Spreads of $P G(3, q)$ and ovoids of POLAR SPACES

L. Bader, G. Marino, O. Polverino and R. Trombetti *

Abstract

To any spread \mathcal{S} of $P G(3, q)$ corresponds a family of locally hermitian ovoids of the Hermitian surface $H\left(3, q^{2}\right)$, and conversely; if in addition \mathcal{S} is a semifield spread, then each associated ovoid is a translation ovoid, and conversely.

In this paper we calculate the translation group of the locally hermitian ovoids of $H\left(3, q^{2}\right)$ arising from a given semifield spread, and we characterize the p-semiclassical ovoid constructed in [4] as the only translation ovoid of $H\left(3, q^{2}\right)$ whose translation group is abelian.

If \mathcal{S} is a spread of $P G(3, q)$ and $\mathcal{O}(\mathcal{S})$ is one of the associated ovoids of $H\left(3, q^{2}\right)$, then using the duality between $H\left(3, q^{2}\right)$ and $Q^{-}(5, q)$, another spread of $\operatorname{PG}(3, q)$, say \mathcal{S}_{2}, can be constructed. On the other hand, using the Barlotti-Cofman representation of $H\left(3, q^{2}\right)$, one more spread of a 3 -dimensional projective space, say \mathcal{S}_{1}, arises from the ovoid $\mathcal{O}(\mathcal{S})$. In [8] some questions are posed on the relations among $\mathcal{S}, \mathcal{S}_{1}$ and \mathcal{S}_{2}; here we prove that \mathcal{S} and \mathcal{S}_{2} are isomorphic and the ovoids $\mathcal{O}(\mathcal{S})$ and $\mathcal{O}\left(\mathcal{S}_{1}\right)$, corresponding to \mathcal{S} and \mathcal{S}_{1} respectively, under the Plücker map, are isomorphic.

1 Introduction

A spread \mathcal{S} of $\Sigma=P G(3, q)$ is a set of $q^{2}+1$ mutually skew lines partitioning the point-set of Σ. Let \mathcal{S} be a spread of Σ and choose homo-
*Partially supported by MIUR and by GNSAGA. tion.
geneous projective coordinates $\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$ in such a way that the lines $l_{\infty}=\left\{(0,0, c, d): c, d \in F_{q}\right\}$ and $l_{0}=\left\{(a, b, 0,0): a, b \in F_{q}\right\}$ belong to \mathcal{S}. Then for each line M of \mathcal{S} different from l_{∞}, there is a unique 2×2 matrix J_{M} over F_{q} such that $M=\left\{(a, b, c, d):(c, d)=(a, b) J_{M}, a, b \in F_{q}\right\}$. The set $\mathcal{C}_{\mathcal{S}}=\left\{J_{M}: M \in \mathcal{S}\right\}$ has the following properties: $(i) \mathcal{C}_{\mathcal{S}}$ contains q^{2} elements, (ii) the zero matrix belongs to $\mathcal{C}_{\mathcal{S}}$, (iii) $X-Y$ is non-singular for all $X, Y \in \mathcal{C}_{\mathcal{S}}, X \neq Y$. The set $\mathcal{C}_{\mathcal{S}}$ is called the spread set associated with \mathcal{S} with respect to l_{∞} and l_{0}. Conversely, starting from a set \mathcal{C} of 2×2 matrices over F_{q} satisfying $(i),(i i)$ and (iii), the set of lines $\mathcal{S}=\left\{l_{M}: M \in \mathcal{C}\right\} \cup\left\{l_{\infty}\right\}$ where $l_{M}=\left\{(a, b, c, d):(c, d)=(a, b) M, a, b \in F_{q}\right\}$ is a spread of Σ and $\mathcal{C}_{\mathcal{S}}=\mathcal{C}$. A spread \mathcal{S} is a semifield spread if there exists a collineation group of \mathcal{S} fixing a line l pointwise and acting regularly on the set of the q^{2} lines of \mathcal{S} different from l. Equivalently, \mathcal{S} is a semifield spread with respect to the line l_{∞} if and only if $\mathcal{C}_{\mathcal{S}}$ is closed under the sum.

Regard Σ as a canonical subgeometry of $\Sigma^{*}=P G\left(3, q^{2}\right)$ and let σ be the involutory collineation of Σ^{*} pointwise fixing Σ. Let \mathcal{S} be any spread of Σ and l be a fixed line of \mathcal{S}. A plane π of Σ^{*} is an indicator plane of \mathcal{S} through the line l if $\pi \cap \Sigma=l$. The set $I_{\pi}(\mathcal{S})=\left\{m^{*} \cap \pi \mid m \in \mathcal{S} \backslash\{l\}\right\}$ (where m^{*} is the extension of the line m in Σ^{*}) is called the indicator set of \mathcal{S} in π. Such a set consists of q^{2} points and any secant line of it meets l^{*} in a point not on l. Conversely, any set of points I of $\pi \backslash l^{*}$ satisfying the above properties defines a spread $\mathcal{S}=\left\{<P, P^{\sigma}>\cap \Sigma \mid P \in I\right\} \cup\{l\}$ of Σ containing l such that $I_{\pi}(\mathcal{S})=I$ ([2] and [6]). The spread \mathcal{S} is regular if and only if $I_{\pi}(\mathcal{S})$ is either an affine line (classical indicator set) or an affine Baer subplane (semiclassical indicator set). Following [5], we say that two indicator sets I_{1} and I_{2} in Σ^{*} lying on the indicator planes π_{1} and π_{2}, respectively, passing through the line l^{*}, are isomorphic if the associated spreads of Σ are; the indicator sets I_{1} and I_{2} are equivalent if there exists a collineation ψ fixing the Baer subline l such that $\psi\left(I_{1}\right)=I_{2}$. Note that isomorphic indicator sets may be not equivalent, while in [5, Prop 3.1] it is proven that equivalent indicator sets are isomorphic.

A Hermitian surface $\mathcal{H}=H\left(3, q^{2}\right)$ of $P G\left(3, q^{2}\right)$ is the set of all isotropic points of a non-degenerate unitary polarity. A line of $P G\left(3, q^{2}\right)$ meets \mathcal{H} in $1, q+1$ or $q^{2}+1$ points. The former are the tangents and the latter are the generators of \mathcal{H}. The intersections of order $q+1$ are Baer sublines and are often called chords, whereas the lines meeting \mathcal{H} in a Baer subline are called hyperbolic lines.

An ovoid \mathcal{O} of \mathcal{H} is a set of $q^{3}+1$ points which has exactly one common
point with every generator of \mathcal{H}. The ovoid \mathcal{O} is called locally hermitian with respect to one of its points, say P, if it is the union of q^{2} chords of \mathcal{H} through P; the ovoid \mathcal{O} is called translation ovoid with respect to its point P if there is a collineation group of \mathcal{H} fixing P, leaving invariant all the generators through P, and acting regularly on the points of $\mathcal{O} \backslash\{P\}$. Note that any translation ovoid is locally hermitian ([3]).

In [10] by using the so-called Shult embedding the author proves that any indicator set $I=I_{\pi}(\mathcal{S})$ in $\pi \simeq P G\left(2, q^{2}\right)$ gives rise to a locally hermitian ovoid of \mathcal{H}, and conversely. Let $\mathcal{O}_{\pi}(\mathcal{S})$ be the locally hermitian ovoid of \mathcal{H} arising from the spread \mathcal{S} via the indicator set $I_{\pi}(\mathcal{S})$. In [8] it has been proved that if the spread \mathcal{S} is a semifield spread then, for any choice of π, the ovoid $\mathcal{O}_{\pi}(\mathcal{S})$ is a translation ovoid, and conversely.

In [4], starting from semiclassical indicator sets, the authors construct some translation ovoids of \mathcal{H} and their translation groups; among them, only one, namely the p-semiclassical ovoid (permutable semiclassical ovoid), has an elementary abelian p-group $\left(q=p^{r}\right)$. In Section 2 we determine the translation group of all translation ovoids arising from a semifield spread \mathcal{S} and we characterize the p-semiclassical ovoid as the only example whose translation group is abelian.

In [8], by using the Barlotti-Cofman representation of the Hermitian surface \mathcal{H} it is shown that any locally hermitian ovoid $\mathcal{O}_{\pi}(\mathcal{S})$ of \mathcal{H} defines an ovoid, say \mathbb{O}, of the hyperbolic quadric $Q^{+}(5, q)$, and conversely; if $\mathcal{O}_{\pi}(\mathcal{S})$ is a translation ovoid, then also \mathbb{O} is. In Section 3 we answer a question posed in [8], proving that the ovoids $O(\mathcal{S})$ (which is the image of \mathcal{S} under the Plücker map) and \mathbb{O} are isomorphic for any choice of the indicator plane π.

By duality any locally hermitian ovoid $\mathcal{O}=\mathcal{O}_{\pi}(\mathcal{S})$ of \mathcal{H} with respect to a point P gives rise to a locally hermitian spread of $Q^{-}(5, q)$ with respect to the line L (dual of P); such a spread defines a spread \mathcal{S}_{2} of $L^{\perp} \simeq P G(3, q)$, where \perp is the polarity induced by $Q^{-}(5, q)$, see [11]. If the spread \mathcal{S} is a semifield spread then the spread \mathcal{S}_{2} also is. In Section 4 we prove that \mathcal{S} and \mathcal{S}_{2} are isomorphic for any choice of the indicator plane π. In the case \mathcal{S} is a semifield spread, the question on the relation between \mathcal{S} and \mathcal{S}_{2} was posed in [8, Sect. 4.3].

2 Translation ovoids of $H\left(3, q^{2}\right)$

Let \mathcal{O} be a translation ovoid of $\mathcal{H}=H\left(3, q^{2}\right)$ with respect to a point P. Then \mathcal{O} is a locally hermitian ovoid of \mathcal{H} with respect to P and it arises from a semifield spread \mathcal{S} of a 3-dimensional projective space over F_{q} via the Shult embedding ([8]). Choose the homogeneous projective coordinates $\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$ in $P G\left(3, q^{2}\right)$ in such a way that $\mathcal{H}: x_{0} x_{3}^{q}-x_{3} x_{0}^{q}+x_{2} x_{1}^{q}-x_{1} x_{2}^{q}=$ 0 and $P=(0,0,0,1)$; then in [5] it has been proved that

$$
\begin{aligned}
\mathcal{O}=\mathcal{O}_{\pi}(\mathcal{S})=\mathcal{O}(\lambda, h, k)= & \left\{\left(1,-v-\lambda^{q} u, h(u, v)+\lambda^{q} k(u, v),\right.\right. \\
& \left.\mu+\lambda(v k(u, v)-u h(u, v))) \mid u, v, \mu \in F_{q}\right\} \cup\{P\}
\end{aligned}
$$

where $\pi: x_{1}=\lambda x_{0}\left(\lambda \in F_{q^{2}} \backslash F_{q}\right)$ and $h, k: F_{q} \times F_{q} \rightarrow F_{q}$. The spread set $\mathcal{C}_{\mathcal{S}}$ associated with \mathcal{S} with respect to l_{∞} and l_{0} consists of the matrices:

$$
X_{u v}=\left(\begin{array}{ll}
v & h(u, v) \\
u & k(u, v)
\end{array}\right)
$$

with $u, v \in F_{q}$. Since \mathcal{S} is a semifield spread, then $\mathcal{C}_{\mathcal{S}}$ is closed under the sum and hence h and k are additive functions.

Let $\mathbb{U}=P G U\left(4, q^{2}\right)$ denote the group of the linear collineations of $P G\left(3, q^{2}\right)$, leaving \mathcal{H} invariant. The subgroup E of \mathbb{U} fixing P and leaving invariant all the generators through P has size $q^{5}([9])$ and direct computations show that E consists of the matrices

$$
\left(\begin{array}{cccc}
1 & \alpha & \beta & c-\alpha \beta^{q} \\
0 & 1 & 0 & -\beta^{q} \\
0 & 0 & 1 & \alpha^{q} \\
0 & 0 & 0 & 1
\end{array}\right), \alpha, \beta \in F_{q^{2}}, c \in F_{q}
$$

The following theorem holds.
Theorem 1 The translation group of $\mathcal{O}=\mathcal{O}(\lambda, h, k)$ with respect to P is

$$
\begin{aligned}
& G=\left\{\begin{array}{cccc}
1 & -v-\lambda^{q} u & h(u, v)+\lambda^{q} k(u, v) & c+\left(v+\lambda^{q} u\right)(h(u, v)+\lambda k(u, v)) \\
0 & 1 & 0 & -h(u, v)-\lambda k(u, v) \\
0 & 0 & 1 & -v-\lambda u \\
0 & 0 & 0 & 1
\end{array}\right) ; \\
& \left.u, v, c \in F_{q}\right\} .
\end{aligned}
$$

Proof: Direct calculations show that G is a subgroup of E and that the point $P_{0}=(1,0,0,0)$ of $\mathcal{O}(\lambda, h, k)$ is mapped to the point $\left(1,-v-\lambda^{q} u, h(u, v)+\right.$ $\lambda^{q} k(u, v), \mu+\lambda(v k(u, v)-u h(u, v))$ of $\mathcal{O}(\lambda, h, k)$ by the element of G with $c=\mu-v h(u, v)-\lambda^{q+1} u k(u, v)-u h(u, v)\left(\lambda+\lambda^{q}\right)$. This implies that G acts regularly on the points of $\mathcal{O}(\lambda, h, k) \backslash\{P\}$.

From now on, let Tr and N denote the trace and the norm functions of $F_{q^{2}}$ over F_{q}, respectively.

The set $\tilde{E}=F_{q^{2}} \times F_{q} \times F_{q^{2}}$ equipped with the product $(\alpha, c, \beta) \circ\left(\alpha^{\prime}, c^{\prime}, \beta^{\prime}\right)=$ $\left(\alpha+\alpha^{\prime}, c+c^{\prime}+\operatorname{Tr}\left(\alpha^{\prime} \beta^{q}\right), \beta+\beta^{\prime}\right)$ is a group, whose center is $Z=\{(0, c, 0) \mid c \in$ $\left.F_{q}\right\}$.

The Hermitian surface \mathcal{H} is an elation generalized quadrangle of order $\left(q^{2}, q\right)$ with respect all of its points, which can be also described as a coset geometry, and in this model the elation group of \mathcal{H} is isomorphic to \tilde{E}. For more details, see e.g. [9].

The map $\theta:(\alpha, c, \beta) \in \tilde{E} \mapsto\left(\begin{array}{cccc}1 & \alpha & \beta & c-\alpha \beta^{q} \\ 0 & 1 & 0 & -\beta^{q} \\ 0 & 0 & 1 & \alpha^{q} \\ 0 & 0 & 0 & 1\end{array}\right) \in E$ is an isomorphism and a straightforward calculation shows that $\tilde{G}=\theta^{-1}(G)=$ $\left\{\left(-v-\lambda^{q} u, c, h(u, v)+\lambda^{q} k(u, v)\right) \mid u, v, c \in F_{q}\right\}$.

In [4] the authors, starting from indicator sets associated with the desarguesian spread, construct some translation ovoids of $H\left(3, q^{2}\right)$ and their translation groups; among them, only one, namely the p-semiclassical ovoid, has an elementary abelian p-group ($q=p^{r}, p$ odd). We conclude this section characterizing translation ovoids of $H\left(3, q^{2}\right), q=p^{r}$, whose translation group is abelian.

Theorem 2 The translation group G of $\mathcal{O}(\lambda, h, k)$ is abelian if and only if $\mathcal{O}(\lambda, h, k)$ is p-semiclassical.
Proof: Since G and \tilde{G} are isomorphic, we work on \tilde{G}. The group \tilde{G} is abelian if and only if for any $u, u^{\prime}, v, v^{\prime} \in F_{q}$,

$$
\operatorname{Tr}\left(\left(-v^{\prime}-\lambda^{q} u^{\prime}\right)(h(u, v)+\lambda k(u, v))+\left(v+\lambda^{q} u\right)\left(h\left(u^{\prime}, v^{\prime}\right)+\lambda k\left(u^{\prime}, v^{\prime}\right)\right)\right)=0
$$

i.e., as $\lambda^{q}=\operatorname{Tr}(\lambda)-\lambda$,

$$
\begin{align*}
2 N(\lambda)\left(u k\left(u^{\prime}, v^{\prime}\right)-u^{\prime} k(u, v)\right) & +\operatorname{Tr}(\lambda)\left[u h\left(u^{\prime}, v^{\prime}\right)-u^{\prime} h(u, v)+v k\left(u^{\prime}, v^{\prime}\right)\right. \\
& \left.-v^{\prime} k(u, v)\right]+2\left(v h\left(u^{\prime}, v^{\prime}\right)-v^{\prime} h(u, v)\right)=0 . \tag{1}
\end{align*}
$$

Note that, since $h, k: F_{q} \times F_{q} \mapsto F_{q}$ are additive maps, they are linear over F_{p} and hence we can write

$$
\begin{equation*}
h(u, v)=a_{0} u+\sum_{i=1}^{r-1} a_{i} u^{p^{i}}+b_{0} v+\sum_{i=1}^{r-1} b_{i} v^{p^{i}}=a_{0} u+h_{1}(u)+b_{0} v+h_{2}(v) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
k(u, v)=c_{0} u+\sum_{i=1}^{r-1} c_{i} u^{p^{i}}+d_{0} v+\sum_{i=1}^{r-1} d_{i} v^{p^{i}}=c_{0} u+k_{1}(u)+d_{0} v+k_{2}(v) \tag{3}
\end{equation*}
$$

with $a_{i}, b_{i}, c_{i}, d_{i} \in F_{q}$.
Now suppose $p=2$. Since $\operatorname{Tr}(\lambda) \neq 0$, from (1) it follows

$$
\begin{equation*}
u h\left(u^{\prime}, v^{\prime}\right)-u^{\prime} h(u, v)+v k\left(u^{\prime}, v^{\prime}\right)-v^{\prime} k(u, v)=0 \tag{4}
\end{equation*}
$$

for all $u, u^{\prime}, v, v^{\prime} \in F_{q}$. Putting $u=u^{\prime}=0$ in (4) we get $v k\left(0, v^{\prime}\right)=v^{\prime} k(0, v)$ for all $v, v^{\prime} \in F_{q}$ and hence $k(0, v)=d_{0} v$. Similarly, putting $v=v^{\prime}=0$ in (4) we obtain $h(u, 0)=a_{0} u$. Substituting in (4) with $u=u^{\prime}$, we have $u h\left(0, v^{\prime}-v\right)+\left(v-v^{\prime}\right) k(u, 0)=0$ for all $u, v, v^{\prime} \in F_{q}$, from which it follows $b_{0}=c_{0}$ and $b_{i}=c_{i}=0$ for all $i=1, \ldots, r-1$. Summing up, in even characteristic, if \tilde{G} is abelian, then

$$
h(u, v)=a_{0} u+b_{0} v \quad \text { and } \quad k(u, v)=b_{0} u+d_{0} v .
$$

This is impossible, as such maps do not define any spread of Σ.
On the other hand, let p be odd. From (1) with $u=u^{\prime}=0$ and taking (2) and (3) into account, it follows

$$
\sum_{i=0}^{r-1}\left(\operatorname{Tr}(\lambda) d_{i}+2 b_{i}\right) v v^{\prime p^{i}}=\sum_{i=0}^{r-1}\left(\operatorname{Tr}(\lambda) d_{i}+2 b_{i}\right) v^{\prime} v^{p^{i}}
$$

for all $v, v^{\prime} \in F_{q}$. Then $b_{i}=\frac{-\operatorname{Tr}(\lambda)}{2} d_{i}$ for all $i=1, \ldots, r-1$. Similarly, from (1) with $v=v^{\prime}=0$, it follows

$$
\sum_{i=0}^{r-1}\left(2 N(\lambda) c_{i}+\operatorname{Tr}(\lambda) a_{i}\right) u u^{\prime p^{i}}=\sum_{i=0}^{r-1}\left(\left(2 N(\lambda) c_{i}+\operatorname{Tr}(\lambda) a_{i}\right) u^{\prime} u^{p^{i}}\right.
$$

for all $u, u^{\prime} \in F_{q}$. Therefore, $c_{i}=\frac{-\operatorname{Tr}(\lambda)}{2 N(\lambda)} a_{i}$ for $i=1, \ldots, r-1$. Substituting in (2) and in (3), we get

$$
\begin{align*}
h_{2}(v) & =-\frac{\operatorname{Tr}(\lambda)}{2} k_{2}(v) \tag{5}\\
k_{1}(u) & =-\frac{\operatorname{Tr}(\lambda)}{2 N(\lambda)} h_{1}(u) . \tag{6}
\end{align*}
$$

Moreover, with $u=u^{\prime}$ and $v=0$, from (1) it follows

$$
2 N(\lambda) u k\left(0, v^{\prime}\right)+\operatorname{Tr}(\lambda)\left(u h\left(0, v^{\prime}\right)-v^{\prime} k(u, 0)\right)-2 v^{\prime} h(u, 0)=0
$$

for all $u, v^{\prime} \in F_{q}$. The above condition, taking (5) and (6) into account, yields

$$
\frac{4 N(\lambda)-\operatorname{Tr}(\lambda)^{2}}{2}\left(u k_{2}\left(v^{\prime}\right)-\frac{v^{\prime} h_{1}(u)}{N(\lambda)}\right)=0 .
$$

Since $\lambda \in F_{q^{2}} \backslash F_{q}$, we have $4 N(\lambda)-\operatorname{Tr}(\lambda)^{2} \neq 0$; hence $h_{1}(u)=k_{2}\left(v^{\prime}\right)=0$ for all $u, v^{\prime} \in F_{q}$. From (5) and (6) it turns out that if \tilde{G} is abelian, then the spread \mathcal{S} of $P G(3, q)$ is regular. As q is odd, without loss of generality, we can consider the regular spread \mathcal{S}_{m} arising for $h(u, v)=u$ and $k(u, v)=m v$ for m a fixed nonsquare in F_{q}. With this choice, from (1) it follows that $\left(m \lambda^{q+1}-1\right)\left(u v^{\prime}-u^{\prime} v\right)=0$ for all $u, u^{\prime}, v, v^{\prime} \in F_{q}$ and hence $\lambda^{q+1}=1 / m$. Since such an equation admits $q+1$ solutions in $F_{q^{2}} \backslash F_{q}$, there exist exactly $q+1$ translation ovoids arising from S_{m} with an abelian translation group. In [5] it has been shown that there are $q+1$ p-semiclassical translation ovoids arising from a fixed regular spread \mathcal{S} of $P G(3, q)$, and each has an abelian group. Hence, the translation ovoids $\mathcal{O}(\lambda, u, m v)$ of $H\left(3, q^{2}\right)$, with $\lambda^{q+1}=m$ are p -semiclassical translation ovoids.

Remark 1 In [5] it is also proved that the $q+1$ p-semiclassical translation ovoids arising from a given regular spread are all isomorphic. Hence, there exists (up to isomorphisms) a unique translation ovoid of $H\left(3, q^{2}\right)$ with an abelian translation group.

3 Translation ovoids of $H\left(3, q^{2}\right)$ and ovoids of $Q^{+}(5, q)$

In the setting of the previous section, let \mathcal{S} be the spread of $\Sigma=P G(3, q)$ containing the lines l_{∞} and l_{0} and defined by the functions h and k. Then

$$
\begin{aligned}
\mathcal{O}(\lambda, h, k)= & \left\{\left(1,-v-\lambda^{q} u, h(u, v)+\lambda^{q} k(u, v), \mu+\lambda(v k(u, v)-u h(u, v))\right):\right. \\
& \left.u, v, \mu \in F_{q}\right\} \cup\{(0,0,0,1)\}
\end{aligned}
$$

with $\lambda \in F_{q^{2}} \backslash F_{q}$, are the locally hermitian ovoids of the Hermitian surface $\mathcal{H}: x_{0} x_{3}^{q}-x_{0}^{q} x_{3}+x_{2} x_{1}^{q}-x_{2}^{q} x_{1}=0$ of $\Gamma=P G\left(3, q^{2}\right)$ arising from \mathcal{S}.

An element $x \in F_{q^{2}}$ can be uniquely written as $x=x_{0}+\lambda x_{1}$, where $x_{0}, x_{1} \in F_{q}$. To any point $R=(a, b, c, d) \in \Gamma$, with $a=a_{0}+\lambda a_{1}, b=$ $b_{0}+\lambda b_{1}, c=c_{0}+\lambda c_{1}, d=d_{0}+\lambda d_{1}$, there corresponds the line l_{R} of a 7 -dimensional projective space over F_{q}, say Λ, passing through the point $\left(a_{0}, a_{1}, b_{0}, b_{1}, c_{0}, c_{1}, d_{0}, d_{1}\right)$ defined as $l_{R}=\left\{\left(y_{0}, y_{1}, \ldots, y_{7}\right) \mid \exists \mu \in F_{q^{2}}: \mu a=\right.$ $\left.y_{0}+\lambda y_{1}, \mu b=y_{2}+\lambda y_{3}, \mu c=y_{4}+\lambda y_{5}, \mu d=y_{6}+\lambda y_{7}\right\}$. The set $\mathcal{R}_{\lambda}=\left\{l_{R}\right.$: $R \in \Gamma\}$ turns out to be a normal spread of Λ (for more details see [7]). We say that the pair $\left(\Lambda, \mathcal{R}_{\lambda}\right)$ is the F_{q}-linear representation of Γ with respect to the basis $\{1, \lambda\}$.

The F_{q}-linear representation of \mathcal{H} with respect to the basis $\{1, \lambda\}$ is the hyperbolic quadric $Q^{+}(7, q)$ with equation $y_{0} y_{7}-y_{1} y_{6}+y_{4} y_{3}-y_{5} y_{2}=0$. Let $P=(0,0,0,1) \in \mathcal{H}$. Then, the F_{q}-linear representation with respect to the basis $\{1, \lambda\}$ of the polar plane $P^{\rho}: x_{0}=0$ (where ρ is the unitary polarity induced by \mathcal{H}) is the 5 -dimensional projective space $\Omega: y_{0}=y_{1}=0$ of Λ equipped with the normal spread \mathcal{N} induced by \mathcal{R}_{λ} on it. Note that $l_{P}: y_{0}=$ $\cdots=y_{5}=0$ is a line of \mathcal{N}. Let $\Omega^{\prime}=P G(6, q): y_{1}=0$. Define an incidence structure $\pi\left(\Omega^{\prime}, \Omega, \mathcal{N}\right)$ as follows. The points are either the points of $\Omega^{\prime} \backslash \Omega$ or the elements of \mathcal{N}. The lines are either the planes of Ω^{\prime} which intersect Ω in a line of \mathcal{N} or the regular spreads of the 3 -dimensional projective spaces $\langle A, B\rangle$, where A and B are distinct lines of \mathcal{N}; the incidence is the natural one. As \mathcal{N} is normal, $\pi=\pi\left(\Omega^{\prime}, \Omega, \mathcal{N}\right)$ is isomorphic to Γ (for more details see [1]). Let $\Phi: \Gamma \mapsto \pi$ be the isomorphism defined by $\Phi(R)=l_{R}$ if $R \in P^{\rho}$ and $\Phi(R)=l_{R} \cap \Omega^{\prime}$ if $R \notin P^{\rho}$. Note that, if $R=\left(1, b_{0}+\lambda b_{1}, c_{0}+\lambda c_{1}, d_{0}+\lambda d_{1}\right)$ with $b_{0}, b_{1}, c_{0}, c_{1}, d_{0}, d_{1} \in F_{q}$, then $\Phi(R)=\left(1,0, b_{0}, b_{1}, c_{0}, c_{1}, d_{0}, d_{1}\right)$.

Moreover, $\Omega^{\prime} \cap Q^{+}(7, q)$ is a quadratic cone \mathcal{K} with vertex the point $V=$ $(0,0,0,0,0,0,1,0) \in l_{P}$. A base of \mathcal{K} is the hyperbolic quadric $\mathcal{Q}=Q^{+}(5, q)$
obtained by intersecting \mathcal{K} with the 5 -dimensional projective space $\Delta: y_{1}=$ $y_{6}=0$.

The set

$$
\begin{aligned}
\Phi(\mathcal{O}(\lambda, h, k) \backslash P) \cap \Delta= & \{(1,0,-v-\operatorname{Tr}(\lambda) u, u, h(u, v)+\operatorname{Tr}(\lambda) k(u, v), \\
& \left.-k(u, v), 0, v k(u, v)-u h(u, v)): u, v \in F_{q}\right\}
\end{aligned}
$$

union the point $Q=l_{P} \cap \Delta=(0,0,0,0,0,0,0,1)$ is an ovoid \mathbb{O}_{λ} of \mathcal{Q} (see [8, Thm. 6]). Let $\mathcal{S}_{1}(\lambda)$ denote the spread of a projective space $P G(3, q)$ which is the image of \mathbb{O}_{λ} under the inverse of the Plücker map. Let $\varphi_{\lambda}: \Lambda \mapsto \Lambda$ be the collineation with equations

$$
\begin{gathered}
y_{0}^{\prime}=y_{0}, \quad y_{1}^{\prime}=y_{1}, \quad y_{2}^{\prime}=y_{3}, \quad y_{3}^{\prime}=-y_{5} \\
y_{4}^{\prime}=-y_{2}-\operatorname{Tr}(\lambda) y_{3}, \quad y_{5}^{\prime}=y_{4}+\operatorname{Tr}(\lambda) y_{5}, \quad y_{6}^{\prime}=y_{6}, \quad y_{7}^{\prime}=-y_{7} .
\end{gathered}
$$

Then φ_{λ} fixes both Δ and the Klein quadric \mathcal{Q} and maps the ovoid \mathbb{O}_{λ} to the ovoid

$$
\begin{gathered}
\mathbb{O}=\left\{(1,0, u, k(u, v), v, h(u, v), 0, u h(u, v)-v k(u, v)): u, v \in F_{q}\right\} \\
\cup\{(0,0,0,0,0,0,0,1)\} .
\end{gathered}
$$

It can be easily seen that such an ovoid is the image of the spread \mathcal{S}, under the Plücker map between the lines of Σ and the points of \mathcal{Q}. We have proved the following

Theorem 3 The ovoids \mathbb{O} and \mathbb{O}_{λ} are isomorphic for any choice of λ.

Corollary $\mathbf{1}$ The ovoid $\mathcal{O}(\lambda, h, k)$ is a translation ovoid of \mathcal{H} with respect to the point $P=(0,0,0,1)$ if and only if \mathbb{O}_{λ} is a translation ovoid of \mathcal{Q} with respect to the point $Q=(0,0,0,0,0,0,0,1)$.
Proof: Since $\mathcal{O}(\lambda, h, k)$ is a translation ovoid if and only if \mathcal{S} is a semifield spread (see [8, Thm. 5 and Cor. 2]), the result follows from Theorem 3.

4 A construction of a spread in $P G(3, q)$

Let \mathcal{S} be a spread of $\Sigma=P G(3, q)$. Embed Σ in $\Sigma^{*}=P G\left(3, q^{2}\right)$ in such a way that $\Sigma=\operatorname{Fix}(\sigma)$, where σ is an involutory collineation of Σ^{*}. Let π be an indicator plane of \mathcal{S} in $P G\left(3, q^{2}\right)$. Denote by l the line of \mathcal{S} such that l is in π and by $I_{\pi}(\mathcal{S})$ the indicator set of \mathcal{S} in the plane π. Consider the point-line dual plane of π : this is a plane $\tilde{\pi}$, in which l^{*} (the extension of l in $\left.\Sigma^{*}\right)$ is represented by a point P, the Baer subline l by a Baer subpencil \tilde{l} through P and $I_{\pi}(\mathcal{S})$ by a set \mathcal{F} of q^{2} lines not containing P, any two of them intersecting at a point of $\tilde{\pi} \backslash \tilde{l}$. The set of lines \mathcal{F} is called a Shult set, following [5] and [8]. Fix a Hermitian surface $\mathcal{H}=H\left(3, q^{2}\right)$ in such a way that $P \in \mathcal{H}$ and $\tilde{\pi} \cap \mathcal{H}=\tilde{l}$. Let u be the polarity defined by \mathcal{H}. The elements of \mathcal{F}^{u} are hyperbolic lines of \mathcal{H} through P, hence the set $\mathcal{O}=\bigcup_{m \in \mathcal{F}}\left(m^{u} \cap \mathcal{H}\right)$ is a locally hermitian ovoid of \mathcal{H} (see [10]). The ovoid \mathcal{O} corresponds via a Plücker map ρ to a locally hermitian spread \mathbb{S} of $Q^{-}(5, q)$ with respect to the line $L=P^{\rho}$. Let $\Lambda=L^{\perp}$, where \perp is the orthogonal polarity induced by $Q^{-}(5, q)$. If M is a line of \mathbb{S} different from L then the line $m_{L, M}=\langle L, M\rangle^{\perp}$ is a line of Λ disjoint from $\langle L, M\rangle$. Moreover the set of lines $\mathcal{S}_{2}=\left\{m_{L, M}: M \in \mathbb{S}, M \neq L\right\} \cup\{L\}$ turns out to be a spread of Λ ([11]). With this notation, the following holds.

Theorem 4 The spreads \mathcal{S} and \mathcal{S}_{2} are isomorphic, for any choice of l and π, and for any embedding of the indicator plane of the spread \mathcal{S} as a tangent plane to a Hermitian surface at the point-line dual of the line l.

Proof: In order to prove the isomorphism between \mathcal{S} and \mathcal{S}_{2}, we review the above construction embedding the involved spreads in the same 3-dimensional projective space over $F_{q^{2}}$.

Let \mathcal{S} be a spread of Σ, fix a line l of \mathcal{S} and fix an indicator plane, say π, of \mathcal{S} in Σ^{*}, such that $l^{*} \subset \pi$. Let $I=I_{\pi}(\mathcal{S})$ be the indicator set of \mathcal{S} in π. Choose a hyperbolic quadric $Q^{+}\left(5, q^{2}\right)$ of a $P G\left(5, q^{2}\right)$ containing Σ^{*} such that $Q^{+}\left(5, q^{2}\right) \cap \Sigma^{*}=\pi \cup \pi^{\sigma}$. Let ϕ be the inverse of a Plücker map from $Q^{+}\left(5, q^{2}\right)$ to the lineset of $\Gamma=P G\left(3, q^{2}\right)$, such that π is a latin plane, i.e. π^{ϕ} is a ruled plane of Γ. Note that the map ϕ restricted to π is a point-line duality between π and π^{ϕ}. Let $X=\left(l^{*}\right)^{\phi \mid \pi}$ and let \mathcal{B} denote the Baer cone which is the image of the points of l under $\phi_{\mid \pi}$. Also, the indicator set I corresponds, under $\phi_{\mid \pi}$, to a Shult set \mathcal{F} of π^{ϕ} with respect to \mathcal{B}.

Let $\mathcal{H}=H\left(3, q^{2}\right)$ be any Hermitian surface of Γ such that $\mathcal{H} \cap \pi^{\phi}=\mathcal{B}$ and let \mathcal{O} be the locally hermitian ovoid of \mathcal{H} arising from \mathcal{F}. The ovoid \mathcal{O} is
locally hermitian with respect to X and applying the Pluüker map ϕ^{-1} to \mathcal{H}, we get an elliptic quadric $Q^{-}(5, q)$ containing l embedded in $Q^{+}\left(5, q^{2}\right)$ and the locally hermitian spread $\mathcal{O}^{\phi^{-1}}$ of $Q^{-}(5, q)$ with respect to l. Moreover, $\mathcal{O}^{\phi^{-1}}$ defines the spread $\mathcal{S}_{2}=\left\{m_{l, M}: M \in \mathcal{O}^{\phi^{-1}}, M \neq l\right\} \cup\{l\}$ of $l^{\perp}=\Sigma_{1} \simeq$ $P G(3, q)$, where \perp is the polarity defined by $Q^{-}(5, q)$. Note that $l \subset l^{*}$ implies that $\Sigma_{1} \subset \Sigma^{*}$, since Σ^{*} is the polar space of l^{*} with respect to $Q^{+}\left(5, q^{2}\right)$. By construction, π is an indicator plane of \mathcal{S}_{2}. Also, the extension of any line $m_{l, M}$ of \mathcal{S}_{2} intersects the plane π in a point, say x, which is orthogonal to every point of the regulus of the hyperbolic quadric $Q^{+}(3, q)=\langle l, M\rangle \cap Q^{-}(5, q)$ containing the lines l and M. Hence x^{ϕ} is a line of π^{ϕ} whose polar line (with respect to \mathcal{H}) is one of the hyperbolic lines of \mathcal{O}, i.e. x^{ϕ} is a line of the Shult set \mathcal{F}. So the indicator set of \mathcal{S}_{2} in π is I as well. Let ψ be a collineation of Σ^{*} mapping Σ to Σ_{1}. Hence \mathcal{S}^{ψ} is a spread of Σ_{1} containing l and its indicator set in π^{ψ} is I^{ψ}. Since both \mathcal{S}_{2} and \mathcal{S}^{ψ} are spreads of Σ_{1} with equivalent indicator sets I and I^{ψ}, respectively, by [5, Prop. 3.1] such spreads are isomorphic.

References

[1] A. Barlotti and J. Cofman: Finite Sperner spaces constructed from projective and affine spaces, Abh. Math. Sem. Univ. Hamburg, 40 (1974), 230-241.
[2] R.H. Bruck, Construction problems in finite projective spaces. Combinatorial mathematics and its application, Chapel Hill (1969), 426-514.
[3] I. Bloemen, J. A. Thas, H. Van Maldeghem: Translation ovoids of generalized quadrangles and hexagons, Geom. Dedicata, 72 (1998), 1962.
[4] A. Cossidente, G. Ebert, G. Marino, A. Siciliano: Shult Sets and Translation Ovoids of the Hermitian Surface, Adv. Geom., 6 (2006), 475-494.
[5] A. Cossidente, G. Lunardon, G. Marino, O. Polverino: Hermitian indicator sets, Adv. Geom., to appear.
[6] G. Lunardon: Insiemi indicatori proiettivi e fibrazioni planari di uno spazio proiettivo finito, Boll. Un. Mat. Ital., 3 (1984), 717-735.
[7] G. Lunardon: Normal spreads, Geom. Dedicata, 75 (1999), no. 3, 245261.
[8] G. Lunardon: Blocking sets and semifields, J. Comb. Theory Ser. A, 113 n.6, 1172-1188.
[9] S.E. Payne, J.A. Thas: Finite Generalized Quadrangles. Pitman, Boston, MA, 1984.
[10] E.E. Shult: Problems by the wayside, Disc. Math., 294 (2005), 175-201.
[11] J.A. Thas: Semi-Partial geometries and spreads of classical polar spaces, J. Comb. Theory Ser. A, 35 (1983), 58-66.
L. Bader, G. Marino, R. Trombetti

Dipartimento di Matematica e Applicazioni
Università di Napoli "Federico II"
I-80126 Napoli, Italy
lbader@unina.it, giuseppe.marino@dma.unina.it, rtrombet@unina.it
O. Polverino

Dipartimento di Matematica
Seconda Università degli Studi di Napoli
I-81100 Caserta, Italy
olga.polverino@unina2.it, opolveri@unina.it

