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Environment-based Assistance Modulation for a Hip Exosuit via

Computer Vision

Enrica Tricomi1, Mirko Mossini2, Francesco Missiroli1, Nicola Lotti1, Michele Xiloyannis3,

Loris Roveda4, and Lorenzo Masia1

Abstract—Just like in humans vision plays a fundamen-
tal role in guiding adaptive locomotion, when designing the
control strategy for a walking assistive technology, Computer
Vision may bring substantial improvements when performing
an environment-based assistance modulation. In this work, we
developed a hip exosuit controller able to distinguish among
three different walking terrains through the use of an RGB
camera and to adapt the assistance accordingly. The system
was tested with seven healthy participants walking throughout
an overground path comprising of staircases and level ground.
Subjects performed the task with the exosuit disabled (Exo
Off ), constant assistance profile (Vision Off ), and with assistance
modulation (Vision On). Our results showed that the controller
was able to promptly classify in real-time the path in front of the
user with an overall accuracy per class above the 85%, and to
perform assistance modulation accordingly. Evaluation related
to the effects on the user showed that Vision On was able to
outperform the other two conditions: we obtained significantly
higher metabolic savings than Exo Off, with a peak of ≈ −20%

when climbing up the staircase and ≈ −16% in the overall path,
and than Vision Off when ascending or descending stairs. Such
advancements in the field may yield to a step forward for the
exploitation of lightweight walking assistive technologies in real-
life scenarios.

Index Terms—Exosuits; Computer Vision; Adaptive Walking
Assistance; Assistive Robotics.

I. INTRODUCTION

Vision plays a fundamental role in bipedal walking, as it

contributes in modulating navigation according to the sur-

rounding space [1]. In humans, environment scanning is a

major actor in providing feedback loop to the central ner-

vous system for cognitive-to-motor transformations, thereby

endorsing adaptive locomotion [2].

Within the context of human walking assistance through

wearable devices, unlike humans, robot control strategies

have been largely based on gait kinetics and kinematics,

and investigations have often excluded the users’ surrounding

environment by studying locomotion in restricted cases (e.g.,

treadmill or straight overground walking) [1]. However, in the

real world, it is very likely that users need to continuously
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and dynamically modify their natural gait pattern to adapt to

stairs, ramps, or curved path [3]. To account for the change

in kinematics when walking on dissimilar terrains, accurate

modulation of the assistance delivered to the targeted joints, in

terms of timing and magnitude, has to be provided to minimize

walking energy expenditure and, therefore, to maximize users’

benefits [4], [5], [6], [7].

In the current state of the art, diverse methods addressed

this issue implementing manual hand switching strategies or

automatic techniques based on the user’s biomechanics, yet

identification and smooth transitions across different loco-

motion modalities remains one of the major challenges in

assistive robotics [8], [9], [10]. Additional analyses about the

user’s extra-personal space should complement gait recogni-

tion strategies in order to have proper and tailored assistance

modulation [11].

As humans rely on vision and the underlying neural feed-

back to achieve this goal, a feasible approach to embed the

aforementioned information in the control loop of robotic

systems is to perform environment scanning and classification

through computer vision. The approach has been already

extensively tested in the context of wheeled and legged robots

[12], [13], where camera-based algorithms are developed in

order to guide the system navigation on various terrains and

path planning. Nonetheless, a very small niche in literature is

taken up by the inclusion of computer vision in the control

of wearable assistive devices. The idea is recently getting a

foothold among researchers, but very few works exist so far

[14], [11], [6], [15]. Moreover, the contribution coming from

these works is confined to a conceptual level, i.e., authors

verified the performance of the vision algorithm, but the device

was never tested in an active modality on the users [8].

In this framework, we developed and tested a novel control

strategy for a hip exosuit incorporating computer vision to

perform assistance modulation based on classification of the

environment in front of the wearer recorded through an RGB

camera. Our controller is able to distinguish if the user is

about to climb up or down a staircase, or to walk on level

ground, and to adapt the assistance profile accordingly in order

to comply with the change in the gait kinematic pattern [16].

The underlying hypothesis is that an adaptive controller would

improve the metabolic benefit of receiving assistance from

the exosuit than a static controller (i.e., assistance magnitude

does not change depending on the task). To prove the point,

we present here a comparison between the cases in which

computer vision is active versus when it is not, to verify the

enhanced performance of the system by using the former. As

far as we are aware of, this is the first work in which a lower-

http://arxiv.org/abs/2211.15346v1
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Fig. 1. Hip exosuit design and real-time control framework (a) The exosuit is a fully-actuated tendon-driven system that supports hip flexion during walking.
It is made of a lightweight belt hosting the actuation stages, control unit, and batteries, and two thigh harnesses. Two inertial sensors capture the user’s
kinematics and an RGB camera scans the environment around the user (b) The Real-Time control framework is designed to distinguish among three kinds of
terrains: Incline Stairs, Level Ground, or Decline Stairs. In the High-Level controller, images from the camera are processed in the Computer Vision level in
parallel to the users’ gait phase estimation via Adaptive Oscillators (Adaptive Oscillators level). The combination of these output is processed at the Mid-Level
to generate an appropriate motor reference trajectory delivered to the actuator at the Low-Level.

limb exosuit incorporating computer vision is tested with

active assistance complemented by an analysis of its effects

on study participants. Within the context of the present work,

our main goal was to develop an assistive technology able

to produce environment-based smooth and flexible assistance,

such that users could take full advantage from its use and

real-world deployment can be promoted in the long term.

II. EXOSUIT DESIGN

The control strategy based on computer vision was tested on

a fully-actuated exosuit to support hip flexion during natural

human locomotion. The assistive device (Fig.1-a) comprises

of (i) two actuation stages, one for each leg, and main core

of the active support system, (ii) a pair of textile harnesses

wrapped around the users’ thighs, (iii) and a belt (RDX

Sport, Stafford, Texas, USA) used to hold the actuation and

electronics. Assistive forces are transmitted from the actuation

stages to the user via external tendons (Black Braided Kevlar

Fiber, KT5703-06, 2.2 kN max load, Loma Linda CA, USA).

The weight of the device is 3.6 kg, and it is powered by a

battery (Tattu, 14.8V, 3700mAh, 45C) allowing the user to

receive active support for ≈ 10h of continuous operation.

Each actuation stage comprises of a flat brushless motor (T-

Motor, AK60-6, 24V, 6:1 planetary gear-head reduction, Cube

Mars actuator, TMOTOR, Nanchang, Jiangxi, China) driving

a pulley with �35mm diameter wounding the artificial tendon

of the corresponding leg. Two Bowden cables (Shimano SLR,

�5mm, Sakai, Ōsaka, Japan) connect the actuation units to

two proximal anchor points, placed at the level of the waist

and anchored to the belt, and are needed to cover the artificial

tendons in charge of transferring the mechanical power of the

motors to the user. The artificial tendons are connected to the

subject’s thighs via 3D printed distal anchor points sewed on

the two soft fabric harnesses.

The sensors embedded in the suit comprise of two Iner-

tial Measurement Units (IMU, Bosch, BNO055, Gerlingen,

Germany), placed laterally on each thigh harness and used

to detect the hip joint kinematics, each communicating with

one control unit via Bluetooth Low Energy communication

protocol (BLE, Feather nRF52 Bluefruit, Adafruit).

The control unit is in charge of running the real-time

control algorithm: the High-Level Controller incorporating the

computer vision framework runs on an embedded processor

(NVIDIA Jetson Nano, Santa Clara, CA, USA) at 30Hz
using an RGB camera (Logitech C920s PRO HD WEBCAM,

Newark, CA, USA) placed in the frontal part of the belt as

acquisition unit, while the Mid-Level and Low-Level run on

microcontrollers (Arduino MKR 1010 WiFi, Arduino, Ivrea,

Italy) at 100Hz. The boards communicate with each other via

Universal Serial Bus protocol.

The control framework was implemented in MAT-

LAB/Simulink (MathWorks, Natick, Massachusetts MA,

USA), with the exception of the Computer Vision algorithm

written in Python.

III. REAL-TIME CONTROL FRAMEWORK

We implemented a real-time Control Framework for our hip

exosuit based on computer vision to determine the path in front

of the user and to discriminate among three different walking

conditions (i.e., incline stairs (IS), level ground (LG), and

decline stairs (DS)) with the aim to perform an environment-

based assistance modulation.

The control strategy (see Figure 1-b) is composed of three

layers: a High-Level Controller running the computer vision

algorithm in parallel to a gait phase estimation approach, a

Mid-Level Controller generating the actuator reference motion

based on the environment and user’s motion predicted at the

High-Level, and a Low-Level Controller implemented as a

classical PID.
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Fig. 2. Computer Vision (a) Examples of images contained in the training dataset for the ResNet-18 neural network. (b) Experimental Protocol: participants
walked throughout a path transitioning from level ground - stair climbing - level ground and viceversa. The task was repeated with the exosuit disabled,
without Computer Vision enabled, and with Computer Vision. (c) Classification accuracy per class: each class reported a classification accuracy above 85%.
The confusion matrix is shown to report the distribution of miclassifications across subjects. (d) Accuracy across transition phases: each bar represents the
mean accuracy computed considering the step before and after each path transition. Here classification performance drops down to values < 80%.

A. High-Level Controller: Environment classification through

computer vision and gait phase estimation

The High-Level Controller operates on two separate levels

running in parallel to perform: (1) environment classification

and (2) user’s gait phase recognition through Adaptive Oscil-

lators. We will refer to them as the Computer Vision level and

the Adaptive Oscillators level.

1) Computer Vision level: The implemented Computer Vi-

sion level is based on a Convolutional Neural Network (CNN)

model running at 30 Hz, able to predict the environment in

the near space of the user through an RGB camera. When it

comes to image classification, CNNs have shown capabilities

to outperform other kinds of classifiers, such as support vector

machines [11]. This is the case because multi-layer neural

networks are able to optimally learn image features from

training data, thus performing a more effective classification

[14]. However, they require a vast dataset for network training

in order to promote generalization.

In our application, we adopted a CNN model composed

of 18 layers (ResNet-18 [17]) that was pre-trained on 10.500

images (see Section III-D). This net has been widely used

in image classification applications for its low computational

costs, high accuracy and simplicity to train [17]. The net takes

as input the environmental images recorded in real-time by the

camera placed on the belt of the user. These are processed with

a resolution of 400x400 pixels and classified according to three

classes: Incline Stairs (IS), Level Ground (LG), and Decline

Stairs (DS). Finally, the outputs of this level are the predicted

class (i.e., IS, LG, and DS) and its confidence, which are sent,

together with gait phase data, to the Mid-Level Controller, as

explained in a dedicated section (III-B).

2) Adaptive Oscillators level: The user’s gait phase during

locomotion is estimated in real-time from the hip joint kine-

matic (obtained by signals recorded by two IMUs) through

the algorithm based on Adaptive Oscillators (AOs) presented

in our previous works [18], [4]. The hip flexion angle of each

leg θ(t) is reconstructed as sum of 3 sinusoids and indicated

as θ̂(t):

θ̂(t) = α0(t) +

3
∑

n=1

αn(t) sin(ϕn(t)) (1)

whose amplitude αn(t), phase ϕn(t), frequency ω(t), and

offset α0(t) are continuously estimated via an error-driven

approach via the function F (t) = θ(t)− θ̂(t), as follows:
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α̇0(t) = ηF (t) (2)

α̇n(t) = ηF (t) sin(ϕn(t)) (3)

ϕ̇n(t) = ω(t) · n+ νϕ
F (t)
∑

αn
cos(ϕn(t)) (4)

ω̇(t) = νω
F (t)
∑

αn
cos(ϕ1(t)) (5)

Gains η, νϕ, and νω were set respectively equal to 5, 20 and

20 from preliminary trials aimed at studying the convergence

performance of the algorithm.

Among the AOs extracted quantities, the fundamental phase

ϕ1(t) (i.e., ϕn(t) with n = 1) is the one guiding the estimation

of the user’s gait phase: ϕ1(t) is normalized in the range

[0 2π) rad (i.e., ϕ′

1(t) = mod(ϕ1(t), 2π)), and then shifted

according to a corrective factor ψ(t) in charge of aligning the

beginning of each step with a value of 0 rad:

ψ(t) =

∫

Eψω(t)e
−ω(t)(t−ts) (6)

with ts being the instant in time indicating the beginning of

each step and Eψ defined as below:

Eψ =

{

−ϕ′

1(ts)− ψ(ts), if 0 ≤ ϕ′

1(ts) < π

2π − ϕ′

1(ts)− ψ(ts), if π ≤ ϕ′

1(ts) < 2π
(7)

The final gait phase variable, here named φ(t), is an

indication of the progression along the gait cycle at each step,

and it is eventually obtained as:

φ(t) = mod(ϕ′

1(t) + ψ(t), 2π) (8)

B. Mid-Level Controller: Environment-based assistance mod-

ulation

The Mid-Level Controller adjusts the level of assistance

delivered to each leg according to the classification of the

environment in front of the user performed by the Computer

Vision level and the estimated wearer’s motion.

The reference motor position trajectory, θr(t), is generated

from the gait phase data obtained from the Adaptive Oscilla-

tors level as below:

θr(t) =











MIS sin(φ(t) − π) if Incline Stairs

MLG sin(φ(t) − π) if Level Ground

MDS sin(φ(t) − π) if Decline Stairs

(9)

being MIS , MLG, and MDS gains that modulates the am-

plitude of walking assistance depending on the environment

classified at each step (IS, LG, and DS). These three gains

were tuned from preliminary trials according to kinematic con-

siderations: we took into account the relative change between

hip flexion profiles during swing according to the work of

Riener et al. [16].

Considering that environment classification is continuously

performed throughout the walking according to the image

acquisition frequency, in order to guarantee a smooth transition

between assistive profiles, we implemented a ”ranked-voting”

procedure to decide the final class within each step performed

by the user. In detail, gait phase data are used to identify the

times in which the subject reaches the maximum hip extension:

this is, indeed, an indication of the beginning of the swing

phase of walking and the time instant at which the device

should apply zero assistive torque. In such a way, any change

in the assistance amplitude does not cause users´s movement

disruptions. At this instant, which of the three equations in

(9) should take place is decided according to the overall

classification confidence reached along the previous step:











CIS =
∑NIS

n=1 confIS ∀ tn with class IS

CLG =
∑NLG

n=1 confLG ∀ tn with class LG

CDS =
∑NDS

n=1 confDS ∀ tn with class DS

(10)

where CIS , CLG, and CDS are counters indicating the good-

ness of prediction and are defined as the confidence values,

conf , summed over the times that the respective class was

predicted (NIS , NDS , NLG) at each time stamp (tn) along a

step. The class with the highest counter value is then chosen

and the three counters are subsequently reset to zero. The

described procedure was implemented in order to enhance the

robustness of the control algorithm to misclassifications occur-

ring in the sporadic case of scarce lightening or confounding

visual factors.

At last, the final actuator reference motion, θref (t), is

obtained from θr(t) after cubic spline interpolation and sent

to the Low-Level Controller.

C. Low-Level Controller

The Low-Level Controller compares the measured device

state, i.e., actual position of the motor, with the desired

one, i.e., the reference motion θref (t), to minimize the error

through reference tracking via closed-loop feedback position

control. The position error is converted into motor angular

velocity through a PID controller.

D. Computer Vision Training and Parameters Optimization

The CNN chosen model (i.e., ResNet-18) was trained with a

dataset composed of 5000 manually selected images contained

in the open-source dataset ExoNet [11], complemented by

5500 extra images acquired by the authors. Figure 2-a presents

some examples contained in the training dataset. The total

10500 images were divided among the three classes and then

scaled down to 400x400 pixels.

The dataset was split such that the 80% was used as training

set, the 10% as validation set, and the 10% as test set. The

network was trained for 60 epochs, using the Adam algorithm

as optimizer, a batch size of 16 and a learning rate of 0.1, the

latter decreased of ten times every 20 epochs.

IV. STUDY DESIGN

Seven healthy subjects were enrolled to test the system

(3 males/4 females, age 25.0± 2.2 years, mean±SD, weight

60.9±13.7kg, height 169.0±9.9cm). Informed consent forms

were signed before the beginning of experiments. Research

procedures were performed according to the Declaration of

Helsinki and were approved by the Ethical Committee of

Heidelberg University (resolution S-313/2020).
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Fig. 3. Kinematic Assessments. Hip velocity profiles as percentage of the step duration for a typical subject are shown in the top row for the three path
segments. Solid lines indicate the mean across steps and legs (grey for Exo Off, blue for Vision Off, and green for Vision On); shaded areas represent the
standard deviation. The second and third row report the peak velocity during swing as average across steps and subjects, and the movement smoothness
expressed in terms of SPectral ARC length (SPARC) index.

A. Experimental Protocol and Data Acquisition

The study participants were asked to walk at their preferred

speed along a path with total length equal to 250m arranged

over different floors, comprising eight consecutive ramps of

stairs (for a total amount of 88 stairs, each 120x18x26 cm) and

150m of level ground walking. All subjects walked through

the path starting from the bottom climbing up the full stairway

from a level ground condition; once at the top they proceeded

along the level ground path, and, finally, downstairs until the

starting point (Figure 2-b).

The path described above was repeated three times in

three different conditions: (a) exosuit disabled (Exo Off ); (b)

exosuit enabled without environment-based modulation (Vision

Off ); (c) exosuit enabled with environment-based modulation

(Vision On). Condition (b) - Vision Off was implemented as

described in section III by imposing the same gain to the

three equations in (9) (i.e., MLG). Participants rested for at

least 20min in between trials to limit the effects of fatigue

and conditions were randomized across subjects to avoid order

effects.

We collected oxygen and carbon dioxide consumption data

through a portable gas analyser (K5, COSMED, Rome, Italy)

to assess the metabolic energy expenditure and the effects

of receiving assistance from the device with environment-

based modulation compared to the remaining two conditions.

At the beginning of the experiment, subjects were asked to

breath normally for 4min in a standing resting condition.

The average metabolic cost at quite standing was subtracted

from the metabolic data in later analysis to extract the cost of

walking for each repetition of the task.

Classification data from the Computer Vision level, the

hip kinematics recorded from IMU sensors, and the actuator

torques were also recorded for all subjects across repetitions.

B. Data Analysis

Computer Vision We analysed the performance of the

Computer Vision level of the controller in terms of real-time

class prediction accuracy. For each class (IS, LG, and DS)
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(a) (b)

(c)

Fig. 4. Cost of Transport. (a) CoT profiles for the Exo Off (grey), Vision Off (blue), and Vision On (green) conditions averaged across subjects. Solid lines
represent the mean curve, while shaded areas are the standard deviations. For visual representation, timeseries are presented as percentage of trial duration.
(b) Mean CoT computed on the overall path. (c) Mean CoT computed separately in the three path segments (IS, LG, DS). Savings for the Vision Off and
Vision On conditions are computed in relation to Exo Off. Statistical significance in pairwise comparisons is indicated with the symbol *.

we assessed the number of correct predictions, True Positives

(TP), as a percentage of the total number of predicted gait

cycles belonging to a class, i.e., the sum of the TP and False

Positives (FP):

Accuracy(%) =
TP

TP + FP
(11)

Moreover, to assess how this metric varies across transition

phases, as the change from level ground to stairs and vice

versa, we evaluated the accuracy of prediction corresponding

to the step before and the one after each transition.

Kinematic Assessments Kinematic evaluations were per-

formed on hip angular velocity profiles after segmentation into

steps. We evaluated the effects of the Vision On and Vision Off

conditions with respect to Exo Off in terms of swing peak

velocity and movement smoothness. The latter was computed

as Spectral ARC length (SPARC) index on the norm of the

hip angular velocity as defined in [19].

Cost of Transport Oxygen and carbon dioxide data were

analysed to estimate the energy efficiency of walking for the

Exo Off, Vision Off, and Vision On conditions for the overall

path and the three path segments (IS, LG, and DS). Since

subjects were instructed to complete the path at self-selected

speed, to account for the different walking patterns across

conditions, we analysed the metabolic data in terms of Cost

of Transport (CoT) according to the following definition:

CoT =
P

wgv
(12)

being P the net metabolic cost of walking estimated using

the Péronnet and Massicotte’s equation [20] subtracted by the

average cost at quite standing, w the subject’s weight, g the

gravitational acceleration, and v the average walking speed

computed as covered distance over time.

C. Statistical Analysis

We assessed the data normality distribution with the

Shapiro-Wilk test (α = 0.05). All the analysed metrics re-

sulted normally distributed. We evaluated the three conditions

presented in the study (Exo Off vs. Vision Off vs. Vision

On) for kinematics and CoT data via an one-way repeated

measurements ANalysis Of VAriance (ANOVA). Sphericity

condition was evaluated using the Mauchly’s test. When the

ANOVA results were significant, we performed a post-hoc

analysis using paired t-tests with Bonferroni correction to

evaluate pairwise differences between conditions. Reported

measurements are presented as mean ± standard error (SE).

V. RESULTS

Computer Vision The performance of the Computer Vision

level are presented in Figure 2-c and -d in terms of accuracy

per class and for transition phases as a mean across subjects



This work has been submitted to the ieee for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible. 7

and conditions. For each class (Figure 2-c), we obtained

a prediction accuracy above 85%: 85.56 ± 3.58% for IS,

97.57 ± 0.69% for LG, and 91.14 ± 2.25% for DS. Results

are graphically presented also in terms of confusion matrix

to report the distribution of misclassifications. Instead, lower

values were obtained when analysing the classifier accuracy

in correspondence of transition phases (Figure 2-d): 46.43 ±
3.57% for the transition from LG to IS, 57.14± 7.14% from

IS to LG, 67.86± 8.99% from LG to DS, and 57.14± 8.99%
from DS to LG.

Kinematic Assessments Results of the kinematic assess-

ments are reported in Figure 3 for the three path segments.

For the sake of a simpler result presentation, data are reported

as mean between legs, since the one-way ANOVA showed no

side-related difference. The top row of Figure 3 shows the time

series of the hip angular velocity of a representative subject

averaged across steps for the three conditions and divided by

path segments. Peak velocities reached during the swing phase

and the movement smoothness are reported in the second

and third row, respectively. Statistical analysis did not show

significant differences across conditions in any of the three

path segments, as a sign of device transparency towards the

users’ physiological kinematic pattern.

Cost of Transport Results about metabolic evaluations are

presented in Figure 4. Exclusively for this analysis, one of

the seven subjects was left out because of fatigue onset in

subsequent tests. Figure 4-a shows the Cost of Transport (CoT)

timeseries as a percentage of trial duration averaged across

subjects for the three conditions. Considering the overall

CoT along the path, results showed that subjects experienced

the highest energy expenditure when walking in the Exo

Off condition, while the energy cost of walking decreased

progressively during Vision Off and Vision On, with the latter

reaching the lowest value (see Figure 4-a and b). Here, CoT

resulted significantly different both during Vision Off (saving

of −8.35 ± 2.34%, p < 0.05) and Vision On (saving of

−15.71 ± 2.90%, p < 0.05) with respect to Exo Off. The

decreasing trend across conditions was confirmed by analysing

the CoT separately in the three walking segments: we reached

savings of −10.14 ± 3.75% and −19.60 ± 4.96% during IS

for Vision Off and Vision On respectively, −9.40 ± 1.77%
and −14.67 ± 1.48% during LG, and −8.08 ± 5.67% and

−17.14 ± 5.47% during DS. Considering the three walking

segments, the Vision Off condition showed a statistically

significant difference than Exo Off only for the LG walking

(p = 0.004), while Vision On resulted always significantly

different from Exo Off (p < 0.05). Additionally, in each

presented case we found a statistically significant difference

between Vision Off and Vision On, with the exception of Level

Ground walking, where Vision On showed slightly higher

values than Vision Off, yet not enough to achieve significance

(p = 0.09).

VI. DISCUSSION AND CONCLUSION

By taking inspiration from the role that the visuomotor

control plays in humans to promote adaptive locomotion,

we developed a control strategy for a hip exosuit based on

Computer Vision to scan the environment surrounding the user

and to adapt the device assistance accordingly.

To the best of our knowledge, in this context, no other

existing works in literature have reached our same advanced

stage so far. Works from Laschowski et al. [11], [14] are

actively contributing to this research stream by providing open

source databases of various walking environments in order to

encourage the development of vision-based assistive systems

for the lower-limbs. Whereas, the study from Qian et al. [8] is

currently one of the most advanced in the field: along similar

lines, the authors proposed an High-Level controller based on

the combination of computer vision for terrains classification

and an AOs-based approach for gait phase estimation. Yet,

the Mid- and Low-Level controllers were described just at a

conceptual level, and subjects never walked with the device

with active assistance mode.

Instead, we propose here a very first example of a fully

developed controller for human locomotion assistance via hip

exosuit in combination with an experimental evaluation to

assess its efficacy. In our system, information from wearable

sensors are coupled with the ones coming from environment

classification for the purpose of performing assistance mod-

ulation based on the near extra-personal space of the user.

Compared to our previous work (Zhang et al. [4]), through

the incorporation of computer vision running in parallel to

the wearer’s kinematic estimation, we were able to exploit

our system on diverse terrains, such as climbing up and down

stairs, while achieving enhanced metabolic energy savings.

Our results proved that the Computer Vision level was able

to properly classify the three chosen scenarios (IS, LG, and

DS) reporting an overall accuracy above 85% for each class.

However, class detection during transition phases, i.e., class

prediction corresponding to the step before and after each

environment change, showed a higher rate of misclassifications

and prediction accuracy dropped down to values < 80%.

Whether this could depend to sensitivity of camera position or

other confounding factors is not clear and future studies should

try to enhance robustness across gait transition phases. In our

experiments, these misclassifications did not cause any loss of

balance or stability nor affected metabolic results in the overall

evaluation, nonetheless sort of perfect accuracy in distinguish

among different classes is preferred to avoid inconveniences

of such kind [21].

Kinematic assessments revealed that users could benefit

from the exosuit assistance without experiencing an alteration

of the physiological motion. This is a good indicator that our

device, being soft and lightweight, does not hinder subjects’

movements, as expected from literature [22].

Analysing the users’ energy expenditure along the path, the

inclusion of computer vision information, namely Vision On

condition, clearly outperformed Vision Off, fully complying

with our initial hypothesis. Both in the overall path and in

the analysis of path segments, in the Vision On condition

subjects were able to achieve significantly higher metabolic

savings than Exo Off, with a peak of ≈ −20% when climbing

up the staircase and ≈ −16% considering the overall path.

Furthemore, CoT in Vision On demonstrated to provide a

significantly higher benefit also than Vision Off, except during



8 This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.

level ground walking. This is indeed an expected result, given

that for this class the controller was set to behave the same.

Even so, a trend toward reduction is still noticeable. We can

speculate that, since the metabolic rate is largely influenced

by the preceding actions, a higher reduction in the Vision On

condition in LG may result from the larger saving obtained

in the previous segment (i.e., IS). To further prove the benefit

provided by the Computer Vision level, one may notice that

the absence of assistance modulation (Vision Off condition)

did not bring to substantial benefits while climbing up or down

the stairs.

Possible limitations of our work include the recognition of

solely three cases of terrains and poorer classification per-

formances during path transition phases. Next studies should

assess the proposed control strategy in more diverse outdoor

evaluations with the inclusion of an extended pool of recruited

subjects and a higher number of terrains cases, for instance

ascending or descending a ramp, or walk along a curved path.

Additionally, further efforts should focus on understanding

how to properly detect and assist gait at the edge of envi-

ronment change.

As of now, the promising results bode well in view of

an extended assessment and a possible exploitation of our

assistive wearable exosuit in the real world. Just like in hu-

mans, the integration of a visual feedback seems to encourage

higher human-robot symbiosis, thus bringing to lower energy

expenditures. In the long term, such metabolic savings could

be beneficial in the case of wellness applications in older

adults populations by promoting higher walking cadences or

prolonged walking sessions.
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