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Borehole breakout is a widely utilised phenomenon in horizontal stress orientation determination, and
breakout geometrical parameters, such as width and depth, have been used to estimate both horizontal
stress magnitudes. However, the accuracy of minimum horizontal stress estimation from borehole break-
out remains relatively low in comparison to maximum horizontal stress estimation. This paper aims to
compare and improve the minimum horizontal stress estimation via a number of machine learning
(ML) regression techniques, including parametric and non-parametric models, which have rarely been
explored. ML models were trained based on 79 laboratory data from published literature and validated
against 23 field data. A systematic bias was observed in the prediction for the validation dataset when-
ever the horizontal stress value exceeded the maximum value in the training data. Nevertheless, the pat-
tern was captured, and the removal of systematic bias showed that the artificial neural network is
capable of predicting the minimum horizontal stress with an average error rate of 10.16% and a root mean
square error of 3.87 MPa when compared to actual values obtained through conventional in-situ mea-
surement techniques. This is a meaningful improvement considering the importance of in-situ stress
knowledge for underground operations and the availability of borehole breakout data.
� 2022 Published by Elsevier B.V. on behalf of China University of Mining & Technology. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The increased national and global demand for mineral resources
has caused underground explorations to go deeper, which has
raised serious health and safety concerns [1]. As a result, the
knowledge of in-situ stress is becoming increasingly critical for
the design and safety of underground operations. At present, the
most frequently used stress measurement techniques are overcor-
ing and hydraulic fracturing [2]. However, these techniques are
only applicable to intact borehole walls where surrounding rock
in the tested borehole sections needs to be elastic [2,3]. This is dif-
ficult to be achieved in weak strata. Borehole breakout is a drilling-
induced phenomenon that has been utilised as an indication tool
for horizontal stress magnitudes and orientation [4-6]. A schematic
figure of borehole breakout can be seen in Fig. 1. L represents the
maximum breakout depth and R represents the borehole radius.
Breakout depth is usually expressed as a ratio due to various bore-
hole sizes. Its geometries, breakout depth (L/R) and width (hb), are
argued to be dependent on in-situ stress environment [7-9]. In the
past decades, a series of studies attempted to derive horizontal
stress magnitudes from breakout geometries with analytical
approaches [4,5,10-12], experimental investigations [13] and
numerical modelling [6,14-18]. Field experiments were also con-
ducted to study the breakout development, its relationship with
in-situ stress magnitudes, and spalling phenomenon [19-23]. How-
ever, there has not been a universally accepted method developed
to date. Knowing a determined minimum horizontal stress value is
pivotal to underground excavation design, as it governs the poten-
tial rock failure state. Conventional methods such as stress polygon
[5,10] provide a broad range of horizontal stress magnitudes,
which is not sufficient for design purposes. Therefore, this study
aims to investigate machine learning (ML) models to provide a reli-
able single value output.

The recent advancements in sensing, consistent data collection,
and reliable data processing have assisted modern-day civil and
mining operations in combining industrial, laboratory, and numer-
ical research through computer-aided programs. Particularly, ML
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Fig. 1. Illustration of borehole breakout (after [24]).
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has seen a greater influence on prediction and regression tasks due
to its ability in capturing linear and complex non-linear relation-
ships between independent variables and the dependent target.
ML models such as an artificial neural network (ANN) have already
been demonstrated in predicting parameters such as surface
roughness, using limited training data (less than100 data points),
which provided critical information for improving the quality of
support structures [25,26]. Similarly, a combination of fuzzy logic
and neural network was shown to predict the penetration rate of
tunnel boring machines using a limited dataset of rock properties
and machine design parameters [27-29]. The comparison of results
exhibited substantial improvement over other statistical and
empirical approaches. Elmo and Stead [30] provided a critical dis-
cussion on the importance of ML in rock mechanics and concluded
that it can be an effective tool in studying rock engineering design
problems. Lin et al. [31] investigated ANN along with rock failure
criterion for estimating horizontal stress magnitudes. The pro-
posed ANN-Mogi-Coulomb technique was able to improve the
accuracy of maximum horizontal principal stress (rh) estimation
while providing reasonable estimation on minimum horizontal
stress principal (rh) at 15.88% average error rate.

ML models can be divided into parametric learning models and
non-parametric learning models [32]. A parametric learning model
summarises data with a defined set of parameters that are inde-
pendent of the number of training samples [33]. A function form
is initially decided, the coefficient of which are computed from
the training samples. Due to the constrained function form, the
parametric models are more suited to solve simpler problems. Ben-
efits of parametric models include low training data requirement,
easier result interpretability, and simpler parameter sensitivity
analysis. Moreover, it is easier to improve results accuracy to some
extent through minor tweaking in the defined function form.
Examples of parametric models include linear regression [34],
lasso regression [35], ridge regression [36], logistic regression
[37], and Naive Bayes classifier [38]. In contrast, the non-
parametric models seek to best fit the training samples to con-
struct the mapping function whilst maintaining the ability to gen-
eralize the previously unseen data. The models can incorporate
many functional forms and can produce high performance; how-
ever, a large amount of training samples is required for learning,
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and there are instances of overfitting. Prominent non-parametric
models include k-nearest neighbours [39], decision trees [40], ran-
dom forest [41], support vector machines [42], Gaussian process
regression [43] and artificial neural network [44]. This study inves-
tigates both parametric and non-parametric ML models to evaluate
performance in predicting minimum horizontal stress under lim-
ited training data.

Reliable estimation of rh magnitude based on borehole break-
out data has been a challenging topic in the past 40 years using
the conventional rock mechanics approach. However, the problem
itself is a classical prediction and regression which can be solved
effectively using ML techniques. Although the method proposed
by Lin et al. [31] provides reasonable estimation results, it does
not compare available machine learning algorithms to assess accu-
racy on rh prediction. Since there are numerous ML models with
their own merits and demerits, they need to be tested on available
borehole breakout data for suitability in predicting minimum hor-
izontal stress based on selected borehole parameters. In this study,
a comparative analysis of some widely adopted ML techniques on
the estimation of minimum horizontal stress from borehole break-
out data was carried out. The evaluated ML algorithms, both para-
metric and non-parametric, include linear regression, lasso
regression, ridge regression, classification and regression tree
(CART), random forest, support vector machine (SVM), Gaussian
process regression (GPR) and artificial neural network (ANN). The
comparison result will help determine the most reliable ML tech-
nique that can be adopted for future assessments.
2. Methodology

2.1. Breakout data collection

Lin et al. [31] tested the ML model (ANN) based on 79 labora-
tory training data and validated it against 23 field test data. The
training data were collected from experiments conducted by Her-
rick and Haimson [7], Haimson and Lee [8], Lee et al. [9] and Lin
et al. [24,31], and the validation data are from Zoback et al. [4],
Walton et al. [45], Shen [46], Klee et al. [47], Shen and Rinne
[48], LeRiche [49], and Lin et al. [15]. The parameters used for pre-
diction were: breakout width (hb), vertical stress (rv) and borehole
wall strength (BWS). BWS was defined by Walton et al. [45] and
LeRiche [50] to represent breakout initiation stress at various bore-
hole sizes, which in turn governs the size of breakout geometries.
As observed in numerous laboratory studies [24,50,51], breakout
geometries were not only influenced by stress conditions and
mechanical properties of rock, but also the size of borehole. There-
fore, the term BWS was introduced to address such stress elevation
required for breakout initiation. BWS was obtained from source
data using conversion relationship given in [15,51]. In both train-
ing and validation datasets, borehole breakout geometries were
measured by averaging the breakout geometrical profiles along
the borehole axis and therefore are assumed to be unbiased and
accurate.
2.2. Regression analysis using parametric and non-parametric
machine learning models

The parametric ML models utilised in this study include linear
regression, lasso regression, and ridge regression. Before training
the models, the rh was plotted against the 3 variables to observe
the distribution and determine Pearson’s correlation coefficients
between the target and predictors as shown in Fig. 2. The red lines
in the figure indicate the best linear fit. A linear fit is shown in red
to provide insights on data distribution for better visualisation. The
correlation coefficients observed in the training dataset between



Fig. 2. Visualisation of target vs. predictor data.
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rh and the 3 variables rv, hb and BWS were 0.89, 0.61 and 0.38,
respectively. Correspondingly, in the validation dataset, the
observed correlation coefficients were 0.94, 0.69 and 0.69, which
was comparatively higher than the training data. Since a low cor-
relation was observed between rh and the 2 variables hb and
BWS in the training dataset, additional interaction terms were
introduced in the parametric models by multiplying the variables
amongst themselves to improve the performance. The interaction
terms were first statistically tested for significance in linear regres-
sion using t statistics and p values, then the more significant inter-
action terms were used in the parametric modelling. The null
hypothesis assumed that the coefficient corresponding to a predic-
tor is zero. Table 1 provides the predictor coefficients for linear
regression and corresponding t-stat and p values. For 95% confi-
dence (t1.99), the interaction term hb�BWS seemed insignificant
due to its low t value. The results were also verified using p values,
where for 5% significance (p=0.05), and hb�BWS was substantially
high. Hence, the null hypothesis was accepted showing hb�BWS
is insignificant for the model. Therefore, during the training of
parametric models, apart from 3 main predictors, two other statis-
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tically significant interaction terms rv�hb and rv�BWS were used.
The parametric models such as linear regression, lasso regression
(also known as elastic net), and ridge regression were trained
and tested with and without the use of the interaction terms. To
better regularize and generalize the model, 30% of input samples
were used for cross-validation in lasso and ridge regression.

For non-parametric methods, prominent models such as CART,
random forest, SVM, GPR, and ANN were examined. In contrast
to the parametric models, the non-parametric models were trained
without the use of interaction terms as they implicitly account for
interactions due to the universal form function. However, mod-
elling in such a case requires the definition of several hyperparam-
eters which were determined from experience and trial and error
by keeping consistency over all the methods used in this study,
instead of fine-tuning the parameters that just focus on one speci-
fic method for a comparison purpose. In this study, hyperparame-
ters defined for CART were minimum number of parent nodes (10),
minimum leaf size (4), and maximum splits (78); for random forest
were leaf size (8) and number of trees (100); for SVM was kernel
type (linear and Gaussian) and epsilon value (1.15); for GPR was



Table 1
Statistical analysis of interaction terms through a linear fit model.

Parameter Coefficient Standard error (SE) t-stat p value

Intercept 12.030 5.260 2.290 0.025
rv �0.320 0.250 �1.290 0.202
hb �0.090 0.120 �0.760 0.450
BWS 0.024 0.080 0.310 0.760
rv�hb 0.006 0.002 3.950 �0.000
rv�BWS 0.006 0.003 2.330 0.023
hb�BWS �0.001 0.002 �0.660 0.510
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kernel type (exponential) and optimizer type (Quasi-Newton), and
for ANN was number of hidden layers (1), number of hidden neu-
ron (26) and backpropagation algorithm (Bayesian regularisation).
For ANN, the training data was split into training (70%), validation
(15%), and test dataset (15%), and the network which resulted in
the minimum error in the 3 datasets were selected as the final test
model. It is important to note that the mentioned models were
implemented with a range of hyperparameters and they exhibit
similar behaviour over a particular range. The values listed in the
brackets are corresponding to the results shown in this study.
The accuracy of the models was evaluated in terms of standard
parameters root mean square error (RMSE), maximum absolute
error (MAE), and mean percentage error computed by comparing
the actual and predicted value on both training and validation
datasets. MAE represents the maximum of absolute errors
observed in each prediction. The mean percentage error was calcu-
lated by taking the average of percentage errors observed in indi-
vidual observations.
3. Results

3.1. Performance on training data

Post-training, the accuracy was evaluated on both training and
test datasets by comparing the predicted and actual values. Table 2
denotes the accuracy of the models achieved on the training and
the validation dataset calculated in terms of RMSE, MAE, and mean
percentage error. The parametric models such as linear, lasso, and
ridge have a relatively higher RMSE than non-parametric models
on the training dataset as the predictors were not necessarily inde-
pendent. Hence, it was essential to incorporate the interaction
terms in the parametric model to reduce RMSE. For the training
dataset, the least RMSE (1.17 MPa) was observed in GPR with
MAE in observations not exceeding 4.49 MPa. However, the GPR
resulted in a relatively higher error in the validation dataset due
to overfitting. In the validation dataset, CART displayed minimum
Table 2
Error evaluation of ML models in predicting minimum horizontal stress (rh).

Machine learning model Training

RMSE
(MPa)

MAE
(MPa)

Mean error
(%)

Linear regression 4.50 7.75 22.57
Linear regression (with interaction) 3.82 8.55 19.95
Lasso regression 5.02 11.99 25.11
Lasso regression (with interaction) 4.10 11.13 20.14
Ridge regression 4.40 12.95 21.94
Ridge regression (with interaction) 3.97 10.32 20.58
CART 2.29 7.50 11.55
Random forest 3.49 9.19 18.94
SVM linear kernel 4.54 16.00 20.71
SVM linear kernel (with interaction) 3.88 9.00 20.51
SVM Gaussian kernel 2.90 9.89 12.66
GPR 1.17 4.49 4.81
ANN 3.29 9.77 15.73
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RMSE (10.47 MPa), although the MAE was least in the case of
ANN. For any prediction application, it is necessary to have the
least RMSE as well as low MAE in individual observation. For
instance, a model may have low RMSE but some of the observa-
tions may exhibit high absolute error. Selecting such a model
may not always provide a reliable estimate. The top 6 models in
terms of performance on the training dataset are shown in Fig. 3.
The GPR, CART, and SVM with Gaussian kernel fitted well on train-
ing data and exhibited RMSE less than 3 and MAE less than 10,
indicating that the error in prediction on the training dataset never
exceeds 10 MPa.
3.2. Model fitting on validation data

Fig. 4 shows the actual vs. predicted value for the best 6 models
based on the RMSE in the independent validation dataset. The
models exhibit relatively accurate fitting when the stress is below
30 MPa, and a systematic bias was seen between the predicted and
actual values of rh whenever the actual rh value exceeded 40 MPa.
It is important to note that the maximum rh value in the training
dataset was 40 MPa. The maximum and minimum value of the tar-
get and the predictors in the training and validation dataset is
shown in Table 3. The predictor values in the validation dataset,
except BWS, are always within the range of training data and never
exceed it. Also, rv and hb show a comparatively higher correlation
(0.89 and 0.61, respectively) with rh than BWS (0.38) in training
data. As such the weight assigned by ML models are higher for
rv and hb due to better correlation when compared to BWS. There-
fore, it is difficult for ML models to predict something which goes
substantially beyond the range of rh values present in the training
data due to the lower weight coefficient of BWS. The prediction val-
ues are always less than the actual values whenever actual rh>40-
MPa. Nevertheless, the pattern in the data is captured by the
majority of models except for CART (Fig. 4), and there is always a
bias in the prediction for actual rh>40 MPa which corresponds to
predicted rh>23 MPa. Most of the models have different fits on
Validation Validation after removing bias

RMSE
(MPa)

MAE
(MPa)

Mean error
(%)

RMSE
(MPa)

MAE
(MPa)

Mean error
(%)

16.50 25.73 34.51 5.14 11.52 13.41
15.31 20.24 34.71 4.95 7.11 15.75
17.94 27.26 35.08 8.17 22.64 17.00
16.55 24.56 32.45 5.08 10.54 11.34
16.98 26.40 35.13 6.22 12.99 15.51
16.11 24.28 31.57 4.77 10.33 10.76
10.47 21.00 23.01 5.20 12.76 12.02
17.86 28.11 33.50 10.54 25.92 21.97
15.87 24.21 37.34 5.31 10.66 17.29
14.74 20.31 28.87 4.60 8.62 10.55
14.79 23.94 36.64 7.44 23.21 20.84
15.97 21.14 26.21 4.97 7.39 15.40
12.20 17.17 25.33 3.87 6.68 10.16



Fig. 3. Prediction vs. actual value comparison resulting from various ML algorithms for training data.
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the data and hence the pattern varies. Some of the models captured
the pattern better than the others which can be visually observed
in the actual and predicted values (Fig. 4). In some ML models such
as ANN, GPR, and linear SVM, the bias in predicted value is system-
atic, while in the other models, there is a slight variation in
observed bias based on the defined model. It is possible to account
for the systematic bias by taking the mean of the difference
between the actual and predicted values for actual rh>40 MPa
and adding it to the predicted value whenever predicted rh>23-
MPa. A systematic bias term is introduced to re-adjust the output
of the training to obtain a more accurate model.

Fig. 5 shows the result of the best 6 models after the removal of
systematic bias. The accuracy of the models after removing bias is
presented in Table 2 in the last 3 columns. Parametric models such
as linear, lasso, and ridge regression did not achieve optimal per-
formance due to fixed form function, however, the introduction
of interaction terms increased the accuracy though the MAE was
still high. Some non-parametric models such as regression tree,
random forest, and SVM with Gaussian kernel had a problem of
overfitting, and there was a large difference between training accu-
racy and validation accuracy. SVM with linear kernel function had
a better data generalisation than the SVM with Gaussian kernel
1025
and led to low validation error while sufficiently capturing the pat-
tern. In general, the selection of kernel for SVM is more based on
prior data information. GPR had a similar performance as SVMwith
a linear function, although the observed MAE was less than that of
SVM. ANN provided the best results with an RMSE of 3.87 and an
MAE of 6.68 in the prediction. The training of ANN requires a
trial-and-error process with a variable number of neurons and dif-
ferent backpropagation training algorithms such as scaled conju-
gate gradient, Bayesian regularization, etc. In this study, the best
performance was obtained for 26 neurons and Bayesian regulariza-
tion backpropagation. Higher prediction accuracy is obtained for
ANN, as during training, a better generalisation is achieved by sub-
sequently dividing the training data into training, test and valida-
tion sets, and minimising the error in all 3 of them. Hence,
whenever new data is encountered, the model tends to perform
better.

4. Discussion

In parametric models, ridge regression has slightly better per-
formance than linear and lasso regression due to regularisation
of parameters, i.e., the coefficient of the independent variable, is



Fig. 4. Predicted vs. actual value comparison resulting from various ML algorithms for validation data.

Table 3
Maximum and minimum values of variables in training and validation datasets.

Variable Training data Validation data

Max Min Max Min

rh (MPa) 40.00 5.00 56.00 7.39
rv (MPa) 50.00 5.00 45.78 6.78
hb (�) 138.00 10.00 72.00 14.17
BWS (MPa) 97.72 39.08 140.00 17.61
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done such that any particular variable does not influence the out-
put considerably. Among non-parametric models, CART had the
best performance quantitatively when the systematic bias was
not considered. CART algorithm uses least error. However, upon
visual interpretation (Fig. 4), it was found that CART does not
recognise any pattern for predicted rh>23 MPa when compared
to other models. The output of regression trees is sensitive to the
hyperparameters such as maximum depth of the tree, number of
nodes, splits, etc., and the model often suffers from overfitting
leading to inaccurate predictions and patterns [40]. A systematic
bias was observed for a few validation data points where the actual
values of minimum horizontal stress were comparatively higher
1026
than what was given in the training data. The prediction curve in
Fig. 4 shows that there is a somewhat constant bias between the
estimated and actual values. While it is possible to model it, a con-
stant value was used to reduce the error between actual and esti-
mated values, and to avoid overfitting, which may lead to
unreliable results for new field data. After removing systematic
bias, the predicted error reduced considerably, and the best results
were achieved for non-parametric models SVM (with linear ker-
nel), GPR, and ANN. SVM with Gaussian kernel had overfitted on
training data which affected its performance on the validation
dataset, whereas the use of linear kernel had a better data fitting,
exhibiting a somewhat linear trend in the data. Most of the super-



Fig. 5. Comparison of predicted and actual rh values for various ML models after removing systematic bias.
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vised ML models mentioned above learn exact values of parameter
coefficients in a function for prediction, and the choice of wrong
coefficients often lead to misleading prediction. A Gaussian process
regression (GPR) avoids such issues by using a Bayesian approach
that infers a probability distribution over all possible coefficients
and relocates the probabilities based on evidence. Therefore, GPR
resulted in the second-best performance when both RMSE and
MAE were analysed. Moreover, GPR is known to work well on small
datasets and can provide uncertainty measurements on the predic-
tions [43]. Among all analysed models, ANN resulted in the least
error. The ability of ANN to use a network of interconnected neu-
rons lets it learn from the data while subsequently checking for
generalisation through random data partition for the best possible
result. Therefore, the ANN model performs better than the rest on
previously unseen data.

The parametric models used in the study exhibited higher RMSE
error in the absence of interaction terms. Since the parametric
model has a fixed form function, the interaction terms are auto-
matically ignored. Therefore, these terms must be tested statisti-
cally for their significance while training the model for
improving performance. The non-parametric models such as ANN
and decision tree have a universal function form, and they implic-
itly take into account the interaction term while modelling. How-
1027
ever, the non-parametric model often overfits the training data,
resulting in low prediction accuracy in the validation dataset.
Moreover, the selection of hyperparameters plays a critical role
and a small change may severely affect model performance. For
instance, a large difference in RMSE can be seen for SVM when a
kernel function is changed from linear to Gaussian although the
Gaussian function has a better fit on training data. Nevertheless,
machine algorithms can identify the patterns in the data to provide
a more reliable estimate.

It is important to note that more parameters, incorporating sur-
rounding rock properties, may improve prediction results. How-
ever, it is difficult to obtain such parameters in the field and
analysis mostly ends up making assumptions. Nevertheless, vari-
able rock properties across 79 training and 23 validation data,
resulting from different experimental scenarios and field condi-
tions, were captured in terms of the BWS parameter which incor-
porates UCS and borehole size effect. This study chose the 3
parameters based on their relevance and simplicity in obtaining
from borehole breakout. The influence of the unknown parameters
that may be relevant in predicting rh is included in the prediction
error. The small error in the ML outputs indicates that the use of
the 3 practically available input parameters effectively contributes
to the prediction.
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The output of ML models depends on the quality and number of
training data, and the dataset must capture the existing pattern to
provide the optimal output. Conducting a borehole breakout
experiment is a timely process with constraints on laboratory
equipment. A true tri-axial machine is required for such experi-
ments which should be capable of applying high stress magnitudes
from all directions. Drilling a borehole under such a high-stress
environment is even more challenging. Due to these difficulties,
there have been only limited borehole breakout experiments car-
ried out in the world. The accuracy of the ML models could be
enhanced by removing outliers or increasing the number of train-
ing samples. However, any potential errors in the training and val-
idation datasets used in this study are hard to detect and remove
since experimental biases are inconceivable from published litera-
ture. Therefore, the authors are trying to enrich the database by
conducting more experiments for highly reliable outputs.
5. Conclusions

This paper presented a comparative analysis of popular ML
techniques on the estimation of rh using borehole breakout. The
findings and conclusions are summarised below point-by-point:

(1) BWS parameter has a comparatively lower correlation (0.38)
to rh than rv (0.89) and hb (0.61) for training data. Whereas
all the parameters show relatively higher correlation on the
validation data (BWS: 0.69, rv: 0.94 and hb: 0.69).

(2) In total, 13 different models were developed and validated
using 79 experimental and 23 field data. Among all ML tech-
niques, the ANNmodel yielded the most accurate estimation
results on field data, with a mean error rate of 10.16% and an
accuracy improvement of 15.17% after bias removal. This is a
significant improvement where this technique shows its
potential to be an alternative method for in-situ stress esti-
mation, considering the simplicity of obtaining borehole
breakout data from acoustic scanners, rather than perform-
ing additional hydraulic or overcoring tests with ancillary
equipment.

(3) It is not possible to design underground excavations without
knowing the absolute stress magnitudes. This highlights the
importance of the proposed technique over conventional
stress polygon method (produces a broad range of horizontal
stress magnitudes), as it provides reliable estimation on
minimum horizontal stress magnitudes.

(4) Moving forward, more breakout experiments have been
planned to explicitly quantify the relationship between in-
situ stress magnitudes and breakout geometries while
obtaining additional data for model training. Field data will
also be collected from other mines or oil sites to enrich the
validation database. It is expected that with additional data
feeding into the ANN model, the prediction accuracy on rh

will be further increased, and consequently, provide a more
reliable in-situ stress estimation technique.
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