Spreads of PG(3,q) and ovoids of polar spaces

L. Bader, G. Marino, O. Polverino and R. Trombetti *

Abstract

To any spread S of PG(3,q) corresponds a family of locally hermitian ovoids of the Hermitian surface $H(3,q^2)$, and conversely; if in addition S is a semifield spread, then each associated ovoid is a translation ovoid, and conversely.

In this paper we calculate the translation group of the locally hermitian ovoids of $H(3, q^2)$ arising from a given semifield spread, and we characterize the p-semiclassical ovoid constructed in [4] as the only translation ovoid of $H(3, q^2)$ whose translation group is abelian.

If S is a spread of PG(3,q) and $\mathcal{O}(S)$ is one of the associated ovoids of $H(3,q^2)$, then using the duality between $H(3,q^2)$ and $Q^-(5,q)$, another spread of PG(3,q), say S_2 , can be constructed. On the other hand, using the Barlotti-Cofman representation of $H(3,q^2)$, one more spread of a 3-dimensional projective space, say S_1 , arises from the ovoid $\mathcal{O}(S)$. In [8] some questions are posed on the relations among S, S_1 and S_2 ; here we prove that S and S_2 are isomorphic and the ovoids $\mathcal{O}(S)$ and $\mathcal{O}(S_1)$, corresponding to S and S_1 respectively, under the Plücker map, are isomorphic.

1 Introduction

A spread \mathcal{S} of $\Sigma = PG(3,q)$ is a set of $q^2 + 1$ mutually skew lines partitioning the point-set of Σ . Let \mathcal{S} be a spread of Σ and choose homo-

*Partially supported by MIUR and by GNSAGA.

AMS Mathematics Subject Classification: Primary 51A50, Secondary 51A40, 51E20. Keywords: spreads, indicator sets, Plücker map, ovoids of polar spaces, linear representation. geneous projective coordinates (x_0, x_1, x_2, x_3) in such a way that the lines $l_{\infty} = \{(0, 0, c, d) : c, d \in F_q\}$ and $l_0 = \{(a, b, 0, 0) : a, b \in F_q\}$ belong to S. Then for each line M of S different from l_{∞} , there is a unique 2×2 matrix J_M over F_q such that $M = \{(a, b, c, d) : (c, d) = (a, b)J_M, a, b \in F_q\}$. The set $\mathcal{C}_S = \{J_M : M \in S\}$ has the following properties: (i) \mathcal{C}_S contains q^2 elements, (ii) the zero matrix belongs to \mathcal{C}_S , (iii) X - Y is non-singular for all $X, Y \in \mathcal{C}_S, X \neq Y$. The set \mathcal{C}_S is called the *spread set* associated with S with respect to l_{∞} and l_0 . Conversely, starting from a set \mathcal{C} of 2×2 matrices over F_q satisfying (i), (ii) and (iii), the set of lines $S = \{l_M : M \in \mathcal{C}\} \cup \{l_{\infty}\}$ where $l_M = \{(a, b, c, d) : (c, d) = (a, b)M, a, b \in F_q\}$ is a spread of Σ and $\mathcal{C}_S = \mathcal{C}$. A spread S is a *semifield spread* if there exists a collineation group of S fixing a line l pointwise and acting regularly on the set of the q^2 lines of S different from l. Equivalently, S is a semifield spread with respect to the line l_{∞} if and only if \mathcal{C}_S is closed under the sum.

Regard Σ as a canonical subgeometry of $\Sigma^* = PG(3, q^2)$ and let σ be the involutory collineation of Σ^* pointwise fixing Σ . Let \mathcal{S} be any spread of Σ and l be a fixed line of \mathcal{S} . A plane π of Σ^* is an *indicator plane* of \mathcal{S} through the line l if $\pi \cap \Sigma = l$. The set $I_{\pi}(\mathcal{S}) = \{m^* \cap \pi \mid m \in \mathcal{S} \setminus \{l\}\}$ (where m^* is the extension of the line m in Σ^*) is called the *indicator set* of \mathcal{S} in π . Such a set consists of q^2 points and any secant line of it meets l^* in a point not on l. Conversely, any set of points I of $\pi \setminus l^*$ satisfying the above properties defines a spread $\mathcal{S} = \{ \langle P, P^{\sigma} \rangle \cap \Sigma | P \in I \} \cup \{l\}$ of Σ containing l such that $I_{\pi}(\mathcal{S}) = I$ ([2] and [6]). The spread \mathcal{S} is regular if and only if $I_{\pi}(\mathcal{S})$ is either an affine line (classical indicator set) or an affine Baer subplane (semiclassical indicator set). Following [5], we say that two indicator sets I_1 and I_2 in Σ^* lying on the indicator planes π_1 and π_2 , respectively, passing through the line l^* , are *isomorphic* if the associated spreads of Σ are; the indicator sets I_1 and I_2 are *equivalent* if there exists a collineation ψ fixing the Baer subline l such that $\psi(I_1) = I_2$. Note that isomorphic indicator sets may be not equivalent, while in [5, Prop 3.1] it is proven that equivalent indicator sets are isomorphic.

A Hermitian surface $\mathcal{H} = H(3, q^2)$ of $PG(3, q^2)$ is the set of all isotropic points of a non-degenerate unitary polarity. A line of $PG(3, q^2)$ meets \mathcal{H} in 1, q + 1 or $q^2 + 1$ points. The former are the *tangents* and the latter are the generators of \mathcal{H} . The intersections of order q + 1 are Baer sublines and are often called *chords*, whereas the lines meeting \mathcal{H} in a Baer subline are called *hyperbolic lines*.

An ovoid \mathcal{O} of \mathcal{H} is a set of $q^3 + 1$ points which has exactly one common

point with every generator of \mathcal{H} . The ovoid \mathcal{O} is called *locally hermitian* with respect to one of its points, say P, if it is the union of q^2 chords of \mathcal{H} through P; the ovoid \mathcal{O} is called *translation* ovoid with respect to its point P if there is a collineation group of \mathcal{H} fixing P, leaving invariant all the generators through P, and acting regularly on the points of $\mathcal{O} \setminus \{P\}$. Note that any translation ovoid is locally hermitian ([3]).

In [10] by using the so-called *Shult embedding* the author proves that any indicator set $I = I_{\pi}(\mathcal{S})$ in $\pi \simeq PG(2, q^2)$ gives rise to a locally hermitian ovoid of \mathcal{H} , and conversely. Let $\mathcal{O}_{\pi}(\mathcal{S})$ be the locally hermitian ovoid of \mathcal{H} arising from the spread \mathcal{S} via the indicator set $I_{\pi}(\mathcal{S})$. In [8] it has been proved that if the spread \mathcal{S} is a semifield spread then, for any choice of π , the ovoid $\mathcal{O}_{\pi}(\mathcal{S})$ is a translation ovoid, and conversely.

In [4], starting from semiclassical indicator sets, the authors construct some translation ovoids of \mathcal{H} and their translation groups; among them, only one, namely the p-semiclassical ovoid (permutable semiclassical ovoid), has an elementary abelian p-group ($q = p^r$). In Section 2 we determine the translation group of all translation ovoids arising from a semifield spread \mathcal{S} and we characterize the p-semiclassical ovoid as the only example whose translation group is abelian.

In [8], by using the Barlotti-Cofman representation of the Hermitian surface \mathcal{H} it is shown that any locally hermitian ovoid $\mathcal{O}_{\pi}(\mathcal{S})$ of \mathcal{H} defines an ovoid, say \mathbb{O} , of the hyperbolic quadric $Q^+(5,q)$, and conversely; if $\mathcal{O}_{\pi}(\mathcal{S})$ is a translation ovoid, then also \mathbb{O} is. In Section 3 we answer a question posed in [8], proving that the ovoids $O(\mathcal{S})$ (which is the image of \mathcal{S} under the Plücker map) and \mathbb{O} are isomorphic for any choice of the indicator plane π .

By duality any locally hermitian ovoid $\mathcal{O} = \mathcal{O}_{\pi}(\mathcal{S})$ of \mathcal{H} with respect to a point P gives rise to a locally hermitian spread of $Q^{-}(5,q)$ with respect to the line L (dual of P); such a spread defines a spread \mathcal{S}_2 of $L^{\perp} \simeq PG(3,q)$, where \perp is the polarity induced by $Q^{-}(5,q)$, see [11]. If the spread \mathcal{S} is a semifield spread then the spread \mathcal{S}_2 also is. In Section 4 we prove that \mathcal{S} and \mathcal{S}_2 are isomorphic for any choice of the indicator plane π . In the case \mathcal{S} is a semifield spread, the question on the relation between \mathcal{S} and \mathcal{S}_2 was posed in [8, Sect. 4.3].

2 Translation ovoids of $H(3, q^2)$

Let \mathcal{O} be a translation ovoid of $\mathcal{H} = H(3, q^2)$ with respect to a point P. Then \mathcal{O} is a locally hermitian ovoid of \mathcal{H} with respect to P and it arises from a semifield spread \mathcal{S} of a 3-dimensional projective space over F_q via the Shult embedding ([8]). Choose the homogeneous projective coordinates (x_0, x_1, x_2, x_3) in $PG(3, q^2)$ in such a way that $\mathcal{H} : x_0 x_3^q - x_3 x_0^q + x_2 x_1^q - x_1 x_2^q =$ 0 and P = (0, 0, 0, 1); then in [5] it has been proved that

$$\mathcal{O} = \mathcal{O}_{\pi}(\mathcal{S}) = \mathcal{O}(\lambda, h, k) = \{(1, -v - \lambda^q u, h(u, v) + \lambda^q k(u, v), \\ \mu + \lambda(vk(u, v) - uh(u, v))) | u, v, \mu \in F_q\} \cup \{P\}$$

where $\pi : x_1 = \lambda x_0$ ($\lambda \in F_{q^2} \setminus F_q$) and $h, k : F_q \times F_q \to F_q$. The spread set $\mathcal{C}_{\mathcal{S}}$ associated with \mathcal{S} with respect to l_{∞} and l_0 consists of the matrices:

$$X_{uv} = \begin{pmatrix} v & h(u,v) \\ u & k(u,v) \end{pmatrix},$$

with $u, v \in F_q$. Since S is a semifield spread, then C_S is closed under the sum and hence h and k are additive functions.

Let $\mathbb{U} = PGU(4, q^2)$ denote the group of the linear collineations of $PG(3, q^2)$, leaving \mathcal{H} invariant. The subgroup E of \mathbb{U} fixing P and leaving invariant all the generators through P has size q^5 ([9]) and direct computations show that E consists of the matrices

$$\begin{pmatrix} 1 & \alpha & \beta & c - \alpha \beta^q \\ 0 & 1 & 0 & -\beta^q \\ 0 & 0 & 1 & \alpha^q \\ 0 & 0 & 0 & 1 \end{pmatrix}, \ \alpha, \beta \in F_{q^2}, c \in F_q.$$

The following theorem holds.

Theorem 1 The translation group of $\mathcal{O} = \mathcal{O}(\lambda, h, k)$ with respect to P is

$$G = \left\{ \begin{pmatrix} 1 & -v - \lambda^{q}u & h(u, v) + \lambda^{q}k(u, v) & c + (v + \lambda^{q}u)(h(u, v) + \lambda k(u, v)) \\ 0 & 1 & 0 & -h(u, v) - \lambda k(u, v) \\ 0 & 0 & 1 & -v - \lambda u \\ 0 & 0 & 0 & 1 \end{pmatrix} ; u, v, c \in F_q \right\}.$$

Proof: Direct calculations show that G is a subgroup of E and that the point $P_0 = (1, 0, 0, 0)$ of $\mathcal{O}(\lambda, h, k)$ is mapped to the point $(1, -v - \lambda^q u, h(u, v) + \lambda^q k(u, v), \mu + \lambda(vk(u, v) - uh(u, v))$ of $\mathcal{O}(\lambda, h, k)$ by the element of G with $c = \mu - vh(u, v) - \lambda^{q+1}uk(u, v) - uh(u, v)(\lambda + \lambda^q)$. This implies that G acts regularly on the points of $\mathcal{O}(\lambda, h, k) \setminus \{P\}$. \Box

From now on, let Tr and N denote the trace and the norm functions of F_{q^2} over F_q , respectively.

The set $\tilde{E} = F_{q^2} \times F_q \times F_{q^2}$ equipped with the product $(\alpha, c, \beta) \circ (\alpha', c', \beta') = (\alpha + \alpha', c + c' + Tr(\alpha'\beta^q), \beta + \beta')$ is a group, whose center is $Z = \{(0, c, 0) | c \in F_q\}$.

The Hermitian surface \mathcal{H} is an elation generalized quadrangle of order (q^2, q) with respect all of its points, which can be also described as a coset geometry, and in this model the elation group of \mathcal{H} is isomorphic to \tilde{E} . For more details, see e.g. [9].

The map
$$\theta$$
 : $(\alpha, c, \beta) \in \tilde{E} \mapsto \begin{pmatrix} 1 & \alpha & \beta & c - \alpha \beta^q \\ 0 & 1 & 0 & -\beta^q \\ 0 & 0 & 1 & \alpha^q \\ 0 & 0 & 0 & 1 \end{pmatrix} \in E$ is an iso-

morphism and a straightforward calculation shows that $\tilde{G} = \theta^{-1}(G) = \{(-v - \lambda^q u, c, h(u, v) + \lambda^q k(u, v)) | u, v, c \in F_q\}.$

In [4] the authors, starting from indicator sets associated with the desarguesian spread, construct some translation ovoids of $H(3, q^2)$ and their translation groups; among them, only one, namely the p-semiclassical ovoid, has an elementary abelian *p*-group ($q = p^r$, *p* odd). We conclude this section characterizing translation ovoids of $H(3, q^2)$, $q = p^r$, whose translation group is abelian.

Theorem 2 The translation group G of $\mathcal{O}(\lambda, h, k)$ is abelian if and only if $\mathcal{O}(\lambda, h, k)$ is p-semiclassical.

Proof: Since G and \tilde{G} are isomorphic, we work on \tilde{G} . The group \tilde{G} is abelian if and only if for any $u, u', v, v' \in F_q$,

$$Tr((-v' - \lambda^{q}u')(h(u, v) + \lambda k(u, v)) + (v + \lambda^{q}u)(h(u', v') + \lambda k(u', v'))) = 0$$

i.e., as $\lambda^{q} = Tr(\lambda) - \lambda$,
$$2N(\lambda)(uk(u', v') - u'k(u, v)) + Tr(\lambda)[uh(u', v') - u'h(u, v) + vk(u', v') - v'k(u, v)] + 2(vh(u', v') - v'h(u, v)) = 0.$$
 (1)

Note that, since $h, k: F_q \times F_q \mapsto F_q$ are additive maps, they are linear over F_p and hence we can write

$$h(u,v) = a_0 u + \sum_{i=1}^{r-1} a_i u^{p^i} + b_0 v + \sum_{i=1}^{r-1} b_i v^{p^i} = a_0 u + h_1(u) + b_0 v + h_2(v) \quad (2)$$

and

$$k(u,v) = c_0 u + \sum_{i=1}^{r-1} c_i u^{p^i} + d_0 v + \sum_{i=1}^{r-1} d_i v^{p^i} = c_0 u + k_1(u) + d_0 v + k_2(v) \quad (3)$$

with $a_i, b_i, c_i, d_i \in F_q$. Now suppose p = 2. Since $Tr(\lambda) \neq 0$, from (1) it follows

$$uh(u',v') - u'h(u,v) + vk(u',v') - v'k(u,v) = 0$$
(4)

for all $u, u', v, v' \in F_q$. Putting u = u' = 0 in (4) we get vk(0, v') = v'k(0, v)for all $v, v' \in F_q$ and hence $k(0, v) = d_0 v$. Similarly, putting v = v' = 0in (4) we obtain $h(u, 0) = a_0 u$. Substituting in (4) with u = u', we have uh(0, v' - v) + (v - v')k(u, 0) = 0 for all $u, v, v' \in F_q$, from which it follows $b_0 = c_0$ and $b_i = c_i = 0$ for all $i = 1, \ldots, r - 1$. Summing up, in even characteristic, if \tilde{G} is abelian, then

$$h(u, v) = a_0 u + b_0 v$$
 and $k(u, v) = b_0 u + d_0 v.$

This is impossible, as such maps do not define any spread of Σ .

On the other hand, let p be odd. From (1) with u = u' = 0 and taking (2) and (3) into account, it follows

$$\sum_{i=0}^{r-1} (Tr(\lambda)d_i + 2b_i)vv'^{p^i} = \sum_{i=0}^{r-1} (Tr(\lambda)d_i + 2b_i)v'v^{p^i}$$

for all $v, v' \in F_q$. Then $b_i = \frac{-Tr(\lambda)}{2}d_i$ for all $i = 1, \ldots, r-1$. Similarly, from (1) with v = v' = 0, it follows

$$\sum_{i=0}^{r-1} (2N(\lambda)c_i + Tr(\lambda)a_i)u{u'}^{p^i} = \sum_{i=0}^{r-1} ((2N(\lambda)c_i + Tr(\lambda)a_i)u'u^{p^i})$$

for all $u, u' \in F_q$. Therefore, $c_i = \frac{-Tr(\lambda)}{2N(\lambda)}a_i$ for $i = 1, \ldots, r-1$. Substituting in (2) and in (3), we get

$$h_2(v) = -\frac{Tr(\lambda)}{2}k_2(v) \tag{5}$$

$$k_1(u) = -\frac{Tr(\lambda)}{2N(\lambda)}h_1(u).$$
(6)

Moreover, with u = u' and v = 0, from (1) it follows

$$2N(\lambda)uk(0,v') + Tr(\lambda)(uh(0,v') - v'k(u,0)) - 2v'h(u,0) = 0$$

for all $u, v' \in F_q$. The above condition, taking (5) and (6) into account, yields

$$\frac{4N(\lambda) - Tr(\lambda)^2}{2} \left(uk_2(v') - \frac{v'h_1(u)}{N(\lambda)} \right) = 0.$$

Since $\lambda \in F_{q^2} \setminus F_q$, we have $4N(\lambda) - Tr(\lambda)^2 \neq 0$; hence $h_1(u) = k_2(v') = 0$ for all $u, v' \in F_q$. From (5) and (6) it turns out that if \tilde{G} is abelian, then the spread \mathcal{S} of PG(3,q) is regular. As q is odd, without loss of generality, we can consider the regular spread \mathcal{S}_m arising for h(u,v) = u and k(u,v) = mvfor m a fixed nonsquare in F_q . With this choice, from (1) it follows that $(m\lambda^{q+1}-1)(uv'-u'v) = 0$ for all $u, u', v, v' \in F_q$ and hence $\lambda^{q+1} = 1/m$. Since such an equation admits q+1 solutions in $F_{q^2} \setminus F_q$, there exist exactly q+1 translation ovoids arising from S_m with an abelian translation group. In [5] it has been shown that there are q+1 p-semiclassical translation ovoids arising from a fixed regular spread \mathcal{S} of PG(3,q), and each has an abelian group. Hence, the translation ovoids $\mathcal{O}(\lambda, u, mv)$ of $H(3, q^2)$, with $\lambda^{q+1} = m$ are p-semiclassical translation ovoids. \Box

Remark 1 In [5] it is also proved that the q + 1 p-semiclassical translation ovoids arising from a given regular spread are all isomorphic. Hence, there exists (up to isomorphisms) a unique translation ovoid of $H(3, q^2)$ with an abelian translation group.

3 Translation ovoids of $H(3,q^2)$ and ovoids of $Q^+(5,q)$

In the setting of the previous section, let S be the spread of $\Sigma = PG(3,q)$ containing the lines l_{∞} and l_0 and defined by the functions h and k. Then

$$\mathcal{O}(\lambda, h, k) = \{ (1, -v - \lambda^q u, h(u, v) + \lambda^q k(u, v), \mu + \lambda(vk(u, v) - uh(u, v))) : u, v, \mu \in F_q \} \cup \{ (0, 0, 0, 1) \},\$$

with $\lambda \in F_{q^2} \setminus F_q$, are the locally hermitian ovoids of the Hermitian surface $\mathcal{H}: x_0 x_3^q - x_0^q x_3 + x_2 x_1^q - x_2^q x_1 = 0$ of $\Gamma = PG(3, q^2)$ arising from \mathcal{S} .

An element $x \in F_{q^2}$ can be uniquely written as $x = x_0 + \lambda x_1$, where $x_0, x_1 \in F_q$. To any point $R = (a, b, c, d) \in \Gamma$, with $a = a_0 + \lambda a_1$, $b = b_0 + \lambda b_1$, $c = c_0 + \lambda c_1$, $d = d_0 + \lambda d_1$, there corresponds the line l_R of a 7-dimensional projective space over F_q , say Λ , passing through the point $(a_0, a_1, b_0, b_1, c_0, c_1, d_0, d_1)$ defined as $l_R = \{(y_0, y_1, \dots, y_7) | \exists \mu \in F_{q^2} : \mu a = y_0 + \lambda y_1, \mu b = y_2 + \lambda y_3, \mu c = y_4 + \lambda y_5, \mu d = y_6 + \lambda y_7\}$. The set $\mathcal{R}_{\lambda} = \{l_R : R \in \Gamma\}$ turns out to be a normal spread of Λ (for more details see [7]). We say that the pair $(\Lambda, \mathcal{R}_{\lambda})$ is the F_q -linear representation of Γ with respect to the basis $\{1, \lambda\}$.

The F_q -linear representation of \mathcal{H} with respect to the basis $\{1, \lambda\}$ is the hyperbolic quadric $Q^+(7, q)$ with equation $y_0y_7 - y_1y_6 + y_4y_3 - y_5y_2 = 0$. Let $P = (0, 0, 0, 1) \in \mathcal{H}$. Then, the F_q -linear representation with respect to the basis $\{1, \lambda\}$ of the polar plane $P^{\rho} : x_0 = 0$ (where ρ is the unitary polarity induced by \mathcal{H}) is the 5-dimensional projective space $\Omega : y_0 = y_1 = 0$ of Λ equipped with the normal spread \mathcal{N} induced by \mathcal{R}_{λ} on it. Note that $l_P : y_0 =$ $\cdots = y_5 = 0$ is a line of \mathcal{N} . Let $\Omega' = PG(6, q) : y_1 = 0$. Define an incidence structure $\pi(\Omega', \Omega, \mathcal{N})$ as follows. The points are either the points of $\Omega' \setminus \Omega$ or the elements of \mathcal{N} . The lines are either the planes of Ω' which intersect Ω in a line of \mathcal{N} or the regular spreads of the 3-dimensional projective spaces $\langle A, B \rangle$, where A and B are distinct lines of \mathcal{N} ; the incidence is the natural one. As \mathcal{N} is normal, $\pi = \pi(\Omega', \Omega, \mathcal{N})$ is isomorphic to Γ (for more details see [1]). Let $\Phi : \Gamma \mapsto \pi$ be the isomorphism defined by $\Phi(R) = l_R$ if $R \in P^{\rho}$ and $\Phi(R) = l_R \cap \Omega'$ if $R \notin P^{\rho}$. Note that, if $R = (1, b_0 + \lambda b_1, c_0 + \lambda c_1, d_0 + \lambda d_1)$ with $b_0, b_1, c_0, c_1, d_0, d_1 \in F_q$, then $\Phi(R) = (1, 0, b_0, b_1, c_0, c_1, d_0, d_1)$.

Moreover, $\Omega' \cap Q^+(7,q)$ is a quadratic cone \mathcal{K} with vertex the point $V = (0,0,0,0,0,0,1,0) \in l_P$. A base of \mathcal{K} is the hyperbolic quadric $\mathcal{Q} = Q^+(5,q)$

obtained by intersecting \mathcal{K} with the 5-dimensional projective space $\Delta : y_1 = y_6 = 0$.

The set

$$\Phi(\mathcal{O}(\lambda,h,k) \setminus P) \cap \Delta = \{(1,0,-v-Tr(\lambda)u,u,h(u,v)+Tr(\lambda)k(u,v), -k(u,v),0,vk(u,v)-uh(u,v)) : u,v \in F_q\}$$

union the point $Q = l_P \cap \Delta = (0, 0, 0, 0, 0, 0, 0, 1)$ is an ovoid \mathbb{O}_{λ} of \mathcal{Q} (see [8, Thm. 6]). Let $\mathcal{S}_1(\lambda)$ denote the spread of a projective space PG(3, q) which is the image of \mathbb{O}_{λ} under the inverse of the Plücker map. Let $\varphi_{\lambda} : \Lambda \mapsto \Lambda$ be the collineation with equations

$$y'_0 = y_0, \quad y'_1 = y_1, \quad y'_2 = y_3, \quad y'_3 = -y_5,$$

 $y'_4 = -y_2 - Tr(\lambda)y_3, \quad y'_5 = y_4 + Tr(\lambda)y_5, \quad y'_6 = y_6, \quad y'_7 = -y_7.$

Then φ_{λ} fixes both Δ and the Klein quadric \mathcal{Q} and maps the ovoid \mathbb{O}_{λ} to the ovoid

$$\mathbb{O} = \{ (1, 0, u, k(u, v), v, h(u, v), 0, uh(u, v) - vk(u, v)) : u, v \in F_q \} \\ \cup \{ (0, 0, 0, 0, 0, 0, 0, 1) \}.$$

It can be easily seen that such an ovoid is the image of the spread S, under the Plücker map between the lines of Σ and the points of Q. We have proved the following

Theorem 3 The ovoids \mathbb{O} and \mathbb{O}_{λ} are isomorphic for any choice of λ .

Corollary 1 The ovoid $\mathcal{O}(\lambda, h, k)$ is a translation ovoid of \mathcal{H} with respect to the point P = (0, 0, 0, 1) if and only if \mathbb{O}_{λ} is a translation ovoid of \mathcal{Q} with respect to the point Q = (0, 0, 0, 0, 0, 0, 0, 0, 1).

Proof: Since $\mathcal{O}(\lambda, h, k)$ is a translation ovoid if and only if \mathcal{S} is a semifield spread (see [8, Thm. 5 and Cor. 2]), the result follows from Theorem 3. \Box

4 A construction of a spread in PG(3,q)

Let S be a spread of $\Sigma = PG(3,q)$. Embed Σ in $\Sigma^* = PG(3,q^2)$ in such a way that $\Sigma = Fix(\sigma)$, where σ is an involutory collineation of Σ^* . Let π be an indicator plane of \mathcal{S} in $PG(3,q^2)$. Denote by l the line of \mathcal{S} such that l is in π and by $I_{\pi}(\mathcal{S})$ the indicator set of \mathcal{S} in the plane π . Consider the point-line dual plane of π : this is a plane $\tilde{\pi}$, in which l^* (the extension of l in Σ^*) is represented by a point P, the Baer subline l by a Baer subpencil l through P and $I_{\pi}(\mathcal{S})$ by a set \mathcal{F} of q^2 lines not containing P, any two of them intersecting at a point of $\tilde{\pi} \setminus \tilde{l}$. The set of lines \mathcal{F} is called a *Shult set*, following [5] and [8]. Fix a Hermitian surface $\mathcal{H} = H(3, q^2)$ in such a way that $P \in \mathcal{H}$ and $\tilde{\pi} \cap \mathcal{H} = \tilde{l}$. Let u be the polarity defined by \mathcal{H} . The elements of \mathcal{F}^u are hyperbolic lines of \mathcal{H} through P, hence the set $\mathcal{O} = \bigcup_{m \in \mathcal{F}} (m^u \cap \mathcal{H})$ is a locally hermitian ovoid of \mathcal{H} (see [10]). The ovoid \mathcal{O} corresponds via a Plücker map ρ to a locally hermitian spread S of $Q^{-}(5,q)$ with respect to the line $L = P^{\rho}$. Let $\Lambda = L^{\perp}$, where \perp is the orthogonal polarity induced by $Q^{-}(5,q)$. If M is a line of S different from L then the line $m_{L,M} = \langle L, M \rangle^{\perp}$ is a line of Λ disjoint from $\langle L, M \rangle$. Moreover the set of lines $S_2 = \{m_{L,M} \colon M \in \mathbb{S}, M \neq L\} \cup \{L\}$ turns out to be a spread of Λ ([11]). With this notation, the following holds.

Theorem 4 The spreads S and S_2 are isomorphic, for any choice of l and π , and for any embedding of the indicator plane of the spread S as a tangent plane to a Hermitian surface at the point-line dual of the line l.

Proof: In order to prove the isomorphism between S and S_2 , we review the above construction embedding the involved spreads in the same 3-dimensional projective space over F_{q^2} .

Let \mathcal{S} be a spread of Σ , fix a line l of \mathcal{S} and fix an indicator plane, say π , of \mathcal{S} in Σ^* , such that $l^* \subset \pi$. Let $I = I_{\pi}(\mathcal{S})$ be the indicator set of \mathcal{S} in π . Choose a hyperbolic quadric $Q^+(5,q^2)$ of a $PG(5,q^2)$ containing Σ^* such that $Q^+(5,q^2) \cap \Sigma^* = \pi \cup \pi^{\sigma}$. Let ϕ be the inverse of a Plücker map from $Q^+(5,q^2)$ to the lineset of $\Gamma = PG(3,q^2)$, such that π is a latin plane, i.e. π^{ϕ} is a ruled plane of Γ . Note that the map ϕ restricted to π is a point-line duality between π and π^{ϕ} . Let $X = (l^*)^{\phi_{|\pi}}$ and let \mathcal{B} denote the Baer cone which is the image of the points of l under $\phi_{|\pi}$. Also, the indicator set I corresponds, under $\phi_{|\pi}$, to a Shult set \mathcal{F} of π^{ϕ} with respect to \mathcal{B} .

Let $\mathcal{H} = H(3, q^2)$ be any Hermitian surface of Γ such that $\mathcal{H} \cap \pi^{\phi} = \mathcal{B}$ and let \mathcal{O} be the locally hermitian ovoid of \mathcal{H} arising from \mathcal{F} . The ovoid \mathcal{O} is locally hermitian with respect to X and applying the Pluüker map ϕ^{-1} to \mathcal{H} , we get an elliptic quadric $Q^{-}(5,q)$ containing l embedded in $Q^{+}(5,q^2)$ and the locally hermitian spread $\mathcal{O}^{\phi^{-1}}$ of $Q^{-}(5,q)$ with respect to l. Moreover, $\mathcal{O}^{\phi^{-1}}$ defines the spread $\mathcal{S}_2 = \{m_{l,M} \colon M \in \mathcal{O}^{\phi^{-1}}, M \neq l\} \cup \{l\}$ of $l^{\perp} = \Sigma_1 \simeq$ PG(3,q), where \perp is the polarity defined by $Q^{-}(5,q)$. Note that $l \subset l^*$ implies that $\Sigma_1 \subset \Sigma^*$, since Σ^* is the polar space of l^* with respect to $Q^+(5,q^2)$. By construction, π is an indicator plane of \mathcal{S}_2 . Also, the extension of any line $m_{l,M}$ of \mathcal{S}_2 intersects the plane π in a point, say x, which is orthogonal to every point of the regulus of the hyperbolic quadric $Q^+(3,q) = \langle l, M \rangle \cap Q^-(5,q)$ containing the lines l and M. Hence x^{ϕ} is a line of π^{ϕ} whose polar line (with respect to \mathcal{H}) is one of the hyperbolic lines of \mathcal{O} , i.e. x^{ϕ} is a line of the Shult set \mathcal{F} . So the indicator set of \mathcal{S}_2 in π is I as well. Let ψ be a collineation of Σ^* mapping Σ to Σ_1 . Hence \mathcal{S}^{ψ} is a spread of Σ_1 containing l and its indicator set in π^{ψ} is I^{ψ} . Since both \mathcal{S}_2 and \mathcal{S}^{ψ} are spreads of Σ_1 with equivalent indicator sets I and I^{ψ} , respectively, by [5, Prop. 3.1] such spreads are isomorphic. \Box

References

- A. Barlotti and J. Cofman: Finite Sperner spaces constructed from projective and affine spaces, *Abh. Math. Sem. Univ. Hamburg*, 40 (1974), 230–241.
- [2] R.H. Bruck, Construction problems in finite projective spaces. Combinatorial mathematics and its application, Chapel Hill (1969), 426–514.
- [3] I. Bloemen, J. A. Thas, H. Van Maldeghem: Translation ovoids of generalized quadrangles and hexagons, *Geom. Dedicata*, **72** (1998), 19-62.
- [4] A. Cossidente, G. Ebert, G. Marino, A. Siciliano: Shult Sets and Translation Ovoids of the Hermitian Surface, Adv. Geom., 6 (2006), 475-494.
- [5] A. Cossidente, G. Lunardon, G. Marino, O. Polverino: Hermitian indicator sets, *Adv. Geom.*, to appear.
- [6] G. Lunardon: Insiemi indicatori proiettivi e fibrazioni planari di uno spazio proiettivo finito, Boll. Un. Mat. Ital., 3 (1984), 717–735.
- [7] G. Lunardon: Normal spreads, Geom. Dedicata, 75 (1999), no. 3, 245– 261.

- [8] G. Lunardon: Blocking sets and semifields, J. Comb. Theory Ser. A, 113 n.6, 1172-1188.
- [9] S.E. Payne, J.A. Thas: Finite Generalized Quadrangles. Pitman, Boston, MA, 1984.
- [10] E.E. Shult: Problems by the wayside, *Disc. Math.*, **294** (2005), 175-201.
- J.A. Thas: Semi-Partial geometries and spreads of classical polar spaces, J. Comb. Theory Ser. A, 35 (1983), 58-66.

L. Bader, G. Marino, R. Trombetti Dipartimento di Matematica e Applicazioni Università di Napoli "Federico II" I-80126 Napoli, Italy *lbader@unina.it, giuseppe.marino@dma.unina.it, rtrombet@unina.it*

O. Polverino Dipartimento di Matematica Seconda Università degli Studi di Napoli I-81100 Caserta, Italy olga.polverino@unina2.it, opolveri@unina.it