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ABSTRACT:  

The invention of depth sensors for mobile devices, has led to availability of relatively inexpensive high-resolution depth and visual (RGB) 

sensing for a wide range of applications. The complementary nature of the depth and visual information opens up new opportunities to solve 

fundamental problems in object and activity recognition, people tracking, 3D mapping and localization, etc. One of the most interesting 

challenges that can be tackled by using these sensors is tracking the body movements of athletes and providing natural interaction as a result. In 

this study depth sensors and gesture recognition tools will be used to analyze the position and angle of an athlete’s body parts thought out an 

exercise. The goal is to assess the training performance of an athlete and decrease injury risk by giving warnings when the trainer is performing a 

high risk activity. 

KEY WORDS Motion Analysis, Injury Risk, Kinematic 

 

INTRODUCTION 

The invention of depth sensors for mobile devices, has led to 

availability of relatively inexpensive high-resolution depth and visual 

(RGB) sensing for a wide range of applications including biomechanics 

analysis. The complementary nature of the depth and visual information 

in the activity sensor opens up new opportunities to solve fundamental 

problems in object and activity recognition, people tracking, 3D 

mapping and localization, etc. One of the most interesting challenges 

that can be tackled by using the activity sensor is tracking the body 

movements of users and providing natural interaction as a result. 

Human body tracking has many applications in areas of digital 

animation for entertainment, education, biomechanics analysis for 

clinical and sports applications, etc. 

 In recent years, many algorithms have been proposed to address the 

problem of human parts detection, pose estimation and body tracking 

from 3D data. Earlier research show focus on the use of time-of-flight 

range cameras (TOF). Recent technological advances have led to the 

development of depth cameras that allow acquiring depth and 3D 

images in real-time with no need for multi-camera systems. 

 The focus of this research is to use the Microsoft  Kinect as a clinical 

assessment tool which can assist rehabilitation, biomechanics and 

training, regular exercise, and ergonomic methods.  In biomechanics, 

having knowledge on the position and orientation of a user is vital when 

assessing attention, performance, injury risk and joint loading. The 

focus of scientists in this area has always been on obtaining information 

on position and orientation of body quickly and accurately.  Skeleton 
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tracking and gesture analysis play a central role in ergonomics and 

biomechanical engineering. Through this scientific exploration, 

attempts can be made to reduce the risk of musculoskeletal injury or 

possibly study the system for performing ergonomic assessments. One 

of the frequently used exercise in strength & conditioning programs is 

the Olympic snatch. Snatch requires athletes to lift the weight 

explosively. The biomechanics of this technique is similar to activities 

such as running and jumping. Researchers have studies the lift 

extensively by examining Olympic weightlifters to get insight on this 

exercise.  However it is difficult to acquire kinematic and kinetic 

parameters. Thus, an understanding of the movement would be very 

valuable for coaches [1]. 

Current devices that are capable of measuring spatiotemporal and 

kinematic variables are expensive. Emerging of low cost sensors that 

capture motion has provided a clinically feasible alternative for 

biomechanical validation of weightlifting.  

Originally created for gaming, the Microsoft Kinect V2 enables 3D 

motion capturing. In particular, the Kinect has a depth sensor with a 

resolution of 512 x 424 pixels which provides depth information for 

each pixel using TOF [2]. It is possible to obtain the 3D coordinates of 

25 body joints via randomized decision trees forests [3] as shown in the 

following Figure. 

 

Figure 1. Kinect skeleton tracking points  

Previous research studied the feasibility of using the Kinect as 

clinical assessment tool and found that the Kinect and Kinect V2 

showed promise as a low cost alternative to lab-based multi camera 

systems.  In particular, in spinal cord injuries rehabilitation, the Kinect 

was compared with an expensive high precision optical system and was 

found to be an accurate low-cost and easy to use alternative [4]. The 

Kinect was found to be a valid tool for assessing spatiotemporal 

components of gait [5,6] but it is unable to accurately assess lower limb 

kinematics [7,8].  In order to bypass the lower extremities inaccuracy a 

technique that relies on knee joint relative angle has been proposed to 

detect foot-off and foot contact during the gait cycle [9].  The Kinect 

was successfully used for the classification of human movement during 

active video game play in relationship to fundamental movement skill 

[10]. 

The purpose of this study is twofold. First, this study assesses the 

ability of the Kinect, a low-cost easy to use device, to accurately 

acquire kinematic and kinetic parameters during the Snatch lift. 

A second purpose of this study to classify movement frames into 6 

phases of the snatch and then assign a score to each frame that indicates 

the deviation from good form.   

 

METHODS 

The Kinect V2 allows us to retrieve the 3D coordinates of the body 

joints. We use these coordinates to obtain the angles between various 

joints as follows: 

The joint angles were determined as follows: 

 Knee joint angle for each leg was calculated using the 

Cartesian coordinates of the hip, knee and ankle joints. 

 Hip joint angle was calculated using the Cartesian 

coordinates of the hip, knee and shoulder center joints. 

 Back joint angle was calculated using the Cartesian 

coordinates of the hip, should center and a unit vector. 

 

Figure 2. Calculating knee, hip, back joint angels using 
Cartesian coordinates 
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Let   𝑣𝑖𝑗⃗⃗ ⃗⃗     be vectors in 3-D space between joints i and j where  

i, j ∈{shoulder, hip, knee} and  �⃗� 𝑖𝑗  be their unit vectors (Figure 2). 
We compute the angles of joints using the following: 

 

 

Figure 3. Kinect skeleton tracking map 

The analysis focused on the pulling phase from the beginning of the 

barbell lift-off to the second pulling phase, turnover and rising above 

head. The different phases of the snatch are explained in the following. 

1. First Pull: This phase begins with the barbell at rest on the 

ground and ends when the knees reach their first 

maximum extension. 

2. Transition: At this stage the knees are flexed and pushed 

toward the barbell. This phase ends at maximum knee 

flexion. 

3. Second pull: This phase begins when the knees reach 

maximum flexion during the transition phase. By the end 

of this phase, the displacement of the hips, knees and 

ankles are maximum extension range of motion. 

4. Turnover: This phase begins at maximum knee extension 

and ends when the barbell reaches its maximum height. 

The lifter begins moving the body downward to be 

positioned underneath the barbell.   

5. Catch: This phase is when the lifter locks the arms and 

stabilizes the barbell overhead while slowing its 

downward movement.  

6. Rising: This phase follows the catch and is when the lifter 

rises from the squat position to stand fully erect at the 

completion of the lift. 

The joint angle: in Figure 4, the angular displacements of the ankle, 

knee and hip joints in the sagittal plane were calculated. 

 

 

 

 EXPERIMENTAL SETUP 

A Kinect sensor was placed at the following distances and angles 

from the subjects which were healthy athletes familiar with Olympic 

weightlifting. 

Table2. The experimental setup  

Kinect Placement Angle Distance 
Lateral 90° 2m 
Inclined 45  45° 2.5m 
Inclined  20° 20° 2m 

 

A frontal placement of the Kinect did not yield accurate measurement 

of all angles. Each subject executed four snatches.  The video is 

recorded in 30 frame per second.  We determined that the most accurate 

data (compared to a multi-camera system) is the 2nd configuration 

(Inclined 45° at a distance of 2.5m) 

After filtering and removing noise the remaining frames were 

classified into each of the 6 positions. The features generated for each 

frame are: the angular displacements of the ankle, knee, hip and back 

joints. We used time series segmentation using Hidden Markov Model 

to label each frame.  

Image processing is used to identify the location of barbell and 

determine the bar path in respect to the vertical line. We used bar path, 

amount of time spend in each phase of the lift and joint angles to 

determine the risk level of the subject in each position. 

 

Figure 4. Phases of snatch 

STATISTICAL RESULTS 

The following charts (Figure 5) show the angular displacement of the 

hip and knee as well as the trajectory of the barbell during the Snatch. 

The kinematic variables of the snatch were calculated and used to 

interpret the healthy form. 
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Figure 5. Angular displacements 

The motion results on knees and hips are in line with previous 

literature and data from an optical motion tracking system, however the 

information gain of ankles motion was low and inaccurate. This is due 

to noisy data stemming from lower extremities inaccurate tracking by 

the Kinect as indicated in [7,8]. 

Once the video for skeleton tracking was recorded and annotated, the 

classification and feature ranking were performed. Classification 

analysis was performed using Naive Bayes and Support Vector 

Machine (SVM). 10-fold cross validation was used to evaluate the 

predictive models.  By using both methods, a better understanding of 

the classification accuracy and speed boundaries for the data can be 

determined.  

The annotated training set has a high class imbalance. To address this 

issue, SMOTE oversampling technique was used.  As can be seen in 

Table 2, both classifiers performed well on the classification task. The 

data has been classified in 6 different clusters and the results show 

promise for this type of classification task. 

Table2. Classification result 

 

Naïve Bayes SVM 
Precision Recall FMeasure Precision Recall FMeasure 

First Pull 0.773 0.85 0.81 0.692 0.9 0.783 
Transition 0.21 0.15 0.175 0.05 0.08 0.06 

Second 

Pull 
0.692 0.56 0.621 0.733 0.69 0.71 

Turnover 0.867 1 0.929 0.917 0.85 0.88 
Catch 0.727 1 0.842 0.7 0.88 0.778 
Rising 1 0.84 0.914 0.941 0.84 0.889 

Weighted 

AVG 
0.817 0.81 0.808 0.789 0.8 0.791 

 

Results of the feature analysis using the information gain ranking 

technique can be seen in Table 3. From these results, it can be seen that 

the hand and hip positions have the highest contribution to 

classification accuracy. Additionally, it can be seen that back and knee 

features have a higher contribution than time. Time series was used to 

identify the correlation of time feature in segmentation however that did 

not have an impact on the accuracy of the model. In the future work 

Hidden Markov Model and sliding window approach will be used.  

In addition, the algorithm is able to assess each frame against 

predetermined rules for a health snatch. Healthy snatch will be 

identified using a rule–based algorithm based on displacement from 

centroid of clusters regarding of weight category, gender, and age of 

lifters and rules based on physics of lifting. For each class, the pulling 

style might be different for example taller lifters may need to extend the 

knees somewhat more to bring the bar past the knees properly. 

This added validity and reliability is beneficial to assessing the 

variables that have previously been identified and correlate to the injury 

level of lifter. For example the angle of the back should remain more or 

less constant during the first pull, the hips and knees should be fully 

extended during the second pull, rules regarding speed and accuracy of 

both barbell path and turnover etc… a deviation from these rules in any 

frame will result in an alert flag and an unhealthy classification for that 

frame.  

Feature ranking was performed using information gain based feature 

ranking. 
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Table3. Feature ranking 

Rank Score Feature 
1 0.78 LeftHandYPos 
2 0.77 RightHandYPos 
3 0.74 RightHandXPos 
4 0.7 LeftHipAngle 
5 0.67 RightHipAngle 
6 0.63 BackAngle 
7 0.59 LeftHandZPos 
8 0.57 LeftHandXPos 
9 0.53 RightHandZPos 

10 0.5 RightKneeAngle 
11 0.47 LeftKneeAngle 
12 0.37 Time 
13 0.35 RightLiftAngle 
 

DISCUSSION 

The kinematics of snatch lifting were analyzed using Kinect and 

provide insight into this technique. In this paper the Kinect was used to 

track skeleton joins of athletes performing snatch. Machine learning 

was used to classify the 6 phases of this technique. The proposed 

approach gave promising results for a systematic assessment the 

training performance. In conclusion, the Kinect sensor can potentially 

be an effective clinical tool for evaluating knee and hip joint kinematics 

and some spatiotemporal variables during lift. Given the advances in 

depth sensor technology and ease of data acquisition and processing, 

the Kinect can be a feasible and cost-effective alternative to the 

expensive marker-based 3DMA systems for use in clinic and at-home 

applications 
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