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A modification of the standard product used in local field theory by means of an asso-
ciative deformed product is proposed. We present a class of deformed products, one for
every spin S = 0, 1/2, 1, that induces a nonlocal theory, displaying different form for
different fields. This type of deformed product is naturally supersymmetric and it has
an intriguing duality.
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1. Introduction

The main problem of any local quantum field theory is the presence of ultra-violet
divergences. In fact the S-matrix is expressed in terms of the products of causal
functions of the field operators. Since the causal functions have fairly strong sin-
gularities on the light cone, the products of such functions are not mathemati-
cally defined. This problem arises from the ill-defined nature of the product of two
local field operators at the same space-time point. This generates one of the main
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problems of quantum field theory — the so-called problem of ultraviolet diver-
gences. There are different regularization procedures to deal with such divergences,
making the S-matrix elements mathematically meaningful. These are, for example,
the subtraction procedure interpreted in various manners in a local field theory,
the summation of asymptotic series for the Green functions and super-propagators,
a nonlocal generalization of the theory. In particular, the nonlocal quantum field
theory which replaces local quantum field theory is very old, dating from 1950’s,
starting with Pais and Uhlenbleck (1950), Efimov and coworkers [1] (1970-onwards),
Moffat, Woodard and coworkers (1990) [2, 3]. The basic idea to try to avoid “infini-
ties” was to assume a nonlocal interaction and thus to provide a natural cut-off.
One has to build a nonlocal quantum field theory which is a self-consistent scheme
satisfying all principles of conventional quantum field theory (unitarity, causality,
relativistic invariance, etc.) and providing the basis for correct description of non-
locality effects. There are some problems with the gauge invariance because of
nonlocality in gauge field interactions. Nevertheless, there are different nonlocal
approaches which give a good possibility of building a completely ultraviolet finite
theory of fundamental interactions.

(i) One way is to introduce nonlocality in the interaction term [4] writing down
the Lagrangian of scalar fields in the form

L = φ(x)†(∂2 +m2)φ(x) + λΦ(x)†Φ(x) , (1)

where the nonlocal field Φ(x) is obtained from the local one φ(x) by “smearing”
over the nonlocality domain with the characteristic scale l0. Without specifying the
nature of this nonlocality, and introducing the phenomenological form factor K,
the nonlocal field Φ(x) is defined as

Φ(x) ≡
∫
dyK(x− y)φ(y) = K(l20∂

2)φ(x) , (2)

where the nonlocal operator K(l20∂2) can be written in the form

K(l20∂
2) =

∞∑
n=0

cn
(2n)!

(l20∂
2)n , (3)

K being an entire function without any zeros. Then the generalized function K(x−
y) = K(l20∂

2)δ(x− y) belongs to one of the spaces of nonlocal generalized functions
which was introduced and explored in the works of Efimov [1]. One rewrites the
Lagrangian (1) in terms of the nonlocal fields Φ(x) as

L = Φ(x)†(∂2 +m2)Φ(x) + λΦ(x)†Φ(x) , (4)

in this way the φ(x)-propagator (smeared propagator) is obtained by taking the
Fourier transform of

exp
[
p2−m2

l20

]
p2 −m2 + iε

. (5)

This suggests interpreting the nonlocal quantum field theory as an effective theory
valid up to an energy scale l0; and for energy scales beyond l0, one has to replace
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the nonlocal quantum field theory by a more fundamental theory of constituents
having its own larger mass scale and coupling constant. In a sense, this formulation
can be viewed either as a regularization, or as a physical theory with a finite mass
parameter l0. Such a theory preserves causality at tree-level in the S-matrix (it is
the same as the local one), but it suffers from quantum causality violations, which
are a serious limitation.

(ii) Another way to have a finite quantum field theory was proposed in [5] on
the basis of infinite-component fields, which results in the introduction of a special
form of nonlocality.

(iii) Another way to introduce nonlocality in the theory is to consider a spe-
cial class of field theories with higher derivatives. In the canonical formulation, one
usually considers Lagrangians with only first derivatives. However, higher deriva-
tive theories, including nonlocal theories, also have many physical applications. For
example, when one integrates out high energy degrees of freedom in a local field
theory, the low-energy effective action is generically nonlocal [6]. Higher derivative
theories were also considered in order to find a finite quantum field theory [7], before
the advent of renormalization. Moreover, theories with infinitely many derivatives
are unavoidable in string theory [8, 9]. There are other examples, such as higher
derivative gravity [10], meson-nucleon interactions [11], and spacetime noncommu-
tative field theory [12, 13], and so on. In most cases, higher derivative terms appear
as higher-order corrections in the effective Lagrangian, hence a perturbative approx-
imation scheme would already be very useful.

(iv) Another example of nonlocality is in quantum mechanics where it has long
been an intriguing topic in the past decades, and so far there has been no experiment
contradicting nonlocality. It refers to the correlation between two particles separated
in space, e.g. the entanglement derived from the Bell theory [14] and well confirmed
in many experiments [15]. All these experiments used massless photons as carriers
of the states, and the nonlocality is of the Bell type.

Finally we would like to mention our approach, in which nonlocality is intro-
duced through the deformation of the product, and in a perturbative approximation
it is reduced to a field theory with higher derivatives.

We shall now introduce the plan of the paper. In Sec. 2 we review the deformed
products, i.e. deformed field theories and their nonlocal properties. In Sec. 3 we
propose a class of deformed products which are associative, with different expres-
sions for spin S = 0, 1/2, 1, respectively. In Sec. 4 we exhibit their properties. In
Sec. 5 we study the deformed interaction term. In Secs. 6 and 7 we show that the
scalar field theory with our deformed product is the same as found by Moffat [16].
Concluding remarks are presented in Sec. 8.

2. Review of Deformed Field Theory

Deformation quantization was born as an attempt to interpret the quantization of a
classical system as an associative deformation (i.e. via star-products) of the algebra
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of classical observables. This idea was behind the mind of many mathematical physi-
cists and physicists [17, 18] as illustrated by the historical developments which led
to deformation quantization. By deformed it is meant that the standard point-wise
multiplication of functions has been replaced by a new product which may or may
not be commutative. Recently, algebras of functions with a deformed product have
been studied intensively [19]. These are deformed (star-) products which remain
associative but not commutative. There is a class of K-deformed products which
generate deformed associative products, see for example [20]. Before talking about
deformed field theory we first summarize the concept of deformed coordinate spaces
as quantum spaces. Deformed coordinate spaces are defined in terms of coordinates
xµ and their commutation relations. The θ, k, q-deformations are the best known
examples [21]. They are: the canonical relations [xµ, xν ] = θµν , which for constant
θµν leads to the so-called θµν -deformed coordinate space; the Lie-type relations
where the coordinates form a Lie algebra [xµ, xν ] = Cλµνxλ and Cλµν are the struc-
ture constants, this framework leads to the k-deformed coordinate space; and then
the quantum group relations, xµxν = Rµνρσx

ρxσθµν where the R-matrix defines a
quantum group, this leads to the q-deformed spaces.

Deformations of mathematical structures have been used at different moments
in physics. When Galilean transformations between inertial systems were seen not
to describe adequately the physical world, a deformation of the group law arose
as the solution to this paradox. The Lorentz group is a deformation of the Galilei
group in terms of the parameter c . In this deformation scheme, the old structure
is seen as a limit or contraction when the parameter takes a preferred value. Hence
a deformation, an inverse of contraction (in the sense of Segal–Wigner–Inonu con-
traction), is one of the methods of generalization of a physical theory [22]. The
undeformed theory can be recovered from the deformed one when taking a limit
of deformation parameter to some value, e.g. nonrelativistic, classical physics, the
undeformed theory, is recovered from relativistic physics when taking the velocity
of light c → ∞, and, from the point of view of quantum physics, when taking the
Planck constant h→ 0. The mathematical structure of quantum mechanics has also
an ingredient of deformation with respect to classical mechanics. This naive concept
has been applied to field theories on noncommutative spaces considered as defor-
mations of flat Euclidean or Minkowski spaces. Since noncommutative geometry
generalizes standard geometry in using a noncommutative algebra of functions, it
is naturally related to the simpler context of deformation theory. The star product
is a product in the space of formal power series in � whose coefficients are functions
on the phase space. Thus, a product of fields on NC spaces can be expressed as a
deformed product or star-product [23, 24] of fields on commutative spaces [25, 26].
The star product can be seen as a higher-order f -dependent differential operator
acting on the function g. The noncommutativity is governed by a parameter such
that the commutative case appears in the limit where this parameter approaches
zero. The simplest and most well known example of �-product is the Moyal–Weyl
product, and it first appeared in quantum mechanics [27]. It was first introduced by
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H. Weyl for his quantization procedure and later by Moyal [22] to relate functions
on phase space to quantum mechanical operators in Hilbert space. For this reason
the �-product is called in the literature as Moyal–Weyl product. In the Moyal–Weyl
�-product representation the noncommutative coordinates x̂µ (and their functions)
are mapped to commutative coordinates xµ with commutative pointwise product
replaced by deformed (nonlocal) �-product defined as

f � g(x) ≡ exp (iθµν∂yµ∂
z
νf(y)g(z))|y=z=x

=
∞∑
n=1

(
i

2

)n 1
n!
θρ1σ1 · θρnσn(∂ρ1 · ∂ρnf(x))(∂σ1 · ∂σng(x)) . (6)

This implies the presence of (infinitely many) derivatives in the action, hence the
theory becomes nonlocal, and the noncommutative quantum field theories are a
special case of a nonlocal quantum field theory. Other �-products will occur for
different orderings. The way of looking at noncommutative geometry in terms of
deformed products can give different insights. In fact a deformed gauge theory leads
to a theory with a larger symmetry structure, i.e. the enveloping algebra structure,
and it exhibits its nonlocal nature. Nevertheless, the commutative field theories can
be recovered from their noncommutative counterparts when the noncommutativity
tensor approaches zero: θµν → 0. A property of noncommutative field theories is the
presence of nonlocal interaction terms, which explicitly breaks Lorentz invariance.
In fact under the integration, the star-product of fields does not affect the quadratic
parts of the Lagrangian, whereas it gives rise to a nonlocal interaction part.

Hence, Feynman rules in momentum space are modified with respect to the
commutative ones, in fact the vertices are modified by a phase factor. The deformed
vertices differ from the nondeformed ones by a factor of type cos(1/2pµθµνpν). When
θµν → 0, the deformed vertex reduces to the nondeformed one.

One can give a star-product quantization scheme following [28, 29], and see that
there is a class of star products (K-star products) which are obtained via a specific
deformation procedure [29]. Much more recently, noncommutative geometry has
entered physics in different contexts.

One context is string theory. In their pioneering paper, Connes, Douglas and
Schwarz [30] introduced noncommutative spaces (tori) as possible compactification
manifolds of space-time. Noncommutative geometry arises as a possible scenario
for short-distance behaviour of physical theories. In the framework of open string
theory [31], Seiberg and Witten in [12] identified limits in which the whole string
dynamics, in presence of a B-field, is described by a deformed gauge theory in
terms of a Moyal–Weyl star product on space-time. The field theory associated to
string theory, in the low-energy limit, is nonlocal, because the fields in the action
are multiplied by a (deformed) star-product. The deformed theories enjoy renor-
malization properties as well as UV/IR connection reminiscent of string theory.
Other approaches connecting deformation theory to theories of gravity have also
appeared in the literature. Among others, there is the deformation quantization
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of M-theory [32], quantum anti-de Sitter spacetime [33], q-gravity [34] and gauge
theories of quantum groups [35]. Another area covered by noncommutativity is
supersymmetric theory. The deformation aspects of supersymmetric field theories
were investigated in [36–39]. Analogous to noncommutative field theories on bosonic
spacetime, noncommutative superfield theories can be formulated in ordinary super-
space by multiplying functions given on it via a �-product which is generated by
some bi-differential operator or Poisson structure P . It defines a deformed super-
space and leads to deformed products for general superfields. There will be sym-
metries of the undeformed (local) field theory which are explicitly broken in the
deformed (nonlocal) case. In this case only free actions preserve all supersymmetries
while interactions get deformed and are not invariant under all standard supersym-
metry transformations, because the integral of the star product of two superfields is
not deformed, while in the case of three or more superfields the integral is deformed.

In [37] the authors present a variety of deformations, both for N = 1 and
extended (N = 2) supesymmetry in D = 4, which vary according to the differ-
ential operators chosen to construct the Poisson bracket that afterwards becomes
quantized with a star product of Moyal–Weyl type. For example in [37], the first
deformation has the advantage of being manifestly supersymmetric, while the sec-
ond, although it explicitly breaks half of the supersymemtry, allows the definition
of chiral and antichiral superfields, which form subalgebras of the star product.
Another way to construct a deformed field theory is with derivatives which are an
essential input for the construction of deformed field equations such as the deformed
Klein–Gordon or Dirac equations [40].

At the end we would like to emphasize some properties of deformed field theory
as a nonlocal theory. The quantum deformation modifies the behavior of relativistic
theories at distances comparable to and smaller than the length l corresponding to
the deforming parameter. It appears that, by virtue of the deformation of local
product of fields in the interaction, the vertex will be replaced by a deformed
nonlocal product, with the nonlocality extending to distances of order l.

Such a quantized space-time geometry can provide additional convergence fac-
tors or even a finite quantum field theory. Indeed, if one introduces a masslike
deformation parameter, it occurs also as a regularizing parameter.

There are also attempts to remove the ultraviolet divergences by introducing
nonlocality into the interaction Lagrangian. Hence the advantage of the nonlocal
character of the deformed product is the following: first, one has succeeded in intro-
ducing into the interaction Lagrangian all the ambiguity in the choice of the shape
and the value of the “elementary” length; second, the amplitudes of the physi-
cal processes have no additional singularities in the finite region of change of the
invariant momentum variables as compared to the local theory.

Nonlocal quantum field theory faces, however, many difficulties. One of the
main difficulties in constructing the non-local quantum field theory appears to be
the formulation of macro-causality of the S-matrix. Then it seems that a reasonable
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macro-causality condition imposed on the S-matrix would be a generalization of the
micro-causality condition [1]. However, as one can see in Efimov’s paper [1], there is
indeed a causality violation but, from the physical point of view, the problem may
be formulated in such a way that the amount of causality violation would satisfy
the usual requirements imposed on nonlocal theories. Indeed, using the Lagrangian
of the quantized field system, Efimov expands the S-matrix in the small coupling
constant. Therefore, in the case of the small coupling constant interaction, the
violation of causality at large distances is rather small. Another property is the
unitarity. The postulate of unitarity of the S-matrix in quantum field theory is one
of the principal requirements for the theory to be regarded as self-consistent and
physically acceptable. Efimov for example, in Ref. [41], proves the unitarity of the
S-matrix in the n-th order of perturbation theory in a nonlocal quantum field theory.

3. A Class of Deformed Products

In this section we propose a class of associative deformed products, with different
expressions for spin S = 0, 1/2, 1, respectively. In [29] a deformed operator product
was introduced (K-product) in the form f̂K ĝ = f̂ K̂ĝ where K̂ is a generic operator.
It satisfies the associativity condition

(f̂ �K ĝ) �K ĥ = f̂ �K (ĝ�K ĥ) . (7)

As emphasized in [20] the K-deformed products are a way to generate new associa-
tive products. To construct our new deformed product we take into consideration
this one and that the star-product in Quantum Mechanics, because of its nonlocal
nature, can be described through an integral kernel [42]. This integral kernel plays
the role of the structure function for the product and the star-product reduces to the
more familiar asymptotic expansion with a particular choice of this kernel. Inspired
by all these properties, and bearing in mind that the star product is a particular
associative deformed product, we import this formalism used in Quantum Mechan-
ics to Field Theory to define a new deformed product (A♦θB)(x) according to

(A♦θB)(x) ≡
∫

R4

∫
R4
A(y)L(x, y, z)B(z) dy dz , (8)

where the integral kernel L has different shape for each spin. The associativity con-
dition for operator symbols implies that the kernel L(x, y, z) satisfies the nonlinear
equation

∫
L(x1, x2, y)L(y, x3, x4)dy =

∫
L(x1, y, x4)L(x2, x3, y)dy . (9)

Our kernel is of the type δ(x, z)[exp θf(∂)]δ(x, y), hence it fulfils the associativity
condition (9) thanks to the properties of a Dirac δ-functional.
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For every spin we have a different choice of integral kernel. In the case of S = 0,
i.e. a scalar field, we start with a theory with a static term∫

d4x
1
2
m2

2.φ♦φ . (10)

With a particular choice of kernel, we can write

δLscal = δ(x, z)[−1 + θ�]δ(x, y) , (11)

and we obtain a dynamical theory. It can be seen as a leading order term of expan-
sion, in the parameter θ, of the following general definition:

Lscal := δ(x, z)[exp θ�]δ(x, y) . (12)

In this form it actually displays a “static nature”, as we will show later.
In the case of S = 1, i.e. a vector field, we start with a theory with a static term∫

d4x
1
2
m2

1Aµ♦Aµ . (13)

The particular choice of kernel is now such that

δLvect(x, y, z) = δ(x, z)[Dθ]νµδ(x, y) = δ(x, z)[δνµ + θ∆ν
µ]δ(x, y)

= δ(x, z)
[
δνµ + θ

(
�yδ

ν
µ −

(
1 − 1

α

)
∇ν∇µ

)]
δ(x, y) , (14)

which leads to a dynamical theory. It can be seen as a leading-order term in the
expansion, in the parameter θ, of the following general definition:

Lvect := δ(x, z)[exp θ∆µ
ν ]δ(x, y) . (15)

In the case of spin S = 1/2, i.e. a spinor field, we start with a theory with a
static term ∫

d4x
1
2
m3ψ♦ψ . (16)

Our particular choice of kernel is such that

δLmatter(x, y, z) = δ(x, z)[−1 + i
√
θγµ∂

µ]δ(x, y) . (17)

It can be seen as a leading-order term in the expansion, in the parameter θ, of the
following general definition:

Lmatter := δ(x, z)[exp−i
√
θγµ∂

µ]δ(x, y) . (18)

4. Properties of the Deformed Product

In this section we analyze some peculiar properties of our deformed product, out-
lining the possible implications.
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4.1. Supersymmetric nature of the deformed product and its

apparent dynamical nature

To achieve correspondence to lowest-order theory we must impose the condition:
mi

√
θ = 1, which then implies mi = m = 1√

θ
. This requires, of course, supersym-

metry, i.e. that the fields φ, ψ,Aµ belong to a massive vector N = 1 superfield.
Hence, to lowest order, the “static” massless theory in the corresponding deformed
product for scalar, vector, fermionic fields is “equivalent” to a dynamical massive
supermultiplet, i.e. if we restrict ourselves to the leading term, linear in the defor-
mation parameter, we get naturally a supersymmetric formulation, as in a dual
deformation.

In principle one can think of having a class of deformed products and, corre-
sponding to different choices of kernel, to build a deformed supersymmetryc Wess–
Zumino model, as in a supersymmetric U(1) theory, introducing the dynamics to
lowest order in the kernel and not in the supersymmetric formulation, as in [43]. In
our case, with suitable choice of kernel in the scalar, spinor and vector Lagrangian,
we can reproduce in a natural way a supersymmetric action which suffers from non-
locality at subsequent orders in θ. The Lagrangian for a globally supersymmetric
matter multiplet is [44]

LN=1
matter = −1

4
FµνF

µν +
1
2
ψ̄γµ∂

µψ − 1
2
mψ̄ψ +

1
2
m2AµA

µ − 1
2
m2φ2 , (19)

where Aµ is a vector field, ψ is a Majorana spinor field, and φ is a pseudoscalar
field.

All fields must have the same mass. The above Lagrangian in superspace for-
malism is

LN=1
matter = [Φ†Φ]D +m[ΦΦ]F +m[V 2

WZ ]D +
1
32

[WαWα]F . (20)

With our prescription, it becomes

LN=1
matter =

1
2
m2Aµ♦S=1A

µ +
1
2
mψ♦S=1/2ψ +

1
2
m2φ♦S=0φ . (21)

What seems to happen is that the dynamics, which is put at the level of superfields
in a supersymmetric Lagrangian, is found in a nonlocal theory to the first non-
vanishing order in the θ parameter.

Hence one can think of using the deformed product, to lowest order in the θ
parameter, to obtain the dynamics, i.e. one can encode dynamics in a product
and the other way around. Changing deformed product means having a different
dynamics. We can have infinitely many derivatives in order to reproduce, at different
orders in θ, the dynamics of the system. This is a first step towards obtaining a
more elaborate model and the dynamics in the deformed product, where the θ

parameter is essential, and its smallness is important to make sure that higher-
order (derivative) terms are of no importance. Thus, the dynamics can be seen
as a “perturbative” effect which disappears in the global “nonperturbative” static
expression.
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4.2. Nonlocal nature of the deformed product

Hence, starting with the free static action and using the (bi)-differential operator to
lowest order in the parameter, one obtains a known massive free-field theory, that is
a lower order approximation of a more complicated nonlocal theory. In this way we
have a nonlocal field theory from a local theory in which we deformed the product
on a nonlocality domain with a characteristic scale

√
θ. While in [45, 3, 46, 47] one

replaces a local field by a “smearing” field, in our model we put the nonlocality in
the product, as in the star product. Thus, the deformed quantum field theory is a
particular case of a nonlocal quantum field theory.

4.3. Duality of the Kalb–Ramond field in this deformed product

In this section we analyze an intriguing property of a type of deformed product. We
show how the duality property of a Kalb–Ramond is changed by using a particular
deformed product at lower order in θ. A well-known result is that a massless field
Hνρσ = ∂[νBρσ] in an undeformed product is equivalent to a massless scalar field,
i.e. the degrees of freedom of the antisymmetric tensor field Bρσ are only one:

∂µφ =
1
6
εµνρσHνρσ , (22)

while the massive field is equivalent to a massive vector field, i.e. the degrees of
freedom of Bρσ are three:

Hµ =
1
6
εµνρσHνρσ . (23)

In view of these properties, we want to generalize the duality of Kalb–Ramond in the
deformed case. We show that a massless deformed Kalb–Ramond theory is dual to
a U(1)-breaking theory, i.e. it is equivalent to a massive vector field theory, with the
above choice of duality and choosing a particular kernel for the deformed product.
The presence of deformation leaves nontrivial transverse and longitudinal modes,
unlike the classical undeformed massless case. For this purpose, we are interested
in a model ruled by the deformed action

SH =
1
3!

∫
d4xH �θ H(x)

:=
∫
d4x

[∫
R4

∫
R4
Hαβγ(y)Lαβγρστ (x, y, z)Hρστ (z) dy dz

]
, (24)

while the action SB = 1
3!

∫
d4xHµνρ(B)Hµνρ(B) is deformed through the integral

kernel L chosen to recover the U(1) gauge theory, and is given by

Lαβγρστ (x, y, z) :=
1
6
εµαβγενρστ [Dθ]νµ , (25)
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and [Dθ]νµ reads as

[Dθ]νµ := δ(x, z)
[
δνµ +

θ2

m2
∆ν
µ

]
δ(x, y)

= δ(x, z)
[
δνµ +

θ2

m2

(
�yδ

ν
µ −

(
1 − 1

α

)
∇ν∇µ

)]
δ(x, y) . (26)

The presence of α in (26) reflects what we know about QED in its formulation
with functional integrals in the Lorenz gauge to obtain an invertible operator on
the potential Aµ. Actually, its inclusion for a massive vector field model is not
compelling, it is a redundant term, i.e. we are summing a vanishing term (α = ∞).
With this choice of L and with the following duality transformation:

Hµνρ =
1√
θ
εµνρσA

σ, (27)

to first order in θ, the fundamental (at high energy) deformed action (24) is dual
to the action of a massive spin-1 field with mass mθ = 1√

θ
∼ Mpl (effective theory

at low energy), i.e.

Sdual = SH =
∫
d4x

[
1
2
m2
θAµA

µ − 1
4
FµνF

µν +
1
2α

(∂µAµ)2
]
, (28)

where m = 1√
θ

and ∂µAµ can be shown to vanish.
In general we can give a formal expression of L to every order in θ:

[Dglobal]νµ := δ(x, z)
[
exp

θ2

m2
∆ν
µ

]
δ(x, y) . (29)

Its expansion in powers of θ is in terms of derivatives of increasing order.
To zeroth order in θ (or θ = 0), we recover the duality of the massless Kalb–

Ramond to a massless scalar field φ, putting Aσ = ∂σφ. To first order in θ2

m2 = θ̃,
a deformed massless Kalb–Ramond (gauge invariant) is dual to a massive spin-1
field.

The operator ∆ν
µ in Eq. (29) is a hyperbolic operator. To have a meaningful

expression, we have to make a Wick rotation, so that it becomes an elliptic operator.
In this way the action of the massive vector field can be seen as the lowest order
(effective theory) of a (broader) nonlocal theory, which is reduced at zeroth order
to a free scalar theory. A massive spin-1 theory may be regarded as the low-energy
limit of a fundamental deformed theory, where the low-energy limit is set by the
massive term 1√

θ
.

On using different representations of deformed product it is possible to find a
“dual” deformed product, i.e. we can use duality in the reverse order. Then we start
with

∫
d4x1

2m
2
1Aµ♦Aµ, and after the duality transformation we have

∫
d4x1

2H♦H ,
hence we are able to write a dual deformed product to first perturbative order.
In this way the duality and the deformation are connected, and when θ → 0, the
deformed product and the duality disappear.
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5. Deformed Interaction Term

In this section we analyze the deformed interaction term between matter and a
vector field, and in its dual version.

5.1. Deformed interaction term between matter and vector field

We have a U(1) theory of an unknown particle at high energy which can decay
(because we do not observe it) and in principle it can produce an observable physics.
Thus, we can imagine a coupling with matter and we study the decay. We construct
a model in which the deformed (high energy) action of matter and its interaction
term with the vector field corresponds to a low-energy action of massive fermions
plus the vector-matter interaction plus correction terms involving derivatives. The
general Lagrangian density for a vector field L(Vµ, ψ) describing all their interac-
tions is given by

L = − 1
4
GµνG

µν +
1
2
M2VµV

µ + β∂νVµV
µV ν

+ γVµVνV
µV ν + iψγµ∂

µψ − ψmψ + Vµψγ
µψ . (30)

To obtain the correspondence with a vector theory we can consider different combi-
nations, i.e. (ψ̄♦γµψ)Aµ, or (ψ̄γµ♦ψ)Aµ. We can take account of two possibilities
in the form

Sψψ̄A =
1
2

∫
d4x[ψ̄♦(m− γµAµ)ψ + ψ̄(m− γµAµ)♦ψ]

:=
∫
d4x

{∫
R4

∫
R4

[ψ̄(y)Lmatter(x, y, z)(m− γµAµ)ψ(z)

+ ψ̄(y)(m− γµAµ)Lmatter(x, y, z)ψ(z) dy dz]
}
, (31)

hence with the integral kernel Lmatter chosen to recover the vector-fermion action

Lmatter(x, y, z) := δ(x, z)(−1 +
√
θγµ∂

µ)δ(x, y) , (32)

to first order in θ, the fundamental deformed action (31) is an action of a massive
spin-1 in interaction with matter plus a correction term, i.e.

Stotal = SA + Sψψ̄A

=
∫
d4x

[
1
2
m2
θAµA

µ − 1
4
FµνF

µν + im
√
θψγµ∂

µψ − ψmψ

− 1√
θM

Aµψγ
µψ − i

M
ψ∂ρ(Aρψ)

]
. (33)

To have a correct correspondence we have the condition m
√
θ = 1, i.e. at high

energy the only possible mass is “driven” by the θ term, and the charge of coupling
is Q = 1

M
√
θ
.
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In general we can give a formal expression of L to every order in θ as in (18):

[Lmatter−global] := δ(x, z)[exp−i
√
θγµ∂

µ]δ(x, y). (34)

We thus find that the vector field combines with matter to become, at low energy, a
massive vector field, and it interacts through the standard coupling described by the
previous Eq. (33). The presence of deformation “seems” to introduce a dynamics
in a static system to zeroth order.

5.2. Deformed interaction term between matter and

Kalb–Ramond field

We construct a model in which we show that the deformed (high energy) action
of matter and its interaction term with Kalb–Ramond corresponds, after a dual-
ity transformation, to a low-energy action of massive fermions plus the vector-
matter interaction plus correction terms involving derivatives. Such a tensor field,
which appears, for example, in the massless sector of a heterotic string theory, is
assumed to coexist with gravity in the bulk, in a five-dimensional Randall–Sundrum
scenario [48]. It has a well-known geometric interpretation as the spacetime tor-
sion. We consider the most general gauge-invariant action of a second-rank anti-
symmetric Kalb–Ramond tensor gauge theory, including the coupling with matter
modes [48]:

Lψψ̄H = − 1
MPl

ψ̄[iγµσνλHµνλ]ψ . (35)

The general Lagrangian density for a vector field L(Vµ, ψ) describing all their inter-
actions is given by

L = −1
4
GµνG

µν +
1
2
M2VµV

µ + β∂νVµV
µV ν

+ γVµVνV
µV ν + iψγµ∂

µψ − ψmψ + Vµψγ
µψ . (36)

To obtain the correspondence with a vector theory we can have different com-
binations, i.e. 1

MP l
(ψ̄♦γµσνλγ5ψ)Hµνλ, or 1

MP l
(ψ̄γµσνλγ5♦ψ)Hµνλ. We can take

account of two possibilities by writing

Sdual
ψψ̄H =

1
2

∫
d4x

[
ψ̄♦

(
m− 1

MPl
γµσνλγ5Hµνλ

)
ψ

+ ψ̄

(
m− 1

MPl
γµσνλHµνλ

)
♦ψ

]

:=
∫
d4x

{∫
R4

∫
R4

[
ψ̄(y)Lmatter(x, y, z)

(
m− 1

MPl
γµσνλγ5Hµνλ

)
ψ(z)

+ ψ̄(y)
(
m− 1

MPl
γµσνλHµνλ

)
Lmatter(x, y, z)ψ(z) dy dz

]}
, (37)
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hence with the integral kernel Lmatter chosen to recover the vector-fermion action

Lmatter(x, y, z) := δ(x, z)(−1 +
√
θγµ∂

µ)δ(x, y) , (38)

and with the duality transformation (27) to first order in θ, the fundamental non-
commutative action (37) is dual to the action of a massive spin-1 pseudo-vector
field in interaction with matter plus a correction term, i.e.

Stotal
dual = SH + Sdual

ψψ̄H

=
∫
d4x

[
1
2
m2
θAµA

µ − 1
4
FµνF

µν + im
√
θψγµ∂

µψ − ψmψ

− 1√
θMPl

Aµψγ
µψ − i

MPl
ψ∂ρ(Aρψ)

]
, (39)

where we have used the identity γλΣµν = i[gλµγν − gλνγµ + iελµνργ5γρ]. To have a
correct correspondence we have the condition m

√
θ = 1, i.e. at high energy the only

possible mass is “driven” by the θ term, and the charge of coupling is Q = 1

MP l

√
θ
.

In general we can give a formal expression of L to every order in θ:

[Lmatter−global] := δ(x, z)[exp−i
√
θγµ∂

µ]δ(x, y) . (40)

We thus find that the Kalb–Ramond field combines with matter to become at
low energy a massive vector filed, and it interacts through the standard coupling
described by the previous Eq. (39).

6. Application of the Deformed Product to a Free Scalar Field

In this section we evaluate the Green function and dispersion relation for the free
scalar action with Lagrangian density (12), showing its static nature. Then we
analyze the dynamical scalar field theory with our deformed product, showing that,
in a sense, it is equivalent to the one found by Moffat [16].

6.1. Green function and dispersion relation of the nonlocal model.

A fictitious dynamical theory

Given any differential operator D on R4 one can define a map σ(D) called the
symbol of D: σ : D → σ(D) ≡ e−αkµx

µ

Deαkµx
µ

. The associated equation of motion
is Dψ = 0, to which there corresponds the dispersion relation σ(D; k, ω) = 0, e.g.
ω = ω(k). For D = � one obtains

σ(� +m2) = α2(�k · �k − ω2) +m2. (41)

By setting σ(D; k, ω) = 0 one obtains the dispersion relation

E2 = �k · �k +m2 , (42)

which leads to the following wave equation:

(� +m2)φ = 0 . (43)
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The Green function is defined by

G(x, x′) =
∫
d4k

eikµ(xµ−x′µ)

σ(� +m2)
, (44)

and it satisfies the equation

(� +m2)G(x, x′) = −δ(x− x′) = −
∫
d4keikµ(xµ−x′µ) . (45)

In our nonlocal model for a free scalar field, the symbol is σ(m2 exp θ�; k, ω) =
m2 exp (−kµkµθ) = m2

∑∞
n=0(−kµkµθ)n. If we instead consider a finite approxi-

mation, at small θ we have correction terms. Taking into account that the symbol
maps exp θ� → exp−kµkµθ, the Green function is

G(x, x′) = m2

∫
d4k

1
(2π)4

eikµ(xµ−x′µ)exp (−kµkµθ)

= m2

∫
d4k

1
(2π)4

e
δµν(

√
θkµ− i

2
√

θ
(xµ−x′

µ))(
√
θkν− i

2
√

θ
(xν−x′

ν))

× exp
[
− 1

4θ
δµν(xµ − x′µ)(xν − x′ν)

]

= m2
4∏
r=1

∫
dkr

1
(2π)4

e
δjl(

√
θkj− i

2
√

θ
(xj−x′

j))(
√
θkl− i

2
√

θ
(xl−x′

l))

× exp
[
− 1

4θ
δµν(xµ − x′µ)(xν − x′ν)

]

= m2

(
1

64πθ

)2

exp
[
− 1

4θ
δµν(xµ − x′µ)(xν − x′ν)

]
, (46)

where we have used the Gaussian integral, and G(k) = (m2 exp−kµkµθ)−1 =
1

−m2+k2+
P∞

n=2(−kµkµθ)n , ( θ = m−2), while in [16] the modified Feynman prop-

agator in momentum space is i∆F (k) = i exp 1/2kµτ
µνkνθ

k2−m2+iε . We note that the exact
expression of the Green function does not show any pole, corresponding to the static
nature of the global theory, while dynamics can be recovered from a perturbative
expansion.

7. Application of the Deformed Product to a Free Scalar Field
Theory. Analogy with the Moffat Model

In this section we show that the free scalar field theory with our deformed product,
in a sense, is the same as that found by Moffat [16]. As we saw in the above
subsection the product does not induce a dynamics, because the dispersion relation
obtained by setting to zero the symbol does not have a solution. This means that we
have to start with an ordinary dynamical action rewritten through this deformed
product.
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Our deformed product can be seen as an application of the product proposed by
Moffat [16] in which we find supersymmetry in the different shape of the deformed
product, but not in the superspace formalism:

(φ̂1♦φ̂2)(ρ) =
[
exp

(
−1

2
τµν

∂

∂ρµ
∂

∂ην

)
φ1(ρ)φ2(η)

]
ρ=η

= φ1(ρ)φ2(ρ) − 1
2
τµν

∂

∂ρµ
φ1(ρ)

∂

∂ρν
φ2(ρ) +O(τ2) . (47)

Here, by comparison with the Moffat product in [16], τµν = δµνθ and ρ = η. Hence
our product is a particular application of it and it is associative and commutative. In
our case the modified Feynman propagator ∆̄F is defined by the vacuum expectation
value of the time-ordered �-product

i∆̄F (x− y) ≡ 〈0|T (φ(x)♦φ(y))|0〉

=
i

(2π)4

∫
d4k exp[−ik(x− y)] exp[12 (k2θ)]

k2 −m2 + iε
. (48)

In momentum space this gives

i∆̄F (k) =
i exp

[
1
2 (k2θ)

]
k2 −m2 + iε

, (49)

which reduces to the standard commutative field theory form for the Feynman
propagator

i∆F (k) =
i

k2 −m2 + iε
, (50)

in the limit |θµν | → 0. The free-field φ2 theory is nonlocal, unlike the corresponding
one in ordinary local field theory, resulting in a modified Feynman propagator
∆̄F (k) and modified dispersion relation. It turns out to be a particular case of that
treated by Moffat in [16].

8. Concluding Remarks

In our paper, a modification of the standard product used in local field theory by
means of an associative deformed product has been proposed. We have built a class
of deformed products, one for every spin S = 0, 1/2, 1, that induces a nonlocal
theory, displaying different form for different fields. This type of deformed product
is naturally supersymmetric and it has an intriguing duality.

It now remains to be seen whether a suitable variant of our construction can
lead to a product different from the one used by Moffat [16].
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