 
allergic fungal disease, nasal polyposis, and paranasal sinus 
disease) as well as on diseases not connected to asthma [35]. 
In fact, the overproduction of LTs has been also associated 
with atherosclerosis [36, 37], hyperlipidemia-dependent in-
flammation of the arterial wall [38], pulmonary hypertension 
[39], arthritis (including osteoarthritis and gout) [40], glome-
rulonephritis, interstitial cystitis and psoriasis [14]. In addi-
tion, increased 5-LO expression, and presumably increased 
LT synthesis, has been associated with several tumour types 
such as lung [41], pancreatic [42], bladder [43], breast [44], 
colon [45], multiforme glioblastoma [46], prostate [47], tes-
ticular [48] and esophageal cancer [49]. The role of LTs in 
carcinogenesis seems to be related to their action on funda-
mental cellular processes such as differentiation and prolif-
eration through the transcription of various cytokines and 
growth factors [50]. Recently, we have demonstrated by the 
use of 5-LOKO mice, 5-LO inhibitor and CysLT1 receptor 
antagonist, that LTs are important mediators of several 
pathological conditions characterized by an excessive neu-
trophil activation (pleurisy [51], acute pancreatitis [52], coli-
tis [53, 54], spinal cord injury [55], septic and non septic 
shock [56, 57] and ischemia/reperfusion injury [58, 59]) by 
promoting neutrophil migration through an up-regulation of 
adhesion molecule expression. 

2. INVOLVEMENT OF LEUKOTRIENES IN THE 

PATHOGENESIS OF ISCHEMIA-REPERFUSION 

INJURY 

2.1. Ischemia-Reperfusion Injury 

 Ischemia and reperfusion (I/R) injury, that develops 
when blood flow is interrupted for a long period of time and 
then restarts, occurs in a wide range of situations, including 
trauma, vascular reflow after contraction, transluminal coro-
nary angioplasty, thrombolysis treatment, organ transplanta-
tion and hypovolemic shock with resuscitation. When a tis-
sue is subjected to ischemia, a sequence of chemical reac-
tions is initiated that may ultimately lead to cellular dysfunc-
tion and necrosis. In fact, if the ischemia is severe enough, 
the rate of metabolism is diminished and the generation of 
high energy compounds subsequently declines (e.g. ATP). 
The reduced energy metabolism eventually leads to a slow 
but significant degree of tissue injury and necrosis. This de-
gree of tissue injury is further enhanced and accelerated by 
reperfusion that leads to reoxygenation and to the formation 
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and activation of a variety of humoral mediators of injury 
and inflammation. Another key factor of reperfusion injury is 
PMN activation and infiltration in the ischemic area. Multi-
ple studies identified consecutive stages of PMN activation 
and substances being involved in it [60]. It has become ap-
parent that PMN infiltration is not, as once thought, a secon-
dary phenomenon following ischemia. Rather, PMNs are 
active participants in the pathophysiology of infarction, ex-
acerbating the tissue damage [61]. In fact, they produce sev-
eral toxic mediators including oxygen derived free radicals 
(e. g. superoxide radicals, hydroxyl radicals, hydrogen per-
oxide) and lipid mediators (e.g. platelet activating polypep-
tide mediators factor as well as LTs). Main interest lies in 
cellular adhesion molecules, particularly selectins and in-
tegrins, as their antagonists were repeatedly found to dimin-
ish neutrophil activation and infarct size [60].  

2.2. Leukotrienes and Cerebral I/R Injury 

 Transient cerebral ischemia initiates a complex series of 
metabolic events which ultimately lead to neuronal death. 
After cerebral ischemia, the highly complex pathophysi-
ological process that follows can be separated into 3 succes-
sive phases: metabolic stress and excitotoxicity (acute, 
within hours), inflammation and apoptosis (subacute, hours 
to days), and repair and regeneration (chronic, days to 
months)[62, 63]. Post-ischemic inflammation in the subacute 
phase is an important event in which a large number of cells 
and molecules/mediators are involved. Among the inflamma-
tory cells, the accumulation of neutrophils and macro-
phage/microglia in the brain is determinant in the cerebral 
I/R pathogenesis [64-66].  

 The importance of LTs in cerebral I/R has been proven 
by several authors [67-70] who demonstrated that 5-LO ex-
pression as well as LT levels are elevated in ischemic brain 
[71-74]. In particular, in a gerbil model of transient fore-
brain, it has been reported that, during reperfusion, neurons 
exhibit dense 5-LO immunoreactivity and the enzyme is re-
distributed from cytosol to particulate fraction after 3 min 
reperfusion. Moreover, an increase in LTC4 levels in all 
forebrain regions during reperfusion has been observed, al-
though post-ischemic increase was inhomogeneous. In fact, 
the increase in the hippocampus was greater than in cerebral 
cortex. Thus, it has been suggested that reperfusion, which 
was associated with translocation of cytosolic 5-LO to mem-
branes, induced the biosynthesis of LTC4 that may mediate 
irreversible reperfusion injury in the hippocampal neurons 
[71]. An increase in cysLT production has been also ob-
served in rats [68]. In fact, it has been demonstrated in the 
brain of the rats with focal cerebral ischemia an increase of 
cysLT production with 2 peaks at 3–24 h and 7 days after 
middle cerebral artery occlusion and reperfusion. In the late 
phase (7-14 days) [68] the increased cysLTs are tempo-
spatially related to the astrocytosis in the penumbral region 
[68]. Other experimental evidences suggest that astrocytes, 
the predominant cell type in the brain, are affected and con-
tribute to the cerebral ischemic injury [75] through the pro-
duction of LTs. In fact, it has been reported that the cultured 
astrocytes produced cysLTs after 1h oxygen-glucose depri-
vation (OGD)-induced in vitro ischemia. Moreover, it has 
been hypothesized that the released cysLTs might play an 
autocrine role in the induction of reactive astrocytosis 

through the interaction with CysLT1 receptor [76]. In par-
ticular, in vitro ischemia activates astrocytes to produce 
cysLTs that result in CysLT1 receptor-mediated proliferation 
and CysLT2 receptor-mediated death [77].  

 The CysLT receptors, CysLT1 and CysLT2, seem to be 
the also responsible for the increased blood–brain barrier 
permeability and for the induced brain edema and neutrophil 
infiltration observed after cerebral ischemia [72, 78-80]. In 
fact, CysLT1 receptor mRNA has been detected in the brain 
[81] and its protein has been found to be primarily expressed 
in the microvascular endothelium of the human brain tissue 
[82]. An increase in the expression, spatio-temporally related 
to acute neuronal injury and late astrocyte proliferation, was 
also observed in rat brain after focal cerebral ischemia. The 
role of CysLT1 receptor is also supported by the observation 
that CysLT1 receptor antagonists, pranlukast (ONO-1078) 
and montelukast, protected against acute and chronic 
ischemic brain injury in rats and mice [83-87]. In particular, 
ONO-1078 possessed a neuroprotective effect on global 
cerebral ischemia in rats, at least in part related to the inhibi-
tion of the up-regulation of vascular cell adhesion molecule 1 
(VCAM-1) in different regions of the brain [84].  

 Supporting evidences have been also reported for CysLT2 

receptor [88]. In fact, the expression of CysLT2 receptor 
mRNA was increased in the rat ischemic core at 6, 12 and 24 
h after reperfusion, whereas in the boundary zone after 3, 7 
and 14 days, suggesting its involvement in the acute neu-
ronal injury and late astrocyte proliferation in the ischemic 
brain [88]. The prominent role of CysLT2 in respect to 
CysLT1 receptor has been proved by the use of neuronal cell 
line PC12 [89]. In fact, it has been recently demonstrated 
that transfection with CysLT2, and not with CysLT1 receptor, 
increased OGD-induced PC12 cell death that was attenuated 
by the dual CysLT1/CysLT2 receptor antagonist, BAY u9773 
[90], suggesting a role of this receptor subtype in ischemic 
astrocyte and neural cell death [77].  

 As reported above, recently it has been recently identified 
a new receptor for CysLTs: GPR17 [31]. This receptor (rat 
and human) is expressed in the organs typically undergoing 
ischemic damage, such as brain, heart and kidney. In particu-
lar ischemic damage in a rat focal ischemia model was at-
tenuated by inhibition of GPR17, through either CysLT/P2Y 
receptor antagonists or antisense technology. These results 
suggest an important role of GPR17 in cerebral I/R [31]. 

 In conclusion, though, in an animal model of focal cere-
bral ischemia, no difference in cerebral infarct size has been 
found between 5-LOKO and wild type mice [91], the overall 
results support the view that LTs are involved in the cerebral 
I/R injury. 

2.3. Leukotrienes and Cardiac I/R Injury 

 A number of different pathogenetic events may lead to 
ischemic cardiovascular diseases (ICD), including athero-
sclerosis, small vessel diseases, cardiac arrhythmias and hy-
percoagulation. In turn, these conditions are also dependent 
on a variety of different underlying conditions some of 
which are inherited whereas others are due to exogenous 
factors [92]. Most of the treatments available for ischemic 
insults, including myocardial infarction (MI) and angina, are 
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directed toward preventing the tissue damage inflicted at the 
time of reperfusion, when the coronary flow is restored by 
removing the occlusion. As reported above, genetic factors 
may contribute to the risk of I/R and recently, gene variants 
that predispose patients to MI have been reported [6]. In par-
ticular, variants of gene involved in LT biosynthesis confer 
ethnic specific risk of MI. In fact, a haplotype spanning 
ALOX5AP (FLAP), HapA, was shown to confer risk of both 
MI and stroke in Iceland [6]. On the contrary this ALOX5AP 
variant did not associate to ICD in Sweden [93]. Another 
gene variant in the LT pathway, LTA4 hydrolase, was subse-
quently found to confer increased risk to MI, with an ap-
proximately 3 fold higher risk in African Americans than in 
whites [7]. In particular, measurements of LTB4 production 
suggest that this risk is mediated through upregulation of the 
LT pathway [7]. In fact, it has been demonstrated that, in a 
randomized placebo-controlled phase II trial conducted in 
patients with MI, LTB4 is a risk factor of MI and that inhibi-
tion of FLAP and LT pathway produces suppression of bio-
markers that are associated with MI risk [94]. In contrast, it 
seems that the ALOX5 (5-LO)-promoter polymorphism not 
support variation on MI risk [95]. 

 The role of LTs in I/R of the myocardium is also sup-
ported by the use of inhibitors of their synthesis. In fact, in a 
model of coronary artery ligation in rabbit [96] the treatment 
with BAY X1005, a LT synthesis inhibitor, reduced the mor-
tality rate, protected against the marked electrocardiogram 
derangement and abolished the significant increase in plasma 
creatine kinase activity [96]. Likewise, FLM 5011, a 5-LO 
inhibitor, protected myocardial microvessels against I/R in-
jury after ligation of the left coronary artery in dogs [97]. 

 Other experimental evidences for the involvement of LT 
in myocardial I/R derive from a direct measurement of LT 
levels during episodes of MI. In fact, it has been demon-
strated that LTB4 and cysLT levels in systemic artery blood 
are higher in patients with acute stage of MI and decrease to 
near-normal control levels by one month after the attack 
[98]. Of interest, the urinary excretion of LTE4, the human 
urinary metabolite of cysLTs, was also increased [99]. In 
particular, experimental data suggested that LTC4 is involved 
more in prolonged than in transient MI [100] and that LTD4 
has a negative inotropic and chronotropic effect in isolated 
rat hearts with chronic MI [101]. Thus, the evaluation of 
LTC4 levels might be useful in clinical diagnosis and man-
agement of acute coronary syndromes [102]. Moreover, re-
cently the involvement of the CysLT2 receptor in myocardial 
I/R injury has been highlighted [103]. In fact, endothelium-
targeted over-expression of CysLT2 receptor has been shown 
to aggravate myocardial I/R injury by increasing endothelial 
permeability and by exacerbating inflammatory gene expres-
sion (VCAM-1 and ICAM) [103].  

 The involvement of LTs in acute coronary syndrome is 
also supported by their profound effects on cardiac function, 
which may be mediated through effects on both coronary 
blood flow and cardiac contractility [104]. In fact, the blood 
flow to several vascular beds can be altered by LTs and their 
synthesis and release may play an important role in the regu-
lation of the peripheral circulation [104]. Moreover, LTs, 
besides their action on vascular smooth muscle and myocar-
dium, increase the permeability of blood vessels [104].  

 Although experimental evidence supports a role for LT in 
myocardial I/R, recently it has been suggested, by the use of 
5-LOKO mice, that LTs have no major role in I/R injury in 
the heart [105]. 

2.4. Leukotrienes and Pulmonary I/R Injury 

 Pulmonary I/R injury may result from trauma, atheroscle-
rosis, pulmonary embolism, pulmonary thrombosis and sur-
gical procedures, such as cardiopulmonary bypass and lung 
transplantation. In particular, pulmonary I/R injury occurs in 
up to 22% of patients after lung transplantation and is still 
the main cause of death during the first month after surgery 
[106]. 

 After pulmonary I/R, cellular injury is accompanied by a 
rapid remodelling of membrane lipids with the generation of 
bioactive lipids, such as LTs, that can serve as intra- and/or 
extracellular mediators. The pivotal role of LTB4 in the pul-
monary I/R injury has been valued by several experimental 
data. In particular, neutrophil accumulation in the lung has 
been associated with pulmonary I/R that leads to respiratory 
failure [107, 108]. It has been suggested that the inflamma-
tory cell accumulation was caused by LTB4 generated by the 
ischemic tissue and released into the circulation [109]. In 
fact, LTs mediate neutrophil sequestration and lung edema 
after hindlimb ischemia [109]. Moreover, it has been re-
ported that the leukocytes from transgenic mice, overex-
pressing the LTB4 receptor, showed an increased PMN traf-
ficking to lungs after I/R [110], whereas 5-LOKO mice 
showed lower PMN infiltration in reperfused lungs in com-
parison to 5-LOWT mice [110]. An increase of LTB4 levels 
in bronchoalveolar lavage fluid after I/R injury has also been 
observed in rat I/R lung injury model, [111, 112], as well as 
in serum after pulmonary I/R injury in dogs [113]. Moreover, 
the role of LTs is suggested by reports showing that after 
limb ischemia-induced lung injury [114] there is an increase 
in LTB4 plasma levels as well as in LTC4 blood and bron-
choalveolar lavage fluid level [115].  

2.5. Leukotrienes and Renal I/R Injury 

 Clinically, renal I/R occurs in a variety of medical and 
surgical settings and is responsible for the development of 
ischemic acute renal failure and acute tubular necrosis, e.g. 
in renal transplantation where I/R of the kidney directly in-
fluences graft and patient survival. Multifactorial processes 
are involved in the development and progression of renal I/R 
injury, among them, renal inflammation, involving cyto-
kine/adhesion molecule cascades, with recruitment, activa-
tion, and diapedesis of circulating leukocytes, and chemotac-
tic mediators [116], such as chemokines and 5-LO metabo-
lites [117, 118].  

 The involvement of LT in renal I/R has been demon-
strated by the use of the 5-LO inhibitor, zileuton, which re-
duced renal dysfunction and injury caused by bilateral occlu-
sion and reperfusion of mouse kidneys [119]. The compound 
also abolished the significant increase in plasma levels of 
LTB4 observed in wild-type mice after the bilateral renal I/R. 
Moreover, the degree of renal dysfunction, injury and in-
flammation was reduced in 5-LOKO mice further supporting 
that 5-LO and its metabolites contribute to the pathophysiol-
ogy of renal I/R injury. In particular, both in mice treated 
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with zileuton and in the corresponding 5-LOKO we ob-
served, after I/R, a reduced expression of ICAM-1 in the 
kidney that corresponded to a diminished PMN accumula-
tion. This is not entirely surprising given that the 5-LO me-
tabolite, LTB4, is a potent chemokine. Similar results dem-
onstrated that LTB4 alone appears sufficient to cause cells to 
migrate into post ischemic renal tissue supporting the role for 
this LT as an important mediator in the pathophysiology of 
renal dysfunction caused by kidney I/R [120].  

 The role of cysLTs in renal I/R has been also investigated 
by the use of receptor antagonists [121]. It has been demon-
strated that CysLT1 receptor antagonist, montelukast, re-
versed I/R-induced oxidant responses and improved micro-
scopic damage and renal function. It seems likely that mon-
telukast protects kidney tissue by inhibiting neutrophil infil-
tration, balancing oxidant-antioxidant status and regulating 
the generation of inflammatory mediators [121].  

2.6. Leukotrienes and Intestinal I/R Injury 

 Intestinal I/R injury is generally the result of arterial oc-
clusion by thrombi or emboli and, more frequently, by non 
occlusive processes, like acute mesenteric ischemia, small 
bowel transplantation, abdominal aortic aneurysm, severe 
burns and hemorrhagic, traumatic or septic shock [122]. I/R 
injury of the gastrointestinal tract, associated with haemor-
rhage and other shock states, is characterized by a number of 
microvascular and mucosal alterations, including endothelial 
cell swelling, capillary plugging, a prolonged reduction in 
gastrointestinal blood flow and mucosal barrier dysfunction 
[123]. An important component of intestinal I/R is endothe-
lial dysfunction [124, 125] especially attributed to activated 
adherent PMNs [126]. In fact, I/R is a stimulus for leuko-
cyte-endothelial cell interaction and migration into tissues.  

 It has been demonstrated that LTB4 plays a pivotal role in 
endothelial dysfunction occurring in splanchnic artery occlu-
sion shock (SAO), in the rats, by chemoattraction and activa-
tion of neutrophils on the surface of vascular endothelial 
cells [127]. Moreover, it seems that the activation of BLT 
receptor plays a minor role in the local, remote and systemic 
injuries following severe intestinal I/R in rats [128]. The role 
of 5-LO metabolites has been also investigated by the use of 
5-LOKO mice. In fact, we have demonstrated that 5-LO me-
diates leukocyte-endothelial cell interactions by regulating 
the expression of P-selectin, E-selectin and ICAM-1 during 
SAO in 5-LOKO animals [58]. Interestingly, the down-
regulation of the adhesion molecules, in the intestine as well 
as in the lung tissue of SAO-shocked 5-LOKO mice, was 
associated with the reduction of leukocyte infiltration.  

 The role of LTs is also supported by results demonstrat-
ing that LTB4 and LTC4 levels triple after I/R in the canine 
intestinal mucosa [129] and that LTC4 regulates the splanch-
nic blood flow during mild haemorrhage/reperfusion injury 
in rats [130]. More generally, LTs seem to play a significant 
role also in other experimental models of I/R intestinal in-
jury, like in a canine model of hypothermic I/R injury [131] 
and in hypotension associated with I/R of the small intestine 
in rats [132]. In particular, in this model the inhibition of LT 
biosynthesis by zileuton significantly improved

 
reperfusion, 

intestinal blood flow and VO2, and abolishes the I/R-induced
 

increase in mucosal neutrophil infiltration in normothermic 
I/R

 
injury [129].  

 Recently, it has been demonstrated that splanchnic I/R in 
rats activates gut PLA2-mediated release of AA into the 
lymph where it is delivered to the lungs, provoking LTB4 
production and subsequent PMN-mediated lung injury [133].  

2.7. Leukotrienes and Hepatic I/R Injury 

 Hepatic injury secondary to I/R is an important clinical 
issue. It has been implicated in the pathogenesis of a variety 
of clinical conditions including trauma, thermal injury, hy-
povolemic and endotoxin shock, reconstructive vascular sur-
gery, liver transplantation and liver resection surgery [134-
139]. Possible consequences of hepatic I/R injury include 
liver failure and/or multi-organ system failure, resulting in 
morbidity and mortality [140]. Extensive investigations dur-
ing the past decade suggest that an inflammatory response 
and microcirculatory disturbances contribute to reperfusion 
injury and cause, in severe cases, liver failure [139, 141, 
142]. It has been reported that LTs are associated with sev-
eral liver injury such as fulminant hepatitis [143], liver cir-
rhosis [144], cholestasis, hepatic inflammation, portal hyper-
tension, hepatorenal syndrome, fulminant hepatic failure, 
primary graft nonfunction following liver transplantation 
[145, 146] and hepatic I/R injury [147]. In particular, a 4- to 
5-fold increase of the cysLTs content in the hepatic tissue 
after 12 and 24 h reperfusion, accompanied by the enhance-
ment of hepatic edema and plasma ALT elevation, has been 
observed [148]. According to recent findings LTC4 accumu-
lation in rat liver subjected to I/R may be partially caused by 
up-regulation of LTC4S expression and by the increase of 
LTC4 synthesis enzyme and/or activities [149]. However, 
since the pathophysiology of hepatic I/R injury is so compli-
cated, it is essential to further study the mechanisms respon-
sible for LTC4 accumulation in hepatic I/R injured rats [149].  

 Contrasting data have been reported on LTB4 involve-
ment in hepatic I/R injury. In fact, either an increase or no 
change in LTB4 levels have been observed after hepatic I/R 
injury [150]. Therefore, the involvement of LTB4 needs fur-
ther investigations. 

3. INVOLVEMENT OF LEUKOTRIENES IN THE 

PATHOGENESIS OF SHOCK 

3.1. Shock 

 Sepsis is a complex pathophysiological response of the 
body to a systemic infection and may result in severe disor-
ders such as septic shock, characterized by hypotension, hy-
pothermia, poor tissue perfusion and multi organ dysfunction 
syndrome (MODS) [151, 152]. In particular, severe sepsis is 
defined as the presence of sepsis and one or more organ dys-
functions (acute lung injury; coagulation abnormalities; 
thrombocytopenia; altered mental status; renal, liver, or car-
diac failure; hypoperfusion with lactic acidosis) [153, 154], 
while septic shock is defined as the presence of sepsis and 
arterial hypotension [155]. The mortality rate of sepsis may 
range from 30% to 50% for severe cases [156].  

 The inflammatory response is a central component of 
sepsis as it drives the physiological alterations that are rec-
ognized as the systemic inflammatory response syndrome 
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(SIRS) [157]. A successful inflammatory response eliminates 
the invading microorganisms without causing lasting dam-
age, however sepsis develops when the initial appropriate 
host response to an infection becomes amplified and then 
aberrant. Many scientists believe that sepsis develops as a 
result of production of several mediators such as pro-
inflammatory molecules (TNF- , IL-1, IL-6 and IL-8), 
lysosomal enzymes, superoxide-derived free radicals, 
vasoactive substances and eicosanoids [prostaglandins (PGs) 
and LTs] [158]. Moreover, the vascular changes in septic 
shock [159] have been interpreted on the basis of the effects 
of inflammatory mediators on the vascular endothelium 
[160]. In fact, the initial responses to endotoxemia are de-
tectable in the microcirculation as a microvascular inflamma-
tory response characterized by activation of the endothelium 
stimulating these cells from their normal anticoagulant state 
to a procoagulant state with increased adhesiveness for plate-
lets and leukocytes. The infiltration and accumulation of 
PMNs represent a crucial event for the development of sec-
ondary organ and tissue damage [161-164]. Moreover, leu-
kocyte/endothelial cell interaction is also induced by the 
generation of pro-inflammatory mediators, such as LTs, 
which up-regulate adhesion molecule expression [165-167]. 
It has therefore been proposed that during human sepsis a 
widespread endothelial damage and death occurs which leads 
to MODS. 

3.2. Leukotrienes and Septic and Non Septic Shock 

 LT generation in sepsis may serve as a biomarker for 
survival in the critical ill [168] since a negative correlation 
between the ability of blood mononuclear cells to synthesize 
LTC4 and mortality in septic patients has been identified. In 
fact, a significantly increased mortality rate has been ob-
served [169] in septic patients, whose in vitro stimulated 
pooled blood mononuclear cells were unable to produce in-
creased amount of LTC4 over time. Moreover, [170], it has 
been reported that in sepsis the PG basal levels in white 
blood cells (WBC) were significantly decreased in compari-
son to healthy subjects, whereas isolated WBC stimulated 
with AA have the same capacity to generate PG. In contrast, 
LT levels were significantly higher in septic patients than in 
healthy subjects, but WBC were able to produce, after stimu-
lation with AA, greater amount of LTs only in patients who 
survived the septic state. The authors suggested that this in-
ability of WBC to further enhance LT production during the 
course of sepsis in non-survivors could be explained as part 
of the “immunoparalysis” seen during sepsis associated with 
bad outcome. Thus, the functional analysis of LTs and PGs 
during sepsis might turn out to be a suitable approach for the 
estimation of the future course of the disease [170].  

 Moreover, a complex dynamic equilibrium between PGs 
and LTs in septic shock has been suggested. In fact, PGI2 
blockade during bacteraemia significantly increased LT pro-
duction that on the contrary was decreased by PGI2 infusion, 
suggesting that endogenous PGI2 may blunt LT release dur-
ing septic shock [171]. These data indicate that LT produc-
tion can also be regulated by PGs.  

 The immunopathogenesis of sepsis is characterized by an 
overwhelming suppressed adaptive immunity [172, 173]. 
Although activation of the innate immune system by micro-

bial pathogens and their products was reported to contribute 
to hyper-inflammation and organ injury during systemic in-
flammatory responses, many aspects of sepsis immunopa-
thogenesis need further elucidation.  

 The overall results concerning the role of LTs in the im-
mune response demonstrate that they have divergent effects 
during the induction and evolution of septic shock. Initially, 
they participate in local innate immune control. However, if 
the severity of infection overwhelms local immunity and 
microbial dissemination ensues, cysLTs contribute to the 
deleterious effects on the vasculature, resulting in vascular 
leak, hypotension and inadequate tissue perfusion [174]. In 
fact, a reduction in peritoneal neutrophil accumulation and 
an increase in the number of bacteria in the peritoneal cavity 
has been demonstrated, in different models of peritonitis 
with severe sepsis (such as a cecal ligation and puncture), in 
5-LOKO mice. Despite this impairment of local innate im-
munity, the null mice exhibited a marked improvement in 
survival, and this protection was also seen in wild-type ani-
mals treated with the LT synthesis inhibitor, MK 886. A sur-
vival advantage in severe sepsis was also observed in mice 
treated with the CysLT receptor antagonist, MK 571, but not 
with the LTB4 receptor antagonist, CP 105 [174]. Moreover, 
in the 5-LOKO mice a reduced vascular leak and serum lac-
tate levels was observed, whereas treatment of wild-type 
mice with MK 571 produced a less sepsis-induced hypoten-
sion [174]. These data demonstrate opposite effects of 
cysLTs on innate immune vs hemodynamic responses, dem-
onstrating protective effects on local immunity and deleteri-
ous effects on the vasculature [174]. In particular, cysLTs 
have long been recognized to increase microvascular perme-
ability in various organs [175-178]. Thus, although LTs ini-
tially play a protective role during septic shock development, 
they play a detrimental role, indicating salutary effects of LT 
inhibitors and antagonists in endotoxin shock [179]  

 Septic shock induced by the injection of endotoxin is 
widely used in animal experimental models, and hypother-
mia is one of the prominent features of the acute phase re-
sponse to lipopolysaccharide (LPS) [180]. It has been dem-
onstrated that MK 886 significantly attenuated the hypo-
thermia induced by LPS and significantly reduced the eleva-
tion in hypothalamic LT production in the rats [180]. 
Moreover, in a model of rat endotoxic shock, the treatment 
with BW A137C, a 5-LO inhibitor, attenuated acute mi-
crovascular injury produced by LPS [181]. Similarly, the 
administration of MK 886 attenuated the hypotension and 
partially reversed the impaired vascular responsiveness ob-
served in a rabbit model of endotoxic shock [182] as well as 
blocked the toxin-induced coronary vasoconstrictor response 
and the loss of rat myocardial contractility [183]. Thus, the 
overall results show that LTs cause pulmonary hypertension, 
systemic hypotension [184], hypothermia [185] and an in-
creased vascular permeability during bacteraemia [184]. 

 As previously reported, septic shock can develop into 
MODS, with lung as the first organ involved. In particular, 
LTs have been implicated as possible mediators of endo-
toxin-induced acute lung injury. In fact, the presence of LTs 
in the bronchoalveolar lavage fluid of patients with sepsis as 
well as an increase of cysLT levels in lung tissue of endo-
toxin-challenged rodents, has been reported [186, 187]. 
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Moreover infusion of LTs into animals produced an acute 
lung injury resembling the clinical presentation of endo-
toxemia, which includes pulmonary hypertension and in-
creased vascular permeability, resulting in pulmonary oe-
dema and hypoxemia [188, 189].  

 Another target organ during sepsis is the liver, which is 
continuously exposed to endotoxin via the portal circulation. 
Liver sinusoidal cells, in particular macrophages and endo-
thelial cells play an important role in clearance of endotoxin 
from the blood [190]. Excessive levels of endotoxin can 
readily overcome this clearance mechanism leading to liver 
damage [191]. The release of oxidants eicosanoids and cyto-
toxic pro-inflammatory cytokines by LPS-activated macro-
phages and endothelial cells seems to be in part implicated in 
this process [192-194]. In fact, it has been demonstrated that 
5-LO mRNA expression is increased after endotoxin admini-
stration in liver endothelial cells providing additional support 
for the idea that LTs play a role in recruitment and activation 
of leukocytes into liver tissue during acute endotoxemia 
[195]. Moreover, we have demonstrated in collaboration 
with Thiemermann and coworkers [56], that lung, liver, il-
eum, renal and pancreatic dysfunction and injury, caused by 
endotoxemia, as well as PMN infiltration in the lung and 
ileum, were reduced in rats treated with 5-LO inhibitor zileu-
ton and in 5-LOKO mice. Zileuton also reduced the LPS-
induced expression of 2 integrins CD11b/CD18 on rat leu-
kocytes. Thus zileuton seems to protect organs against endo-
toxin-induced dysfunction and injury by inhibiting the LT 
synthesis, thereby reducing the LT-induced stimulation of 

2-integrin-dependent adhesion and the subsequent recruit-
ment of neutrophils [56].  

 It is known that MODS remains a principal cause of 
death after severe shock or trauma, not only in the presence, 
but also in the absence of sepsis [196-202]. A marked bio-

synthesis of LTC4 and LTB4 was observed also in an experi-
mental model of MODS induced by non septic shock (zymo-
san-induced peritonitis and MODS) [203]. Other results sup-
port the pivotal role of LTs in zymosan-induced peritonitis 
model. In fact, oedema associated with zymosan-induced 
peritonitis was markedly reduced in animals lacking FLAP 
[204] and it has been reported that 5-LO inhibitors and LTB4 
receptor antagonists are effective in preventing the develop-
ment of organ failure since they reduce neutrophil infiltration 
[203]. Same results were obtained by the use of LTA4 hydro-
lase-deficient mice [205] and 5LOKO mice [57]. Interest-
ingly, a reduced expression of adhesion molecules, such as 
P-selectin and ICAM-1 in the lung and ileum was observed. 
Thus, as for septic shock, these results demonstrate that LTs 
exert a role in zymosan-induced non septic shock by the 
regulation of neutrophil recruitment both at the rolling and 
firm adhesion phase [57].  

 Similar data were obtained in another model of non sep-
tic induced-MODS [206]. In fact, it has been demonstrated 
that chronic renal failure-induced multiple-organ injury in 
rats is alleviated by the selective CysLT1 receptor antagonist 
montelukast [206]. In particular, protective effects of monte-
lukast on chronic renal failure-induced injury were attributed 
to its ability to inhibit neutrophil infiltration and apoptosis, to 
balance oxidant-antioxidant status and to regulate the genera-
tion of pro-inflammatory mediators [206]. Moreover, it has 
been observed an increase in pulmonary LTB4 production 
within the lung also in an experimental model of traumatic 
brain injury that is known to cause several secondary effects, 
which lead to MODS [207].  

4. SUMMARY 

 This review discusses the role of LT pathway in various 
forms of I/R injury (cerebral, cardiac, pulmonary, renal, in-

 

Fig. (1). Proposed scheme for the role of LT pathway in I/R injury and shock. 
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testinal and hepatic) and shock (septic and non septic), and 
delineates the evidence supporting the potential beneficial 
utility of anti-LT therapy (5-LO inhibitors and LT receptor 
antagonists) as a promising new approach to limit I/R-and 
shock-induced tissue damage. 

 There is a marked activation of LT biosynthetic pathway 
in various forms of I/R and shock, which correlates with the 
degree of tissue injury and inflammation. In particular, ac-
cumulating evidences suggest that anti-LT therapy may pro-
tect against organ I/R injury by decreasing the endothelial 
cell activation/inflammatory response, vascular permeability 
and recruitment, adhesion and activation of inflammatory 
cells by the inhibition of the adhesion molecule expression 
(Fig. (1)).  

 A better understanding of the mechanisms underlying the 
role of the 5-LO enzyme and/or its metabolites, in particular 
LTs, in the regulation of neutrophil trafficking, might open 
new perspectives in the treatment of organ damage associ-
ated with shock and I/R injury.  

ABBREVIATIONS 

5-HPETE = 5-Hydroperoxyeicosatetraenoic acid 

5-HETE = 5-Hydroxyeicosatetraenoic acid 

5-LO = 5-Lipoxygenase 

FLAP = 5-Lipoxygenase-activating protein 

AA = Arachidonic acid 

cysLT = Cysteinyl LT 

cPLA2 = Cytosolic phospholipase A2 

CLP = Coactosin-like protein 

ERK = Extracellular signal-regulated kinase 

GPR17 = G protein–coupled receptor 17 

I/R = Ischemia and reperfusion 

ICD = Ischemic cardiovascular diseases 

KO = Knockout 

LTs = Leukotrienes 

LTB4 = Leukotriene B4 

LTC4S = Leukotriene C4 (LTC4) synthase 

LTD4 = Leukotriene D4 

LTE4 = Leukotriene E4 

LPS = Lipopolysaccharide 

MAPK = Mitogen-activated protein kinase 

MODS = Multi organ dysfunction syndrome 

MI = Myocardial infarction 

PMNs = Polymorphonuclear leukocytes 

PGs = Prostaglandins 

SAO = Splanchnic artery occlusion shock 

SIRS = Systemic inflammatory response syndrome 

VCAM-1 = Vascular cell adhesion molecule 1 

WBC. = White blood cells 

REFERENCES 

[1] Rakonjac M, Fischer L, Provost P, Werz O, Steinhilber D, Sam-
uelsson B, et al. Coactosin-like protein supports 5-lipoxygenase 

enzyme activity and up-regulates leukotriene A4 production. Proc 
Natl Acad Sci U S A 2006; 103: 13150-5. 

[2] Rouzer CA, Matsumoto T, Samuelsson B. Single protein from 
human leukocytes possesses 5-lipoxygenase and leukotriene A4 

synthase activities. Proc Natl Acad Sci USA 1986; 83: 857-61.  
[3] Haeggstrom JZ, Wetterholm A, Medina JF, Samuelsson B. Leukot-

riene A4 hydrolase: structural and functional properties of the active 
center. J Lipid Mediat 1993; 6: 1-13.  

[4] Samuelsson B. Leukotrienes: mediators of immediate hypersensi-
tivity reactions and inflammation. Science 1983; 220: 568-75. 

[5] In KH, Asano K, Beier D, Grobholz J, Finn PW, Silverman EK, et 
al. Naturally occurring mutations in the human 5-lipoxygenase 

gene promoter that modify transcription factor binding and reporter 
gene transcription. J Clin Invest 1997; 99: 1130-7. 

[6] Helgadottir A, Manolescu A, Thorleifsson G, Gretarsdottir S, Jons-
dottir H, Thorsteinsdottir U, et al. The gene encoding 5-

lipoxygenase activating protein confers risk of myocardial infarc-
tion and stroke. Nat Genet 2004; 36: 233-9. 

[7] Helgadottir A, Manolescu A, Helgason A, Thorleifsson G, Thor-
steinsdottir U, Gudbjartsson DF, et al. A variant of the gene encod-

ing leukotriene A4 hydrolase confers ethnicity-specific risk of myo-
cardial infarction. Nat Genet 2006; 38: 68-74. 

[8] Sanak M, Simon HU, Szczeklik A. Leukotriene C4 synthase pro-
moter polymorphism and risk of aspirin-induced asthma. Lancet 

1997; 350: 1599-600. 
[9] Uozumi N, Kume K, Nagase T, Nakatani N, Ishii S, Tashiro F, et 

al. Role of cytosolic phospholipase A2 in allergic response and par-
turition. Nature 1997; 390: 618-22. 

[10] Henderson WR Jr, Chi EY, Bollinger JG, Tien YT, Ye X, Castelli 
L, et al. Importance of group X-secreted phospholipase A2 in aller-

gen-induced airway inflammation and remodelling in a mouse 
asthma model. J Exp Med 2007; 204: 865-77. 

[11] Werz O, Klemm J, Samuelsson B, Radmark O. 5-lipoxygenase is 
phosphorylated by p38 kinase-dependent MAPKAP kinases. Proc 

Natl Acad Sci U S A 2000; 97: 5261-66. 
[12] Werz O, Burkert E, Fischer L, Szellas D, Dishart D, Samuelsson B, 

et al. Extracellular signal-regulated kinases phosphorylate 5-
lipoxygenase and stimulate 5-lipoxygenase product formation in 

leukocytes. FASEB J 2002; 16: 1441–3. 
[13] Luo M, Jones SM, Peters-Golden M, Brock TG. Nuclear localiza-

tion of 5-lipoxygenase as a determinant of leukotriene B4 synthetic 
capacity. Proc Natl Acad Sci U S A 2003; 100: 12165 70. 

[14] Peters-Golden M, Henderson WR Jr. Leukotrienes. N Engl J Med 
2007; 357: 1841-54. 

[15] Folco G, Murphy RC. Eicosanoid transcellular biosynthesis: from 
cell-cell interactions to in vivo tissue responses. Pharmacol Rev 

2006; 58: 375-88. 
[16] Brink C, Dahlén SE, Drazen J, Evans JF, Hay DW, Nicosia S, et al. 

International Union of Pharmacology XXXVII. Nomenclature for 
leukotriene and lipoxin receptors. Pharmacol Rev 2003; 55: 195–

227. 
[17] Yokomizo T, Izumi T, Shimizu T. Leukotriene B4: metabolism and 

signal transduction. Arch Biochem Biophys 2001; 385: 231–41. 
[18] Del Prete A, Shao WH, Mitola S, Santoro G, Sozzani S, Haribabu 

B. Regulation of dendritic cell migration and adaptive immune re-
sponse by leukotriene B4 receptors: A role for LTB4 in upregulation 

of CCR7 expression and function. Blood 2007; 109: 626-31. 
[19] Subbarao KV, Jala R, Mathis S, Suttles J, Zacharias W, Ahamed J, 

et al. Role of leukotriene B4 receptors in the development of athe-
rosclerosis: potential mechanisms. Arterioscler Thromb Vasc Biol 

2004; 24: 369-75. 
[20] Mathis S, Jala VR, Haribabu B. Role of leukotriene B4 receptors in 

rheumatoid arthritis. Autoimmun Rev 2007; 7: 12-7. 
[21] Yokomizo T, Kato K, Terawaki K, Izumi T, Shimizu T. A second 

leukotriene B(4) receptor, BLT2. A new therapeutic target in in-
flammation and immunological disorders. J Exp Med 2000; 192: 

421-2.  



Involvement of Leukotriene Pathway in the Pathogenesis Current Vascular Pharmacology, 2009, Vol. 7, No. 2    9 

[22] Lundeen KA, Sun B, Karlsson L, Fourie AM. Leukotriene B4 Re-

ceptors BLT1 and BLT2: Expression and Function in Human and 
Murine Mast Cells. J Immunol 2006; 177: 3439-47.  

[23] Iizuka Y, Yokomizo T, Terawaki K, Komine M, Tamaki K, Shi-
mizu T. Characterization of a mouse second leukotriene B4 recep-

tor, mBLT2: BLT2-dependent ERK activation and cell migration 
of primary mouse keratinocytes. J Biol Chem 2005; 280: 24816-23.  

[24] Shao WH, Del Prete A, Bock CB, Haribabu B. Targeted disruption 
of leukotriene B4 receptors BLT1 and BLT2: a critical role for 

BLT1 in collagen-induced arthritis in mice. J Immunol 2006; 176: 
6254-61.  

[25] Rocconi RP, Kirby TO, Seitz RS, Beck R, Straughn JM Jr, Alvarez 
RD, et al. Lipoxygenase pathway receptor expression in ovarian 

cancer. Reprod Sci 2008; 15: 321-6. 
[26] Bäck M. Functional characteristics of cysteinyl-leukotriene recep-

tor subtypes. Life Sci 2002; 71: 611-22. 
[27] Lynch KR, O’Neill GP, Liu Q, Im DS, Sawyer N, Metters KM, et 

al. Characterization of the human cysteinyl leukotriene CysLT1 re-
ceptor. Nature 1999; 399: 789-93. 

[28] Beller TC, Maekawa A, Friend DS, Austen KF, Kanaoka Y. Tar-
geted gene disruption reveals the role of the cysteinyl leukotriene 2 

receptor in increased vascular permeability and in bleomycin-
induced pulmonary fibrosis in mice. J Biol Chem 2004; 279: 

46129-34. 
[29] Hui Y, Cheng Y, Smalera I, Jian W, Goldhahn L, Fitzgerald GA, et 

al. Directed vascular expression of human cysteinyl leukotriene 2 
receptor modulates endothelial permeability and systemic blood 

pressure. Circulation 2004; 110: 3360-6. 
[30] Yoshisue H, Kirkham-Brown J, Healy E, Holgate ST, Sampson 

AP, Davies DE. Cysteinyl leukotrienes synergize with growth fac-
tors to induce proliferation of human bronchial fibroblasts. J Al-

lergy Clin Immunol 2007; 119: 132-40. 
[31] Ciana P, Fumagalli M, Trincavelli ML, Verderio C, Rosa P, Lecca 

D, et al. The orphan receptor GPR17 identified as a new dual uracil 
nucleotides/cysteinyl-leukotrienes receptor. EMBO J 2006; 25: 

4615-27. 
[32] Israel E, Rubin P, Kemp JP, Grossman J, Pierson W, Siegel SC, et 

al. The effect of inhibition of 5-lipoxygenase by zileuton in mild-
to-moderate asthma. Ann Intern Med 1993; 119: 1059-66. 

[33] Knorr B, Matz J, Bernstein JA, Nguyen H, Seidenberg BC, Reiss 
TF, et al. Montelukast for chronic asthma in 6- to 14-year-old chil-

dren: a randomized, double-blind trial. JAMA 1998; 279: 1181-6. 
[34] Suissa S, Dennis R, Ernst P, Sheehy O, Wood-Dauphinee S. Effec-

tiveness of the leukotriene receptor antagonist zafirlukast for mild-
to-moderate asthma: a randomized, double-blind, placebo-

controlled trial. Ann Intern Med 1997; 126: 177-83. 
[35] Riccioni G, Bucciarelli T, Mancini B, Di Ilio C, D'Orazio N. Anti-

leukotriene drugs: clinical application, effectiveness and safety. 
Curr Med Chem 2007; 14: 1966-77. 

[36] Spanbroek R, Grabner R, Lotzer K, Hildner M, Urbach A, Ruhling 
K, et al. Expanding expression of the 5-lipoxygenase pathway 

within the arterial wall during human atherogenesis. Proc Natl 
Acad Sci USA 2003; 100: 1238-43. 

[37] Dwyer JH, Allayee H, Dwyer KM, Fan J, Wu H, Mar R, et al. 
Arachidonate 5-lipoxygenase promoter genotype, dietary arachi-

donic acid, and atherosclerosis. N Engl J Med 2004; 350: 29-37. 
[38] Zhao L, Moos MP, Grabner R, Pedrono F, Fan J, Kaiser, B, et al. 

The 5-lipoxygenase pathway promotes pathogenesis of hyperlipi-
demia-dependent aortic aneurysm. Nat Med 2004; 10: 966-73. 

[39] Voelkel NF, Tuder RM, Wade K, Hoper M, Lepley RA, Goulet JL, 
et al. Inhibition of 5-lipoxygenase-activating protein (FLAP) re-

duces pulmonary vascular reactivity and pulmonary hypertension 
in hypoxic rats. J Clin Invest 1996; 97: 2491-8. 

[40] Giffiths RJ, Pettipher ER, Koch K, Farrell CA, Breslow R, Conk-
lyn MJ, et al. Leukotriene B4 plays a critical role in the progression 

of collagen-induced arthritis. Proc Natl Acad Sci USA 1995; 92: 
517-21. 

[41] Avis I, Martinez A, Tauler J, Zudaire E, Mayburd A, Abu-
Ghazaleh R, et al. Inhibitors of the arachidonic acid pathway and 

peroxisome proliferator-activated receptor ligands have superaddi-
tive effects on lung cancer growth inhibition. Cancer Res 2005; 65: 

4181-90. 
[42] Hennig R, Ding XZ, Tong WG, Schneider MB, Standop J, Friess 

H, et al. 5-Lipoxygenase and leukotriene B4 receptor are expressed 
in human pancreatic cancers but not in pancreatic ducts in normal 

tissue. Am J Pathol 2002; 161: 421-8. 

[43] Yoshimura R, Matsuyama M, Tsuchida K, Kawahito Y, Sano H, 

Nakatani T. Expression of lipoxygenase in human bladder carci-
noma and growth inhibition by its inhibitors. J Urol 2003; 170: 

1994-9. 
[44] Jiang WG, Douglas-Jones A, Mansel RE. Levels of expression of 

lipoxygenases and cyclooxygenase-2 in human breast cancer. Pros-
taglandins Leukot Essent Fatty Acids 2003; 69: 275-81. 

[45] Nielsen CK, Ohd JF, Wikstrom K, Massoumi R, Paruchuri S, Juhas 
M, et al. The leukotriene receptor CysLT1 and 5-lipoxygenase are 

upregulated in colon cancer. Adv Exp Med Biol 2003; 525: 201-4. 
[46] Golubic M, Prayson RA, Vargo L, Bondar J, Barnett GH. Increased 

expression of 5-lipoxygenase in glioblastoma multiforme. Adv Exp 
Med Biol 2003; 525: 205-8. 

[47] Matsuyama M, Yoshimura R, Mitsuhashi M, Hase T, Tsuchida K, 
Takemoto Y, et al. Expression of lipoxygenase in human prostate 

cancer and growth reduction by its inhibitors. Int J Oncol 2004; 24: 
821-7. 

[48] Yoshimura R, Matsuyama M, Mitsuhashi M, Takemoto Y, Tsu-
chida K, Kawahito Y, et al. Relationship between lipoxygenase and 

human testicular cancer. Int J Mol Med 2004; 13: 389-93. 
[49] Hoque A, Lippman SM, Wu TT, Xu Y, Liang ZD, Swisher S, et al. 

Increased 5-lipoxygenase expression and induction of apoptosis by 
its inhibitors in esophageal cancer: A potential target for preven-

tion. Carcinogenesis 2005; 26: 785-91. 
[50] Chen X, Sood S, Yang CS, Li N, Sun Z. Five-lipoxygenase path-

way of arachidonic acid metabolism in carcino-genesis and cancer 
chemoprevention. Curr Cancer Drug Targets 2006; 6: 613-22.  

[51] Cuzzocrea S, Rossi A, Serraino I, Mazzon E, Di Paola R, Dugo L, 
et al. 5-lipoxygenase knockout mice exhibit a resistance to pleurisy 

and lung injury caused by carrageenan. J Leukoc Biol 2003; 73: 
739-46.  

[52] Cuzzocrea S, Rossi A, Serraino I, Di Paola R, Dugo L, Genovese 
T, et al. 5-lipoxygenase knockout mice exhibit a resistance to acute 

pancreatitis induced by cerulean. Immunology 2003; 110: 120-30. 
[53] Cuzzocrea S, Rossi A, Mazzon E, Di Paola R, Genovese T, Muia 

C, et al. 5-lipoxygenase modulates colitis through the regulation of 
adhesion molecule expression and neutrophil migration. Lab Invest 

2005; 85: 808-22. 
[54] Mazzon E, Sautebin L, Caputi AP, Cuzzocrea S. 5-lipoxygenase 

modulates the alteration of paracellular barrier function in mice il-
eum during experimental colitis. Shock 2006; 25: 377-83. 

[55] Genovese T, Mazzon E, Rossi A, Di Paola R, Cannovo G, Muia C, 
et al. Involvment of 5-lipoxygenase in spinal cord injury. J Neuro-

immunol 2005; 166: 55-64. 
[56] Collin M, Rossi A, Cuzzocrea S, Patel NS, Di Paola R, Hadley J, et 

al. Reduction of the multiple organ injury and dysfunction caused 
by endotoxemia in 5-lipoxygenase knockout mice and by the 5-

lipoxygenase inhibitor zileuton. J Leukoc Biol 2004; 76: 961-70. 
[57] Cuzzocrea S, Rossi A, Serraino I, Di Paola R, Dugo L, Genovese 

T, et al. Role of 5-lipoxygenase in the multiple organ failure in-
duced by zymosan. Intensive Care Med 2004; 30: 1935-43. 

[58] Cuzzocrea S, Rossi A, Serraino I, Di Paola R, Dugo L, Genovese 
T, et al. 5-lipoxygenase knockout mice exhibit a resistance to 

splanchnic artery occlusion shock. Shock 2003; 20: 230-6. 
[59] Patel NSA, Cuzzocrea S, Chatterjee PK, Di Paola R, Sautebin L, 

Britti A, et al. Reduction of renal ischemia-reperfusion injury in 5-
lipoxygenase knockout mice and by the 5-lipoxygenase inhibitor 

zileuton. Mol Pharmacol 2004; 66: 2207. 
[60] Kaminski KA, Bonda TA, Korecki J, Musial WJ. Oxidative stress 

and neutrophil activation--the two keystones of ische-
mia/reperfusion injury. Int J Cardiol 2002; 86: 41-59. 

[61] Di Filippo C, Rossi F, D'Amico M. Targeting polymorphonuclear 
leukocytes in acute myocardial infarction. Sci World J 2007; 7: 

121-34. 
[62] Dirnagl U, Simon RP, Hallenbeck JM. Ischemic tolerance and 

endogenous neuroprotection. Trends Neurosci 2003; 26: 248-54. 
[63] Fagan SC, Hess DC, Hohnadel EJ, Pollock DM, Ergul A. Targets 

for vascular protection after acute ischemic stroke. Stroke 2004; 35: 
2220-5. 

[64] Danton GH, Dietrich WD. Inflammatory mechanisms after ische-
mia and stroke. J Neuropathol Exp Neurol 2003; 62: 127-36. 

[65] Simundic AM, Basic V, Topic E, Demarin V, Vrkic N, Kunovic B, 
et al. Soluble adhesion molecules in acute ischemic stroke. Clin In-

vest Med 2004; 27: 86-92. 
[66] Gidday JM, Gasche YG, Copin JC, Shah AR, Perez RS, Shapiro 

SD, et al. Leukocyte-derived matrix metalloproteinase-9 mediates 



10    Current Vascular Pharmacology, 2009, Vol. 7, No. 2 Rossi et al. 

blood-brain barrier breakdown and is proinflammatory after tran-

sient focal cerebral ischemia. Am J Physiol Heart Circ Physiol 
2005; 289: 558-68. 

[67] Baskaya MK, Hu Y, Donaldson D, Maley M, Rao AM, Prasad MR, 
et al. Protective effect of the 5-lipoxygenase inhibitor AA-861 on 

cerebral edema after transient ischemia. J Neurosurg 1996; 85: 112-
6. 

[68] Zhou Y, Wei EQ, Fang SH, Chu LS, Wang ML, Zhang WP, et al. 
Spatio-temporal properties of 5-lipoxygenase expression and acti-

vation in the brain after focal cerebral ischemia in rats. Life Sci 
2006; 79: 1645-56. 

[69] Helgadottir A, Manolescu A, Thorleifsson G, Gretarsdottir S, Jons-
dottir H, Thorsteinsdottir U, et al. The gene encoding 5-

lipoxygenase activating protein confers risk of myocardial infarc-
tion and stroke. Nat Genet 2004; 36: 233-9. 

[70] Helgadottir A, Gretarsdottir S, St Clair D, Manolescu A, Cheung J, 
Thorleifsson G, et al. Association between the gene encoding 5-

lipoxygenase-activating protein and stroke replicated in a Scottish 
population. Am J Hum Genet 2005; 76: 505-9. 

[71] Ohtsuki T, Matsumoto M, Hayashi Y, Yamamoto K, Kitagawa K, 
Ogawa S, et al. Reperfusion induces 5-lipoxygenase translocation 

and leukotriene C4 production in ischemic brain. Am J Physiol 
1995; 268: 1249-57. 

[72] Ciceri P, Rabuffetti M, Monopoli A, Nicosia S. Production of leu-
kotrienes in a model of focal cerebral ischaemia in the rat. Br J 

Pharmacol 2001; 133: 1323-29. 
[73] Tomimoto H, Shibata M, Ihara M, Akiguchi I, Ohtani R, Budka H. 

A comparative study on the expression of cyclooxygenase and 5-
lipoxygenase during cerebral ischemia in humans. Acta Neuropa-

thol 2002; 104: 601-7. 
[74] Zhang RL, Lu CZ, Ren HM, Xiao BG. Metabolic changes of ara-

chidonic acid after cerebral ischemia-reperfusion in diabetic rats. 
Exp Neurol 2003; 184: 746-52. 

[75] Panickar KS, Norenberg MD. Astrocytes in cerebral ischemic 
injury: morphological and general considerations. Glia 2005; 50: 

287-98. 
[76] Ciccarelli R, D'Alimonte I, Santavenere C, D'Auro M, Ballerini P, 

Nargi E, et al. Cysteinyl-leukotrienes are released from astrocytes 
and increase astrocyte proliferation and glial fibrillary acidic pro-

tein via cys-LT1 receptors and mitogen-activated protein kinase 
pathway. Eur J Neurosci 2004; 20: 1514-24. 

[77] Huang XJ, Zhang WP, Li CT, Shi WZ, Fang SH, Lu YB, et al. 
Activation of CysLT receptors induces astrocyte proliferation and 

death after oxygen-glucose deprivation. Glia 2008; 56:27-37. 
[78] Baba T, Black KL, Ikezaki K, Chen KN, Becker DP. Intracarotid 

infusion of leukotriene C4 selectively increases blood-brain barrier 
permeability after focal ischemia in rats. J Cereb Blood Flow Me-

tab 1991; 11: 638-43. 
[79] Rao AM, Hatcher JF, Kindy MS, Dempsey RJ. Arachidonic acid 

and leukotriene C4: role in transient cerebral ischemia of gerbils. 
Neurochem Res 1999; 24: 1225-32. 

[80] Di Gennaro A, Carnini C, Buccellati C, Ballerio R, Zarini S, Fu-
magalli F, et al. Cysteinyl-leukotrienes receptor activation in brain 

inflammatory reactions and cerebral edema formation: a role for 
transcellular biosynthesis of cysteinyl-leukotrienes. FASEB J 2004; 

18: 842-4. 
[81] Sarau HM, Ames RS, Chambers J, Ellis C, Elshourbagy N, Foley 

JJ, et al. Identification, molecular cloning, expression, and charac-
terization of a cysteinyl leukotriene receptor. Mol Pharmacol 1999; 

56: 657-63. 
[82] Zhang WP, Hu H, Zhang L, Ding W, Yao HT, Chen KD, et al. 

Expression of cysteinyl leukotriene receptor 1 in human traumatic 
brain injury and brain tumors. Neurosci Lett 2004; 363: 247-51. 

[83] Zhang WP, Wei EQ, Mei RH, Zhu CY, Zhao MH. Neuroprotective 
effect of ONO-1078, a leukotriene receptor antagonist, on focal 

cerebral ischemia in rats. Acta Pharmacol Sin 2002; 23: 871-7. 
[84] Zhang LH, Wei EQ. Neuroprotective effect of ONO-1078, a leu-

kotriene receptor antagonist, on transient global cerebral ischemia 
in rats. Acta Pharmacol Sin 2003; 24: 1241-7. 

[85] Zhang SH, Wei EQ, Zhu CY, Chen Z, Zhang SF. Protective effect 
of ONO-1078, a leukotriene receptor antagonist, on focal cerebral 

ischemia induced by endothelin-1 in rats. Yao Xue Xue Bao 2004; 
39: 1-4.  

[86] Yu GL, Wei EQ, Zhang SH, Xu HM, Chu LS, Zhang WP, et al. 
Montelukast, a cysteinyl leukotriene receptor-1 antagonist, dose 

and time-dependently protects against focal cerebral ischemia in 

mice. Pharmacology 2005; 73: 31-40. 
[87] Yu GL, Wei EQ, Wang ML, Zhang WP, Zhang SH, Weng JQ, et 

al. Pranlukast, a cysteinyl leukotriene receptor-1 antagonist, pro-
tects against chronic ischemic brain injury and inhibits the glial 

scar formation in mice. Brain Res 2005; 1053: 116-25. 
[88] Fang SH, Zhou Y, Chu LS, Zhang WP, Wang ML, Yu GL, et al. 

Spatio-temporal expression of cysteinyl leukotriene receptor-2 
mRNA in rat brain after focal cerebral ischemia. Neurosci Lett 

2007; 412: 78-83. 
[89] Song Y, Wei EQ, Zhang WP, Zhang L, Liu JR, Chen Z. Mino-

cycline protects PC12 cells from ischemic-like injury and inhibits 
5-lipoxygenase activation. Neuroreport 2004; 15: 2181-4. 

[90] Sheng WW, Li CT, Zhang WP, Yuan YM, Hu H, Fang SH, et al. 
Distinct roles of CysLT1 and CysLT2 receptors in oxygen glucose 

deprivation-induced PC12 cell death. Biochem Biophys Res Com-
mun 2006; 346: 19-25.  

[91] Kitagawa K, Matsumoto M, Hori M. Cerebral ischemia in 5-
lipoxygenase knockout mice. Brain Res 2004; 1004: 198-202. 

[92] Tsirpanlis G. Inflammation in atherosclerosis and other conditions: 
a response to danger. Kidney Blood Press Res 2005; 28: 211-217.  

[93] Kostulas K, Gretarsdottir S, Kostulas V, Manolescu A, Helgadottir 
A, Thorleifsson G, et al. PDE4D and ALOX5AP genetic variants 

and risk for Ischemic cerebrovascular disease in Sweden. J Neurol 
Sci 2007; 263: 113-7.  

[94] Hakonarson H. Role of FLAP and PDE4D in myocardial infarction 
and stroke: Target discovery and future treatment options. Curr 

Treat Options Cardiovasc Med 2006; 8: 183-92. 
[95] González P, Reguero JR, Lozano I, Morís C, Coto E. A functional 

Sp1/Egr1-tandem repeat polymorphism in the 5-lipoxygenase gene 
is not associated with myocardial infarction. Int J Immunogenet 

2007; 34: 127-30. 
[96] Rossoni G, Sala A, Berti F, Testa T, Buccellati C, Molta C, et al. 

Myocardial protection by the leukotriene synthesis inhibitor BAY 
X 1005: importance of transcellular biosynthesis of cysteinil-

leukotrienes. J Pharmacol Exp Ther 1996; 276: 335-41. 
[97] Welt K, Fitzl G, Mark B. Lipoxygenase inhibitor FLM 5011, an 

effective protectant of myocardial microvessels against ischemia-
reperfusion injury? An ultrastructural-morphometric study. Exp 

Toxicol Pathol 2000; 52: 27-36. 
[98] Takase B, Maruyama T, Kurita A, Uehata A, Nishioka T, Mizuno 

K, et al. Arachidonic acid metabolites in acute myocardial infarc-
tion. Angiology 1996; 47: 649-61. 

[99] Carry M, Korley V, Willerson JT, Weigelt L, Ford-Hutchinson 
AW, Tagari P. Increased urinary leukotriene excretion in patients 

with cardiac ischemia. In vivo evidence for 5-lipoxygenase activa-
tion. Circulation 1992; 85: 230-6. 

[100] Takase B, Kurita A, Maruyama T, Uehata A, Nishioka T, Mizuno 
K, et al. Change of plasma leukotriene C4 during myocardial 

ischemia in humans. Clin Cardiol 1996; 19: 198-204. 
[101] Hahn RA, MacDonald BR, Morgan E, Potts BD, Parli CJ, Rinkema 

LE, et al. Evaluation of LY203647 on cardiovascular leukotriene 
D4 receptors and myocardial reperfusion injury. J Pharmacol Exp 

Ther 1992; 260: 979-89. 
[102] Fareed J, Hoppensteadt DA, Leya F, Iqbal O, Wolf H, Bick R. 

Useful laboratory tests for studying thrombogenesis in acute car-
diac syndromes. Clin Chem 1998; 44: 1845-53. 

[103] Jiang W, Hall SR, Moos MP, Cao RY, Ishii S, Ogunyankin KO, et 
al. Endothelial cysteinyl leukotriene 2 receptor expression mediates 

myocardial ischemia-reperfusion injury. Am J Pathol 2008; 172: 
592-602. 

[104] Sprague RS, Stephenson AH, Dahms TE, Lonigro AJ. Proposed 
role for leukotrienes in the pathophysiology of multiple systems 

organ failure. Crit Care Clin 1989; 5: 315-29. 
[105] Adamek A, Jung S, Dienesch C, Laser M, Ertl G, Bauersachs J, et 

al. Role of 5-lipoxygenase in myocardial ischemia-reperfusion in-
jury in mice. Eur J Pharmacol 2007; 571: 51-4. 

[106] King RC, Binns OA, Rodriguez F, Kanithanon RC, Daniel TM, 
Spotnitz WD, et al. Reperfusion injury significantly impacts clini-

cal outcome after pulmonary transplantation. Ann Thorac Surg 
2000; 69: 1681-5. 

[107] Anner H, Kaufman RP, Kobzik L, Valery CR, Shepro D, Hecht-
man HB. Pulmonary leukosequestration induced by hind limb 

ischemia. Ann Surg 1987; 206, 162-7. 



Involvement of Leukotriene Pathway in the Pathogenesis Current Vascular Pharmacology, 2009, Vol. 7, No. 2    11 

[108] Anner H, Kaufman RP, Kobzik L, Valery CR, Shepro D, Hecht-

man HB. Pulmonary hypertension and leukosequestration after 
lower torso ischemia. Ann Surg 1987; 206: 642-8. 

[109] Goldman G, Welbourn R, Klausner JM, Kobzik L, Valeri CR, 
Shepro D, et al. Mast cells and leukotrienes mediate neutrophil se-

questration and lung edema after ischemia in rodents. Surgery 
1992; 112: 578-86. 

[110] Chiang N, Gronert K, Clish CB, O’Brien JA, Freeman MW, Serhan 
CN. Leukotriene B4 receptor transgenic mice reveal novel protec-

tive roles for lipoxins and aspirin-triggered lipoxins in reperfusion. 
J Clin Invest 1999; 104: 309-16. 

[111] Bellido-Reyes YA, Akamatsu H, Kojima K, Arai H, Tanaka H, 
Sunamori M. Cytosolic phospholipase A2 inhibition attenuates 

ischemia-reperfusion injury in an isolated rat lung model. Trans-
plantation 2006; 81: 1700-7. 

[112] Reyes YA, Shimoyama T, Akamatsu H, Sunamori M. MCI-186 
(edaravone), a free radical scavenger, attenuates ischemia-

reperfusion injury and activation of phospholipase A2 in an isolated 
rat lung model after 18 h of cold preservation. Eur J Cardiothorac 

Surg 2006; 29: 304-11. 
[113] Hashimoto N, Takeyoshi I, Tsutsumi H, Sunose Y, Tokumine M, 

Totsuka O, et al. Effects of a bradykinin B2 receptor antagonist, 
FR173657, on pulmonary ischemia-reperfusion injury in dogs. J 

Heart Lung Transplant 2002; 21: 1022-9. 
[114] Klausner JM, Paterson IS, Kobzik L, Valeri CR, Shepro D, Hecht-

man HB. Leukotrienes but not complement mediate limb ischemia-
induced lung injury. Ann Surg 1989; 209: 462-70. 

[115] Shimizu N, Kita T, Aoe M, Nakata M, Miyai Y, Teramoto S. 
Changes in levels of arachidonic acid metabolites in blood and 

bronchoalveolar lavage fluid after warm ischemia-reperfusion of 
lung. Acta Med Okayama 1991; 45: 417-22. 

[116] Ishikawa F, Miyazaki S. New biodefense strategies by neutrophils. 
Arch Immunol Ther Exp 2005; 53: 226-33. 

[117] Klausner JM, Peterson IS, Goldman G, Kobzik L, Rodzen C, Law-
rence R, et al. Postischemic renal injury is mediated by neutrophils 

and leukotrienes. Am J Physiol 1989; 256: F794-802. 
[118] Yu DS, Char DL, Chang SY, Ma CP. Pathogenesis of ischemia 

reperfusion injury of the kidney after transient renal arterial clamp-
ing in rats. J Formos Med Assoc 1998; 97: 606-13.  

[119] Patel NSA, Cuzzocrea S, Chatterjee PK, Di Paola R, Sautebin L, 
Britti D, et al. Reduction of renal ischemia-reperfusion injury in 5-

lipoxygenase knockout mice and by the 5-lipoxygenase inhibitor 
zileuton. Mol Pharmacol 2004; 66: 220-7. 

[120] Noiri E, Yokomizo T, Nakao A, Izumi T, Fujita T, Kimura S, et al. 
An in vivo approach showing the chemotactic activity of leukot-

riene B4 in acute renal ischemic-reperfusion injury. Proc Natl Acad 
Sci USA 2000; 97: 823-8. 

[121] Sener G, Sehirli O, Velioglu-Ogunc A, Cetinel S, Gedik N, Caner 
M, et al. Montelukast protects against renal ischemia/reperfusion 

injury in rats. Pharmacol Res 2006; 54: 65-71. 
[122] Homer-Vanniasinkam S, Crinnion JN, Gough MJ. Post-ischaemic 

organ dysfunction: a review. Eur J Vasc Endovasc Surg 1997; 14: 
195-203.  

[123] Cerqueira NF, Hussni CA, Yoshida WB. Pathophysiology of mes-
enteric ischemia/reperfusion: a review. Acta Cir Bras 2005; 20: 

336-43. 
[124] Lefer AM, Lefer DJ. Pharmacology of the endothelium in ische-

mia-reperfusion and circulatory shock. Ann Rev Pharmacol Toxi-
col 1993; 33: 71-90. 

[125] Zingarelli B, Squadrito F, Inoculano MP, Altavilla D, Bussolino F, 
Campo GM, et al. Platelet activating factor in splanchnic artery oc-

clusion shock. Eur J Pharmacol 1992; 222: 13-9. 
[126] Carey C, Siegfried MR, Ma XL, Weyrich AS, Lefer AM. An-

tishock and endothelial protective actions of a NO donor in mesen-
teric ischemia and reperfusion. Circ Shock 1992; 38: 209-16. 

[127] Karasawa A, Guo JP, Ma XL, Tsao PS, Lefer AM. Protective ac-
tions of a leukotriene B4 antagonist in splanchnic ischemia and 

reperfusion in rats. Am J Physiol 1991; 261: G191-8. 
[128] Souza DG, Pinho V, Cassali GD, Poole S, Teixeira MM. Effect of 

a BLT receptor antagonist in a model of severe ischemia and reper-
fusion injury in the rat. Eur J Pharmacol 2002; 440: 61-9. 

[129] Mangino MJ, Murphy MK, Anderson CB. Effects of the arachido-
nate 5-lipoxygenase synthesis inhibitor A-64077 in intestinal 

ischemia-reperfusion injury. J Pharmacol Exp Ther 1994; 269: 75-
81. 

[130] Myers SI, Hernantez R. Leukotriene C4 regulation of splanchnic 

blood flow during ischemia. Am J Surg 1994; 167, 566-9. 
[131] Mangino MJ, Mangino JE, Kotadia B, Sielczak M. Effects of the 5-

lipoxygenase inhibitor A-64077 on intestinal hypothermiv organ 
preservation injury. J Pharmacol Exp Ther 1997; 281: 950-6. 

[132] Arumugam TV, Arnold N, Proctor LM, Newman M, Reid RC, 
Hansford KA, et al. Comparative protection against rat intestinal 

reperfusion injury by a new inhibitor of sPLA2, COX-1 and COX-2 
selective inhibitors, and an LTC4 receptor antagonist. Br J Pharma-

col 2003; 140: 71-80. 
[133] Jordan JR, Moore EE, Sarin EL, Damle SS, Kashuk SB, Silliman 

CC, et al. Arachidonic acid in postshock mesenteric lymph induces 
pulmonary synthesis of leukotriene B4. J Appl Physiol 2008; 104: 

1161-6. 
[134] Cutrn JC, Perrelli MG, Cavalieri B, Peralta C, Rosell Catafau J, 

Poli G. Microvascular dysfunction induced by reperfusion injury 
and protective effect of ischemic preconditioning. Free Radic Biol 

Med 2002; 33: 1200-8. 
[135] Serracino-Inglott F, Virlos IT, Habib NA, Williamson RC, Mathie 

RT. Differential nitric oxide synthase expression during hepatic 
ischemia reperfusion. Am J Surg 2003; 185: 589-95. 

[136] Hur GM, Ryu YS, Yun HY, Jeon BH, Kim YM, Seok JH, et al. 
Hepatic ischemia/reperfusion in rats induces iNOS gene transcrip-

tion by activation of NFkappaB. Biochem Biophys Res Commun 
1999; 261: 917-22. 

[137] Kawachi S, Hines IN, Laroux FS, Hoffman J, Bharwani S, Gray L, 
et al. Nitric oxide synthase and postischemic liver injury. Biochem 

Biophys Res Commun 2000; 276: 851-4. 
[138] Serracino-Inglott F, Habib NA, Mathie RT. Hepatic ischemia 

reperfusion injury. Am J Surg 2001; 181: 160-6. 
[139] Jaeschke H. Molecular mechanisms of hepatic ischemia reperfusion 

injury and preconditioning. Am J Physiol Gastrointest Liver 
Physiol 2003; 284: G15-26. 

[140] Meyer K, Brown MF, Zibari G, Panes J, McMillan RW, McDonald 
JC, et al. ICAM-1 upregulation in distant tissues after hepatic 

ischemia/reperfusion: a clue to the mechanism of multiple organ 
failure. J Pediatr Surg 1998; 33: 350-3. 

[141] Jaeschke H, Farhood A. Kupffer cell activation after no-flow 
ischemia vs hemorrhagic shock. Free Radic Biol Med 2002; 33: 

210-9. 
[142] Uehara N, Ormstad K, Orning L, Hammarström S. Characteristics 

of the uptake of cysteine-containing leukotrienes by isolated hepa-
tocytes. Biochim Biophys Acta 1983; 732: 69-74. 

[143] Asano F, Moriwaki H, Shiratori Y, Shimazaki M, Sakai T, Koshino 
Y, et al. Enhanced production of leukotriene B4 by peripheral blood 

mononuclear cells in patients with fulminant hepatitis. J Gastroen-
terol Hepatol 1993; 8: 228-31.  

[144] Titos E, Claria J, Bataller R, Bosch-Marce M, Gines P, Jimenez W, 
et al. Hepatocyte derived cysteinyl leukotrienes modulate vascular 

tone in experimental cirrhosis. Gastroenterology 2000; 119: 794-
805. 

[145] Quiroga J, Prieto J. Liver cytoprotection by prostaglandins. Phar-
macol Ther 1993; 58: 67-91. 

[146] Sinclair S, Levy G. Eicosanoids and the liver. Ital J Gastroenterol 
1990; 22: 205-13. 

[147] Hughes H, Farhood A, Jaeschke H. Role of leukotriene B4 in the 
pathogenesis of hepatic ischemia-reperfusion injury in the rat. Pros-

taglandins Leuk Essent Fatty Acids 1992; 45: 113-19. 
[148] Takamatsu Y, Shimada K, Chijiiwa K, Kuroki S, Yamaguchi K, 

Tanaka M. Role of leukotrienes on hepatic ischemia/reperfusion in-
jury in rats. J Surg Res 2004; 119: 14-20. 

[149] Yang SL, Huang X, Chen HF, Xu D, Chen LJ, Kong Y, et al. In-
creased leukotriene C4 synthesis accompanied enhanced leukot-

riene C4 synthase expression and activities of ischemia-reperfusion-
injured liver in rats. J Surg Res 2007; 140: 36-44. 

[150] Matsui N, Fukuishi N, Fukuyama Y, Yasui Y, Akagi M. Protective 
effect of the 5-lipoxygenase inhibitor ardisiaquinone A on hepatic 

ischemia-reperfusion injury in rats. Planta Med 2005; 71: 717-20. 
[151] Bone RC. Sepsis, sepsis syndrome, and the systemic inflammatory 

response syndrome (SIRS). J Am Med Assoc 1995; 273: 155-6. 
[152] Van Deventer S. Antibody to endotoxin in the treatment of gram-

negative sepsis. J Am Med Assoc 1992; 267: 2325-6. 
[153] Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, 

et al. 2001 SCCM/ESICM/ACCP/ATS/SIS international sepsis 
definitions conference. Intensive Care Med 2003; 29: 530-8. 



12    Current Vascular Pharmacology, 2009, Vol. 7, No. 2 Rossi et al. 

[154] Marshall JC, Cook DJ, Christou NV, Bernard GR, Sprung CL, 

Sibbald WJ. Multiple organ dysfunction score: a reliable descriptor 
of a complex clinical outcome. Crit Care Med 1995; 23: 1638-52. 

[155] Nguyen HB, Rivers EP, Abrahamian FM, Moran GJ, Abraham E, 
Trzeciak S, et al. Severe sepsis and septic shock: review of the lit-

erature and emergency department management guidelines. Ann 
Emerg Med 2006; 48: 28-54. 

[156] Bernard GR, Vincent JL, Laterre PF, LaRosa SP, Dhainaut JF, 
Lopez-Rodriguez A, et al. Efficacy and safety of recombinant hu-

man activated protein C for severe sepsis. N Engl J Med 2001; 344: 
699-709. 

[157] Remick DG. Pathophysiology of sepsis. Am J Pathol 2007; 170: 
1435-44. 

[158] Andrews P, Azoulay E, Antonelli M, Brochard L, Brun-Buisson C, 
De Backer D, et al. Year in review in intensive care medicine, 

2006. II Infections and sepsis, haemodynamics, elderly, invasive 
and noninvasive mechanical ventilation, weaning, ARDS. Intensive 

Care Med 2007; 33: 214-29. 
[159] Evans TW, Smithies M. ABC of intensive care: organ dysfunction. 

Br Med J 1999; 318: 1606-9. 
[160] Curzen NP, Griffiths MJ, Evans TW. Role of the endothelium in 

modulating the vascular response to sepsis. Clin Sci (Lond) 1994; 
86: 359-74. 

[161] Botha AJ, Moore FA, Moore EE, Kim FJ, Banerjee A, Peterson 
VM. Postinjury neutrophil priming and activation: an early vulner-

able window. Surgery 1995; 118: 358-65. 
[162] Cochrane CG. Immunologic tissue injury mediated by neutrophilic 

leukocytes. Adv Immunol 1968; 9: 97-162. 
[163] Fujishima S, Aikawa N. Neutrophil-mediated tissue injury and its 

modulation. Intensive Care Med 1995; 21: 277-85. 
[164] Smith JA. Neutrophils, host defense, and inflammation: a double-

edged sword. J Leukoc Biol 1994; 56: 672-86. 
[165] Leone M, Boutiere B, Camoin-Jau L, Albanese J, Horschowsky N, 

Mege JL, et al. Systemic endothelial activation is greater in septic 
than in traumatic-traumatic-haemorrhagic shock but does not corre-

late with endothelial activation in skin biopsies. Crit Care Med 
2002; 30: 808-14. 

[166] Ogura H, Tanaka H, Koh T, Fujima S, Nakamori Y, Hosotsubo H, 
et al. Enhanced production of endothelial microparticles with in-

creased binding to leukocytes in patients with severe systemic in-
flammatory response syndrome. J Trauma 2004; 56: 823-30. 

[167] Seekamp A, Jochum M, Ziegler M, Van Griensven M, Martin M, 
Regel G. Cytokines and adhesion molecules in elective and acci-

dental trauma-related ischemia/reperfusion. J Trauma 1998; 44: 
874-82. 

[168] Morlion BJ, Torwesten E, Kuhn KS, Puchstein C, Fürst P. Cyste-
inyl-leukotriene generation as a biomarker for survival in the criti-

cally ill. Crit Care Med 2000; 28: 3655-8. 
[169] Anderson MR, Blumer JL. Prognostic markers in sepsis: the role of 

leukotrienes. Crit Care Med 2000; 28: 3762-3. 
[170] Baenkler M, Leykauf M, John S. Functional analysis of eicosanoids 

from white blood cells in sepsis and SIRS. J Physiol Pharmacol 
2006; 57: 25-33. 

[171] Tran HS, Quinn JV, Puc MM, Woolley DS, Puglisi RN, Slotman 
GJ. The cardiovascular hemodynamics and leukotriene kinetics 

during prostacyclin and anti-prostacyclin antibody infusions in sep-
tic shock. Shock 2000; 13: 478-84. 

[172] Hotchkiss RS, Karl IE. The pathophysiology and treatment of 
sepsis. N Engl J Med 2003; 348: 138-50. 

[173] Van der Poll T. Immunotherapy of sepsis. Lancet Inf Dis 2001; 1: 
165-74. 

[174] Benjamim CF, Canetti C, Cunha FQ, Kunkel SL, Peters-Golden M. 
Opposing and hierarchical roles of leukotrienes in local innate im-

mune vs vascular responses in a model of sepsis. J Immunol 2005; 
174: 1616-20. 

[175] Beller TC, Maekawa A, Friend DS, Austen KF, Kanaoka Y. Tar-
geted gene disruption reveals the role of the cysteinyl leukotriene 2 

receptor in increased vascular permeability and in bleomycin-
induced pulmonary fibrosis in mice. J Biol Chem 2004; 279: 

46129-34.  
[176] Lewis RA, Austen KF, Soberman RJ. Leukotrienes and other prod-

ucts of the 5-lipoxygenase pathway: biochemistry and relation to 
pathobiology in human diseases. N Engl J Med 1990; 323: 645-55. 

[177] Dahlen SE, Bjork J, Hedqvist P, Arfors KE, Hammarstrom S, 
Lindgren JA, et al. Leukotrienes promote plasma leakage and leu-

kocyte adhesion in postcapillary venules: in vivo effects with rele-

vance to the acute inflammatory response. Proc Natl Acad Sci USA 

1981; 78: 3887-91. 
[178] Ueno A, Tanaka K, Katori M, Hayashi M, Arai Y. Species differ-

ence in increased vascular permeability by synthetic leukotriene C4 
and D4. Prostaglandins 1981; 21: 637-48. 

[179] Ball HA, Cook JA, Wise WC, Halushka PV. Role of thromboxane, 
prostaglandins and leukotriene in endotoxic and septic shock. In-

tensive Care Med 1986; 12: 116-26. 
[180] Azab AN, Kaplanski J. Involvement of eicosanoids in the hypo-

thermic response to lipopolysaccharide during endotoxemia in rats. 
Prostaglandins Leukot Essent Fatty Acids 2004; 70: 67-75. 

[181] László F, Whittle BJ. Colonic microvascular integrity in acute 
endotoxaemia: interactions between constitutive nitric oxide and 5-

lipoxygenase products. Eur J Pharmacol 1995; 277: R1-3. 
[182] Can C, Cinar MG, Ulker S, Evinc A, Kosay S. Effects of MK-886, 

a leukotriene biosynthesis inhibitor, in a rabbit model of endotoxic 
shock. Eur J Pharmacol 1998; 350: 223-8.  

[183] Sibelius U, Grandel U, Buerke M, Kiss L, Klingenberger P, Heep 
M, et al. Leukotriene-mediated coronary vasoconstriction and loss 

of myocardial contractility evoked by low doses of Escherichia coli 
hemolysin in perfused rat hearts. Crit Care Med 2003; 31: 683-8. 

[184] Quinn JV, Slotman GJ. Platelet-activating factor and arachidonic 
acid metabolites mediate tumor necrosis factor and eicosanoid ki-

netics and cardiopulmonary dysfunction during bacteremic shock. 
Crit Care Med 1999; 27: 2485-94. 

[185] Singh VP, Patil CS, Kumar M, Kulkarni SK. Effect of 5-
lipoxygenase inhibitor against lipopolysaccharide-induced hypo-

thermia in mice. Indian J Exp Biol 2005; 43: 1150-55. 
[186] Stephenson AH, Lonigro AJ, Hyers TM, Webster RO, Fowler AA. 

Increased concentrations of leukotrienes in bronchoalveolar lavage 
fluid of patients with ARDS or at risk for ARDS. Am Rev Respir 

Dis 1988; 138: 714-9. 
[187] Chang SW, Westcott JY, Pickett WC, Murphy RC, Voelkel NF. 

Endotoxin-induced lung injury in rats: role of eicosanoids. J Appl 
Physiol 1989; 66: 2407-18. 

[188] Noonan TC, Kern DF, Malik AB. Pulmonary microcirculatory 
responses to leukotrienes B4, C4, and D4 in sheep. Prostaglandins 

1985; 30: 419-34. 
[189] Ichinose F, Zapol WM, Sapirstein A, Ullrich R, Tager AM, Cog-

gins K, et al. Attenuation of hypoxic pulmonary vasoconstriction 
by endotoxemia requires 5-lipoxygenase in mice. Circ Res 2001; 

88: 832-38. 
[190] Knolle PA, Gerken G. Local control of the immune response in the 

liver. Immunol Rev 2000; 174: 21-34. 
[191] Jirillo E, Caccavo D, Magrone T, Piccigallo E, Amati L, Lembo A, 

et al. The role of the liver in the response to LPS: experimental and 
clinical findings. Endotoxin Res 2002; 8: 319-27. 

[192] Iredale JP. Regulating hepatic inflammation: pathogen-associated 
molecular patterns take their toll. Hepatology 2003; 37: 979-82. 

[193] Oda M, Han JY, Nakamura M. Endothelial cell dysfunction in 
microvasculature: relevance to disease processes. Clin Hemorheol 

Microcirc 2000; 23: 199-211. 
[194] Su GL. Lipopolysaccharides in liver injury: molecular mechanisms 

of Kupffer cell activation. Am J Physiol Gasterointest Liver 
Physiol 2002; 283: G256-G65. 

[195] Chen LC, Gordon RE, Laskin JD, Laskin DL. Role of TLR-4 in 
liver macrophage and endothelial cell responsiveness during acute 

endotoxemia. Exp Mol Pathol 2007; 83: 311-26. 
[196] Faist E, Baue AE, Dittmer H, Heberer G. Multiple organ failure in 

poly-trauma patients. J Trauma 1983; 23: 775-87. 
[197] Marshall WG, Dimick AR. Natural history of major burns with 

multiple subsystem failure. J Trauma 1983; 23: 102-5. 
[198] Saffle JR, Sullivan JJ, Tuohig GM. Multiple organ failure in pa-

tients with thermal injury. Crit Care Med 1993; 21: 1673-83. 
[199] Aikowa N, Shinozawa Y, Ishibiki K. Clinical analysis of multiple 

organ failure in burned patients. Burns 1987; 13: 103-9. 
[200] Allardyce DB. Incidence of necrotising pancreatitis and factors 

related to mortality. Am J Surg 1987; 154: 295-9. 
[201] Baue AE, Guthrie D. Multiple system failure and circulatory sup-

port. Jpn J Surg 1983; 13: 69-85. 
[202] Shayevitz JR, Miller C, Johnson KJ, Rodriguez JL. Multiple organ 

dysfunction syndrome: end organ and systemic inflammatory re-
sponse in a mouse model of non septic origin. Shock 1995; 4: 389-

96. 



Involvement of Leukotriene Pathway in the Pathogenesis Current Vascular Pharmacology, 2009, Vol. 7, No. 2    13 

[203] Rao TS, Currie JL, Shaffer AF, Isakson PC. In vivo characteriza-

tion of zymosan-induced mouse peritoneal inflammation. J Phar-
macol Exp Ther 1994; 269: 917-25. 

[204] Byrum RS, Goulet JL, Griffiths RJ, Koller BH. Role of the 5-
lipoxygenase-activating protein (FLAP) in murine acute inflamma-

tory responses. J Exp Med 1997: 185: 1065-75.  
[205] Byrum RS, Goulet JL, Snouwaert, JN, Griffiths RJ, Koller BH. 

Determination of the contribution of cysteinyl leukotrienes and 
leukotriene B4 in acute inflammatory responses using 5-

lipoxygenase- and leukotriene A4 hydrolase-deficient mice. J Im-

munol 1999; 163: 6810-9. 
[206] Sener G, Sakarcan A, Sehirli O, Ek io lu-Demiralp E, Sener E, 

Ercan F, et al. Chronic renal failure-induced multiple-organ injury 
in rats is alleviated by the selective CysLT1 receptor antagonist 

montelukast. Prostaglandins Other Lipid Mediat 2007; 83: 257-67. 
[207] Kalsotra A, Zhao J, Anakk S, Dash PK, Strobel HW. Brain trauma 

leads to enhanced lung inflammation and injury: evidence for role 
of P4504Fs in resolution. J Cereb Blood Flow Metab 2007; 27: 

963-74. 

 

 

Received: ?????????? Revised: ??????????????? Accepted: ?????????????? 

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


