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Biodiversity analyses across continental extents are important in providing compre-
hensive information on patterns and likely drivers of diversity. For vascular plants 
in Australia, community-level diversity analyses have been restricted by the lack of 
a consistent plot-based survey dataset across the continent. To overcome these chal-
lenges, we collated and harmonised plot-based vegetation survey data from the major 
data sources across Australia and used them as the basis for modelling species richness 
(α-diversity) and community compositional dissimilarity (β-diversity), standardised to 
400 m2, with the aim of mapping diversity patterns and identifying potential environ-
mental drivers. The harmonised Australian vegetation plot (HAVPlot) dataset includes 
219 552 plots, of which we used 115 083 to analyse plant diversity. Models of species 
richness and compositional dissimilarity both explained approximately one-third of 
the variation in plant diversity across Australia (D2 = 33.0% and 32.7%, respectively). 
The strongest environmental predictors for both aspects of diversity were a combina-
tion of temperature and precipitation, with soil texture and topographic heterogeneity 
also important. The fine-resolution (≈ 90 m) spatial predictions of species richness and 
compositional dissimilarity identify areas expected to be of particular importance for 
plant diversity, including south-western Australia, rainforests of eastern Australia and 
the Australian Alps. Arid areas of central and western Australia are predicted to sup-
port assemblages that are less speciose or unique; however, these areas are most in need 
of additional survey data to fill the spatial, environmental and taxonomic gaps in the 
HAVPlot dataset. The harmonised data and model predictions presented here provide 
new insight into plant diversity patterns across Australia, enabling a wide variety of 
future research, such as exploring changes in species abundances, linking composi-
tional patterns to functional traits or undertaking conservation assessments for selected 
components of the flora.

Keywords: alpha-diversity, beta-diversity, biodiversity, community, composition, 
dissimilarity, plot, richness, species, survey, uniqueness, vegetation

Patterns and drivers of plant diversity across Australia

Karel Mokany, James K. McCarthy, Daniel S. Falster, Rachael V. Gallagher, Thomas D. Harwood, 
Robert Kooyman and Mark Westoby

K. Mokany (https://orcid.org/0000-0003-4199-3697) ✉ (Karel.Mokany@csiro.au) and T. D. Harwood, CSIRO, Canberra, Australia. – J. K. McCarthy 
(https://orcid.org/0000-0003-3060-1678), Manaaki Whenua – Landcare Research, Lincoln, New Zealand. – D. S. Falster (https://orcid.org/0000-0002-
9814-092X), Evolution and Ecology Research Centre, Univ. of New South Wales, Sydney, NSW, Australia. – R. V. Gallagher (https://orcid.org/0000-
0002-4680-8115), Hawkesbury Inst. for the Environment, Western Sydney Univ., Penrith, NSW, Australia. – RVG, R. Kooyman and M. Westoby 
(https://orcid.org/0000-0001-7690-4530), School of Natural Sciences, Macquarie Univ., Sydney, NSW, Australia. RK also at: Royal Botanic Garden, 
Sydney, NSW, Australia.

Research article

 16000587, 2022, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ecog.06426 by N

H
M

R
C

 N
ational C

ochrane A
ustralia, W

iley O
nline L

ibrary on [28/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Page 2 of 15

15

Introduction

Understanding spatial biodiversity patterns and the processes 
that shape them is fundamental to improving our knowledge 
of the natural world (Cox et al. 2020). This knowledge is also 
vital to inform conservation policy, planning and manage-
ment decisions aimed at retaining the earth’s biodiversity in 
the face of increasing threats (Moilanen and Wilson 2009). 
We need to understand how diversity is distributed in order 
to ensure our conservation measures adequately represent 
biodiversity (Ferrier and Drielsma 2010).

While good knowledge of diversity patterns is important, 
for many taxonomic groups our understanding is still incom-
plete across much of the world. One such case is for plant 
diversity across Australia; with more than 21 000 native vascu-
lar plant species, and 93% of these being endemic (Chapman 
2009, CHAH 2022), the Australian continent harbours 
unique plant assemblages inhabiting a broad range of ecosys-
tems (i.e. alpine, temperate, tropical, arid, Mediterranean). 
Plant diversity in Australia faces increasing and interacting 
threats from human actions, such as ongoing land clearing, 
extensive grazing, altered fire and water regimes, climate 
change and invasive species (Broadhurst and Coates 2017). 
An improved understanding of spatial diversity patterns in 
the Australian flora and their likely drivers is an essential 
foundation on which to build conservation actions aimed at 
both halting declines and restoring ecosystems.

To date, research on Australian plant diversity patterns 
and processes has been based primarily on presence-only 
occurrence observations, such as from herbarium collections 
(Crisp et al. 2001, Goldie et al. 2010, Stevenson et al. 2012, 
González-Orozco et al. 2014, Gallagher 2016, Guerin et al. 
2016, Thornhill et al. 2016). In this regard, Australia has good 
coverage, with > 16M occurrence observations for plant spe-
cies recorded (Atlas of Living Australia 2021). However, there 
are challenges in using such data to analyse and understand 
patterns in plant community diversity, primarily due to the 
lack of information on species absences or abundances, and the 
inherent bias in the species that are documented or the places 
and times that species are recorded (Isaac and Pocock 2015). 
For example, separating ‘true’ patterns in species richness from 
observation effort is very difficult when using presence-only 
data (Gotelli and Colwell 2011, Neyens et al. 2019).

Survey data of species composition are strongly prefer-
able for analyses of plant community diversity, providing a 
systematic record of the species that were both present and 
absent in a survey plot at the time surveyed (Bruelheide et al. 
2019, Večeřa et al. 2021). In Australia, eight individual state 
and territory government agencies are primarily responsible 
for collecting and collating plant community survey data. 
Harnessing such data for continental diversity analyses has 
been a substantial challenge, given these jurisdictions imple-
ment different community survey methods, and apply their 
own systems to document, store and provide access to those 
data. To date, Australia has had no national, standardised plant 
community survey dataset that combines available data from 
the state and territory agencies (Gellie et al. 2018). Plot-based 

analyses of plant diversity patterns in Australia have, there-
fore, been restricted to particular regions (Austin et al. 1996, 
Hunter 2005, Guerin  et  al. 2013, Mokany  et  al. 2014, 
McCarthy et al. 2018) or have utilised a relatively small num-
ber of survey plots (Rice and Westoby 1983, Andermann et al. 
2022). The TERN AusPlots initiative has surveyed ca 870 
plots across Australia to date using standard methods; how-
ever, these data still have substantial spatial, environmental 
and taxonomic gaps (Guerin et al. 2021).

To advance our understanding of plant community diver-
sity patterns across the Australian continent, we harmon-
ised survey data from major sources across Australia into a 
single, consistent dataset. We report on the key attributes of 
this harmonised Australian vegetation plot (HAVPlot) data-
set, and use it to assess spatial patterns in two key dimen-
sions of diversity: species richness (α-diversity) and pairwise 
community compositional dissimilarity (β-diversity). Our 
consideration of compositional dissimilarity is particularly 
important, given its strong role in determining the total 
number of species (γ-diversity) at regional and continental 
extents (Mokany et al. 2011). We model both aspects of plant 
diversity as a function of environmental attributes selected 
from a broad range of spatial environment layers of poten-
tial importance, with the aim of elucidating likely continent-
wide drivers of plant species richness and compositional 
turnover. Finally, we use these diversity models to generate 
fine-resolution (≈ 90 m) maps of predicted plant diversity 
patterns, identifying areas that are priorities for future surveys 
and for conserving Australia’s plant diversity.

Material and methods

Study area

The region considered for the present analyses was the 
Australian continent and nearby islands. We did not con-
sider islands that are part of the Australian territories but 
distant from the continent, such as Lord Howe Island, given 
the lack of consistent fine-resolution spatial environmen-
tal data that encompass these areas (e.g. soil data: Viscarra 
Rossel et al. 2015).

Plant community survey data

Given the absence of an existing harmonised plant commu-
nity survey plot dataset for Australia, we obtained and col-
lated data primarily from state/territory and federal agencies, 
which are custodians of the largest survey datasets. Although 
the Terrestrial Ecosystem Research Network (TERN) AEKOS 
data portal (TERN 2022) provides open access to plant com-
munity survey data for Australia, it currently provides lim-
ited harmonisation or method alignment, and represents 
only a subset of data held by state/territory agencies. Some 
major state agency datasets are not available via AEKOS (e.g. 
Victoria, Western Australia, Tasmania, Northern Territory) 
and others are missing more recent surveys. We therefore 
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obtained plant community survey data from the relevant 
state/territory custodians wherever possible, with AEKOS 
used as the source where that was not possible. In some cases 
we downloaded data directly from publicly accessible web-
sites, while for others we required assistance and permission 
to obtain relevant data (Supporting information).

Given the different formats of the source data, we devel-
oped a simple, customised and structured data format to har-
monise across sources, based broadly on the Veg-X schema 
(Wiser  et  al. 2011), with existing standards for data fields 
used wherever possible (Veg-X, Darwin Core). Source data 
were harmonised to the common format using a customised 
script in R (<www.r-project.org>). Taxonomic nomencla-
ture was standardised to the Australian Plant Census (CHAH 
2022), using code adapted from Falster  et  al. (2021), with 
only vascular plant species retained. In the present analyses, 
records were considered at the species level, with information 
on finer taxonomic resolution (e.g. sub-species) ignored.

Survey data refinement and scaling

For our analyses, we refined the plot dataset to those data 
most suited to assessing and modelling plant community 
composition. From the full set of collated and harmonised 
plant community survey data (n = 219 552 plots) (Fig. 1A, 
Supporting information) we retained only those plots that 
sampled all vascular plant species present aboveground at 
the time of survey (full floristic surveys), where the plots 
were contiguous areas and where the plot area was available 
(n = 158 032 plots) (Supporting information). Given the 
importance of plot area in influencing community diversity 
metrics, we further excluded plots for our analyses that were 
very small (< 20 m2; n = 3354) or very large (> 20 000 m2; 
n = 873). We also retained only those plots where ≥ 70% 
of the plant species present were native to Australia, and 
where ≥ 90% of taxa present were identified to species level. 
These refinements led to a dataset comprising 115 083 plots 
that form the basis for our analyses and modelling (Fig. 1B, 
Supporting information). Almost one-half of the plant com-
munity survey plots were from the New South Wales BioNet 
collection (n = 58 466), with the Victorian Biodiversity Atlas 
also providing a large number of survey plots (n = 14 888) 
given the small area of the state (Supporting information). 
The reported coordinate uncertainty for the selected plots 
was generally low (median = 30 m, 95th percentile = 100 m).

To derive a comparable species richness metric across plots 
of different area, we scaled the surveyed native plant species 
richness of each plot (Supporting information) to the median 
plot area of 400 m2 (Supporting information), assuming a 
simple species–area power relationship (S = cAz) (Rosenzweig 
1995) with standard scalar z = 0.25 applied across all survey 
plots. The species–area power model has been shown to per-
form well at relatively fine spatial resolutions (Dengler et al. 
2020) and a scalar of approximately z = 0.25 for vascular 
plants at fine spatial resolutions is generally supported by a 
number of studies (Rosenzweig 1995, Crawley and Harral 
2001, Drakare et al. 2006, Dengler et al. 2020, Dembicz et al. 

Figure 1. Locations and primary data sources for vegetation survey 
plots collated in the harmonised Australian vegetation plot 
(HAVPlot) dataset, including: (A) all 219 552 survey plots 
(Supporting information); (B) the 115 083 plant community sur-
vey plots used in the present analyses and modelling (Supporting 
information). The selected plots (B) are those from the full dataset 
that are full floristic surveys with known plot area, excluding very 
small (< 20 m2) or large (> 20 000 m2) plots, excluding plots with 
< 70% of species recorded being native to Australia and excluding 
plots where < 90% of species were identified to species level.
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2021). A sensitivity analysis indicated that the modelling 
results of our study are consistent when different species–area 
scalars are applied (z = 0.15–0.30) (Supporting information).

Similarly we scaled the Sørensen’s compositional dissimi-
larity between site-pairs to a plot area of 400 m2, based on 
the area and species richness of the component plots, using 
the method described in Mokany et al. (2013). This approach 
uses the species–area power model to scale both the num-
ber of species in each plot in a pair as well as the number of 
species shared between the two plots, based on their area, 
then uses these scaled values to calculate their Sørensen’s 
dissimilarity. For this we applied a scalar of zcom = 0.4 in the 
power relationship for the number of species shared between 
a site-pair, as applied previously (Mokany et al. 2014). A sen-
sitivity analysis indicated that the modelling results of our 
study are consistent when different scalars (zcom) are applied 
(zcom = 0.30–0.45) (Supporting information).

Environmental predictors

Spatially complete and consistent environmental data for 
Australia were collated, derived and prepared, being aligned 
to the SRTM 3 second (≈ 90 m) digital elevation model 
(DEM) of Australia (Gallant  et  al. 2011). Topographically 
adjusted climate layers were generated using CSIRO’s 
Terraforma package (Reside et al. 2013). This involved first 
generating monthly climate layers using ANUCLIM ver. 6.1 
(Xu and Hutchinson 2010) based on the SRTM 3s DEM 
and underlying climate data for the period 1976–2005. The 
climate layers derived in ANUCLIM were then adjusted for 
the effects of topography (slope and direction) on local cli-
mate, based on fine-resolution solar radiation data, including 
mean monthly total shortwave (sloping surface), shortwave 
radiation ratio and net radiation (Gallant  et  al. 2014a, b, 
c). The climate variables generated using this approach were 
annual precipitation, precipitation seasonality (both solstice 
and equinox seasonality), annual evaporation (both poten-
tial and actual), annual water deficit (annual precipitation 
− potential evaporation), short-wave solar radiation (mini-
mum monthly, maximum monthly), temperature (minimum 
monthly, maximum monthly, isothermality) and potential 
plant growth index.

Soil and landform layers at 3-s resolution were obtained 
from the TERN Soil and Landscape Grid of Australia (Gallant 
and Austin 2015, Grundy et al. 2015, Viscarra Rossel et al. 
2015) including bulk density, available water-holding capac-
ity, organic carbon content, nitrogen content, phosphorus 
content, pH and sand/silt/clay content, all aggregated to 
two depth ranges (0–30, 30–100 cm), plus an additional 
layer for total soil depth. These variables were supplemented 
with topographic descriptor variables derived from the 3-s 
DEM, including topographic wetness index (Gallant and 
Austin 2012b) and elevation focal range within a 300 m 
radius (Gallant and Austin 2012a), both of which may be 
useful in incorporating the effects of local topographic posi-
tion on plant community composition. To account for the 
role that extended periods of inundation may have on plant 

community composition, water observations from space 
(WOfS) data (Mueller et al. 2016) were used to derive a layer 
representing the average proportion of time each location 
was covered by freshwater (removing coastal and estuarine 
observations within 2 m elevation of the high tide mark). 
Environment data were extracted for the plant community 
plot locations, and correlations between environment vari-
ables were quantified to inform variable selection.

Species richness modelling

We generated a model of plant community species richness 
using generalised additive modelling (GAM) (Hastie and 
Tibshirani 1986), using the mgcv package in R (Worm et al. 
2006, Wood 2016, <www.r-project.org>) with a Poisson 
link function and a maximum of 5 knots per predictor vari-
able to avoid overfitting. Models were developed applying a 
cross-validation sample of 80% of randomly selected sites for 
model training, and the remaining 20% of sites were used for 
validation, with this random sampling procedure repeated 10 
times. We derived a reduced set of candidate predictor vari-
ables from those described above by assessing the predictive 
power of each variable independently, then adding variables 
to the candidate set based on their individual explanatory 
power, ensuring no variables selected for further assessment 
were highly correlated (absolute Pearson’s R > 0.7). From 
this initial candidate set of variables we applied a backward 
elimination variable selection approach. The performance of 
preliminary models to predict species richness for the test-
ing sites was used to remove the least informative variable 
from the candidate set (assessed using deviance explained), 
stopping when a parsimonious set of statistically significant 
predictor variables remained.

Compositional dissimilarity modelling

We generated a model of pairwise community compositional 
dissimilarity for vascular plants using generalised dissimilar-
ity modelling (GDM) (Ferrier et al. 2007), applying the gdm 
package in R (Fitzpatrick et al. 2021, <www.r-project.org>) 
using the default of three i-spline basis functions per predic-
tor. Given the very large number of possible pairs of the sur-
vey plots (> 6 billion), we applied an integrated approach to 
site-pair sampling and variable selection, based on cross-val-
idation. For each iteration of a cross-validation sample, 80% 
of sites were randomly selected to train the GDM, while the 
remaining 20% of sites were used to validate the predictions 
of the provisional models. For both sets of sites (training and 
testing) we applied the same methods to sample site pairs, 
with 300 000 site pairs generated for training the model 
(from the training plots) and 50 000 site pairs generated to 
test the model (from the testing plots). For each combination 
of model predictors assessed, this random sampling proce-
dure was repeated 10 times.

Site-pair samples were generated for each of the test and 
training set of sites, based on a geographically weighted sam-
pling scheme. This scheme is intentionally biased towards 
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selecting site pairs that are geographically closer together, 
hence likely to be more environmentally similar (across con-
tinental extents), while undertaking this sampling in an even 
manner across Australia. This approach ensures a good spatial 
and environmental coverage of sites in site pairs, from across 
the geographic and environmental space. For each sampling 
iteration, we applied a randomly situated net of sample nodes 
at 150 km distance, randomly sampling sites to combine into 
pairs using a Gaussian probability distribution around each 
node, and incorporated 10% of site pairs randomly selected 
over Australia (Mokany et al. 2018). We also included geo-
graphic distance as a potential predictor, calculated between 
each pair of locations using a projected coordinate system 
(Australian Albers, EPSG:3577).

As with the species richness model development, we 
derived a reduced set of candidate predictor variables based 
on individual explanatory power and predictor correlations. 
A final set of predictors was derived via backward elimination 
variable selection, stopping when a parsimonious set of sta-
tistically significant predictor variables remained in the final 
model, assessed via permutation test (Mokany  et  al. 2014, 
Fitzpatrick et al. 2021).

Spatial analyses

We spatially projected the models of plant community spe-
cies richness and pair-wise compositional dissimilarity, using 
fine-resolution (3 s; ≈ 90 m) spatially complete layers of the 
predictor variables for the Australian land surface (Supporting 
information). For the compositional dissimilarity model, we 
visualised patterns in community dissimilarity by reducing 
the dimensionality of the model transformed predictor layers 
using principal components analysis (PCA), assigning a red, 
blue and green colour dimension to the first three PCA axes, 
then mapping this by combining the colours (Mokany et al. 
2022c).

To identify areas of high potential importance for plant 
diversity, we combined the spatial projections of plant com-
munity species richness and pair-wise compositional dissim-
ilarity to identify locations predicted to have more unique 
species assemblages containing a larger number of species. We 
quantified the compositional uniqueness of each location by 
calculating its average predicted dissimilarity to all locations 
in a random sample of 1% of the grid cells across Australia. 
We then normalised these compositional uniqueness values 
to a 0–1 range, normalised the predicted species richness 
values to a 0–1 range and calculated a ‘diversity importance’ 
score as the average of these two normalised values for each 
location across Australia.

To identify priority areas for collection and/or collation of 
additional survey plot data, we assessed the representativeness 
of the 115 083 survey plots used in our analyses (Fig. 1B), 
using the spatial projections of plant community composi-
tional dissimilarity. Specifically, we calculated the mean pre-
dicted similarity of each location to the survey plot locations, 
divided by the mean predicted similarity of each location 
to a random sample of 1% of the grid cells across Australia 

(Mokany et al. 2022c). Under this approach, locations with 
values > 1 are expected to be over-represented by the survey 
plot data while locations with values < 1 are expected to be 
under-represented by the survey plot data.

Results

Summary of plant community survey data

The plant community survey plots used for the present 
analyses and modelling (n = 115 083 plots) included 16 
593 species (15 131 native species), with an average 28.9 ± 
16.0 (SD) native species per plot (range = 1–248) (Fig. 1B, 
Supporting information). There were an average of 1.9 ± 3.1 
(SD) non-native species per plot, which were excluded from 
the diversity analyses. The median frequency at which plant 
species were recorded in the survey plots was 21, with the 
most frequently recorded species being Lomandra longifolia 
(n = 22 476 survey plots), while 1987 species occurred in 
only a single survey plot. Of the pairs of survey plots selected 
for modelling community compositional dissimilarity (n = 3 
000 000), the mean Sørensen’s site-pair dissimilarity was 0.94 
± 0.08 (SD) (range = 0–1). The mean area of the plots anal-
ysed was 1097 m ± 2108 (SD).

Species richness modelling

The final model of plant species richness contained nine pre-
dictor variables and explained 33.0% deviance in observed 
species richness (root mean square error = 13.9) (Table 1, 
Supporting information). The strongest predictors of plant 
species richness across Australia were temperature (maxi-
mum and minimum) and precipitation (Table 1, Fig. 2). The 
richness model also included predictors relevant to topogra-
phy, soil texture, solar radiation and inundation frequency 
(Table 1, Fig. 2). There was no obvious bias in prediction 
error for scaled species richness in terms of the surveyed plot 
area (Supporting information). Spatial projection of the plant 
species richness model indicated the highest predicted species 
richness in the south-west, eastern ranges and the Kimberley 
region (north-west), while the lowest predicted richness was 
in arid central Australia (Fig. 3A).

Compositional dissimilarity modelling

The final model of compositional dissimilarity included nine 
predictor variables and explained 32.7% deviance in compo-
sitional dissimilarity (root mean square error = 0.07) (Table 1, 
Supporting information). The strongest predictors of plant 
community compositional dissimilarity across Australia 
were geographic distance, precipitation, potential plant 
growth index, maximum temperature and elevation focal 
range (Table 1, Fig. 4). Because of low to moderate correla-
tion between predictor variables, the unique contribution of 
individual predictors to the multivariate model was relatively 
low (Table 1), with geographic distance having the greatest 
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irreplaceable explanatory power. The simplified spatial depic-
tion of the compositional dissimilarity model (through the 
first three PCA axes of the transformed predictor variables) 
indicated areas of more similar plant communities within the 
south-east, within the monsoonal north, within the coastal 
south-west and within the eastern interior versus within the 
western interior (Fig. 3B), with notable differences between 
these regions. The first three PCA axes explained 55.3, 23.2 
and 14.4% (92.9% total) of the variance in the transformed 
predictor variables.

Spatial analyses

Combining predicted spatial patterns of plant community 
species richness and compositional uniqueness to highlight 
areas of particular importance for plant diversity in Australia 
(Fig. 3C) shows similar patterns to the species richness 
projection (Fig. 3A), but with some nuance. For example, 
some areas have relatively high species richness but relatively 
lower diversity importance when incorporating composi-
tional uniqueness, such as the north-west (Kimberley region) 
(Fig. 3C). In contrast, areas such as western Tasmania have 
moderate predicted species richness, but relatively higher 
diversity importance, due to high levels of predicted unique-
ness (Fig. 3C). The survey plots utilised in the analyses were 
found to over-represent environments of south-eastern 
Australia, and under-represent central and western Australia 
(Fig. 3D). The Great Sandy Desert in north-western Australia 
was most poorly represented by the survey plots used in our 
analyses (Fig. 3D). This broadly reflected the coverage of the 
analysed plots in climate space (Supporting information), 
with good coverage in temperate environments but sparser 
coverage in the hottest and driest environments.

Discussion

Here we provide new insight into plant community diver-
sity patterns across Australia. This analysis has identified 
important potential continent-wide environmental drivers 
of plant community species richness and compositional 
dissimilarity, with the response functions of plant diversity 
to these drivers quantified. Using these models, we have 
produced fine-resolution maps of predicted plant com-
munity diversity across Australia, which help to identify 
areas likely to be of particularly high importance for con-
servation planning and management across the continent. 
These advances in our understanding of Australian plant 
diversity are based on the harmonised plant community 
survey dataset we have compiled, providing a data-rich 
basis for our continental biodiversity analyses and broad 
potential to facilitate future research. The plot-based 
fine-resolution analyses that we present provide unique 
macroecological insights into plant diversity patterns at a 
continental extent (Beck et al. 2012, Biurrun et al. 2021, 
Večeřa et al. 2021).

Potential environmental drivers of plant diversity in 
Australia

Identifying the relationships between plant diversity and 
potential environmental drivers is complicated by the vary-
ing degrees of correlation between environmental variables 
and the way these variables are combined in multivariate 
models, such as those we have developed. Previous plot-based 
analyses within Australia and around the world have consis-
tently identified moisture and temperature as key drivers of 
vascular plant species richness and compositional turnover 

Table 1. Variable contribution to the models of plant species richness and plant community compositional dissimilarity for Australia. For the 
species richness model, the importance of each variable in the multivariate model is indicated by the chi-squared statistic, while the impor-
tance of the predictor on its own is indicated by the deviance explained (D2) in a single variable model. For the compositional dissimilarity 
model, the importance of each variable in the multivariate model is indicated by the loss of deviance explained when that variable is 
dropped, while the importance of the predictor on its own is indicated by the deviance explained in a single variable model. Empty cells 
indicate that the variable was not used in the model for that diversity metric.

Predictor variable

Species richness Compositional dissimilarity
All variable model 

chi-squared
Single variable model 

D2 (%)
All variable model loss of 

D2 if dropped (%)
Single variable 
model D2 (%)

Max. temperature warmest month (°C) 53 629 9.3 0.6 16.5
Min. temperature coldest month (°C) 15 491 1.1 0.5 7.6
Isothermality (%) 1391 1.7
Mean annual precipitation (mm yr−1) 27 983 15.5 0.7 18.3
Max. monthly radiation (W m−2) 9028 6.6
Potential plant growth index 3543 14.8 0.7 18.1
Elevation focal range, 300 m radius (m) 12 659 10.4 1.3 7.6
Soil silt content, 0–30 cm depth (%) 13 466 9.2
Soil sand content, 0–30 cm depth (%) 0.5 5.2
Soil clay content, 0–30 cm depth (%) 0.3 5.7
Frequency of water coverage (%) 7538 2.0 0.4 0.9
Geographic distance (km) 2.0 19.2

All variables statistically significant at p < 0.001.
Multivariate species richness model deviance explained = 33.0%, n = 115 083 plots, intercept = 3.25.
Multivariate compositional dissimilarity model deviance explained = 32.7%, n = 300 000 site-pairs per cross-validation sample, intercept = 1.3.

 16000587, 2022, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ecog.06426 by N

H
M

R
C

 N
ational C

ochrane A
ustralia, W

iley O
nline L

ibrary on [28/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense
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(Austin  et  al. 1996, Mokany  et  al. 2012, 2014, Keil and 
Chase 2019). Our analyses align with these previous studies, 
and with established theory on the evolution and distribu-
tion of the Australian flora (Hill 2017). Many previous stud-
ies of Australian plant diversity have been implemented at 
much coarser spatial resolutions (Crisp et al. 2001, González-
Orozco  et  al. 2014, Thornhill  et  al. 2016), making direct 
comparison of identified key environmental drivers difficult, 

given the influence of grain size on biodiversity patterns 
(Field et al. 2009, Keil and Chase 2019).

Annual precipitation was one of the most important 
predictors in our models (Table 1), with the response func-
tions indicating that increases in precipitation at the low 
end of the gradient (100–1000 mm yr−1) strongly promote 
increased species richness and turnover in community com-
position (Fig. 2, 4). Given the predominance of aridity across 

Figure 2. Plant species richness model response functions for the nine predictor variables selected. Species richness is scaled to the number 
of species per 400 m2. Solid red lines indicate the predicted richness, when all other variables are held at their mean value across each section 
of the predictor gradient. Densities of observed values are shown in blue, with a horizontal line in grey marking the average species richness 
across all plots (27.5 species). The generalised additive modelling spline functions are shown in insets to each panel.
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Australia, with 67% of the land area having less than 500 
mm yr−1 mean annual precipitation, many plant species in 
low rainfall environments have likely adapted to relatively 
narrow bands of precipitation (Gallagher et al. 2019), con-
tributing to these community-level diversity patterns. The 
response of plant diversity to temperature was also strong, 
though more complex. Maximum temperature was a stron-
ger predictor of richness and turnover than minimum 

temperature (Table 1), with richness being greater in plots 
with intermediate maximum temperature (~ 30°C) and low 
minimum temperature (< 5°C) (Fig. 1). The role of temper-
ature in influencing plant community richness and turnover 
is highly dependent on the span of the temperature gradient 
considered and the interaction with other variables, such as 
precipitation (Pausas and Austin 2001, Sommer et al. 2010). 
While increasing temperature can promote plant growth 

Figure 3. Spatial projections and analyses using the models of species richness and compositional dissimilarity for vascular plants across 
Australia. (A) Predicted species richness for a 400 m2 area (median survey plot area). (B) Primary differences in predicted community com-
position based on a PCA of the generalised dissimilarity model (GDM) transformed environmental predictors, where more similar colours 
indicate more similar expected community composition. (C) An example of predicted diversity importance for each location, being a 
weighted average of the range normalised (0–1) predicted species richness and the range normalised (0–1) predicted compositional unique-
ness (Supporting information). (D) Estimated representativeness of the 115 083 plots used in our analyses (Fig. 1B, Supporting informa-
tion), being the mean predicted similarity of each location in Australia to the survey plot locations, relative to mean predicted similarity of 
each location to all Australia (values > 1 (green) are over represented while values < 1 (brown) are under-represented by the survey plots).
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(Angilletta et al. 2003), in Australia the locations with the 
highest maximum temperatures also receive some of the low-
est amounts of precipitation (Supporting information). In 
contrast, our data indicate that locations with low minimum 
temperatures have high plant species richness (Fig. 2), likely 
due to the reduction in plant size in colder environments 
(e.g. alpine) enabling a greater number of species to co-occur 
in a given area (Storch et al. 2018), though there is evidence 
contrary to this hypothesis for the Australian Alps (Mallen-
Cooper and Pickering 2008).

Here we consider the interaction between energy (tem-
perature, solar radiation) and moisture availability through 
the potential plant growth index (Xu and Hutchinson 2010), 
which was a strong predictor of both richness and composi-
tional dissimilarity (Table 1). We observed a relatively con-
stant increase in species richness with increasing plant growth 
index (Fig. 2), and a relatively constant rate of compositional 
turnover along this gradient (Fig. 4). This finding fits with 
widespread evidence from Australia and around the world 
for strong, generally positive relationships between plot-scale 
plant community diversity and plant growth (Specht and 
Specht 1993, Keil and Chase 2019).

Environmental heterogeneity is another key driver of 
plant species richness identified by previous plot-based stud-
ies (Costanza  et  al. 2011, Stein  et  al. 2014), and reflected 
in our analysis through elevation focal range (the range of 
elevations within a 300 m radius). Richness increased with 
elevation focal range values from 0 to 75 m, which covers 
95.3% of locations in Australia, with evidence of lower spe-
cies richness in the few areas where local topographic vari-
ability becomes very high (Fig. 2). Similarly, differences in 
elevation focal range explained differences in composition 
mostly along the lowest values (0–25 m) (Fig. 4), indicating 
that flat or near-flat locations were consistently different in 
their species composition from those with more topographic 
variability.

Substrate is also commonly observed to influence vegeta-
tion, though its role in influencing plant diversity is better 
understood at local–regional extents rather than continental 
extents (Pärtel 2002, Hulshof and Spasojevic 2020). Our 
analyses identified soil texture (soil clay, silt and sand con-
tent) having moderate importance in explaining changes 
in species richness and compositional dissimilarity across 
Australia (Table 1, Fig. 2, 4). Improved methods for incorpo-
rating region-specific influence of soil attributes in models of 
plant diversity across a continental extent would be valuable.

Geographic distance was a key predictor of plant compo-
sitional dissimilarity across Australia (Fig. 4A), as would be 
expected for a continental analysis. Much of the variation in 
compositional dissimilarity explained by geographic distance 
may be due to spatial autocorrelation in the environmental 
predictors (Table 1) (Mokany et al. 2022c), or by it acting as a 
surrogate for important environmental variables not included 
in our model. However, the spatial separation of locations 
undoubtedly has an important role in influencing compo-
sitional turnover across Australia. This is not only through 
biogeographic processes that cause divergent evolutionary 

trajectories in different regions of Australia with similar 
environments, such as south-east and south-west Australia 
(Hopper and Gioia 2004), but also through stochastic com-
munity assembly processes playing out across large spatial 
extents (Hubbell 2001). More advanced consideration of 
geographic distance could further improve our predictions 
of compositional dissimilarity, such as using least-cost paths 
that consider environment barriers (Adriaensen et al. 2003).

Our modelling suggests that both plant species richness 
and compositional dissimilarity across Australia are related 
to a common set of environmental variables, with six out of 
the nine best predictor variables shared between the mod-
els of these two aspects of diversity (Table 1). This outcome 
is logical, given that the same inherent process influences 
both metrics – changes in the occurrences of species across 
environmental and spatial gradients (Whittaker 1960, 
Veech  et  al. 2002). In addition, the Sørensen dissimilarity 
metric we use incorporates turnover due to nestedness as well 
as replacement (Baselga 2010), so it is not independent of 
species richness.

It is also important to highlight that, while our analyses 
focus on continental drivers of plant diversity across Australia, 
we expect the environmental variables we identified will vary 
in importance across different regions of Australia. Owing 
to biogeographic idiosyncrasies and evolutionary history, we 
expect that other environmental variables will be strongly 
related to plant diversity when considered across smaller 
spatial extents (Pearson and Dawson 2003). In addition, the 
models we fitted have relatively modest explanatory power, 
explaining about one-third of the variation in species richness 
and compositional dissimilarity (Table 1). While we could 
have increased the explanatory power of our models by pro-
viding the splines for each predictor with more flexibility, we 
intentionally maintained simpler response functions in order 
to identify the main trends in diversity along each environ-
mental gradient and to avoid overfitting. The relatively large 
amount of variation in plant diversity unaccounted for is 
likely to be at least partially due to different regional drivers 
across Australia, as well as to inherent stochasticity in spe-
cies occurrences. The use of spatial environmental layers as 
predictors also likely reduced the explanatory power of our 
diversity models, given that each predictor layer has its own 
inherent error. The data we have prepared and analysed also 
enable more mechanistic exploration of environmental driv-
ers of plant diversity in Australia, though this is limited at 
present by the lack of process-based diversity models appli-
cable at the continental extent.

Spatial patterns of plant diversity across Australia

Projecting the models of plant species richness and com-
positional dissimilarity spatially across Australia generates 
patterns that broadly align with expectations and previous 
analyses (Andrew et al. 2021). Plant species richness is higher 
in the mesic temperate and tropical coastal ranges, while it is 
lowest in the arid interior (Fig. 3A). Particularly high rich-
ness in coastal south-western Australia aligns with existing 
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evidence and the importance of the region as a known floris-
tic diversity hotspot (Hopper and Gioia 2004). High species 
richness in the Kimberley region in north-western Australia 
is unexpected (Fig. 3A), and may at least partially be an arte-
fact of the sparse data available for this region (Fig. 1), with 
most of the data that are available being from targeted surveys 
of small patches of rainforest (Kenneally et al. 1991) which 
sit within a much broader landscape dominated by tropical 
savanna vegetation.

Predictions from the model of compositional dissimilarity 
indicate many of the patterns expected for Australian plant 

community turnover (Fig. 3B). These include broad align-
ment with the biomes and floristic regions recognised across 
Australia (González-Orozco et al. 2014, Ebach and Murphy 
2020), including the eastern ranges, wet tropics, monsoonal 
tropics, south-west and the arid centre. We also visualised 
the model of compositional dissimilarity by calculating the 
expected compositional uniqueness of each location, being the 
average dissimilarity of each location to all other locations in 
Australia. This analysis again aligned with expectations, with 
more common environments such as the arid centre having 
lower predicted uniqueness than much more restricted and 

Figure 4. Fitted spline functions for each predictor variable included in the generalised dissimilarity model (GDM). For each panel, the 
variable’s native scale is on the x-axis, and the GDM transformed values on the y-axis. The maximum height of the spline function (hence 
the maximum value of the transformed predictor: f(x)) indicates the overall importance of the predictor in explaining dissimilarities. 
Sections of the spline function with steeper slope indicate greater dissimilarity per unit change in the predictor variable along that section 
of the gradient. Dashed lines indicate extremes of predicted spline functions across 10 cross-validation sets.
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rare environments, such as areas of rainforest, alpine areas 
and south-west Australia (Supporting information).

Here we have combined the spatial predictions of plant 
species richness and compositional uniqueness to map an 
index of ‘diversity importance’ across Australia. The loca-
tions predicted to support the most unique and speciose 
assemblages are in south-west Australia, areas of rainforest 
in coastal eastern Australia and the Australian Alps in the 
south-east (Fig. 3C). These areas identified in our analyses 
as being of high importance for plant diversity in Australia 
are likely to have more rare species of conservation interest 
than other locations, and they align with a large body of past 
research on the diversity of the Australian flora, especially the 
importance of relictual rainforest habitats (Webb et al. 1984, 
Kooyman et al. 2012).

The spatial predictions of plant diversity patterns across 
Australia we have derived and made available (Mokany et al. 
2022a) could have a variety of conservation applications. The 
fine-resolution (≈ 90 m) maps of species richness (Fig. 3A) 
compositional uniqueness (Supporting information) and 
diversity importance (Fig. 3C) could be combined with spa-
tial information on habitat condition (Harwood et al. 2016) 
and used to inform policy, planning and management of 
development or restoration activities (Ferrier and Drielsma 
2010). These would be particularly valuable where consistent 
information is required at a national level or across state bor-
ders. The spatial prediction layers from the compositional dis-
similarity model could also form the basis for a wide variety 
of further conservation assessments (Mokany et al. 2022c), 
such as assessing the representativeness of existing and pro-
posed protected areas (Williams et al. 2016).

The harmonised plant community survey data

We spent considerable effort in collating and harmonising 
plant community survey data from across Australia to form the 
basis for our analyses. A key aspect of this data harmonisation 
process involved confirming important methodological aspects 
of each ‘project’ (set of linked plot surveys), particularly the 
dimensions of the area surveyed and the taxonomic scope of 
the survey (i.e. whether all or a subset of vascular plants were 
recorded). These important data are often not available from 
the source data files, though they are crucial when synthesizing 
data from multiple projects. Another important aspect of our 
data harmonisation process involved standardising and cor-
recting species names to the Australian plant census (CHAH 
2022), accounting for typos and use of different names for a 
species by different state agencies, and also changes in species 
names with ongoing taxonomic revision.

The harmonised continental plot dataset we have gener-
ated for Australia (‘HAVPlot’) should be a valuable resource 
for a wide range of future analyses, transforming quantita-
tive understanding of the Australian flora (Mokany  et  al. 
2022b). Potential applications include improved modelling 
of species distributions where presence–absence data are pre-
ferred over presence-only data, and quantifying gradients in 
vegetation functional attributes by combining the plot data 

with newly available trait datasets (Falster et al. 2021). The 
HAVPlot dataset could also be combined with other conti-
nental plot datasets (Chytrý et al. 2016, Maitner et al. 2018) 
and incorporated into global plant community survey data-
sets (Bruelheide et al. 2019), providing a more standardised 
and comprehensive representation of Australian plots in mac-
roecological analyses. While some of the component datasets 
have license conditions that restrict us from sharing them, we 
have provided access to as much of the HAVPlot dataset that 
we are legally permitted to (205 084 plots) (Mokany et al. 
2022b). Finally, we suggest that it would be beneficial for 
Australian state government agencies to move to more consis-
tent approaches to providing open access to up-to-date eco-
logical survey data.

The HAVPlot dataset we have produced implements a 
relatively simple relational data structure, harnessing exist-
ing standards wherever possible for naming and organis-
ing the data (Wiser et al. 2011). We note that the analyses 
presented here utilise only a portion of the total HAVPlot 
dataset (Fig. 1) and that alternative applications may use 
more or fewer of the complete set of plots available. It is also 
important to emphasise that the current HAVPlot dataset 
has substantial gaps in spatial, environmental and taxonomic 
coverage. Far fewer data are available in central, western 
and northern Australia compared to the more intensively 
surveyed south-east (Fig. 1, 3B, Supporting information). 
These areas and environments that are less well represented 
in the plot data, particularly the western deserts, are obvi-
ous priorities for future plant community survey projects 
to ensure a more balanced understanding of diversity pat-
terns. Also noteworthy is the taxonomic representation of 
HAVPlot, with observations of 15 826 native species in the 
full dataset and 15 131 native species in the plots analysed 
here (Supporting information). While that is a large propor-
tion of the 21 708 Australian native plant species currently 
documented (CHAH 2022), there remain thousands of spe-
cies not represented in the HAVPlot dataset. Given that the 
species not surveyed are likely to be rare, it may take many 
more survey plots to achieve near-full taxonomic coverage.

There is also substantial scope to expand the current 
HAVPlot dataset by incorporating the many smaller plot 
datasets held by other agencies and universities. This could 
include the many plant community surveys undertaken as 
a part of environmental impact assessments (Samuel 2020), 
which are currently only represented in some of the state 
government datasets we have collated. Harmonising smaller 
datasets into HAVPlot could prioritise areas where existing 
coverage is poor, and could be implemented more efficiently 
through a collaborative open data publication approach. 
Refining existing information infrastructure (TERN 2022) 
to enable and promote user-contributed and harmonised plot 
datasets would also be beneficial.

Limitations and future priorities

Our study has harmonised community survey plot data to 
provide new insight into plant diversity drivers and patterns 
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across Australia. However, there are a number of important 
limitations with our study that could be addressed through 
future research. Most basically, while we have expended con-
siderable time producing a harmonised plot dataset, it is likely 
that this contains some errors both from the source data as 
well as the harmonisation process. Further interrogation and 
use of the HAVPlot data for different purposes will help in 
identifying and correcting such errors. We also examine just 
two metrics of diversity; future studies that explore other met-
rics (e.g. evenness) would be valuable, and could address the 
harmonisation of the substantial amount of abundance data 
available in the HAVPlot dataset (Supporting information).

A key issue in using these data for diversity analy-
ses is dealing with the different plot areas sampled, given 
the importance of sample area in influencing richness and 
compositional dissimilarity measures (Rosenzweig 1995, 
Mokany et al. 2013). While one approach is to incorporate 
plot area as a covariate in a multivariate model (Kreft and 
Jetz 2007), a method for implementing this within GDM 
has yet to be developed. To retain a standard approach to 
dealing with plot area for both species richness and compo-
sitional dissimilarity, we applied a relatively simple pre-mod-
elling standardisation based on a species–area power model 
(Mokany et al. 2013) using a simple assumption of constant 
power-model scalars across all Australia. Future application 
of improved approaches to accounting for differences in plot 
area for analyses of Australian plant diversity would be bene-
ficial, including better understanding and accounting for the 
likely environmental dependence in how diversity measures 
scale with area (Rosenzweig 1995).

Also of high value would be dedicated modelling and 
analysis into how environmental drivers of plant diver-
sity vary between different regions within Australia. This 
could provide new insight into the biogeographic pro-
cesses responsible for plant diversity patterns in Australia, 
as well as improved spatial predictions of diversity patterns, 
potentially harnessing geographically weighted modelling 
techniques (Fotheringham  et  al. 2002, Alves  et  al. 2018). 
Machine learning modelling approaches could also be worth 
exploring for improving the accuracy of diversity models 
for Australian plants, though these approaches may reduce 
interpretability and potentially increase extrapolation error in 
environments where plot coverage is poor (Elith et al. 2008, 
Andermann et al. 2022). It is also important to note that our 
exploration of potential environmental drivers of plant com-
munity diversity patterns harnessed spatial environmental 
layers that have their own bias, errors and uncertainty asso-
ciated with them (Xu and Hutchinson 2010, Storlie  et  al. 
2013). Hence, the finer spatial resolution of our models and 
maps compared to many other studies do not imply higher 
predictive accuracy.

Conclusion

Here we have provided new insight into the patterns and 
likely drivers of plant diversity across Australia. While many 

of our findings align with existing hypotheses and evidence, 
our assessment of both α- and β-diversity provides novel pre-
dictions that may stimulate new hypotheses and research, and 
provides improved information for biodiversity policy, plan-
ning and management. Importantly, our analyses have a firm 
quantitative basis in the large harmonised plot dataset we have 
collated and produced. This provides a new resource for future 
plant diversity research to improve, extend and utilise.
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