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Abstract

To any spread S of PG(3,q) corresponds a family of locally her-
mitian ovoids of the Hermitian surface H(3,¢?), and conversely; if
in addition S is a semifield spread, then each associated ovoid is a
translation ovoid, and conversely.

In this paper we calculate the translation group of the locally her-
mitian ovoids of H(3,¢?) arising from a given semifield spread, and
we characterize the p-semiclassical ovoid constructed in [4] as the only
translation ovoid of H(3,¢?) whose translation group is abelian.

If S is a spread of PG(3, ¢) and O(S) is one of the associated ovoids
of H(3,q¢?), then using the duality between H(3,¢*) and Q= (5,q),
another spread of PG(3,q), say Sa, can be constructed. On the other
hand, using the Barlotti-Cofman representation of H (3, ¢?), one more
spread of a 3-dimensional projective space, say Si, arises from the
ovoid O(S). In [8] some questions are posed on the relations among
S, &1 and Sz; here we prove that S and S2 are isomorphic and the
ovoids O(S) and O(S8y), corresponding to S and S; respectively, under
the Pliicker map, are isomorphic.

1 Introduction

A spread S of ¥ = PG(3,q) is a set of ¢*> + 1 mutually skew lines par-
titioning the point-set of Y. Let & be a spread of ¥ and choose homo-
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geneous projective coordinates (zg, 1, s, z3) in such a way that the lines
lw = {(0,0,¢,d): ¢,d € F,} and ly = {(a,0,0,0): a,b € F,} belong to S.
Then for each line M of § different from [, there is a unique 2 x 2 matrix
Jyr over Fy such that M = {(a,b,¢,d): (¢,d) = (a,b)Jp, a,b € F,}. The
set Cs = {Jy: M € S} has the following properties: (i) Cs contains ¢* el-
ements, (i¢) the zero matrix belongs to Cs, (7ii) X — Y is non-singular for
all X, Y €Cs, X #Y. The set Cgs is called the spread set associated with S
with respect to I, and [y. Conversely, starting from a set C of 2 x 2 matrices
over F, satisfying (¢), (i7) and (4i7), the set of lines S = {lpy: M € C} U{l}
where Iy = {(a,b,¢,d): (¢,d) = (a,b)M, a,b € F,} is a spread of ¥ and
Cs = C. A spread S is a semifield spread if there exists a collineation group
of 8 fixing a line [ pointwise and acting regularly on the set of the ¢? lines of
S different from [. Equivalently, S is a semifield spread with respect to the
line I, if and only if Cs is closed under the sum.

Regard ¥ as a canonical subgeometry of X* = PG(3, ¢?) and let o be the
involutory collineation of ¥* pointwise fixing 3. Let S be any spread of X
and [ be a fixed line of S. A plane 7 of ¥* is an indicator plane of S through
the line [ if 7MY = [. The set I,(S) = {m*N7w|m € S\ {l}} (where m* is
the extension of the line m in ¥*) is called the indicator set of S in 7. Such
a set consists of ¢? points and any secant line of it meets [* in a point not
on [. Conversely, any set of points I of 7\ [* satisfying the above properties
defines a spread S = {< P,P? > NX|P € I} U{l} of ¥ containing [ such
that I,(S) = I (2] and [6]). The spread S is regular if and only if I.(S)
is either an affine line (classical indicator set) or an affine Baer subplane
(semiclassical indicator set). Following [5], we say that two indicator sets I
and [y in ¥* lying on the indicator planes m; and 7y, respectively, passing
through the line [*, are isomorphic if the associated spreads of ¥ are; the
indicator sets I; and I, are equivalent if there exists a collineation v fixing
the Baer subline [ such that ¢(I;) = I. Note that isomorphic indicator sets
may be not equivalent, while in [5, Prop 3.1] it is proven that equivalent
indicator sets are isomorphic.

A Hermitian surface H = H(3, ¢?) of PG(3,¢?) is the set of all isotropic
points of a non-degenerate unitary polarity. A line of PG(3,¢?) meets H in
1, ¢+ 1 or ¢* + 1 points. The former are the tangents and the latter are the
generators of H. The intersections of order ¢ + 1 are Baer sublines and are
often called chords, whereas the lines meeting H in a Baer subline are called
hyperbolic lines.

An ovoid O of H is a set of ¢* + 1 points which has exactly one common
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point with every generator of H. The ovoid O is called locally hermitian with
respect to one of its points, say P, if it is the union of ¢? chords of H through
P; the ovoid O is called translation ovoid with respect to its point P if there
is a collineation group of H fixing P, leaving invariant all the generators
through P, and acting regularly on the points of O \ {P}. Note that any
translation ovoid is locally hermitian ([3]).

In [10] by using the so-called Shult embedding the author proves that any
indicator set I = I.(S) in 7 ~ PG(2,q¢?%) gives rise to a locally hermitian
ovoid of H, and conversely. Let O.(S) be the locally hermitian ovoid of H
arising from the spread S via the indicator set I.(S). In [8] it has been
proved that if the spread S is a semifield spread then, for any choice of T,
the ovoid O,(S) is a translation ovoid, and conversely.

In [4], starting from semiclassical indicator sets, the authors construct
some translation ovoids of H and their translation groups; among them, only
one, namely the p-semiclassical ovoid (permutable semiclassical ovoid), has
an elementary abelian p-group (¢ = p”). In Section 2 we determine the
translation group of all translation ovoids arising from a semifield spread
S and we characterize the p-semiclassical ovoid as the only example whose
translation group is abelian.

In [8], by using the Barlotti-Cofman representation of the Hermitian sur-
face H it is shown that any locally hermitian ovoid O.(S) of H defines an
ovoid, say @, of the hyperbolic quadric @*(5,¢q), and conversely; if O,(S)
is a translation ovoid, then also O is. In Section 3 we answer a question
posed in [8], proving that the ovoids O(S) (which is the image of S under
the Pliicker map) and @ are isomorphic for any choice of the indicator plane
.

By duality any locally hermitian ovoid O = O, (S) of H with respect to
a point P gives rise to a locally hermitian spread of @~ (5, ¢) with respect to
the line L (dual of P); such a spread defines a spread S, of L+ ~ PG(3,q),
where L is the polarity induced by Q~(5,q), see [11]. If the spread S is a
semifield spread then the spread S, also is. In Section 4 we prove that S and
Sy are isomorphic for any choice of the indicator plane 7. In the case S is a
semifield spread, the question on the relation between S and S, was posed
in [8, Sect. 4.3].



2 Translation ovoids of H(3,¢?)

Let O be a translation ovoid of H = H(3,¢*) with respect to a point P.
Then O is a locally hermitian ovoid of ‘H with respect to P and it arises
from a semifield spread & of a 3-dimensional projective space over Fj via
the Shult embedding ([8]). Choose the homogeneous projective coordinates
(wo, 21, T, x3) in PG(3,¢%) in such a way that H : xozd—zs0i+ 200! — 2121 =
0 and P = (0,0,0,1); then in [5] it has been proved that

O=0,(8)=0\hk) = {(1,—v—XNu,h(u,v) + A k(u,v),
p+ Avk(u,v) — uh(u,v)))|u, v, p € F,} U{P}

where 7 : 21 = Axg (A € Fpe \ F)) and h,k : F, x F;, — F,;. The spread set
Cs associated with S with respect to [, and [y consists of the matrices:

(v h(u,v)
X = (u k‘(u,v)) ’
with u,v € Fj,. Since § is a semifield spread, then Cs is closed under the sum
and hence h and k are additive functions.

Let U = PGU(4,¢*) denote the group of the linear collineations of
PG(3,¢%), leaving H invariant. The subgroup E of U fixing P and leaving in-
variant all the generators through P has size ¢° ([9]) and direct computations
show that E consists of the matrices

1 a B c—apf?

010 —p¢

00 1 aﬁq , o, B € Fp,ce Fy.
0 00 1

The following theorem holds.

Theorem 1 The translation group of O = O(\, h, k) with respect to P is
1 —v—=Xu h(u,v) + MNk(u,v) c+ (v+ Xu)(h(u,v) + Mk(u,v))

a— 0 1 0 —h(u,v) — Ak(u,v)
N 0 0 1 —v— A\u
0 0 0 1

u,v,cqu}.
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Proof:  Direct calculations show that GG is a subgroup of E and that the point
Py = (1,0,0,0) of O(A, h, k) is mapped to the point (1, —v — Au, h(u,v) +
MNE(u,v), p+ Avk(u,v) — uh(u,v)) of O(A, h,k) by the element of G with
c = p—vh(u,v) — A uk(u,v) — uh(u,v)(A + A?). This implies that G acts
regularly on the points of O(A, h, k) \ {P}. O

From now on, let Tr and N denote the trace and the norm functions of
Fp over F,, respectively.

The set E = F2x F,;x F2 equipped with the product (o, ¢, 5)o(c/, ¢, 3')
(a+d e+ +Tr(d(9), 8+ 3) is a group, whose center is Z = {(0,¢,0)| ¢
F,}.

The Hermitian surface H is an elation generalized quadrangle of order
(¢, q) with respect all of its points, which can be also described as a coset
geometry, and in this model the elation group of H is isomorphic to E. For
more details, see e.g. [9].

S

1 a 8 c—ap?
. _p4
The map 6 : (o,¢,0) € E — 8 (1) (1) g € F is an iso-
0 0 O 1
morphism and a straightforward calculation shows that G = 0~1G) =

{(=v = XNu, ¢, h(u,v) + MNk(u,v))|u,v,c € F,}.

In [4] the authors, starting from indicator sets associated with the de-
sarguesian spread, construct some translation ovoids of H(3,¢?) and their
translation groups; among them, only one, namely the p-semiclassical ovoid,
has an elementary abelian p-group (¢ = p”, p odd). We conclude this section
characterizing translation ovoids of H(3,¢*), ¢ = p”, whose translation group
is abelian.

Theorem 2 The translation group G of O(\, h, k) is abelian if and only if
O(\, h, k) is p-semiclassical.

Proof: Since G and G are isomorphic, we work on G. The group G is abelian
if and only if for any w, v, v,v" € F,

Tr((=v" — X )(h(u,v) + Mk(u,v)) + (v + M) (h(u', ") + Ak(u',0"))) =0
ie,as A =Tr(\) — A,
2N (N (uk(u',v") — u'k(u,v)) + Tr(X) [ub(u',v") — u'h(u,v) + vk(u', v")
—v'k(u,v)] + 2(vh(u',v") — v'h(u,v)) = 0. (1)
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Note that, since h, k : F, x F, — F, are additive maps, they are linear over
F, and hence we can write

r—1 r—1
h(u,v) = apu + Z au” + bov + Z biv” = apu + hy(u) + byv + ha(v) (2)
i=1 i=1
and
r—1 r—1

k(u,v) = cou + Z el + dov + Z do? = cou + ki (u) + dov + ko(v) (3)
i=1 i=1
with a;, bi, C;, dz S Fq.
Now suppose p = 2. Since Tr(X) # 0, from (1) it follows

uh(u',v") = u'h(u,v) + vk(u',v") — V'k(u,v) =0 (4)

for all u,u’,v,v" € F,. Putting u =« = 0 in (4) we get vk(0,v") = v'k(0,v)
for all v,v" € F, and hence k(0,v) = dov. Similarly, putting v = v =0
in (4) we obtain h(u,0) = apu. Substituting in (4) with u = «’, we have
uh(0,v" —v) 4+ (v — v")k(u,0) = 0 for all u,v,v" € F,, from which it follows
bp = ¢p and b; = ¢; = 0 for all ¢+ = 1,...,r — 1. Summing up, in even
characteristic, if G is abelian, then

h(u,v) = apu +bov and  k(u,v) = bou + dov.

This is impossible, as such maps do not define any spread of X.
On the other hand, let p be odd. From (1) with v = v = 0 and taking
(2) and (3) into account, it follows

r—1 ) r—1 )
Z(TT()\)di + 2 = Z(Tr()\)di + 2b; V"o
=0 1=0

for all v,v" € F,. Then b; = _T;()‘) d; for all « = 1,... r — 1. Similarly, from
(1) with v = v =0, it follows

(2N(N)e; + Tr(/\)ai)uu/pi = i((QN()\)Ci + Tr(Na;)u'u?

=0

r—

7=



—Tr(\)

for all u,u’ € F,. Therefore, ¢; = SN

a; for i = 1,... r — 1. Substituting
in (2) and in (3), we get

ha(v) = -2 gy 0 )
() = 5 i) (©

Moreover, with © = u' and v = 0, from (1) it follows
2N (M) uk(0,0") + Tr(N)(uh(0,v") — v'k(u,0)) — 20'h(u,0) = 0
for all u,v" € F,. The above condition, taking (5) and (6) into account, yields

AN(N) — Tr(N)? N Uhi(u)
> (1hate) - NOY ) =0

Since A € Fpz \ F,, we have 4N(\) — Tr(\)? # 0; hence hy(u) = ko(v') = 0
for all u,v’ € F,. From (5) and (6) it turns out that if G is abelian, then the
spread S of PG(3,q) is regular. As ¢ is odd, without loss of generality, we
can consider the regular spread S, arising for h(u,v) = w and k(u,v) = mv
for m a fixed nonsquare in Fj. With this choice, from (1) it follows that
(mATHt — 1) (uv’ — w'v) = 0 for all u,u’,v,v" € F, and hence A" = 1/m.
Since such an equation admits ¢ + 1 solutions in F \ Fy, there exist exactly
q + 1 translation ovoids arising from 5, with an abelian translation group.
In [5] it has been shown that there are g+ 1 p-semiclassical translation ovoids
arising from a fixed regular spread S of PG(3,¢q), and each has an abelian
group. Hence, the translation ovoids O(\, u, mv) of H(3,4¢*), with X7t =m
are p-semiclassical translation ovoids. O

Remark 1 In [5] it is also proved that the ¢ + 1 p-semiclassical translation
ovoids arising from a given regular spread are all isomorphic. Hence, there
exists (up to isomorphisms) a unique translation ovoid of H(3,¢?) with an
abelian translation group.



3 Translation ovoids of H(3,¢*) and ovoids of
Q7 (5, q)

In the setting of the previous section, let & be the spread of ¥ = PG(3,q)
containing the lines [, and [y and defined by the functions h and k. Then

O\ h k) = {(1,—v — Xu, h(u,v) + Nk(u,v), p + AMvk(u,v) — uh(u,v))) :
u,v, 1 € F,} U{(0,0,0,1)},

with A € Fj2 \ Fy, are the locally hermitian ovoids of the Hermitian surface
H : zoxd — xlzs + zoxf — 2dz; = 0 of T = PG(3, ¢%) arising from S.

An element x € Fp2 can be uniquely written as z = x¢ + Az;, where
xg,x1 € Fy. To any point R = (a,b,c,d) € I', with a = ag + Aay, b =
bo + Aby, ¢ = ¢o + Acy, d = dy + Ady, there corresponds the line [g of a
7-dimensional projective space over Fy, say A, passing through the point
(ag,ai,bo, by, co, c1,do, dy) defined as lgp = {(yo,y1,...,y7)|3Ip € Fz : pa =
Yo + Ay1, b = Yo + Ays, puc = ys + Ays, pd = ys + Ay7}. The set Ry = {lg
R € T'} turns out to be a normal spread of A (for more details see [7]). We
say that the pair (A, R)) is the F,-linear representation of I with respect to
the basis {1, A}.

The F,-linear representation of H with respect to the basis {1, A} is the
hyperbolic quadric Q7 (7, ¢) with equation yoyr — y1Ys + Yays — ysy2 = 0. Let
P =(0,0,0,1) € H. Then, the F,-linear representation with respect to the
basis {1, A} of the polar plane P* : xy = 0 (where p is the unitary polarity
induced by H) is the 5-dimensional projective space Q : yo = y; = 0 of A
equipped with the normal spread A induced by R on it. Note that Ip : yy =
<+ =ys;=01s aline of N. Let ' = PG(6,q) : y; = 0. Define an incidence
structure 7(2, 2, N) as follows. The points are either the points of '\
or the elements of A/. The lines are either the planes of ' which intersect
in a line of N or the regular spreads of the 3-dimensional projective spaces
(A, B), where A and B are distinct lines of A; the incidence is the natural
one. As N is normal, 7 = 7(Q, Q, V) is isomorphic to I" (for more details see
[1]). Let @ : I — 7 be the isomorphism defined by ®(R) = lg if R € P* and
O(R) =1rNQ if R ¢ Pr. Note that, if R = (1,by + Aby, co + Acy, do + Adyq)
with by, by, cg, c1,do, d1 € Fq, then @(R) = (1, 0, by, b1, co, c1, dy, dl)

Moreover, ' NQT(7,q) is a quadratic cone K with vertex the point V =
(0,0,0,0,0,0,1,0) € Ip. A base of K is the hyperbolic quadric @ = Q7 (5, q)



obtained by intersecting K with the 5-dimensional projective space A : y; =
ye = 0.
The set

O(ONhKE)\P)NA = {(1,0,—v — Tr(Nu,u, h(u,v) + Tr(N)k(u,v),
—k(u,v),0,vk(u,v) — uh(u,v)) : u,v € F,}

union the point @ = IpNA = (0,0,0,0,0,0,0,1) is an ovoid Oy of Q (see [8,
Thm. 6]). Let S;(A\) denote the spread of a projective space PG(3,¢) which
is the image of O, under the inverse of the Pliicker map. Let ¢, : A — A be
the collineation with equations

Z/[/) = Yo, yi = Y1, yé = Vs, y:/S = —Ys,

/

Then ¢, fixes both A and the Klein quadric @ and maps the ovoid Q)
to the ovoid

O = {(1,0,u, k(u,v),v, h(u,v),0,uh(u,v) — vk(u,v)) : u,v € F,}
U {(0,0,0,0,0,0,0,1)}.

It can be easily seen that such an ovoid is the image of the spread S,
under the Pliicker map between the lines of ¥ and the points of Q. We have
proved the following

Theorem 3 The ovoids O and Oy are isomorphic for any choice of \.
O

Corollary 1 The ovoid O(X\, h, k) is a translation ovoid of H with respect
to the point P = (0,0,0,1) if and only if Oy is a translation ovoid of Q with
respect to the point Q) = (0,0,0,0,0,0,0,1).

Proof: Since O(\, h, k) is a translation ovoid if and only if S is a semifield
spread (see [8, Thm. 5 and Cor. 2]), the result follows from Theorem 3. O



4 A construction of a spread in PG(3,q)

Let S be a spread of ¥ = PG(3,q). Embed ¥ in ¥* = PG(3,¢?) in such a
way that ¥ = Fiz(o), where ¢ is an involutory collineation of ¥*. Let 7
be an indicator plane of S in PG(3,¢?). Denote by [ the line of S such that
[ is in m and by I.(S) the indicator set of S in the plane 7. Consider the
point-line dual plane of 7: this is a plane 7, in which [* (the extension of [
in >*) is represented by a point P, the Baer subline [ by a Baer subpencil ]
through P and I,(S) by a set F of ¢? lines not containing P, any two of them
intersecting at a point of 7”r\l~ . The set of lines F is called a Shult set, following
[5] and [8]. Fix a Hermitian surface H = H (3, ¢*) in such a way that P € H
and # N'H = . Let u be the polarity defined by H. The elements of F* are
hyperbolic lines of H through P, hence the set O = |J,,,.-(m"MNH) is a locally
hermitian ovoid of H (see [10]). The ovoid O corresponds via a Pliicker map
p to a locally hermitian spread S of Q= (5, ¢) with respect to the line L = P*.
Let A = L+, where L is the orthogonal polarity induced by Q= (5, q). If M is a
line of S different from L then the line my, 5, = (L, M) is a line of A disjoint
from (L, M). Moreover the set of lines So = {mpy: M € S, M # L} U{L}
turns out to be a spread of A ([11]). With this notation, the following holds.

Theorem 4 The spreads S and Sy are isomorphic, for any choice of | and
m, and for any embedding of the indicator plane of the spread S as a tangent
plane to a Hermitian surface at the point-line dual of the line I.

Proof: In order to prove the isomorphism between S and Ss, we review the
above construction embedding the involved spreads in the same 3-dimensional
projective space over [p.

Let S be a spread of ¥, fix a line [ of S and fix an indicator plane, say
m, of § in ¥*, such that I* C 7. Let I = I(S) be the indicator set of S in
7. Choose a hyperbolic quadric QT (5, ¢*) of a PG(5, ¢*) containing ¥* such
that Q% (5,¢*) NX* = 1 U 7. Let ¢ be the inverse of a Pliicker map from
Q7 (5,4°) to the lineset of T' = PG(3,¢?), such that 7 is a latin plane, i.e.
7% is a ruled plane of I'. Note that the map ¢ restricted to 7 is a point-line
duality between 7 and 7%. Let X = (l*)¢"* and let B denote the Baer cone
which is the image of the points of I under ¢,. Also, the indicator set [
corresponds, under ¢, to a Shult set F of 7 with respect to B.

Let H = H(3,¢%) be any Hermitian surface of I such that H N 7? = B
and let O be the locally hermitian ovoid of ‘H arising from F. The ovoid O is
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locally hermitian with respect to X and applying the Pluiiker map ¢! to H,
we get an elliptic quadric Q= (5, ¢) containing [ embedded in Q*(5,¢?) and
the locally hermitian spread O¢" " of Q~ (5, q) with respect to [. Moreover,
O?" defines the spread Sy = {myp: M € O M # 1} U{l} of It =% ~
PG(3,q), where L is the polarity defined by Q= (5, ¢). Note that [ C [* implies
that ¥; C 3%, since * is the polar space of [* with respect to Q1 (5, ¢*). By
construction, 7 is an indicator plane of Ss. Also, the extension of any line
my, ar of Sy intersects the plane 7 in a point, say x, which is orthogonal to every
point of the regulus of the hyperbolic quadric Q" (3,q) = (I, M) N Q™ (5,q)
containing the lines [ and M. Hence z? is a line of 7% whose polar line (with
respect to H) is one of the hyperbolic lines of O, i.e. 2 is a line of the Shult
set F. So the indicator set of S in 7 is [ as well. Let ¢ be a collineation of >*
mapping X to 3. Hence S is a spread of ¥; containing [ and its indicator set
in 7% is I¥. Since both S, and S¥ are spreads of ¥, with equivalent indicator
sets I and Y, respectively, by [5, Prop. 3.1] such spreads are isomorphic. O
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