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The dye-sensitized photooxygenation of furanosyl furans
easily affords C- or O-glycosides with cis-R,â-unsaturated
1,4-dioxo aglycones. The reaction, performed on a ribofura-
nosyl furan, provides a useful new entry to a novel py-
ridazine C-nucleoside that can be achieved through a simple
one-pot procedure.

C-Nucleosides are compounds of great interest owing
to their potential biological activity together with their
higher stability than nucleosides.1-5 The research of new
synthetic procedures for this compound class is a field of
organic chemistry continuously explored. Generally, the
synthetic approach is based on coupling reactions be-
tween a glycosyl-donor and a heterocycle as well as on
the elaboration of a preexistent residue that is selectively
converted into the desired aglycone.6 In the framework
of the latter strategy,6a the use of furan is well-known.7,8

Recently, we have tested the use of the dye-sensitized
photooxygenation on some glucopyranosyl furans with
the aim to introduce this procedure as additional meth-
odology toward new and functionalized glycosides.9

Here, we extend the procedure to five-ring sugar furans
to provide a new synthetic entry for novel C-nucleosides.
First, we verify the chemical behavior of furanosyl furans
1a,b under photooxygenation conditions and, finally, we
report a one-pot procedure for a novel pyridazine C-
nucleoside.

The furanosyl furans 1, previously unknown, were
prepared starting from the 2,3,5-tri-O-benzyl-1-O-(4-
nitrobenzoyl)-D-arabinofuranose (for 1a,b), and from the
1,2,3,5-tetra-O-acetyl-D-ribofuranose (for 1c), all com-
mercially available (Scheme 1).10,11 The reactions afforded
a mixture of the R and â-anomers of 1 (R: â/1:3, 1:2 and
1:8 molar ratio for 1a, 1b and 1c, respectively)12 so
showing a different stereochemical trend from that
observed in the synthesis of glucosyl furans9 which were
obtained in R-configuration.

Thus, we start with the methylene blue-sensitized
photooxygenation in dichloromethane at -20 °C of the
arabinofuranosyl furan 1a as an R- and â-anomeric
mixture in a 1:6 molar ratio. When the reaction was
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SCHEME 1a

a Conditions: (i) furan (6 equiv), SnCl4 (1.6 equiv), CH2Cl2, 4 h
(for 1a); 2-methylfuran (1 equiv), SnCl4 (1.6 equiv), CH2Cl2, 2 h
(for 1b); (ii) 2,5-dimethylfuran (1 equiv), SnCl4 (1.6 equiv), CH2Cl2,
1 h.
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complete (90 min, TLC), the solution was warmed to rt.
The 1H NMR showed the presence of the only cis-O-
furanoside 2a (>90%) as an R,â-anomeric mixture in the
same molar ratio as the starting 1a. When the photo-
oxygenation was performed under the same conditions
starting from the only â-1a, only the â-2a was obtained
(Scheme 2). These results showed that the intermediate
endoperoxides 3 deriving from the cycloaddition of singlet
oxygen to furanosyl furans undergo a selective thermal
rearrangement to the corresponding O-derivatives as
observed for the glucopyranosyl analogues (Scheme 3).
Moreover, the stereochemical trend confirmed that the
Baeyer-Villiger type-rearrangement occurs with com-
plete retention of the configuration, as previously sug-
gested.9 On contact with chromatographic adsorbents,
compound 2a isomerized into trans-4a, and the extent
of the isomerization strictly depended on the time
employed for the analysis. Similar results were obtained
starting from the 2,5-disubstitued furan â-1b (Scheme
2).

The new C-glycosides 5a,b were obtained by carrying
out the photooxygenation of â-1a,b in methanol13 at -20
°C and, when each reaction was complete, by adding Et2S
to the crude mixture, kept at this temperature.

Compound 5 was configurationally unstable and in
CDCl3 rapidly isomerized into the corresponding trans-
6, which could not be isolated by silica gel chromatogra-
phy (Scheme 4).14

With the aim to achieve configurationally stable and
more manageable cis-1,4-diketones as aglyconic residues,
we carried out the photooxygenation of â-1c in dichlo-
romethane at -20 °C, which was complete after 30 min
(TLC). The 1H NMR of an aliquot warmed to rt showed
the presence of two compounds to which we tentatively
assigned the structure of the diastereomeric endoperox-
ides â-3c.15 The 1H NMR spectrum in fact showed a
complex pattern of signals among which were two sin-
glets at δ 6.19 and 6.26 ppm in a 1:6 ca. molar ratio. The
peroxidic nature was revealed by Et2S addition, which
quantitatively afforded the C-ribofuranoside 5c (Scheme
5).16

As expected, the diketone 5c was configurationally
stable, and since it decomposed slightly on contact with
chromatographic adsorbents, it was characterized by one-
and two-dimensional NMR spectroscopy recorded on the
crude mixture. Thus, after removal of the solvent, to a
dry methanol solution of the crude â-5c was added
hydrazine hydrochloride, and the resulting solution was
kept at rt under stirring. After 3 days, the workup
afforded the new pyridazine C-nucleoside â-7c, which was
isolated by silica gel chromatography (Scheme 5). The
MB-sensitized photooxygenation in methanol13 followed
by addition of Et2S and, successively, of hydrazine
hydrochloride to the crude reaction mixture provided a
simple one-pot procedure for the access to the nucleoside
7 (70% from furan 1c).

In conclusion, in this work we extended the dye-
sensitized photooxygenation to five-membered-ring sugar-

(13) Methanol as a solvent is particularly attractive for R,R′-
disubstituted furans, for example 1b, since it adds to the corresponding
endoperoxides leading to 5-hydroperoxy-2,5-dihydrofurans (below),
which are more stable than the parent peroxides. Moreover, these
hydroperoxides are readily deoxygenated by alkyl sulfides to the cis-
R,â-unsaturated 1,4-dicarbonyl compounds, and the reduction can be
carried out on the crude methanolic solution.

In the other cases, when alcohol addition fails, e.g., with endoperoxides
of R,R′- or R-unsubstituted furans as 1a, methanol can also be used
while maintaining the temperature at low values to avoid thermal
rearrangement of the endoperoxide intermediate (Iesce, M. R.; Cer-
mola, F.; Temussi, F Curr. Org. Chem. 2005, 9, 109-139).

(14) Rapid isomerization in CDCl3 was also observed in the glucoside
series.9 It is reasonable that it occurs for unsubstituted unsaturated
1,4-dicarbonyl derivatives.

(15) Thermal stability of endoperoxides of 2,5-dialkylfurans has been
reported: Graziano, M. L.; Iesce, M. R.; Scarpati, R. J. Chem. Soc.,
Chem. Commun. 1981, 720. On the other hand, the lack of the
O-glycoside starting from 1c was expected; indeed the Baeyer-Villiger-
type rearrangement is reported not to occur for endoperoxides of 2,5-
dialkylfurans. It has been demonstrated only for monosubstituted
endoperoxides with an acyl group at C1 (Bloodworth, A. J.; Eggelte,
H. J. In Singlet Oxygen; Frimer, A. A., Ed.; CRC Press: Boca Raton,
FL, 1985; Vol. II, p 165) or with -CH2OCOR groups (Kuo, Y.-H.; Shih,
K.-S.; Lee, S.-M. J. Photochem. Photobiol., A: Chem. 1988, 97). Thus,
as for the C-glucoside analogues, the formation of 2 is probably due to
the electrophilicity of the anomeric carbon of the sugar, which promotes
this pathway also for both mono- and disubstitued 1a,b.

(16) When Et2S was added to an aliquot in CDCl3, the 1H NMR
spectrum showed the disappearance of these two signals together with
the appearance of the signals of 5c. The cis relationship of the carbonyl
groups in 5c was unambiguously related to the bicyclic structure of
the parent endoperoxides 3c.

SCHEME 2

SCHEME 3

SCHEME 4
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furans. The results confirm both the high diastereo-
selectivity of the reaction, affording only the cis-unsatur-
ated aglycones, and the stereospecificity of the sugar
moiety migration in obtaining O-glycosides. Moreover, a
simple one-pot procedure for a new pyridazine C-nucleo-
side is reported. Compound 7c is structurally related to
pharmacologically active analogues,17 and only a few
synthetic approaches to this compound class are reported
in the literature. Hence, this work demonstrates the use
of dye-sensitized photooxygenation of a glycosyl furan
moiety as an additional methodology in the field of
glycoside organic synthesis. Work is under progress to
extend the procedure to a variety of C-nucleoside deriva-
tives.

Experimental Section
The 1H and 13C NMR spectra, DEPT experiments, 1H-1H

COSY experiments, and heteronuclear chemical shift correla-
tions (HMQC and HMBC pulse sequences) were run on a 500
NMR spectrometer in CDCl3.

General Procedure of Dye-Sensitized Photooxygen-
ation. A 0.02 M solution of 1 (0.25 mmol) in dry CH2Cl2 was
irradiated at -20 °C with a halogen lamp (650 W) in the
presence of methylene blue (MB, 1 × 10-3 mmol), while dry
oxygen was bubbled through the solution. The progress of each
reaction was checked by periodically monitoring (TLC, or 1H
NMR) the disappearance of 1. When the reactions were complete
(ca. 60-90 min), the solutions were heated to rt (entry a) or 40
°C (entry b). Then, after removal of the solvent, each residue
was taken up in Et2O; the suspension was filtered to remove
the insoluble sensitizer (MB), and the filtrate was evaporated
to give cis-2 (yields > 90%). The addition of silica gel to the crude
photooxygenated mixtures and, after 60 min, the removal of
silica gel and MB by filtration afforded trans compound 4 in ca.
70% yields.

cis-â-2a: 1H NMR δ ) 3.61 (dd, J ) 10.3, 5.1 Hz, 1 H, H-5A),
3.64 (dd, J ) 10.3, 5.1 Hz, 1 H, H-5B), 4.03 (m, 1 H, H-3), 4.13
(s, 1 H, H-2), 4.40 (q, J ) 5.1 Hz, 1 H, H-4), 4.50 (s, 2 H, PhCH2),
4.54 (d, J ) 11.6 Hz, 1 H, PhCH2), 4.57 (s, 2 H, PhCH2), 4.63 (d,
J ) 11.6 Hz, 1 H, PhCH2), 6.35 and 6.36 (s + dd, J ) 11.4, 7.3
Hz, 2 H, H-1 and H-2′), 6.59 (d, J ) 11.4, 1 H, H-3′), 7.23-7.38
(m, 15 H, 3 x Ph), 10.53 (d, J ) 7.3 Hz, 1 H, H-1′); 13C NMR δ
) 69.5 (t, C-5), 72.10 (t, PhCH2), 72.2 (t, PhCH2), 73.4 (t, PhCH2),
83.3 (d, C-3), 84.2 (d, C-4), 86.7 (d, C-2), 101.5 (d, C-1), 127.8,
127.9, 128.1, 128.3, 128.4 and 128.5 (d, CH of Ph), 133.0 (d, C-3′),
137.0, 137.3, 137.8 (s, Cq of Ph), 141.0 (d, C-2′), 163.1 (s, CO2),
192.2 (d, C-1′).

trans-â-4a: 1H NMR (CDCl3) δ ) 3.62 (m, 1 H, H-5A and
5B), 4.00 (d, J ) 5.1 Hz, H-3), 4.11 (s, 1 H, H-2), 4.40 (q, J ) 5.1
Hz, 1 H, H-4), 4.49 (s, 2 H, CH of Ph), 4.52 (d, J ) 12.2 Hz, 1 H,
CH of Ph), 4.54 (s, 2 H, PhCH2), 4.63 (d, J ) 12.2 Hz, 1 H, CH
of Ph), 6.35 (s, 1 H, H-1), 6.68 (d, J ) 16.5 Hz, 1 H, H-3′), 6.97
(dd, J ) 16.5, 7.2 Hz, 1 H, H-2′), 7.20-7.40 (m, 15 H, 3 x Ph),
9.76 (d, J ) 7.2 Hz, H-1′); 13C NMR (CDCl3) δ ) 69.5 (t, C-5),
72.1 (t, PhCH2), 72.2 (t, PhCH2), 73.4 (t, PhCH2), 83.4 (d, C-3),
84.1 (d, C-4), 86.7 (d, C-2), 101.6 (d, C-1), 127.7, 127.8, 127.9,
128.1, 128.3, 128.4, 128.5 (d, CH of Ph), 137.0, 137.4, and 137.8
(s, Cq of Ph), 138.6 (d, C-3′), 141.0 (d, C-2′), 163.8 (s, CO2), 192.1
(d, C-1′).

One-Pot Synthesis of 7c. A 0.02 M solution of 1c (1 mmol)
in dry MeOH was photooxygenated as reported in the general
procedure. When the reaction was complete (30 min), 1.2 equiv
of Et2S was added to the crude methanol solution, and the
resulting mixture was kept at rt under stirring for 60 min. Then,
1.2 equiv of hydrazine hydrochloride was added. After 3 days,
the solvent was removed under reduced pressure, and the
residue, dissolved in ethyl acetate, was extracted with a HCl
solution 1 M (3 × 30 mL). The aqueous solution was neutralized
with a NaOH solution until a basic condition was achieved and
extracted with ethyl acetate (3 × 30 mL). The organic layer was
washed with brine, dried with MgSO4, and filtered. Silica gel
chromatography (CHCl3/MeOH 95:5 v/v) afforded the pyridazine
C-nucleoside â-7c: yield 70%; oil; 1H NMR18 δ ) 2.10 (s, 3 H,
CH3CO), 2.11 (s, 3 H, CH3CO), 2.14 (s, 3 H, CH3CO), 2.67 (s, 3
H, Me-3′), 2.69 (s, 3 H, Me-6′), 4.36 (m, 2 H, H-4 and H-5A), 4.45
(dd, J ) 9.8, 3.8 Hz, 1 H, H-5B), 5.11 (m, 2 H, H-1 and H-2),
5.25 (t, J ) 5.2 Hz, 1 H, H-3), 7.41 (s, 1 H, H-5′); 13C NMR δ )
19.7 (q, Me-3′), 20.4 (q, CH3CO), 20.5 (q, CH3CO), 20.8 (q, CH3-
CO), 22.1 (q, Me-6′), 63.0 (t, C-5), 70.8 (d, C-3), 75.7 (d, C-2),
77.6 (d, C-1), 79.7 (d, C-4), 123.0 (d, C-5′), 136.5 (s, C-4′), 155.2
(s, C-3′), 158.7 (s, C-6′), 169.2 (s, CO2), 167.6 (s, CO2), 170.4 (s,
CO2).
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