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Foreword

During a friend's Ph.D. thesis defense ceremony, one of the opponents recited a
poem. He said, “ hold a pebble and lay it in a river; now the river runs a different
course.” He asked my friend to speak his mind: “was his Ph.D. thesis a pebble in
the river, and did it diverge its course?” My friend was bewildered and unable to
answer the opponent well. Such a question is not typically asked during a Ph.D.
thesis defense ceremony. After giving it much thought, | would like to provide my
answer. For me, the key to viewing this parable is not the pebble but the river.
| see the river as human curiosity, forever meandering down the mountain and
its hills, pooling in its depth and creating rapids on its slopes. The river bed, the
universe around us, is everywhere different, and everywhere the water seeks
to explore its shapes and finds its way through. Or in other words, our curiosity
explores our universe. Just like human curiosity, the river cannot be stopped. At
an obstacle, it may break off rock chunks. The river currents in its rapids grind the
rocks, eventually returning them as smooth pebbles somewhere on the river bed.
During my Ph.D., my curiosity, together with that of many other scientists, friends,
and consortium partners, has grounded down a rough stone into a pebble. Now
| hope someone might find my pebble and return it to the river. Hopefully, it
will be ground down until it can no longer be recognized as my pebble, worn by
human curiosity to its elemental parts. Hopefully, someone will find its remnants
somewhere down the river's stream. Hopefully, someone will find it useful; it
would be the greatest honor for me. Are you that person?
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Chapter 1

General Introduction



Chapter 1

The Green Revolution

The period between 1960 and 2000 witnessed the widespread adoption of
agricultural (agro-)chemicals, such as pesticides and artificial fertilizers, among
other innovations. The result was a tripling of agricultural productivity and, in
tandem, a doubling of the world population (Ruttan, 2002). Therefore, this period
is called “the Green Revolution.” Besides the historical relevance of agrochemicals,
they also play a vital role in supporting future population growth while maintaining,
or in some areas increasing, the human standard of living (Godfray et al., 2010).
Meanwhile, climate change will strain agricultural productivity by rising sea levels,
increasing temperature, and more frequent extreme weather events such as
heatwaves, droughts, and wildfires (Gornall et al., 2010).

The environmental impact of agrochemicals

Besides the beneficial aspects of agrochemicals, they also disrupt the globally
interlinked ecosystems and cause biodiversity loss (FAO, ITPS, GSBI, 2020).
The aspects of ecosystem functioning that contribute to human wellbeing are
called “ecosystem services,” and some are essential for agriculture (Wall et al.,
2015). Pastures and most crops grow in the soil, bar in the horticulture sector.
Here plants come in contact with a diverse community of organisms, the soil
ecosystem. The plant’s first contact with this ecosystem is with the soil microbes.
The majority of this group lives in or directly on the roots of plants but can also live
freely and consists of, among others, bacteria, fungi, viruses, algae, and Archaea
(Dastogeer et al., 2020). In particular, the bacteria and fungi form symbioses with
plant roots and exchange nutrients for sugars and other energy sources. These
microbial symbionts are crucial for the plant's survival (Dastogeer et al., 2020).
Another important organism group of the soil ecosystem are the invertebrates,
such as nematodes, mites, beetles, springtails, ants, and, chief among them, the
earthworms. Earthworms feed off dead plant litter and tunnel through the soil,
preventing land erosion and promoting nutrient cycling.

Collectively, the soil invertebrates feed on the microbes, dead plant litter, and
each other. They aerate the soil, cycle nutrients, control pest species, and spread,
maintain and reshape the soil microbiome (FAO, ITPS, GSBI, 2020; Pathiraja et
al., 2022). Even invertebrates that provide ecosystem services above ground can
spend a life stage or part of the day underground, where they come in contact
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General Introduction

with agrochemicals. For example, solitary bees nest in the soil and, here, can come
in contact with agrochemicals (Willis Chan et al., 2019). Moreover, the above- and
belowground parts of an ecosystem are intimately intertwined and comprise
many more relevant groups of organisms. Arguably, however, invertebrates and
microbes are omnipresent in every agricultural system and, therefore, deserve
to be mentioned explicitly. The risk agrochemicals pose to the soil ecosystem
services can have repercussions far beyond the soil and impact every part of
human wellbeing.

Assessing the environmental risk of pesticides

Agrochemicals, especially pesticides, are necessary to maintain the growing
human population and standard of living in a rapidly advancing and developing
world while also posing a real threat to global ecosystem services and natural
resources the world population equally relies on to sustain itself. Because of
this duality, efforts should be made to gradually reduce the quantity of applied
pesticides and improve our understanding of what makes them toxic to organisms
by themselves and in mixtures. Meanwhile, we must enhance analytical methods
to monitor pesticides and their environmental risk to (soil) invertebrates.

Traditionally, the environmental risk assessment of agrochemicals is based on
highly standardized tests and statistical methods that determine the effective
concentration (EC ), indicating by what percentage a pesticide reduces reproduction
or increases mortality of the test species (van Gestel, 2012). The strength of these
EC -toxicity tests is their simplicity, reproducibility, and global standardization.
It is difficult, however, to extrapolate the results of these standardized tests to
field-relevant conditions. First, most agricultural soils are contaminated with
mixtures of pesticides (Pelosi et al., 2021; Silva et al., 2019) and innumerable other
contaminants such as (veterinary) pharmaceuticals, metals, microplastics, and
nanoparticles. The (synergistic) interaction effects between these contaminants
are ill-understood. Second, soil characteristics, i.e., its physicochemical properties,
influence how much of the pesticide remains bound to the soil and how much
is absorbed by organisms, i.e., its bioavailability (van Gestel, 2012). Therefore,
EC, values for pesticide toxicity obtained in one soil type cannot directly indicate
toxicity in other soils with different properties. Third, the enforcement of EC -
based policy requires the measurement of environmental concentrations of a

11




Chapter 1

alarge panel of pesticides. Assessing a myriad of pesticides is labor-intensive and
requires chemical references, i.e., pure pesticide standards. Therefore, chemical
analysis of environmental samples is costly and limited to well-studied pesticides.
If pesticides degrade by natural forces, such as the temperature or soil microbes,
potentially toxic metabolites may be formed, which often are not determined in
routine chemical screening. Due to these factors, traditional chemical analysis
underestimates the toxicity of complex environmental mixtures of contaminants
(Escher et al., 2020). A range of bioanalytical tools can supplement conventional
chemical screening and EC -based pesticide monitoring to improve the accuracy
of the risk assessment of environmental pollution mixtures (Escher et al., 2020).

Bioanalytical methods

Pesticides and other toxicants trigger a cascade of responses in the organisms at
various levels of biological organization, molecular, biochemical, cellular, tissue,
organ, body (behavior), and population. At the lowest level, chemical reactions
start the response cascade. A toxicant, for example, a pesticide, disrupts the
steady state of all chemicals and bodily functions, called homeostasis. The stress
caused by the disruption of homeostasis leads to the reallocation of energy to
reestablish it. Reallocation of energy is primarily affected by altering the number
and type of proteins. Proteins form complex networks called pathways in which
many hundreds of proteins can be involved. Speeding up or slowing down these
pathways by altering proteins in critical positions is pivotal for maintaining
homeostasis. With this information, scientists can develop bioanalytical tools
to monitor the response cascade and determine the reallocation of the energy
budget to determine the type of toxic exposure and its intensity.

Ecotoxicogenomics seeks to provide a link between the cause and consequence
of a toxic exposure along the response cascade by studying its molecular
components. These components can, then, be used as bioanalytical tools. In turn,
the bioanalytical tools may support a prognosis or diagnosis of the risk of a (single)
pollutant or a case of environmental contamination, respectively (van Gestel,
2012). For a prognosis, scientists identify the mechanisms that mediate toxic
exposure to predict its effects on organisms, and this is then used to predict the
risk of ecological effects occurring in the field. The opposite is diagnosis in which
scientists survey the triggering of mechanisms explaining the effects observed in
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General Introduction

organisms exposed to a (sample of a) contaminated medium, e.g. soil, to identify
the cause of these effects and with that the type of exposure. Therefore, both the
prognosis and diagnosis of pollutants rely on understanding the mechanisms that
mediate toxicity. However, for a diagnosis, an additional assessment is required
of the reliability of these mechanisms in indicating the type and intensity of toxic
exposure under various conditions, as most organisms are exposed to a mixture
of pollutants and a range of stressors.

Advances in molecular biology have led to an increasing number of bioanalytical
toolsandtheiraccuracysincethe 1990s (Rehbergeretal., 2018). Thefirst generation
of bioanalytical tools were bioassays, providing a simple read-out of toxicity based
on phenotypic responses (van Gestel, 2012). The second-generation bioanalytical
tools were in vivo assays based on, for example, histological staining, metabolite
concentration, or enzymatic activity (Rehberger et al., 2018). These in vivo assays
allow for assessing the effects of chemical pollution on key processes of concern.
Although first and second-generation bioanalytical tools help generating a general
overview of toxic effects, they cannot provide a comprehensive mechanistic
understanding necessary for diagnosing mixtures of contaminants (Escher et al.,
2020). Arguably, early generation bioanalytical tools provide information only on
the prognosis of toxic exposure. The triggering of key processes of concern can
only provide information on mechanisms that mediate the toxicity of a (novel)
pollutant in isolation. Under mixture exposure, the triggering of key processes of
concern does not identify the mixture components or their toxic properties.

The lack of relevance of quantifying individual biomolecules for diagnosing
complex environmental pollution is particularly relevant for pesticide monitoring.
Pesticides overstimulate or inhibit endogenous pathways in organisms (Hawkins
et al,, 2019). Also, pesticides commonly synergize with key processes of concern,
such as detoxification enzymes (Hawkins et al., 2019). For example, one of the
only in vivo bioanalytical tools to assess pesticide exposure in invertebrates,
currently accepted by regulators, is the enzymatic activity of a cytochrome P450
in the honey bee (Haas & Nauen, 2021). However, this enzyme does not respond
specifically to any particular exposure and is a point of synergistic interaction
with other pesticides (Haas & Nauen, 2021). Its relevance for diagnosing pesticide
exposure is dubious as measuring the cytochrome P450 enzymatic activity cannot
help deducing any relevant information on the exposure’s culprit or the stress.

13
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Because the toxic effects of pesticides and other environmental toxicants are so
varied, any bioanalytical tool for their diagnosis should allow for the monitoring
of numerous processes of concern (Fontanetti et al., 2011; Lionetto et al., 2019).

The use of omics in environmental risk assessment

In the 2000s, a new generation of high-throughput methods was developed,
referred to as the “omics.” In a single assay, omics provide thousands of
measurements on biological molecules (biomolecules), such as DNA, RNA,
proteins, or metabolites. For example, genomics, transcriptomics, proteomics,
and metabolomics. Each omics data type can only provide information on a single
level of biological organization, even though toxicity acts simultaneously on all
levels of biological organization. However, the molecular functions associated with
biomolecules affected by toxic exposure can be identified (Roelofs et al., 2008).
The annotation of the molecular functions is the same per gene, transcript, or
protein. Thereby, identifying the shifts in molecular functions on one level of
biological organization indicates effects at other levels of biological organization.
Together with a certain degree of human interpretation, molecular functions from
one omics type allow scientists to map the effects of toxic exposure on a large part
of the response cascade.

For the implementation of omics data in diagnosing pesticide mixtures, the concept
of the reallocation of the energy budget to maintain homeostasis is essential. This
concept is not commonly discussed in the academic literature, probably due to
limitations on the number of words. However, | believe it should be our discipline’s
core concept for future endeavors. Omics data obtained under circumstances
that compare control and exposure conditions are useful in prognosis. Under
these conditions, energy reallocation is directly observed by relating individual
biomoleculeabundancestotheir collective totalinthe two conditions. For diagnosis,
we require an extra step. In diagnosis, reallocation of energy should be tracked
under control conditions (no stress) and various stress conditions. By tracking the
reallocation of energy in this way, scientists can determine the reliability of this
energy reallocation in identifying the type and intensity of toxic exposure. In light
of the energy budget, the stability of energy distribution over various conditions is
crucial in applying omics in diagnosing environmental toxicants.

14



General Introduction

The central open question is thus: “how to relate shifts in biomolecule abundance
at different levels of biological organization to reallocation of energy and,
therefore, stress?” | will focus my discussion on transcripts and proteins as they
can be related to a single locus in the genome, a gene. Fold-changes in transcript
and protein abundances between conditions have different meanings. Transcript
abundances increase and degrade quickly after exposure and at similar rates for
any transcript in the order of minutes (Canzler et al., 2020), see Figure 1.1. Even
though itis some of the most rapid responses to toxic exposure, gene transcription
is considered to have predictive qualities for the effects of toxic exposure on the
phenotype weeks later (van Straalen & Roelofs, 2008). Moreover, roughly 80 % of
the entire transcriptome can be measured in one assay, and over 85 % of all raw
transcriptomic data is commonly refined into the final dataset (based on chapters
in this thesis). Although there are exceptions, the rate at which transcripts increase
in their abundance is also roughly equal to the rate at which they increase their
function, i.e., the synthesis of more protein. Proteins, in contrast, have highly
varying synthesis and turnover rates, varying over hours, days, or, in rare cases,
even months (see Figure 1.1). Moreover, an increase in protein abundance does
not strictly relate to an increase in its functioning, as protein functioning depends
commonly on a complex set of factors, e.g., substrate levels, phosphorylation,
and cofactor availability. Moreover, a smaller portion of the proteome can be
assessed in one assay, roughly 10 - 15 %, and typically only 20 to 40 % of raw
proteomic data is refined into the final dataset (Bielow et al., 2016). Succinctly,
shifts in transcript and protein abundances have very different meanings: it is
an unspoken assumption that responses to toxic exposure in the transcriptome
reflect energy expenditure, and the proteome reflects energy investment due to
their rapid or relative slow turnover rates, respectively.

By combining transcriptomic and proteomic data in one statistical framework,
scientists hope to provide a comprehensive account of the reallocation of the
energy budget after exposure. The integrative analysis of multiple omics data
types is currently a trending topic in the academic literature (Canzler et al., 2020;
X. Zhang et al., 2018). Scientists commonly assume that shifts in biomolecule
abundances that are conserved between levels of biological organization provide
more relevance to their associated molecular functions (Rohart et al., 2017; Yugi
et al,, 2016). However, a critical assessment is required of the validity of this
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Chapter 1

assumption as shifts in transcript and protein abundance should be interpreted
differently. Nevertheless, combining the results is certainly a worthwhile endeavor
to determine both energy expenditure and investment in reshaping the response
cascade under toxic exposure. This endeavor allows for a more accurate prognosis
and diagnosis of the exposure and effects of environmental contaminants.

DNA RNA protein

ztranscription % translation
/

4@, X

X minutes E minutes - hours minutes - month ‘/\ turnover

Figure 1.1: a schematic depiction of the transcription, translation, and turnover rates,
after exposure to toxicants. Gene transcription responds rapidly, in the order of minutes.
Translation responds slower, typically in the order of minutes to hours. Transcript (RNA)
turnover is in the order of minutes while protein turnover can take minutes up to months.
The information flow is from left to right, from DNA to proteins, indicated by the black arrows
in the Figure. The actual regulation of transcription and translation consists of many feedback
loops and is directed both ways. This has been omitted from the Figure for the sake of
simplicity, along with the action of proteins. The Figure was generated by BioRender.com

In the previous section, | concluded that bioanalytical tools for diagnosing
pesticide pollution should accommodate the monitoring of numerous processes
of concern. Previous applications of omics to soil pollution monitoring focused on
heavy metals (G. Chen et al., 2014). However, metals are exogenous; therefore, a
clear baseline condition can be assigned (i.e., no expression of metal detoxification
genes). Pesticides, in contrast, affect endogenous pathways, and baseline can be
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lower or higher compared to no control conditions depending on stress exposures
(Hawkins et al., 2019). Hence, in this section, | have highlighted the concept that
the stability of energy reallocation is essential in applying omics in the diagnosis
of pesticide pollution. In a practical sense, these findings are reported on the level
of the molecular functions of biomolecules affected by toxic exposure. Hence, the
stability of shifts in molecular functions over various stress conditions forms the
basis for diagnosing pesticide pollution.

Toxicogenomic fingerprints

The molecular stress response is commonly categorized into two parts, the
universal and the specific stress response (Roelofs et al., 2008). The universal
response consists of molecular functions that are consistently increased or
decreased under stress, such as diverging energy away from reproductive
organs or removing damaged cell parts. The specific stress response includes
the organism’s actions unique to the toxic exposure, such as upregulation of a
detoxification enzyme or a fast turnover of a receptor. Both stress responses
occur at the same time. However, the energy budget predicts that under severe
stress, the universal stress response is prioritized and receives a larger portion of
the total energy budget (Roelofs et al., 2008). Under low to mild stress intensities,
the specific stress response is most pronounced. For the diagnosis of pesticides,
the specific stress response has greater applicability.

The molecular functions that entail the specific-stress response can help identifying
“toxicogenomic fingerprints” from toxicological and genomic fingerprints. Their
use is akin to fingerprints left at a crime scene. However, in diagnosis, we seek
to identify the type of toxic exposure and its intensity instead of a suspect. Gene-
regulation biomarkers can be designed based on these toxicogenomic fingerprints.
In that sense, a toxicogenomic fingerprint is a concept, and biomarkers are its
implementation as a bioanalytical tool.

Another way of diagnosing contaminated soils is by applying an effect-directed
analysis (EDA), which aims at identifying the (group(s) of) chemical(s) causing
the effect and uses a combination of high-throughput (in vitro) bioassays and
sophisticated chemical analyses to achieve this aim (Brack, 2003; Simon et al.,
2013). EDAis beyond the scope of this thesis, which focuses on using toxicogenomic
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fingerprints, and derived biomarkers, for assessing pesticide exposure. However,
these biomarkers may also be applied as part of EDA.

Toxicogenomic fingerprints consist of the parts of the response cascade to toxic
exposure that is both necessary and relevant for the progression of intoxication.
These responses are a source for the identification of Key Events. Linking the
various Key Events from the onset of exposure to a phenotypic adverse outcome
is called an adverse outcome pathway (AOP) (Ankley et al., 2010). A distinction
feature of an AOP compared to a toxicogenomic fingerprint is that an AOP accepts
information from any level of biological organization and is a tool designed
explicitly for multi-disciplinary collaboration in risk assessment (OECD, 2018).
Toxicogenomic fingerprints identify the specific-stress response, independently
whether this information is used in environmental risk assessment. Again,
biomarkers can provide a tool for monitoring pesticide pollution by indicating the
triggering of Key Events in an AOP.

Toxicogenomic fingerprints to assess pesticide contamination

Under toxicogenomic-fingerprint pesticide monitoring, soil samples are sent to a
testing facility where lab-reared animals are added. These sentinels can provide
a read-out of the type and intensity of their toxic exposures and function as a
living probe to assess the bioavailable and -active part of the pollution mixture.
The springtail Folsomia candida has been an ecotoxicological model species since
the 1960s, and its genome has been annotated, providing a valuable resource for
the development of bioanalytical tools (Faddeeva-Vakhrusheva et al., 2017; van
Gestel, 2012). Additionally, F. candida can easily be reared in the lab and its testing
requires only a small amount of soil (Fountain & Hopkin, 2005). Hence, F. candida
is an ideal sentinel species for biomarker-based monitoring of pesticide pollution
mixtures in soil.

Toxicogenomic fingerprints for neonicotinoids

For soil invertebrates, insecticides are the most toxic pesticide class (Gunstone et
al., 2021), as they are specifically designed to kill insects or insect-related species.
The most commonly applied insecticide group of the past three decades are the
neonicotinoids (Borsuah et al., 2020). Neonicotinoids mimic the endogenous
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neurotransmitter acetylcholine, but cannot be degraded by the enzyme
acetylcholinesterase (AChE), see Figure 1.2. Thereby neonicotinoids circumvent
limits on neurotransmission and over-stimulating the signal over the nicotinic
acetylcholine receptor (nAChR) (Simon-Delso et al., 2015). Neonicotinoids are more
toxic to invertebrates (especially insects) due to their higher binding affinity to
their nAChR compared to those of mammals or birds (Bonmatin et al., 2015). The
genes involved in the neuron transmission as mediated by nAChR are potential
targets for toxicogenomic fingerprinting.

a Acetylcholine b Neonicotinoid
AChE

Q

AChE
neonicotinoid

Na* +
nAChRs nAChRs ’
ACh

Cell
membrane

Cell
membrane

Active Inactive

Figure 1.2: schematic depiction comparing cholinergic neurotransmission (a) to the
mechanism of toxic action of neonicotinoids (b). Under endogenous circumstances,
acetylcholine (ACh) binds the nicotinic acetylcholine receptors (nAChR) which opens up
allowing potassium ions (Na*) to pass the cell membrane. The influx of positively charged
potassium ions relays a signal through the neuron that can ultimately, among other things,
contract muscles and enables memory formation. The signal is stopped when ACh is released
from nAchRs and degraded by acetylcholinesterase (AChE) (a). Neonicotinoids bind strongly
to nAChR and cannot be broken down by AChE (B). Hence, the nAchRs continuously pass
potassiumions, leading to alossin memory formation, tremors and paralysis of invertebrates,
in particular those relating to insects. Picture from Buszewski et al. (2019).

Toxicogenomic fingerprints for azole fungicides

Although less toxic to invertebrates than neonicotinoids, fungicides are applied
in greater quantities. Hence, they are commonly found in combination with
neonicotinoids. Most have indirect effects on invertebrates, in particular azole
fungicides. These fungicides inhibit the fungal cell wall formation by inhibiting the
enzyme cytochrome P450 5A1 in fungi. In invertebrates, azole fungicides might
inhibit the cytochrome P450 counterparts of fungi. Thereby, azole fungicides amplify
the effects of neonicotinoid toxicity on invertebrates compared to the effects of
neonicotinoids by themselves (Glavan & Bozic, 2013; Raimets et al., 2017; Sgolastra
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etal., 2017). Especially the toxicity of neonicotinoids with low toxicity to invertebrates
becomes enhanced in the presence of azole fungicides (Feyereisen, 2018).

A B

phase |
Organic
compounds CYP
Cl\~ \ /
Phase |: Cytochrome P450 |
Ns N N.H
Oxidized E
Metaboiite ——<_Excretion A NO,
cYP AN
CYP
Phase II: Conjugation Enzymes
C phase ll
HO.
Conjugate =~
il 6s{
CH)S{_ /
Phase Ill: ABC transporters cl glucuronic acid
) _iglucose
A _OH

-amino acid
Excretion

Figure 1.3: biotransformation breaks down organic compounds, such as neonicotinoids.
Biotransformation consists of three phases oxidation (l), conjugation () and excretion (lll),
see panel A. The most prominent enzyme group for neonicotinoid biotransformation is listed
for each phase. In phase |, various cytochrome P450 (CYP) enzymes oxidize the compound
into transformation products. In panel B, known sites for CYP activity are shown for the
neonicotinoid imidacloprid. In phase I, various conjugation enzymes are facilitating the
binding of endogenous compounds to phase | biotransformation products, see panel C, in
this way making them ready for excretion in phase Ill. The Figure has been adapted from van
Straalen & Roelofs (2011), for panel A, and Casida (2011) for panel B and C.

These cytochrome P450 enzymes are part of a large family of genes that play
an essential role in Phase-l biotransformation, see Figure 1.3. Due to the
inhibition by azole fungicides of CYP genes, toxicogenomic fingerprints based on
biotransformation genes might not provide a reliable read-out for neonicotinoid

exposure.

Aims and objectives

My Ph.D. research aims to identify toxicogenomic fingerprints to assess pesticide
contamination in soils. | focused on neonicotinoids and an azole fungicide,
cyproconazole. A key aspect of the applicability of toxicogenomic fingerprints is
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General Introduction

their reliability in indicating the type of pesticide contamination in a mixture with
other pesticides.

My research questions are divided into two categories: (1) How to identify
toxicogenomic fingerprints? (2) Are biomarkers derived from toxicogenomic
fingerprints robust indicators of neonicotinoid exposure under various stress
conditions?

Chapter 2

Toxicants, such as pesticides, trigger a response cascade in an organism from
the initiation of chemical interactions to shifts in transcripts, proteins, and
metabolites, eventually resulting in adverse effects on the phenotype. By
combining various omics data types, scientists wish to provide insight into the
cause and consequence of toxic exposure (Canzler et al., 2020; X. Zhang et al.,
2018). A common assumption for this approach is that shifts in biomolecule
abundances across levels of biological organization represent a conserved
indication of the mechanisms that mediate toxicity (Rohart et al., 2017; Yugi et al.,
2016). However, shifts in transcripts and protein abundances occur at varying time
scales (Canzler et al., 2020); see Figure 1.1. In chapter 2, | investigated whether
shifts in transcript and protein abundances were delayed in a manner that would
inhibit the combined analysis of transcriptomic and proteomic data.

| exposed springtails (F. candida) to a concentration of the neonicotinoid imidacloprid
and monitored transcript and protein abundances every 12 hours for a total of
72 hours (3 days). | sought to determine the exposure duration with the largest
difference in transcript and protein abundances between the imidacloprid exposure
and control condition. This timepoint marked the most opportune moment for
toxicogenomic fingerprint identification as the effect of the neonicotinoid on
transcript or protein abundances would be most pronounced. Finally, | calculated
the correlation between transcript and protein abundances from the same gene and
determined if shifts in protein abundances were delayed after those of transcripts
in a manner that would interfere with their combined analysis.

Chapter 3

For the application of toxicogenomic fingerprints in the diagnosing pesticide
contamination, their reliability for indicating the type and intensity of exposure
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under varying mixture compositions is essential. Current methods for identifying
the transcriptomic response of organisms to toxic exposure are ill-suited in their
application on mixture exposure transcriptomic data. The main deficiency of these
methods is their reliance on parametric models that poorly assess nonlinear and
interaction effects on the gene expression concentration-response relationships
(Altenburger et al., 2012; Ren & Kuan, 2020). The interaction effects on gene
expression occur predominantly when mixture toxicity is nonadditive, i.e., toxicity
is synergistic or antagonistic compared to effects expected based on the toxicity
of the individual compounds in the mixture.

In chapter 3, | exposed F. candida to two mixtures containing either similar or
dissimilar acting pesticides. The first mixture consisted of two neonicotinoids,
imidacloprid and clothianidin, with the same mechanism of action and roughly
the same toxicity to F. candida. The second mixture consisted of the neonicotinoid
imidacloprid and the azole fungicide cyproconazole. The aim of this chapter was
to determine whether toxicogenomic fingerprints remained indicative to the
broader neonicotinoid family, even under mutual exposure with cyproconazole.
Moreover, the pesticide mixtures were finely resolved for stress intensities with
slight increases in the concentration of the pesticides. Over 33 unique pesticide
concentration combinations were tested. Together with Dr. Yuliya Shapovalova
of the Radboud University in Nijmegen, we developed a custom-made statistical
framework to find genes that could serve as toxicogenomic fingerprints. In a
separate experiment described in this chapter, | tested the assumption that
biomarkers derived from these toxicogenomic fingerprints remained indicative
for either neonicotinoid or cyproconazole exposure. To this end, | spiked soil with
known mixtures of imidacloprid and cyproconazole and determined the reliability
of the toxicogenomic fingerprints.

Chapter 4

The first two chapters addressed my first research question: “How to identify
toxicogenomic fingerprints?” In chapters 4 and 5, | focused on my second
research question: “Are biomarkers derived from toxicogenomic fingerprints
robust indicators of neonicotinoid exposure under various stress conditions?”
Cytochrome P450 (CYP) enzymes have been extensively mentioned in the
academic literature as pivotal mediators of neonicotinoid toxicity, see Figure 1.3.
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In particular, two classes of neonicotinoids, i.e., nitro- and cyano-substituted, have
a different rates in their toxicity to bee species based on varying rates of CYP-
mediated detoxification between these classes (Beadle et al., 2019; Manjon et al.,
2018). Moreover, neonicotinoids commonly synergize with azole fungicides by the
inhibition of CYP enzymes (Glavan & Bozic, 2013; Raimets et al., 2017; Sgolastra
et al., 2017). For the implementation of gene-expression biomarkers for the
monitoring of neonicotinoid soil contamination, biomarkers should remain robust
indicators for the broader neonicotinoid family even under synergistic interaction
by CYP inhibition.

In chapter 4, | used the metabolic inhibitor piperonyl butoxide (PBO) to target
CYP enzymes specifically and test the reliability of various biomarkers in indicating
neonicotinoid exposure. The PBO metabolomic inhibitor is well-studied and
therefore | can attribute the experimental results to CYP enzymatic activity.
When using another pesticide or pollutant, it would remain unclear to what
mechanism the observed effects could be attributed. First, | sought to confirm
the potency enhancing effects of PBO on the toxicity of two neonicotinoids to F.
candida reproduction. The neonicotinoids were imidacloprid and thiacloprid as
representatives of the nitro- and cyano-substituted classes of neonicotinoids,
respectively. Second, | surveyed the influence of PBO on the gene expression
of eight biomarkers to determine their reliability in indicating neonicotinoid

exposure.

Chapter 5

Previous research proposed glutathione-S-transferase (GST) enzymatic activity
and gene-expression as a biomarker for neonicotinoid exposure in F. candida
(Sillapawattana & Schaffer, 2017). Moreover, the expression of heat shock proteins
and vitellogenin were proposed as biomarkers in the diagnosis of the type of
pollution in F. candida (M. E. de Boer et al., 2011, 2013). However, these genes
are all involved in mediating oxidative stress, a hallmark of the universal stress
response (Roelofs et al., 2008). For their application in assessing neonicotinoid
soil pollution, biomarkers should remain robust even under the effects of other
stressors. As these genes are part of the universal stress response, | sought to
determine their reliability in indicating neonicotinoid exposure.
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In chapter 5, | used the metabolic inhibitor diethyl maleate (DEM) that depletes
the cofactor of GST enzymes involved in phase Il of the biotransformation process
(see Figure 1.3). The metabolic inhibitor is well studied and commonly applied
in pesticide research to determine the influence of GST enzymes on pesticide
detoxification. By choosing DEM over another type of pollution, | ensured the
observed effects could be attributed to GST inhibition. First, | surveyed the
influence of probable GST inhibition on the toxicity of two neonicotinoids to
springtail reproduction, i.e., imidacloprid and thiacloprid. Second, | validated
the biomarkers mentioned above to determine their reliability in indicating the
exposure of the broader neonicotinoid family even under another stress factor

crucial to the oxidative stress response.

Chapter 6

In chapter 6, | discuss the current methods for toxicogenomic fingerprint
identification, and place the findings described in this thesis in a broader scientific
context.
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+ Time-resolved transcriptomic and proteomic responses to imidacloprid
in springtails

+ Adverse Outcome Pathway (AOP) refined for nicotinic Acetylcholine
Receptor binding

+ No temporal delay identified between changes in transcript and protein
abundances from same gene

+  Largest shift in protein and transcript abundances observed at 48 hours
exposure

*  Results facilitate multi-omics data integration for biomarker and AOP
development

Conventional Environmental Risk Assessment (ERA) of pesticide pollution is based
on soil concentrations and apical endpoints, such as the reproduction of test
organisms, but disregards information along the organismal response cascade
leading to an adverse outcome. The Adverse Outcome Pathway (AOP) framework,
on the other hand, facilitates the use of response information at any level of
biological organization. Transcriptomic and proteomic data can provide thousands
of data points on the response to toxic exposure. Combining multiple omics data
types is necessary for a comprehensive overview of the response cascade and,
therefore, AOP development. However, it is unclear if transcript and protein
responses are synchronized in time or time lagged. To understand if analysis of
multi-omics data obtained atthe same timepoint reveal one synchronized response
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cascade, we studied time-resolved shifts in gene transcript and protein abundance
in the springtail Folsomia candida, a soil ecotoxicological model, after exposure
to the neonicotinoid insecticide imidacloprid. We analyzed transcriptome and
proteome data every 12 hours up to 72 hours after onset of exposure. The most
pronounced shift in both transcript and protein abundances was observed after
48 hours exposure. Moreover, cross-correlation analyses indicate that most genes
displayed the highest correlation between transcript and protein abundances
without a time-lag. This demonstrates that a combined analysis of transcriptomic
and proteomic data can be used for AOP improvement. This data will promote
the development of biomarkers for neonicotinoid insecticide pollution in soils or

chemicals with a similar mechanism of action.

Keywords: Collembola, nicotinic Acetylcholine Receptor (nAChR), Mechanisms of
Action, neonicotinoids, multi-omics data, time series
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Introduction

Environmental Risk Assessment (ERA) of soil pollutants is traditionally based on
soil concentrations (Effect Concentrations (EC )) affecting apical endpoints of test
organisms, such as reproduction and survival. As a consequence, conventional ERA
effectively only uses information on the effect concentration and the final event
of an elaborate response cascade that can include effects on gene transcription,
proteins, and metabolites in specific tissues, but also on intermediate phenotypes
such as physiology and behavior, among others. Understanding the intermediate
steps of the response cascade, therefore, provides opportunities for developing
biomarkers that could facilitate more rapid and cost-efficient means of ERA.
Ordering relevant and casually linked events in the response cascade is critical to
apply this information for ERA, which is what the Adverse Outcome Pathway (AOP)
framework aims for (Ankley et al., 2010). AOPs are, ideally, chemically or species
agnostic, making them broadly applicable as a tool for ERA, including for emerging
contaminants or toxins with a similar Mechanism of Action (MoA) (Ankley et al.,
2010; OECD, 2018).

One area of ecotoxicological concern that could benefit especially from AOP-based
ERA is pesticide monitoring. Intensified application of pesticides has contributed
to a global decline of non-target invertebrates that support sustainable agriculture
(FAO, ITPS, GSBI, 2020). This has prompted large-scale chemical analyses of
pesticide concentrations in soils, but these analyses are costly and labor-intensive,
and pesticide concentrations do not always correlate proportionally with their
biological activity and environmental risk. Using biomarkers could provide a
more cost-efficient approach to screen large sets of soil samples for the exposure
to pesticides and to assess their toxicity to non-target invertebrates (Lee et al.,
2015; Lionetto et al., 2019). Robust AOPs for pesticide exposure are critical for the
development of such biomarkers.

Successful development of AOPs depends on identifying relevant responses
at increasing levels of biological organization, so-called Key Events (KE), that
link the onset of effects upon exposure (Molecular Initiation Event (MIE)) to
the Adverse Outcome (AO). These KEs can then serve as anchor points for the
development of biomarkers that signal the progression of the AOP. Advances in
“omics” technologies have made it possible to survey thousands of quantitative
measurements that may provide insights on the molecular responses to pesticide
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exposure, such as shifts in the expression of genes (transcriptomics), proteins
(proteomics), or metabolites (metabolomics). Combining data from these different
levels of biological organization is necessary for a comprehensive overview of the
response cascade and, therefore, AOP development (Canzler et al., 2020; Leung,
2018). It remains unclear, however, if shifts in transcript and protein expression
in response to pesticide exposure are synchronized in time, and (Canzler et al.,
2020; Haider & Pal, 2013). A time lagged response of gene and protein expression
could complicate combined transcriptomics and proteomics data analysis for AOP
refinement, especially if data is obtained from a single or few time points only.
Modelling approaches and time-staggered data collection have been proposed
to overcome this obstacle (Canzler et al., 2020; Garcia-Reyero & Perkins, 2011).
However, both approaches require information on the time lag between correlated
transcript and protein expression patterns. Therefore, the temporal dynamics of
transcript and protein abundances after pesticide exposure have to be further
investigated, before multiple omics datasets can be combined for biomarker
identification and AOP refinement.

Neonicotinoids are the most widely used insecticides of the past three decades
and are currently the most toxic class of pesticide pollution to non-target soil
invertebrates (Borsuah et al.,, 2020; Gunstone et al., 2021). Neonicotinoids act
on the nicotinic Acetylcholine Receptor (nNAChR), leading to overstimulation and
disruption of its neuronal signal, and eventually resulting in paralysis or death
(Simon-Delso et al., 2015). Currently, the only AOP for nAChR activation is taxon
specific for the honey bee and, therefore, not species agnostic (MIE 559 AOPWiki)
(LaLone et al., 2017). Combined transcriptomics and proteomics studies on
bumble bees and water fleas have provided more insights into the response
cascade after nAchR activation, but have not resulted in AOP refinement (Camp &
Lehmann, 2021; Pfaff et al., 2021). Here, we aimed to test the applicability of the
AOP for nAChR activation to non-target soil invertebrates and to further develop
it. For this, we studied the molecular responses to neonicotinoid exposure of the
springtail Folsomia candida, a soil ecotoxicological model species belonging to the
prevalent and species-rich soil-dwelling Collembola (Fountain & Hopkin, 2005).
Collembola are crucial for sustainable agricultural practices such as nutrient cycling
and maintenance of soil plant-microbiomes (FAO, ITPS, GSBI, 2020; Innocenti &
Sabatini, 2018). In addition, the F. candida genome has been sequenced and time-
resolved transcriptomic and proteomic data has previously been collected after
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exposure to pesticides and flame retardants (Faddeeva-Vakhrusheva et al., 2017;
Simdes et al,, 2019; Q. Q. Zhang & Qiao, 2020). However, the large time intervals
used in these studies (i.e. ranging from 2 to 14 days post the onset of exposure)
provide limited information on rapid responses to toxic exposure.

In this study, we exposed F. candida to the neonicotinoid insecticide imidacloprid
and obtained time-resolved transcriptomics and proteomics data, with 12-hour
intervals up to a total exposure time of 72 hours (i.e., 3 days). From these data we
aimed to: (1) Identify the timepoint with the most distinctive differential expression
in transcript- and/or protein abundances exerted by imidacloprid exposure, (2)
identify the ontologies and pathways affected by imidacloprid exposure through
time, and (3) determine if a time-delay exists between transcript and protein
abundances.

Materials and methods

Test organism, test soil, chemicals, and exposure

For this study, we used the Berlin strain of Folsomia candida, which has been
reared for over 30 years at the Vrije Universiteit Amsterdam, the Netherlands,
as previously described (Pitombeira de Figueirédo et al., 2019). LUFA 2.2 was
used as test soil (Lufa Speyer, Germany), which is a natural loamy sandy soil with
approximately 2.1 % organic carbon, pH 5.5. (0.01 M CaCl,) and water holding
capacity (WHC) of 46.5 % (w/w). Imidacloprid (98 % purity) was provided by Bayer
CropScience, Monheim, Germany.

Imidacloprid was dissolved in ultra-pure water and left to stir at 300 rpm, overnight
and in the dark. Soil was thoroughly mixed with an imidacloprid solution to achieve
a moisture content of 50 % of the WHC. Soil mixed with demineralized water was
used as a control. For the imidacloprid exposure a concentration of 0.25 mg kg’
dry soil was chosen, roughly equal to the Effect Concentration reducing juvenile
numbers by 20 % (EC,)) (Bakker et al., 2022). The imidacloprid concentration
in control and test soil was confirmed by Groen Agro Control, Delfgauw, the
Netherlands, following certified analytical methods and with a detection limit
of 0.01 mg kg dry soil (see supplementary information for results). A sublethal
concentration was used to allow for assessing imidacloprid-specific effects without
general toxicity effects that may occur at higher concentrations.
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Pools of 70 age-synchronized animals, 21-24 days old, were placed in 30 grams
of soil with or without imidacloprid in a glass jar at 20 + 1 °C, 75 % RH, and a 16:8
light:dark regime. Three pools per treatment were harvested every 12 hours for a
total duration of 72 hours, i.e. 6 timepoints (12, 24, 36, 48, 60, 72 h). With this set-
up we included the 48h exposure duration, which marks a conventional exposure
duration for gene-expression assays in F. candida (M. E. de Boer et al., 2009, 2011;
T. E. de Boer et al., 2010; Nota et al., 2009; Sillapawattana & Schaffer, 2017). To
collect the springtails, the soil was waterlogged, the floating animals were scooped
from the surface with a fine-mesh, transferred by aspirator to 1.5 ml reaction
tubes, snap frozen in liquid nitrogen and stored at -80 °C.

RNA isolation and protein extraction

RNA and proteins were isolated simultaneously from the collected pools of animals
using a TRIzol-based extraction procedure. Frozen samples were homogenized
manually in a 1.5 ml reaction tube using a pestle. RNA and protein fractions were
isolated using a starting volume of 500 pl of TRIzol (Invitrogen - Thermo Fisher
Scientific, Breda, the Netherlands), following the manufacturer’s instructions. The
aqueous phase was incubated with isopropanol (1:1 v:v) followed by incubation for
2 hours at-20°Cto allow RNA precipitation. Subsequently, DNase-l digestion (Roche
Diagnostic, Aimere, the Netherlands) was carried out following the manufacturer’'s
instructions. RNA quality and quantity were verified by spectrophotometry on a
NanoDrop (Thermo Fisher Scientific, Breda, the Netherlands) and Qubit (Thermo
Fisher Scientific, Bleiswijk, the Netherlands), and 1 pg of total RNA from each
sample was used for RNAseq library preparation using the TruSeq Stranded mRNA
Sample Preparation kit following the instructions of the manufacturer (Illumina,
Nijmegen, the Netherlands). Libraries with a mean length of 260 base pairs were
sequenced on an lllumina Nova Seq 6K instrument, 150 base pairs pair-end, with
a sequencing depth of 20 million per library, by Macrogen (Seoul, the Republic of
Korea).

The protein pellets were stored in 1.5 ml of 0.3 M guanidine hydrogen chloride
at -80 °C until shipment. Immediately before shipment, the supernatant was
removed from the pellets and the pellets were shipped semi-dried on dry ice to
the Core Facility for Medical Bioanalytics, at the Institute for Ophthalmic Research,
Eberhard-Karls University, Tubingen, Germany. The samples were subsequently
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resuspended using a Precellys tissue homogenizer, by two bursts of 30 seconds
at 5500 rpm in a lysis buffer of 6 M Urea (Roth, Germany) and 0.1 Ammonium
bicarbonate (ABC) (Merck, Germany). Protein quantification was performed
by a Bradford assay (Biorad, USA) on a Tecan Spark 10M (Tecan, Mannedorf,
Switzerland). Approximately 10 pg of the original protein pellets was digested
overnight at 37 °C, using 0.5 ug of Trypsin (Serva, Heidelberg, Germany), in a buffer
consisting of 50 mM ABC (Merck, Germany), 4 uL RapiGest (Waters, Germany), 0.1
M dithiothreitol (Merck, Germany), and 0.3 M 2-iodacetamide (Merck, Germany).
The peptides were then precipitated using 5 % of total volume Trifluoroacetic
acid (Merck, Germany) and centrifuged at 16,000 g. The lower phase was filtered
by C18 Stage Tips (Thermo-Fisher, Germany) and separated over a micro-HPLC
before injection into an Orbitrap (Thermo-Fisher, Germany).

Differential gene expression analysis

Trimming of the raw reads was performed by Trim Galore v0.6.3 (Ewels et al.,
2016), using Cutadapt v2.4 (Martin, 2011). Before and after trimming, fastaq files
were visually inspected by generating FastQCv0.11.8, in parallel using the software
package GNU Parallel (Tange, 2011), and bundling these into a MultiQC v1.7 (Ewels
etal., 2016) report. This allows for the visual inspection of Quality Control metrics;
such as sequence QC-content, length distribution and duplication events, in all
36 sample files simultaneously and to ensure a comparable quality of the reads
in all libraries. Salmon v0.8.1 (Patro et al., 2017) was used to align and quantify
the reads to the Ensembl Metazoa v40 transcriptome (Cunningham et al., 2019),
using paired-end mode and default settings. All files had a mapped reads rate of
at least 81.86 % and on average 86.19 % (sd = 11.08, n = 36) and scored similarly
for metrics of quality control compared to each other, for example; QC-content,
adapter sequence content, per sequence quality scores (see supplementary Table
S2.1 for mapping rates). This indicates no biasing factor that might impact the
further analysis of the data. The quantified reads were imported into R v4.0.0
using the R-package tximport and differential gene expression analysis was
performed by DESeq2 v1.28.1 using loglikelihood-ratio tests comparing a model
including time, treatment and their interaction to a model with only time (Love et
al., 2014; Soneson et al., 2016). We corrected for false discovery rates by shrinking
the p-value and calculating g-values using a 0.1 p-value cut-off using the package
qvalues v2.20.0 in R (Storey et al., 2020).

34



Combining time-resolved transcriptomics and proteomics data for Adverse
Outcome Pathway refinement in ecotoxicology

Protein expression analysis

The spectra quantity and quality of the Thermo-Fisher raw LC-MS?files were visually
inspected using seeMS, part of the software suite proteowizard v3 (Chambers et al.,
2012). The files were converted to Mascot Generic Files (mgf) and mzML formats
for further analysis by SearchGUI v4.1.3 by MSconvert (proteowizard v3), using peak-
picking, i.e. centroid mode. Post-Translation-Modifications (PTMs) were identified
on a subset of the mzML files, files from samples 6, 7, 10, 33, and 34, using
MetaMorpheus v0.0.320 (Solntsev et al., 2018) (see supplementary Table S2.2 for
results). Due to high Citrullination Rand deamination on Q and N, these PTMs were
included as search parameters in a subsequent search with msgf+. All samples
spectra files were matched to the Ensembl Metazoa v40 (Cunningham et al., 2019)
proteome using SearchGUI v4.1.3 (Barsnes & Vaudel, 2018) with Oxidation (M),
Deamination (N, Q), Citrullination (R) and the fixed modification Carbamidomethy!l
(C) selected. Other settings used were: trypsin digestion, allowing for two missed
cleavages, a precursor (MS1) mass tolerance of 10 ppm and a fragment (MS2)
mass tolerance of 0.5 Dalton. We used a reverse decoy database and a standard
contaminant database, the common Repository of Adventitious Proteins (cCRAP)
(Mellacheruvu et al., 2013) and the search-engine msgf+ (Kim & Pevzner, 2014).
We chose SearchGUI for its implementation on the msgf+ search-engine. In
a previous study, this relatively novel search engine tool has been proven to
outperform other methods matching more raw spectra to peptides, i.e. Peptide-
Spectral-Matches (PSMs) (Levitsky et al., 2018) (see supplementary Table S2.1 for
identification rates and the supplementary information for LC-MS? quality control
metrics). Using PeptideShaker v2.2.1 (Vaudel et al., 2015), the search results were
summarized into a PSM default report file and, subsequently peptide intensities
were calculated using mofF v2.0.3 on the useGalaxy server v2.0.3 (Afgan et al.,
2016). The resulting peptide intensities were read into R v4.0.0 using the R-package
MSqRob v0.7.6 (Goeminne et al., 2020). The pipeline that executes SearchGUI,
PeptideShaker and moFF on the European useGalaxy server has been described
previously (Mehta et al., 2020). Peptides belonging to decoy or contaminants were
removed. Peptides with over 50 % missing values were removed and peptides
with less than 50 % missing values were substituted by the K-Nearest-Neighbor
(KNN)-algorithm to allow for the subsequent calculation of log2fold changes and
performing loglikelihood ratio tests using the R-package Msnbase v2.14.2 (Gatto
& Lilley, 2012). The peptide intensities were normalized using a cyclic-loess and
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quantile-robust transformation using limma v3.44.3 in R (Ritchie et al., 2015). The
resulting peptide intensities were combined into proteins using the median polish
method (Gatto & Lilley, 2012) and the smallest unique protein subset was selected
for by R-package MSqRob v0.7.6. Differential protein abundance analysis was done
by using loglikelihood-ratio tests comparing a model including time, treatment
and their interaction to a model with only time. We corrected for false discovery
rates by calculating g-values using the package gvalues v2.20.0 in R (Storey et al.,
2020) using a p-value cut-off of 0.1.

Correlation of the transcript-protein-abundances per gene

Log2fold changes (LFC) of transcript and protein abundance were calculated by
DESeq2 v1.28.1 and limma v3.44.3, respectively, by creating a condition factor, e.g.
“t1_control”, “t1_imidacloprid”, “t2_control”, “t2_imidacloprid”, etc. and creating
contrasts between the imidacloprid and control conditions for each timepoint (t1,
t2, etc.). These methods were chosen because LFC values for RNA counts had to be
shrunk using an empirical Bayesian criterion, which is integrated in both DESeq2
and/imma.To correct for the greater range of variation in LFC values for the relative
transcript counts compared to the relative peptide intensities, the LFC values of
the genes found in both the transcriptome and the proteome were standardized
separately per gene and platform, i.e. the mean was subtracted from the LFC value
and subsequently divided by their standard deviation. In order to determine the
correlation per time-lag between the transcript and protein abundances from the
same gene, the cross-correlation-function (CCF) was calculated from the scaled LFC
values for a transcript and protein from the same gene, i.e. per Transcript-Protein-
Pair (TPP), in base R v4.0.0. The CCF of two vectors is the correlation per shift in
index or time-lag. The CCF at lag O is identical to Pearson’s correlation between
two continuous variables. In this work, we considered 6 measures of similarity
between the transcript and protein scaled LFC vectors: no time-lag and 5 delayed
time-lags. Following the rationale that translation follows transcription from the
same gene, only TPPs with a positive CCF values were considered, i.e. TPPs with
log2-LFC transcript expression values positively correlating with protein log2-LFC
values, which indicates that shifts in transcript abundances that preceded protein
levels. Each CCF value expresses the similarity between two vectors at a timepoint.
Note that two scaled LFC vectors with flat-lined expression, i.e. no differential
expression, have no CCF, as it cannot be calculated. Also, the CCF is not designed
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to determine causality, it only provides a measure of correlation per time-lag
(Dean & Dunsmuir, 2016). Each TPP with a CCF value above the 95 % confidence
interval was identified as significantly correlated. The number of significant TPPs
were compared to 10,000 randomized datasets by randomizing the rows of the
transcript and protein LFC values independently. For each significant TPP, the
time-delay with maximum positive correlation between transcript and protein

scaled LFC values was calculated.

Functional annotation analysis and clustering

The differentially expressed genes (DEGs) and proteins (DEPs), and significantly
correlated TPPs were clustered using the DIANA algorithm in the R-package
DEGreport v1.24.1 (Pantano, 2020) with a minimal cluster size of 15 genes.
Functional gene annotation was obtained from Gene Ontology (GO) through the
R-package biomart v2.44.4 (Durinck et al., 2009) and the Kyoto Encyclopedia of
Genes and Genomes (KEGG) by mapping the Ensembl Metazoa proteome to the
reference proteome via GHOSTZ in the online webservice KAAS (Moriya et al.,
2007) with the algorithm bi-directional best hit and selecting F. candida as target
organism.

Two Gene Set Enrichment Analyses (GSEAs) were performed with the R-package
goseq v1.40.0 (Young et al., 2010), using DEGs and DEPs as the “foreground” with
the default Wallenius-method. Enrichment of functional annotations in these
three foregrounds was carried out comparing them to two “backgrounds”: 1. the
transcriptome (DEGs), and 2. the proteome (DEPs). The transcriptome included all
genes found in the DESeq2 result table without any missing values, i.e. genes with
sufficient counts. The proteome was defined as all genes with proteins found in the
“smallest unique subset” defined by MsgRob, see the section “protein expression
analysis”. Both reads and peptides are assigned more readily to genes with longer
transcript or peptide sequences. Therefore, to prevent this selection bias in
comparing the foreground and background, the transcript sequence lengths for
DEGs, the protein sequence lengths for DEPs, and the transcript sequence lengths
for significantly correlated TPPs were used to train goseq “probability weighting
function”. For both GSEAs, GO and KEGG terms were deemed significantly enriched
if their over-representation p-value was below 0.05, more than one of its members
was found in the foreground, i.e. DEGs and DEPs, and their under-representation
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p-value was not equal to 1. The latter two arguments prevented the selection of
Gene Set Enrichment (GSE) terms with a small number of genes. Per GSE term, the
fraction of its members found in the foreground per cluster was calculated.

Results and Discussion

Combined analyses of transcriptomic and proteomic data can facilitate the
identification of the response cascade after toxic exposure, which can inform
AOP development. However, it is unclear if responses can be observed in the
transcriptome and proteome simultaneously or whether the response is time
lagged between the layers of biological organization. To address this issue, we
have analyzed time-resolved transcriptomic and proteomic data of the springtail
F. candida after exposure to the neonicotinoid imidacloprid. From this data, we
aimed to (1) identify the time point with the most distinctive differential expression
pattern, representing the most opportune timepoint for AOP or biomarker
development, (2) identify pathways and ontologies affected by imidacloprid
exposure and temporal patterns therein, and (3) determine if there was a time-
delay in differential transcript and protein expression patterns to streamline their
combined analysis.

Transcriptomic response

We detected 20603 expressed genesin the full transcriptome dataset, representing
72% of the 28734 genes in the genome of F. candida. Imidacloprid exposure
resulted in 360 Differentially Expressed Genes (DEGs) at one or more time
points compared to the control samples from the same time points. These DEGs
were clustered based on similarity in their gene expression patterns over time,
resulting in 5 clusters with a distinct expression pattern and varying in size from
19 (cluster R4) to 166 genes (cluster R5) (Figure 2.1 and supplementary Table S2.3).
A remaining group of 73 DEGs was left unclustered. Remarkably, we observed that
the 48h timepoint marked a distinctive position in the expression patterns for the
majority of the clusters. For three out of five clusters (R1, R2, R5) the 48h timepoint
displayed the most prominent differentiation between the two treatments, as
indicated by non-overlapping quantiles of the boxplots in Figure 2.1. Cluster R1
demonstrated a gradual increase in gene-expression over time, whereas cluster
R2 showed continuous enhanced gene-expression under imidacloprid exposure.
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The expression of cluster R5 is upregulated compared to control conditions at
timepoints 12h to 24h and timepoints 60h and 72h, with a sudden reversal at
timepoint 48h. Because clusters R1, R2 and R5 combined represent roughly 60 %
of all DEGs, we conclude that the largest change in the transcriptomic response
of F. candida to imidacloprid occurred at the 48h timepoint. For the largest cluster
R5, however, the strong differentiation at 48h can be mostly attributed to a
sudden upregulation of gene expression in the control condition, rather than in
exposed animals. This prominent transcriptomic shift cannot be a consequence of
developmental processes occurring at a particular age as the springtails were not
age-synchronized per 12 hours but ranged between 21 and 24 days old. Rather,
we speculate that the shift in gene expression is a consequence of transferring
the springtails to LUFA2.2 soil, after being reared on Paris plaster before the
onset of exposure. Our data suggest that this response is inhibited or delayed by
exposure to imidacloprid. Cluster R5 may, therefore, represent genes for which
imidacloprid exposure constraints the response of F. candida to soil transfer.
Remarkedly, previous studies measuring the gene expression of F. candida have
also focused on this timepoint as many types of stress cause large shifts in gene-
expression after 48h exposure (M. E. de Boer et al., 2009, 2011; T. E. de Boer et
al., 2010; Nota et al., 2009; Sillapawattana & Schéffer, 2017). The power of our
time-resolved design is that we can distinguish this category of genes from those
with an alternative temporal expression pattern, and use this information to
refine biomarker discovery and AOP development. Altogether, the 48h timepoint,
appears to be most relevant to understand which molecular functions mediate
imidacloprid toxicity

Functional annotation analyses of the DEGs can provide insights into the
mechanisms of toxicity of neonicotinoids, and can help identify KEs for AOP
refinement. Gene set enrichment analyses (GSEA) performed on the complete set
of DEGs identified enrichment of 26 Gene Ontologies (GO) and 14 Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways, hereafter collectively
referred to as Gene Set Enrichment (GSE)-terms (see supplementary Table S2.3).
Many of the GSE terms were related to neuronal signal transduction or neuron
degradation. For example, cluster R1 was enriched for genes involved in mediating
signal transduction over the synaptic cleft, including various subunits of the
neonicotinoid target receptor nAChR, and the GABA-, receptor subunit 3,
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Figure 2.1: Clustering of time-resolved transcription abundance patterns (A) and
associated molecular gene functions (B) after exposure to imidacloprid of Folsomia
candida. Response of differentially expressed transcripts (DEGs, n=360), collection A, divided
into various clusters with similar response to imidacloprid exposure (red) compared to control
conditions (blue). Every dot on the panels of collection A is a z-score transformed transcript
abundance (y-axis). The z-score transformation is not used to either determine whether the
transcript is differential-expressed, only for the clustering of the patterns and for visualization.
Boxplots indicate the spread of the transcript abundance per cluster for each condition per
12-hour timepoint from 12 hours to 72 hours post exposure (x-axis), lines connect the medians
of each box-plot. The titles of each panel show the cluster name and the number of its gene
members. The shared molecular function of the entire DEG list, as determined by a Gene Set
Enrichment Analysis (GSEA), is shown in collection B. The cluster names are shown on the
x-axis of the panels with on the y-axis the GSE terms with their description. Dot size shows the
percentage of genes in the clusters annotated with that GSE term. The color of each dot is per
ontology, i.e. Kyoto Encyclopedia of Genes and Genomes (KEGG) in orange, Gene Ontology
(GO) Cellular Component (CC) in red, GO Molecular Function (MF) in green, GO Biological
Process (BP) in blue.
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indicated by associated GSE terms such as GO0:0019205, G0:0004890, and
ko04725 (see Figure 2.1 and Table S2.2). Cluster R2 was enriched for genes related
to the extracellular region (GO:0005576), and cluster R5 had a range of associated
GSE terms, which have also been related to the human disorder Amyotrophic
Lateral Sclerosis (ALS) (ko05014). For example, in ALS in humans, microtubule
(GO:0007017, GO:0007018, GO:0003777, GO:0005874) and dynein (GO:0030286)
based transport is disrupted, both impeding synaptic vesicle trafficking (Redler &
Dokholyan, 2012). Although nAChR over-excitation is not directly involved in ALS,
dysregulation of nAchR neuronal signaling can cause comparable symptoms to
ALS as seen in humans poisoned with organophosphate insecticides acting on ACh
neurotransmission (Binukumar & Gill, 2010). Our results also align well with the
transcriptomic response of water fleas (Daphnia magna) to imidacloprid exposure,
which showed ontologies and pathways related to neuron degradation, such
as GABA synthesis, synaptic vesicle trafficking and Parkinson’s and Alzheimer's
disease (Pfaff et al., 2021). Although no sequential order of responses can be
inferred from our transcriptomic data alone, as shifts in gene expression occur
almost simultaneously, the order in which molecular functions occur during
human disorder ALS can provide a probable sequence for AOP refinement (see
Figure S2.1 for ALS sequential order and Figure 2.2 for the improved putative AOP
for nAchR overexcitation). The AOP for nAchR overexcitation contained only few
(sub)cellular KEs up to now (Figure 2.2). With our transcriptomic analysis this AOP
can be supplemented with multiple KEs (see purple tiles in Figure 2.2). Also, our
data indicate that the putative AOP is applicable to a larger taxonomic group than
what was known before, now including honey bee, bumble bee, water fleas and
Folsomia candida, see literature references below the tiles.

Similartothetranscriptomicresponse,theproteomicresponsemayprovideputative
biomarkers and KEs for AOP refinement. In total, we identified 4400 expressed
proteins, of which 219 were identified as Differentially Expressed Proteins (DEPS)
underimidacloprid exposure. Clustering of all DEPs based onsimilarityin expression
patterns over time and treatment resulted in 7 clusters of DEPs, varying in size
from 17 (cluster P1) to 23 genes (cluster P2). A remaining group of DEPs (n=82) was
left unclustered (Figure 2.3 and supplementary Table S2.3). A larger percentage of
DEPs was left unclustered (37 %) compared to the DEGs (20 %). A possible reason
for this is that protein intensities are less variable compared to transcript counts.

41




Chapter 2

"((1Z02) "[e 19 Jeid ¢ pue (LZ0g) uuewya g dwed ; (£107) ‘[e 32 aUoTeT, :pjog Ul 9|1
3U1 MO|3Q £-1 SIaqUINU 3y} YIM Paduaiaad S| yJom siy3 sduipuly snoiaaid wouj parioddns ale s3y USYAA "SSUIINO 313 PI|OS dABY SUORIPPE I
[9AON *(£10Z “|e 3@ duoe) sisayiuaJed Ul S3|13 9Yl MO[2Q UM S| d] JUSAS 33 pue (655 JIIN) UOIBAIDE YUdVU J0} OV 9Y3 Ul Juasaid Apeadje
9J9M 1BY) ST 91L2IPUl SBUIINO payseq ‘L'ZS N34 93s ‘sishleue sawoajoud Jo awoidudsueny uno Aq pawoddns jou pue 1050dew DO
W04} PIALIDP Sem Iy ay3 1eyy saledipul Suipeys AaJo "yroq woly 1oddns saiedipul Suipeys wuaipeld a|dind pue a8uelo pue ‘siskjeue djwoa10.4d
Jno adueJo ‘sisAjeue diwoididsuesy Jno wody Joddns saedipul ajdind OV 9yl 03Ul Iy 9Y3 JO UOISN|IUI 3Y3 Jo) Jioddns Spud| 1eyl 3nsaJ syl uo
paseq paJalje si Suipeys sajil (8107 ‘dDJ0) SIH dWOs pue OV ‘J|IN dwes ayy aleys 1eys skemyied [a)esed 231y syuasatdas aindiy ayy aduay
pue Jeaul| sl 4OV Yoea ‘saullapind @130 ayi Jad sy ‘Aemyied e ul Qv 01 3| Wolj uoissaidoad ay3 o) Juend|as pue A1essadau aq 01 dAeY SJUSAT
£33 (8107 ‘dD30) IM 2Y3 JO UONDIBIP 10342 Y3 9qLIDSIP 03 PAMO||e 348 SPIOM JO 13S paiwl| e AJUQ "S3]313 9Y} MO|2q SJ9113] P|O0g-UOU Ul US1ILIM
UOI13123J1P $329JJ3 3Y) YUM P|Og Ul USIILIM 248 IY UIed JO S3|313 YL "S9]I} IX3) Y} US3IMISQ SMOJIE PI|OS Se UMOYS (¥3M) sdiysuole|ay 3uang Aoy
Aq pa122uu0d aJe pue OV Y1 01 J[IAl Y3 193UU0D (S3H) SIUAAT A3) SnoLieA “(OY) dwoIINQ 3SI3APY SI se uolzdnpoadal pasnpaa pue (I|A)
JU3AJ UolI_}IU| JBINJ3|OJ\ Y3 Sk uolleAde (YYIoyu) 103daday auljoydjA1ady d1u13odiu 10} (dOV) Aemyred awo3InQ 3s4dAPY 'z 24nSi4

€

(A
aseasnap
Suppiyjen |
3|oIsan i
andeuis
(g98T:0V) 2T 1 (evzT:aN) 2T € (655:3IN) €2°T
AT, Ve N AT ~ tml S
I 1 asealnu| 1 LRl 1 I 1
| 1 aseasnur asealnap uoidnpsues asealnul | 1
EN:-EYRE]) asealdsp e T sajegaisse | e e 1 Sunjeusis asealoul uoneande
1 poid j Joj0W ; N : ;2 L Suijeusis Pyu 1
! ] 2 uoinan VNHW u.m.”.w_ww““z | unnpowres | a1eweln|d I|eusis yavo i yyoy! 1
A \_ v, ) \__"s®_ \__ ey
(ozsMz‘T » (e et
LTt Y N N
I uonejnwnae 1 | / 1
1 VNG 11 vl le
I jeupuoydonw e eLPUOUYG a_n I
I peSewegq I I LRCLEE ]
\ N !
uang
BIUCHIRS S Ry siuang Aoy uoReiu| 1e[nd3joN

42



Combining time-resolved transcriptomics and proteomics data for Adverse
Outcome Pathway refinement in ecotoxicology

Proteomic response

This lower variability of DEPs makes is difficult to identify clusters with clearly
distinct patterns, which could result in higher number of clusters with few clustered
proteins (Kaufman & Rousseeuw, 1990). As we had set a minimum cluster size of
n=15, DEPs from small clusters are labelled as unclustered. All clusters had their
most differential protein expression at 48h post onset of exposure, as indicated
by non-overlapping box-plots in Figure 2.3. Depending on the cluster, protein
abundances were either increased (P1, P2, P4, and P7) or decreased (P3, P5, and
P6) in the imidacloprid exposure compared to control conditions at this timepoint.
Therefore, the results corresponded well with the transcriptomic response,
in which changes in gene-expression were also most pronounced at the 48h
timepoint. These results indicate that 48h is also is the most opportune timepoint
for biomarker and AOP refinement based on protein expression.

The GSEA of the DEPs identified 10 GO-terms and 15 KEGG pathways (see
supplementary Table S2.3). Many of the GSE terms associated with DEPs could
also be linked to neuron degradation. For instance, the terms chaperone binding
(GO:0051087), mitophagy (ko04137) and the many ribosome associated GSEs
(GO:0006412, GO:0003735, GO:0015935, GO:0005840, ko03010 and ko03011)
suggest an impeded turn-over of ribosomes, mitochondria and proteins, which is
known to play a role in neurodegeneration (Chua et al., 2021) (Figure 2.3). Other
GSE terms suggest an enrichment of genes involved in motor-neuron signaling
leading to cardio-muscular contraction (ko05410, ko05414, and ko04216). The
imidacloprid target receptor nAChR was clustered with DEPs implicated in cardio-
muscular contraction, which were upregulated throughout the time series and,
therefore, upregulated by imidacloprid exposure. There is, with one exception,
no overlap in GSE terms between the proteome and transcriptome data, which
suggests that imidacloprid exposure did not affect the exact same pathways
and ontologies in both modalities. Despite this limited overlap, both sets of data
support the putative AOP for nAChR activation, although the transcriptomic
response corresponds mostly to early KEs and the proteomic response to KEs
later in the putative AOP (Figure 2.2). Both omics datasets provide support to
the KE “synaptic vesicle trafficking”. The proteomic response provides empirical
support to both KEs that were previously identified in honey bees, and the newly
added KEs derived from molecular insights on ALS in humans, which supports our
approach to refine the AOP for nAChR activation.
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Figure 2.3: Clustering of time-resolved protein abundance patterns (A) and associated
molecular gene functions (B) after exposure to imidacloprid of Folsomia candida.
Response of differentially expressed proteins (DEPs, n=219), collection A, divided into
various clusters with similar response to imidacloprid exposure (red) compared to control
conditions (blue). Every dot on the panels of collection A is a z-score transformed transcript
abundance (y-axis). The z-score transformation is not used to either determine whether the
protein is differential-expressed, only for the clustering of the patterns and for visualization.
Boxplots indicate the spread of the protein abundance per cluster for each condition per 12-
hour timepoint from 12 hours to 72 hours post exposure (x-axis), lines connect the medians
of each box-plot. The titles of each panel show the cluster name and the number of its gene
members. The shared molecular function of the entire DEP list, as determined by a Gene Set
Enrichment Analysis (GSEA), is shown in collection B. The cluster names are shown on the
x-axis of the panels with on the y-axis the GSE terms with their description. Dot size shows
the percentage of genes in the clusters annotated with that GSE term. The color of each
dot is per ontology, i.e. Kyoto Encyclopedia of Genes and Genomes (KEGG) in orange, Gene
Ontology (GO) Cellular Component (CC) in red, GO Molecular Function (MF) in green, GO
Biological Process (BP) in blue.
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Correlation and time-lag in gene transcript and protein abundance.

Our results have demonstrated that each omics dataset can provide insights into
the molecular mechanisms that mediate toxicity at a singular layer of biological
organization. It is generally recommended to combine various omics data for
the purpose of AOP development and KE identification (Canzler et al., 2020;
Leung, 2018). However, it is unclear if responses in two omics data types occur
simultaneously or if they are delayed in time. To warrant their combined analysis
for AOP development, we aimed to quantify the correlation between our two
omics datasets and to determine if a time-delay exists between transcript and
protein abundances.

Nearly all proteins (4364 out of 4400) identified in the proteome of F. candida also
had a transcript in the transcriptome (n=20603). From this overlap, 269 Transcript-
Protein-Pairs (TPPs) had significantly correlated temporal patterns of transcript
and protein expression (see supplementary Table S2.3). The number of significant
TPPs is much larger than expected from random abundances (p<0.001 in 10,000
random bootstraps of the data set, see Figure 2.4A), and is considerably higher
than the overlap of DEGs and DEPs (n=5, Figure 2.4D). This suggests a significant
correlation between the transcriptome and the proteome, even though the shiftsin
transcriptand protein expressioninresponse toimidacloprid exposure themselves
may not be statistically significant. From the 269 significantly correlated TPPs, 15
genes overlapped with either DEGs, DEPs, and two genes overlapped with both
DEGs and DEPs. These genes encode two subunits of the target receptor nAChR,
Fcan01_17957 and Fcan01_01431. This result suggests that both transcript and
protein expression patterns of the target receptor could be used as biomarkers to
indicate neonicotinoid exposure.

Analyses of the temporal correlation patterns of the TPPs indicated the strongest
correlation when no time-lag was assumed between the transcript and protein
expression patterns for the majority of the significant TPPs (Figure 2.4B).
Moreover, significantly correlated TPPs overall had a shorter time-lag compared
to the background, i.e. non-significant TPPs. The temporal correlation patterns of
the TPPs clustered into 7 clusters, varying in size from 19 (cluster C1 and C5) to
30 genes (cluster C7) (see supplementary Table S2.3). The percentage unclustered
TPPs was relatively high with 39 %, which is comparable to the number of

45




Chapter 2

non-significant (n=4095) signifcant (n=269)

1.004

o
5
o

frequency

percentage of genes with
maximum correlation at time lag
° o
b g

OOO_IIIl-- Il—
240 0 1 2 3 4 5 0 1 2 3 4 5

160 200
number of significantly correlated transcript—protein pairs time lag

(¢}

C1 (n=19) C2 (n=25) €3 (n=23) D

-

o

DEGs (n=360) DEPs (n=219)

N

C6 (n=24)

-

SN

|
o

~

-

TPPs (n=269)

z-score log2foldchanges of protein and transcript abudance
° o

!
n

hours post the onset of exposure

channel =2 protein B3 transcript

Figure 2.4: Temporal correlation of differentially expressed transcripts (DEGs)
and proteins (DEPs) after imidacloprid exposure in Folsomia candida. The number
of significantly correlated transcript-protein-pairs (TPPs) is higher compared to 10,000
randomized draws (panel A) and significant TPPs have their highest correlation at shorter
time-lags compared to non-significantly correlated TPPs (panel B). Clustering of time-resolved
relative abundance patterns of correlated TPPs (A), the numerical overlap of genes in the
differentially expressed transcripts (DEGs), proteins (DEPs) and TPP lists (B). In panel A, the
number of significantly correlated TPPs (n=269, red vertical line) is compared to a frequency
distribution representing significantly correlated TPPs when the data is randomized 10,000
times. In panel B, each bar indicates the percentage of TPPs with their highest-correlation, i.e.
maximum correlation, with that time-lag for non-significant (left panel) or significant (right
panel) TPPs. A TPP is deemed significantly correlated at a threshold of 5 %. In panel A, the
dots on the panels are z-score transformed log2fold-changes of imidacloprid over control
condition abundances of either transcripts (purple) or proteins (orange). Boxplots indicate
the spread of relative abundances per cluster for each modality per 12-hour timepoint
from 12 hours to 72 hours post exposure, lines connect the medians of each box-plot per
cluster and modality. The titles of each panel show the clusters name and the number of
TPP members.
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unclustered DEPs (37 %) and may again be linked to a low variability of the LFC
temporal patterns. The patterns indicate that the majority of clusters, i.e. 6 out
of 7, had no visible time-lag between expression patterns of the transcript and
protein (see Figure 2.3). Only cluster C1 displayed a time-lag of two timepoints,
i.e. 24 hours. Combined, these observations indicate a limited time lag between
transcript and protein expression after imidacloprid exposure in F. candida, when
tested with 12-hour time-intervals. This finding seems to contradict the conclusions
of Simdes et al. (2019), who observed a time-lag of 2-3 days between transcript
and protein abundances in F. candida exposed to a fungicide formulation with
the active substance chlorothalonil. However, transcript and protein samples in
that study were taken at 2, 4, 7 or 10 days after onset of exposure, which largely
exceeds the time frame we studied. This hampers a direct comparison of the two
findings. However, as shifts in gene expression can occur in the order of minutes
and protein regulation in the order of hours after toxicant exposure, one might
argue that smaller time frames of 12h, as used in our study, provide a better
resolution to the correlation of these dynamic transcript and protein responses.

Previous studies have suggested staggered data collection or modelling approaches
to facilitate multi-omics data analysis (Canzler et al., 2020; Garcia-Reyero & Perkins,
2011). Although these analyses may be necessary to study multi-omics expression
patterns over a test duration of a few hours, our findings suggest this is not necessary
when multi-omics data is obtained over a test duration of multiple days.

Conclusion

By combining time-resolved transcriptomic and proteomic data on the response
to pesticide exposure in the soil invertebrate F. candida, our study has provided
valuable insights that support AOP development and biomarker discovery. Both
the transcriptome and the proteome analysis identified GSE terms associated with
imidacloprid exposure that support the existing AOP on nAChR activation and
refine it by identifying novel KEs (Figure 2.2). Moreover, we here provide evidence
that transcriptomic and proteomic data obtained from the same timepoint can
be combined, which is an important requirement to assess AOP applicability
and robustness. The largest shift in both transcript and protein expression after
imidacloprid exposure was observed at the 48h timepoint, indicating this as the
most opportune moment for biomarker and AOP development. These findings
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contribute to the application of the AOP framework as a tool for Environmental
Risk Assessment of neonicotinoid polluted soils or compounds with similar Modes
of Actions, which may play an important role in providing rapid and cost-effective

tools for pesticide monitoring programs.
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Chapter 2: supplementary information
$2.1. Quality control of the soil spiking

The imidacloprid concentration in control and test soil was confirmed by Groen
Agro Control, Delfgauw, the Netherlands, following certified analytical methods
and with a detection limit of 0.01 mg kg dry soil. No imidacloprid was detected
in the control soil. The recovery of imidacloprid in the spiked soil at the onset of
the exposure was 80 % or 0.20 mg kg’ dry soil (from the desired 0.25 mg kg"),
and falls within the EC,, estimate reducing F. candida juvenile reproduction by 20
% (Bakker et al., 2022). Therefore, the imidacloprid exposure is referred to as the
EC,,throughout this work.

$2.2 LC-MS? quality control metrics

Visual inspection of the Thermo Fisher raw files did not indicate the LC-MS? runs
had ended prematurely or that the peptides were not sufficiently separated by
the LC-column. However, some had low overall intensity, e.g. sample 8, or high
intensity, e.g. sample 25. However, this variation is accounted for at further stages
of the analysis.

The calibration of MetaMorpheus indicated that 10 ppm and a fragment (MS/MS)
mass tolerance of 0.5 Dalton were the right search settings for all LC-MS? files.
These parameters were used for readjusting the other search software.

The Global Post-Translational Modification Discovery (GPTMD) search of
MetaMorpheus showed that Acetylation on N-terminus, Oxidation on M and
deanimation on N, Q and R were the most commonly found Post Translational
Modifications (PTMs), see Table S2.2. The top 5 PTMs found represented over 68
% of all PTMs in the dataset. Other search software, i.e. MaxQuant and SearchGUI,
settings were adjusted to accommodate these PTMs in the search parameters.
Due to a lack of PTMs that could not be accounted for with the other software,
we conclude that PTMs could not hamper the further analysis of the LC-MS? data.

The PSM ID rate, i.e. the fraction of all MS/MS spectra that could be assigned to a
peptide, was on average 11.08 % (sd = 1.71, n=36) for MSGF+, see Table S2.1. This
PSM ID rate was 60 % times higher compared to the PSM ID rates of Andromeda
(6.96 %, sd = 1.53, n=36) and 50 % higher than the PSM ID rates for MetaMorpheus

49



Chapter 2

(7.36 %, sd 1.4). Therefore, the search engine MS-GF+ outperformed the other
search engines. One reason could be the automated readjusting of search
parameters and PSM scoring of the MS-GF+ algorithm (Kim & Pevzner, 2014). The
PSM ID rates in our study were lower than observed in other studies, for example
the PSM rate from single tissue human or model organism isolates is expected to
be between 20 to 40 % (Bielow et al., 2016). This may be explained by the fact that
we did not isolate proteins from a single tissue and used a less standard model
organism compared to humans, fruit flies or zebrafishes. From the comparative
analysis between the three search engines, we conclude that Andromeda and
MetaMorpheus did not perform well on our data, possibly because these search
engines could not readjust their settings to accommodate the type of data used in
this work. As the MS-GF+ search engine performed best in terms of PSM ID rates,
we used this method for further analysis.

$2.3 KEGG pathway color coding (figure S2.1)

For coloring in the KEGG pathways, the Log2-Fold-Change (LFC) values of KEGG
gene identifiers associated to the DEGs were selected and had a color assigned
to them in hexa-color-code per chosen timepoint based on their quantile (25%
percentile distribution): quantile one (Q1) was colored blue, #0000ee, Q2 light
blue “#3399ff", Q3 pink “#ff6699", Q4 red “#ff0000". Therefore, genes with high
expression values in the imidacloprid exposure were assigned a red color and
genes with high expression values in the control conditions a blue color. The
colors were uploaded to the KEGG mapper - color webtool, www.genome.jp/kegg/
mapper/color.html, and colored map05014 png was downloaded. The colored
KEGG map served as the basis of a putative AOP, which was constructed following
the AOP User's handbook (OECD, 2018).
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Figure S2.1: The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
map05014 representing the human disorder Amyotrophic Lateral Sclerosis (ALS)
colored with Differentially Expressed Genes (DEGs) found after 48 hours exposure
as part of a time-series assay comparing the gene-expression of Folsomia candida
exposed to imidacloprid at a concentration corresponding with the EC, for effects on
reproduction. Each tile represents a gene, its abbreviations written in the tile. The shading
of the tiles represents whether the DEG was expressed higher in the imidacloprid exposure
(red or pink), or under control conditions (blue or light blue). Expression was ordered by their
quantiles and colored as follows: Q1: blue; Q2, light blue; Q3, pink; Q4, red. Abbreviations
in red lettering are genes whose malfunction or altered expression is associated to human
ALS disorder. All dots represent metabolites, enzymatic (by-)products and biomolecules
with arrows connecting these molecules and genes to represent activations or expression.
Arrows with blunt tips represent repression or inhibition. Dotted arrows suggest indirect
linkage of events. Arrows crossed by dashes represent missed linkage due to mutation or
malfunction.
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Table S2.1: Mapping rate of RNAseq reads and identification rate of MS/MS spectra.
Transcriptomic (RNAseq) and proteomic (LC-MS?) data obtained from Folsomia candida
exposed to imidacloprid or control conditions. Sampling was done every 12 hours for a total
of 72 hours after the onset of exposure. Here the RNAseq mapping rate (%), which was done
using Salmon v0.8.1, and the MS/MS-spectra identification rate (%), which was done using
msgf+, are shown.

sample hours condition = RNAseq mapping rate (%) MS/MS id rate (%)

1 12 control 87.00 11.5

2 12 control 88.22 9.81

3 12 control 86.24 11.86
4 12 imidacloprid 84.99 9.46

5 12 imidacloprid 86.50 11.52
6 12 imidacloprid 83.79 13.15
7 24 control 81.86 12.45
8 24 control 87.72 11.31
9 24 control 87.63 13.13
10 24 imidacloprid 86.75 12.34
(K 24 imidacloprid 87.86 12.42
12 24 imidacloprid 84.79 10.36
13 36 control 85.83 10.13
14 36 control 86.92 10.95
15 36 control 86.65 11.28
16 36  imidacloprid 87.79 12.2

17 36 imidacloprid 84.16 8.77

18 36 imidacloprid 88.01 11.38
19 48 control 89.15 10.86
20 48 control 83.44 9.25
21 48 control 90.69 10.47
22 48 imidacloprid 87.91 10.9
23 48 imidacloprid 89.02 13.5
24 48 imidacloprid 86.80 12.06
25 60 control 85.13 8.22
26 60 control 85.75 11.63
27 60 control 83.61 11.82
28 60 imidacloprid 83.94 10.46
29 60 imidacloprid 84.18 11.99
30 60 imidacloprid 87.22 11.61
31 72 control 85.05 12.42
32 72 control 87.95 6.54
33 72 control 87.00 11.68
34 72 imidacloprid 84.00 12.55
35 72 imidacloprid 84.60 12.98
36 72 imidacloprid 84.80 5.98
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Table S2.2: the top 5 Post Translation Modification (PTM) found by Global Post-
Translational Modification Discovery (GPTMD) module in the software MetaMorpheus.
Each top PTM is also shown as a percentage of the total modifications found in the data.
Data obtained from Folsomia candida, for every 12 hours for a total of 72 hours, exposed to
imidacloprid or control conditions.

Modifications Count (n) Percentage (%) of total PTMs found

Deamination on Q 1240 25

Deamination on N 1043 21

Citrullination on R 615 13
Hydroxylation on P 264 5
Hydroxylation on N 156 3

Total top 5 PTMs 3318 68
Total PTMs all data 4870 100

Table S2.3: Gene Set Enrichment report for differentially expressed genes (DEGs) and
proteins (DEPs), and a list of significantly correlated Transcript Protein Pairs (TPPs).
Transcriptomic and proteomic data had been obtained from Folsomia candida exposed to
imidacloprid or under control conditions. Sampling occurred every 12 hours for a total of
72 hours for both conditions as detailed in the methods section. Lists of DEGs, DEPs and
TPPs are provided in three separate sheets (“DEG report”, “DEP report”, and “TPP report”,
respectively). For each gene the following information is provided: the Ensembl gene
identifiers of these groups, according to Ensembl Metazoa (Cunningham et al., 2019), log-
likelihood estimate, p-value and g-value of the model comparisons, the gene's description,
associated Gene Set Enrichment terms, and clustering results. Gene Set Enrichment Analysis
(GSEA) of DEGs and DEPs were done and the outcomes are presented in two separate sheets
("GSEA DEGs” and “GSEA DEPs”, respectively), which show the over- and under representation
of GSE terms in the DEGs and DEPs compared to the overall transcriptome and proteome,
respectively. The column “numDEInCat” shows the number of differentially expressed (DE)
genes or protein in that GSE term. The number of genes or proteins in the transcriptome or
proteome, respectively, with that GSE term annotation is found in the column “numInCat”.
The last two columns provide a description of the GSE term and the ontology or database
the GSE term can be found in.

Table S2.3 can be found in the associated Excel sheets.

Follow the link:

https://docs.google.com/spreadsheets/d/1VWplujM5iujO-xfXQJxHmLQb96hazSLz/
edit?usp=sharing&ouid=109773965507433810260&rtpof=true&sd=true
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Chapter 3

Complex pesticide mixtures are found in many agricultural soils, contributing to
a global decline in invertebrate populations. Traditional chemical monitoring of
pesticide mixtures underestimates their environmental risk as these methods
underestimate pesticide (synergistic) interaction effects and cannot determine
their bioavailable fraction in the soil. Characteristic gene-expression patterns
could be used as biomarkers to determine the type of soil pollution present and its
intensity even under varying mixture compositions. However, current differential
gene expression methods are ill-suited for biomarker discovery from mixture
exposure transcriptomic data due to (1) high variability of gene expression, (2)
nonlinear concentration-response relationships, (3) and genetic interaction effects.
In this study, we obtained transcriptomic data from the springtail Folsomia candida
under two binary mixture exposures in a grid design and finely resolved for stress
intensity. The mixtures either had the same or different presumed mechanisms
of toxic action, combining two neonicotinoids insecticides, imidacloprid and
clothianidin, or imidacloprid and the azole fungicide cyproconazole, respectively.
We analyzed the data using a custom-made statistical framework based on
Gaussian Processes (GP) models to meet the three common challenges of mixture
toxicity transcriptomic data, and analyzed the two datasets in conjunction without
the need for batch effect correction. The identified candidate biomarkers were
validated by exposing springtailsto soil spiked withimidacloprid and cyproconazole.
Our findings demonstrate the efficacy of GP models to analyze mixture exposure
transcriptomic data, which has potential applications far beyond ecotoxicology,
such as in pharmacology and other fields of biology.

Keywords: transcriptomics, ecotoxicogenomics, neonicotinoids, springtails,
differential gene expression analysis
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Introduction

Intensive pesticide application contributestothe decline of non-targetinvertebrates
worldwide. Non-target invertebrates are essential to sustainable agricultural
practices such as pollination, predation of pest species, or nutrient cycling
(FAO, ITPS, GSBI, 2020). Traditionally, pesticide regulation and risk assessment
are based on standardized tests that determine the Effect Concentrations (EC)
at which a pesticide reduces phenotypic end-points of model organisms, such
as reproduction or survival. These ECs ultimately inform risk assessors on the
environmentally safe concentration limits of pesticides. However it is difficult
to extrapolate the ECs obtained in single pesticide toxicity tests to field-relevant
conditions as, most importantly, pesticide mixtures pollute most agricultural soils
(Pelosi et al., 2021; Silva et al., 2019). Determining the toxicity of pesticide mixtures
using standardized phenotypic toxicity tests is practically impossible because their
(synergistic) interaction effects are mainly unknown, soil properties influence
pesticide bioavailability, and all possible combinations of pesticide mixtures are
innumerable (Gunstone et al., 2021; van Gestel, 2012). Besides the inaccuracy of
extrapolating the results of standardized toxicity tests to field-relevant conditions,
another problem is the enforcement costs. Monitoring programs currently require
the chemical assessment of the concentration of a myriad of pesticides and other
pollutants, which is a highly laborious and expensive process that commonly
underestimates the cumulative toxicity of mixtures of environmental pollutants
(Escher et al., 2020). Therefore, the current environmental risk assessment lacks
accurate metrics for the toxicity and composition of complex pesticide mixtures.
New metrics to identify the type of pesticide exposure and its toxicity are urgently
needed to guide pesticide abatement efforts and prevent a further decline of non-
target invertebrate species.

Supplementing phenotypic toxicity tests with bioanalytical tools, such as gene-
expression biomarkers, can more accurately monitor complex pollution mixtures
(Escher et al., 2020; Fontanetti et al., 2011). In this framework model organisms are
exposed to environmental soil samples in a testing facility. Then, a panel of gene-
expression biomarkers surveys the soil for pollution (G. Chen et al., 2014; Lionetto et
al., 2019). When pollution is detected, soil samples are submitted to a higher tier and
more costly testing, such as bioassays and chemical analysis of the soil. Informed by
the results of the biomarker panel, risk assessors can focus their efforts on the most
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concerning samples allowing them to expand monitoring programs while reducing
costs. Biomarkers, in this manner, support an ongoing shift in environmental risk
assessment to enforce not the environmental concentration of pollutants but
their harmful effects on non-target organisms (Escher et al., 2020). The springtail
Folsomia candida would be ideal for this purpose as it can reproduce asexually,
is easily reared, and its genome has been annotated and sequenced, which
facilitates gene expression studies (Faddeeva-Vakhrusheva et al., 2017; Fountain &
Hopkin, 2005). F. candida belongs to the Collembola, a species-rich family of soil
invertebrates that contribute to nutrient cycling and the spread and maintenance
of the microbiome (Cragg & Bardgett, 2001; Rusek, 1998). Moreover, F. candida
is considered representative of the susceptibility to pesticides of other springtail
species and it is, therefore, considered an important soil ecotoxicological model (de
Lima e Silva et al., 2017, 2021).

Because the molecular effects of pollutants, e.g., pesticides, are diverse, multiple
biomarkers are required for their assessment (Lionetto et al., 2019). However,
multiple biomarkers per pesticide would result in a panel with an unpractical
number of biomarkers. For the successful implementation of biomarkers as a
bioanalytical tool, first, a set of genes affected by exposure to a specific class of
pesticide must be identified. Second, genes with nonspecific responses to the
pesticide type and those part of the universal stress response must be filtered
from this set. The remaining characteristic gene-expression patterns are the
pesticide’'s toxicogenomic fingerprint. The toxicogenomic fingerprint can then
form the basis for biomarker development. To this end, defining the specificity
of gene-expression patterns under exposure to multiple pesticides is essential.
Mixture exposure toxicity data is inherently highly variable and contains nonlinear
and interaction effects that act on the concentration-response relationships
(Altenburger et al., 2012). Routinely parametric models used by popular software,
such as edgeR and DESeq2, are ill suited to analyze such variable, non-linear
relationships, which constraints differential gene expression analysis (DGEA) for
identifying toxicogenomic fingerprints under mixture exposure (Love et al., 2014;
Robinson et al., 2009).

Parametric models rely on the assumption of fixed gene expression concentration-
response relationships, which makes them unsuitable for analyzing mixture
transcriptomic data in three ways. First, parametric models perform poorly on
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nonlinear concentration-response relationships (Ren & Kuan, 2020). Second,
parametric models deal poorly with uncertainty caused by high data variability and
require various correction methods or estimation techniques (Love et al., 2014; Reeb
& Steibel, 2013). Third, parametric models have fixed shapes of the concentration-
response relationships (Ewald et al., 2021; Larras et al., 2018). For example, current
DGEA methods categorize the concentration-response relationships as a bell-shape,
U-shape, or S-curve. Mixture exposures over a broad range of intensities will inevitably
result in numerous shapes of the concentration-response relationships, due to the
interaction effects of the multiple compounds. Fixed-shaped models require a vast
number of additional parameters to permit these surfaces. Besides the computational
costs of adding more parameters to the models and selecting those that fit best, it
would also render the p-value ranking of genes impossible, as p-values from fixed-
shaped models with different levels of parametrization are incomparable. In brief,
DGEA methods used for analyzing mixture transcriptomic data should account for:
(1) nonlinear concentration-response relationships of gene expression, (2) have to
quantify uncertainty in the data accurately, (3) and be parameter-free.

Gaussian process (GP) models allow for non-parametric and non-stationary, i.e.,
rapid changes, modeling of concentration-response relationships. GP models canfit
complex nonlinear patterns in a robust Bayesian probabilistic framework and thus
provide reliable prioritization of the differentially expressed genes across complex
concentration-response surfaces. Additionally, they can accurately quantify the
high degree of uncertainty caused by variability typical for transcriptomic data. GP
models, therefore, address all three challenges associated with DGEA of complex
mixture exposure data. Previously, GP models have been applied to DGEA (Kalaitzis
& Lawrence, 2011), drug-drug interaction modeling (Shapovalova et al., 2022), and
pharmacological responses and biomarkers development (Wang et al., 2020), but
to date not yet for mixture toxicity data. Besides the advantages mentioned above,
our approach can consider that various experiment can have the same chemical
compound and treat the single experimental data of the same chemical compound
jointly across all the experiments. In this study, we extend current approaches for
GP modeling to analyze transcriptomic data obtained under mixture of exposures
and over a range of stress intensities by various pesticides.

Neonicotinoids are the most commonly used insecticides and are highly toxic
to non-target invertebrates. They overstimulate the neuronal signal over the
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nicotinic acetylcholine receptor (nAChR). They are commonly found alongside
azole fungicides, which are known to synergize with neonicotinoids by inhibiting
their primary route of detoxification, the biotransformation pathway (Glavan &
Bozic, 2013; Raimets et al., 2017; Sgolastra et al., 2017). Here, we used GP models
to identify toxicogenomic fingerprints of F. candida to the broader neonicotinoid
insecticide class even under interaction effects with an azole fungicide,
cyproconazole. We selected two binary mixtures of either two neonicotinoids,
imidacloprid and clothianidin, or imidacloprid and cyproconazole (an azole
fungicide). First, we quantified the interaction toxicity effects of the mixtures on F.
candida reproduction by Hand GP models (Shapovalova et al., 2022). By studying
the interaction effects on mixture toxicity to reproduction, we demonstrate that
the pesticide exposure caused genetic interaction effects as non-additive toxicity
stems from molecular interaction effects and, hence, gene expression. Next, we
sought to identify robust signatures of differential gene expression of exposure to
neonicotinoids and cyproconazole. For this, we generated F. candida transcriptomic
data under the two binary mixtures and analyzed both datasets with GP models.

Materials and methods

Soil preparation.

Imidacloprid, > 98 % purity, was provided by Bayer (Monheim, Germany).
Clothianidin and cyproconazole, both > 98 % purity, were bought from Merck
(Amsterdam, The Netherlands) and Thermo Fisher Scientific (Landsmeer, The
Netherlands), respectively. LUFA2.2 test soil (Speyer, Germany) was used for the
binary mixture toxicity tests, transcriptomics exposures, and the gene expression
survey with spiked soils. LUFA2.2 is a natural, sandy soil with a total organic carbon
content of 2.1 %, Water-Holding-Capacity (WHC) of 46.5 %, and a soil pH of 5.5 %
(0.01 M CaCl,); as determined by the supplier.

For all exposures, imidacloprid and clothianidin were dissolved in ultra-pure water
and left to stir at 300 rpm overnight, and covered in aluminum foil. Cyproconazole
was dissolved in acetone and this mixture was used to spike 10% of the sample test
soil per condition. The soil and acetone mixture was mixed every half hour for two
hoursorthreetimes. Afterthat, theacetone was leftto evaporate entirely, overnight,
covered in aluminum in a fume hood. For the binary mixture of imidacloprid and
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cyproconazole, all conditions had 10 % of the test soil treated with acetone as
described above. For the binary mixture of imidacloprid and clothianidin, no pre-
treatment with acetone was carried out. Then, where applicable, all dry test soil,
including acetone pre-treated soil, was mixed thoroughly with a demineralized
water mixture containing the desired amount of imidacloprid and clothianidin
equal to 50 % of the Water Holding Capacity (WHC) or 22 % of the test soil total dry
weight. Soils were left overnight before starting exposures.

For springtail reproduction toxicity tests of the binary mixtures, the following
concentrations were chosen: imidacloprid, 0, 0.1, 0.2, 0.4, 0.8, 1.6 mg kg dry soil,
with either: clothianidin, 0, 0.05, 0.1, 0.2, 0.4,0.8 mg kg dry soil, or: cyproconazole
0, 62.5, 125, 250, 500, 1000 mg kg dry soil. The concentrations represent %4, ¥, 1,
2, and 4 Toxic Unit (TU equals to the Effect Concentration reducing juvenile counts
by 50 %, i.e., EC, ). The effect concentrations were determined in an earlier study
(Bakker et al., 2022, under review). For the 1:0, 0:1, and 1:1 TU:TU conditions, 5
replicates were used, and for the other conditions 3 replicates, resulting in 140
samples, see Figure 3.1.

For transcriptomic exposures, the concentrations chosen for the neonicotinoid
mixture were: imidacloprid: 0.00, 0.08, 0.16, 0.24, 0.32 and 0.40 mg kg’ dry soil
combined with 0, 0.048, 0.096, 0.144, 0.192, 0.240 mg of clothianidin kg dry
soil. For the imidacloprid-cyproconazole mixture, the same concentrations of
imidacloprid were chosen, and 0, 50, 100, 150, 200, and 250 mg of cyproconazole
kg dry soil. Concentrations of all pesticides were equal to 0, %, %, %, %, and 1 TU.
Only the conditions 1:0, 0:1, and 1:1 (TU:TU) were used for the highest exposures.
All other concentrations were combined in a full factorial design, resulting in 50
conditions and 168 samples over the two experiments, see Figure 3.1.

For the gene-expression survey on spiked soils, the following concentrations were
chosen: 0, 0.1, 0.2, 0.4 mg imidacloprid kg™ dry soil and 0, 10, 40 mg cyproconazole
kg dry soil. The imidacloprid concentrations were roughly equal to the Effect
Concentration (EC), reducing juvenile counts by 1 %, 10 %, and 50 %, respectively,
EC,, EC,,, and EC, (Bakker et al. 2022, under review).

10’
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Figure 3.1: a schematic overview of the experimental design to obtain transcriptomic
data from the springtail Folsomia candida under the exposure to mixtures of either
imidacloprid and clothianidin (A) or imidacloprid and cyproconazole (B) in LUFA2.2. In
both exposures, the concentrations are in Toxic Units; each Toxic Unit is equal to the Effect
Concentration of that pesticide, reducing juvenile counts by 50 % (EC, ). Dots on the panels
represent a sample at each condition and are separated by arbitrary distances to visualize
the number of samples. The solid black line depicts a 1:1 ratio of toxicity exposure based on
Toxic Units.

Toxicity tests, transcriptomic exposure, and gene-expression survey.

In all tests, springtails Folsomia candida (Berlin strain), aged 22-24 days old, were
obtained from inhouse cultures maintained for over 30 years at the Amsterdam
Institute for Life and Environment (A-LIFE) at the Vrije Universiteit Amsterdam.
For the springtail reproduction toxicity tests on binary mixtures, transcriptomic
exposures (RNA-sequencing), and gene-expression surveys (qPCR), a pool of 10,
80, and 40 F. candida, respectively, were exposed to 30 grams of moist test soil.
The duration of the binary mixture toxicity test was 21 days, while it was 48 hours
for the transcriptomic exposure and gene-expression survey. The latter exposure
duration was chosen because previous findings have indicated this time point
as the most opportune moment for biomarker development for neonicotinoid
exposure in F. candida (Bakker et al. in preparation). At the end of all tests, the soil
was decanted in plastic beakers, waterlogged, stirred, and left to rest for 5 minutes
to let all animals surface. For the toxicity tests, the samples were photographed
by a Nikon Coolpix P510, and the adult and juvenile F. candida on the pictures
were counted with Fiji (version Image-/ 1.52v) using the Cell Counter plugin (Kurt
de Vos, version from 2010). For transcriptomic and gene-expression surveys, the
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springtails were scooped off the surface by a fine mesh, transferred by an aspirator
to 1.5 ml reaction tubes, snap-frozen in liquid nitrogen, and stored at -80 °C.

For the exposures to obtain transcriptomic data, samples were homogenized using
a pestle while frozen. Following the manufacturer’s instructions, RNA was isolated
using a TRIzol-based method (Invitrogen) and 500 pL as a starting volume. The
first precipitation step with isopropanol (1:1 V:V) was extended from 10 minutes at
room temperature to overnight at -20 °C to increase RNA yield. After RNA isolation
and wash, a DNse was carried out using a DNse-I kit from Promega (Leiden, The
Netherlands), following the manufacturer’s instructions. The DNse was removed
by phenol-chloroform wash and washed three times in a 75 % ethanol RNAse-
free water mixture. After the last wash step, all water was removed by pipet, and
the remaining ethanol and water were left to evaporate entirely. The RNA was
resuspended in ultra-pure RNAse-free water. RNA integrity was monitored by
separating RNA on a 1% agarose gel electrophoresis and, subsequently, a 2100
Bioanalyzer (Agilent, Amstelveen, The Netherlands) following the manufacturer’s
instructions. RNA concentration was determined on a nanodrop (Thermo Fisher
Scientific, Aalsmeer, The Netherlands) and a Qubit (BioRad, Veenendaal, the
Netherlands). Per sample, 1 pg of RNA was used for RNAseq library preparation,
and 150bp paired-end sequencing was done on a NovaSeq600 (lllumina,
Eindhoven, The Netherlands) with a sequencing depth of 10 million reads per
sample by Macrogen (Amsterdam, The Netherlands).

For the gene-expression survey on spiked soil, the RNA was isolated using an
RNA-isolation kit (Promega), following the instructions of the manufacturer. RNA
integrity and quantity were determined by 1 % agarose gel-electrophoresis and
nanodrop (Thermo Fisher Scientific). Roughly 500 ng of RNA was transcribed into
cDNA using an MML-V reverse transcriptase kit (Promega). Per 7 samples, one
sample had the reverse transcriptase omitted to generate no-template controls.
All samples were measured in a Cyber-Green reaction mix on a CFX Connect Real-
Time PCR Detection System (BIO-RAD, USA) and in the presence of no-template
controlsand samples containing only the reaction mix (blanks). The primer selection
was based on this work and earlier findings investigating the transcriptomic
response of F. candida to imidacloprid exposure (Bakker et al., 2022, under review).
The primer sets for neonicotinoid exposure were: nicotinic Acetylcholine Receptor
subunit alphal (nAchR), the target receptor of neonicotinoids; Sodium-coupled
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MonoCarboxylate Transporter 1 (SMCT), involved in the transport of nicotine like and
other monocarboxylate compounds over the cell membrane; ARRestin Domain-
containing protein 3 (ARRD), involved with the transport and activation of many
transmembrane receptors. The primer sets for cyproconazole exposure were:
Cytochrome P450 3A56 (CYP), a phase-l biotransformation enzyme, ABC-transporter
1(ABC), a phase Il biotransformation enzyme, and sphingomyelin phosphodiesterase
(SMPD), sphingomyelins are involved in stress signaling. The reference genes,
also known as housekeeping genes, were tyrosine 3-monooxygenase (YWHAZ) and
Eukaryotic Transcription Initiation Factor 1A (ETIF). The primer sets nAchR, SMCT,
GluCl, YWHAZ, and ETIF were previously designed in other studies in our lab (Bakker
et al., 2022; M. E. de Boer et al., 2009). All other primers were designed, as part of
this work, using the NCBI Primer BLAST tool (Ye et al., 2012). See Table 3.2 for a full
description of the primers.

Binary mixture toxicity tests

We used the HandGP model (Shapovalova et al., 2022) for the analysis of interaction
effects between imidacloprid and clothianidin, or imidacloprid and cyproconazole.
The HandGP model is based on fitting a Gaussian process surface to the dose-
response data and overall dose combinations. Once the dose-response surface
is estimated, Hand principles are applied to construct a non-interaction surface.
Subsequently, the observed and non-interaction surfaces are compared to predict
synergistic/antagonistic effects.

For consistency check, we also analyze the data using the MuSyC model, which is
based on a parametric model over the whole dose-response surface and thus the
closest parametric alternative to the HandGP approach (Shapovalova et al., 2022;
Wooten et al., 2021). The MuSyC model estimates 12 parameters, five of which
indicate interaction effects. In particular, parameter g indicates synergistic efficacy
(how much the effect changes at large doses), parameters a12 and 21 indicate
the change in the effective dose, and parameters y12 and y21 indicate the change
in the Hill slope. There is no interaction according to the MuSyC model if =0 and
al2=a21=y12=y21=1.
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Transcriptomic data analysis

Before and after removing the adapter sequences of the reads, Fastqc v0.711.9
reports were generated per fastaq file using the software GNU parallel (Tange,
2011) and combined in a single report using MultiQC v1.70.1 (Ewels et al., 2016).
The trimming of adapter sequences was carried out by trimgalore, a wrapper
around cutadapt v0.6.7 (Martin, 2011). The MultiQC-reports were used to ensure
that all reads had similar qualities: e.g.; QC-content, sequence length, duplications,
and that trimming of adapter sequences affected all files similarly. Reads were
mapped to F. candida Ensembl Metazoa transcriptome v49 (Cunningham et al.,
2019) using Salmon v1.4.0 (Patro et al., 2017). Quantified reads were read into R
using the R-package tximport v1.16.1, and the unnormalized counts were compiled
into a data frame by R-package DESeq2 v1.28.1 (Love et al., 2014; Soneson et al.,
2016).

Comparing General Linear Models and Gaussian Process models fit

For a fair comparison between the Generalized Linear Model (GLM) approach
and Gaussian Process (GP) model, the transcriptomic data from exposure 1,
imidacloprid and clothianidin, and 2, imidacloprid and cyproconazole, were
analyzed separately. This resulted in four sets of differentially expressed genes
(DEGS), one set per exposure per method. Both General Linear Models (GLMs), by
R(-package) DESeq2 v1.28.1, and Gaussian Process (GP) models, by Python(-library)
GPflow v2.0.0, considered the influence of exposure to imidacloprid, clothianidin,
and their interaction effect compared to a model that contained white noise. For
DEGs under cyproconazole exposure, two models were compared, either including
the effects of imidacloprid, cyproconazole, and their interaction effects with a
model that only considered the influence of imidacloprid. Model comparison was
by loglikelihood-ratio tests, as implemented by R-DESeq2 or Python-Scipy v1.4.1. The
DEG sets of both methods were ranked on their p-value. The DEGs of exposures
1 and 2 were compared between the methods by correlating their p-values step-
wise per 10 % using Spearman'’s correlation in Python-Scipy, starting at DEGs with
low p-values.

The kernel fit allowing a nonlinear and nonstationary fit of the GP models was
compared to a linear kernel. The elected kernels were Matern32 and Linear
implemented in GPflow. For a discussion on the structure of the additive GP
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models see Section 3.1. GP model fit was visualized for on the scaled raw reads of
genes with gene identifier Fcan01_00630 by Python-matplotlip v.3.1.2.

A GP model was fitted using Python-GPflow with kernel Matern32, first on the
normalized reads of gene Fcan01_00630 from exposures 1 and 2 separately and,
then, jointly. The GP model equation was MX, see Table 3.1. The GP model fit was
visualized using Python-matplotlip.

Gaussian additive models for differential gene expression

We modelled the responses y, and y, -- gene expression in experiments 1 and
2, respectively - through a Gaussian process additive model (de Matthews et al.,
2017; Duvenaud, 2014). Both experiments contained imidacloprid (x,), but the
second pesticide in the mixtures varied. In the context of the experimental section,
X, represents a concentration of imidacloprid, x, a concentration of clothianidin,
and x, a concentration of cyproconazole. In principle, this approach can easily be
used for an arbitrary number of toxicants, e.g., pesticides, in a mixture and for an
arbitrary number of exposures. The nonlinear dependence between responsesy,
and y, and the concentration of chemical compounds can be modeled through a
Gaussian process (GP) regression:

Y, =folxp) +e y, =T (x,) + ¢ (Eq 3.1)

where f (x,) ~ GP(0, K(x,,x,)) is @ Gaussian process with zero mean and covariance
matrix K(x,,x,") defined by a kernel function k° (x,,x,), € is an ii¢ Gaussian noise with
zero mean and variance o,. Since gene expression data can have rapid changes
when exposed to chemical compounds we choose k° (x,X,) to be Matern32
kernel (de Matthews et al., 2017). Further, in experiment 1 the mixture contained
a chemical compound denoted by x, and in experiment 2 a chemical compound
denoted by x,. To model the dependence of responses y1 and y, on x, and x, and
X, and x,, respectively we constructed the following models

Yy, =f(x) +f(x) +e Yy, =fy(x,) +,(x,) + ¢ (Eq 3.2)

where f (x,) ~ GP(0, K(x,,x,)) and f(x,) ~ GP(0, K(x,,x,")) are Gaussian processes with
zero mean and covariance matrices defined by kernel functions k', (x,,x,") and

2 r
K2, (%,,%,).
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Finally, to model possible interactions between chemical compounds in these
experiments we modelled the responsesy, and y, as

Yy, = f (%) + F,0¢) + T, (x,x) +e Yy, =T (X)) + (%) +f(X,X,) +¢ (Eg 3.3)

where f,(x,, x,) ~ GP(0, K(x,, x,, X,, X)) and f,(x,, x,) ~ GP(0, K(x,, X, X,, X,)) are
Gaussian processes with zero means and covariance matrices defined by kernel
functions k', (x,, X', X, X,’) and k%, (x,, X

51 XXy,

Further, we analyzed these two experiments jointly. This is in particular due
to both of them containing the same compound x, - imidacloprid. We assumed
that due to biological variation the measurement noise f(x,) should be the same
in both experiments. Overall, there are 11 possible models, summarized in Table
3.1, which represent dependence of the response variables y, and y, on different
concentrations of chemical compounds and reflecting different non-linear relations
between gene expression and the concentration of the chemical compounds.

Table 3.1: the equations of the Gaussian Additive (GP) models used in Differential
Gene Expression Analysis (DGEA). The models considered the influence of imidacloprid
(f,), clothianidin (f,), cyproconazole (f,), or their interaction (f01 f,,) on scaled gene expression
in Folsomia candida exposed in LUFA 2.2 soil, and the noise in the data (¢). The covariance
matrix defined by kernel functions is shown for data under exposure to imidacloprid
(x,), clothianidin (x,) or cyproconazole (x,). The gene expression data was obtained from
two exposures of imidacloprid with clothianidin (y,; Experiment 1) or cyproconazole (y,;

Experiment 2). The models were fitted to these data jointly.

Model Experiment 1 Experiment 2

M, =f(X )+ y2=f0(x0)+e

M, =f(x,) + Y, = fo(x) + f,(x,) + e

M, —f(x)+f(x) Y, =fo(X) + e

M, fo(xo) + f,(x,) + y, =f(x,) +f,(x,) + e

M, (o) filx )+f1( X)) *e Y, = folx;) + e

My folx) + (x ) te y, =f(x,) + e

M7 ( 0) y2 = fO(XO) + fOZ(XO X ) +te

M, =f (xo) y, = fo(xp) + f,(x,) + f,(x,x,) +e
M, =f,(x,) + f () + L (xx,) +e y, = f(xp) + f,(x,) + f(x,x,) +e
M., =f(x) + f(x) + (xo,xw) +e y, =f(x) +f,(x,) +e

M., =f(x) + f,(x) + y, = f(x,) + ,(x) + f(x,x,) +e
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Models from Table 3.1 were built and fitted jointly for experiments 1 and 2 using
python-GPflow (de Matthews et al., 2017). Once the models were optimized, we
performed likelihood-ratio tests to identify the best fitting model. As a result,
genes responsive to a single chemical or mixtures of the chemical compounds (in
an additive or interactive sense) were identified.

Differential gene expression analysis and Gene Set Enrichment
Assays

Obtained gene expression data for all pesticide exposures was analyzed
simultaneously with a custom Gaussian process (GP) additive model. The modelwas
constructed in such a way that both experiments were analyzed simultaneously.
Different additive components (individual pesticides and/or their interaction)
were included in the model sequentially, and the models were compared with
log-likelihood-ratio-tests, identifying genes responsive to individual pesticides
or their interaction. More details on the GP additive model can be found in the
Supplementary material. Results were obtained at 10% significance level.

Two gene set enrichment analyses (GSEA) were carried out for all differentially
expressed gene (DEG) lists, either those genes affected by (1) imidacloprid and
clothianidin or their interaction effect, or genes affected by (2) cyproconazole or
cyproconazole and imidacloprid interaction effects. The GSEA was carried out with
the R-package goseq v1.40.0. Gene Ontology (GO) terms were obtained through
the R-package biomart v2.44.4. and Kyoto Encyclopedia for Genes and Genomes
(KEGG) pathway annotation was obtained as previously described in Bakker et
al. (in preparation). The bias correction of goseq was set to the transcript length
(Coding DNA Sequence - CDS - length). A GSE term was deemed significant when
the over-representation p-value was lower than 10 % and more than one gene
from the DEG list found in the GSE term. The latter criteria were applied to prevent
small GSE terms from becoming significantly enriched.

After GSEA, the over representation of each GSE term in the interaction DEGs was
determined. To this end, the proportion of genes under the interaction per GSE
term was compared by a Fisher exact testin base Rv4.0.0. The p-values were -log10
transformed and a 0.1 p-value was used as a cut-off to indicate enrichment. GSE
terms without no gene members under the pesticide interaction were omitted
from the analysis.
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Gene expression survey for biomarker validation on spiked soil.

For the gene-expression survey on spiked soil, the RNA was isolated using an
RNA-isolation kit (Promega), following the instructions of the manufacturer. RNA
integrity and quantity were determined by 1 % agarose gel-electrophoresis and
nanodrop (Thermo Fisher Scientific). Roughly 500 ng of RNA was transcribed
into cDNA using MML-V reverse transcriptase kit (Promega). Per 7 samples,
one sample had the reverse transcriptase omitted to generate no-template
controls. All samples were measured in a Cyber-Green reaction mix on a CFX
Connect Real Time PCR Detection System (BIO-RAD, USA) and in the presence
of no-template controls and samples containing only the reaction mix (blanks).
The primer selection was based on this work and earlier findings investigating
the transcriptomic response of F. candida to imidacloprid exposure (Bakker
et al., under review, 2022). The primer sets for neonicotinoid exposure were:
nicotinic Acetylcholine Receptor subunit alphal (nAchR), the target receptor of
neonicotinoids; Sodium-coupled MonoCarboxylate Transporter 1 (SMCT), involved in
the transport of nicotine like and other monocarboxylate compounds over the cell
membrane; Glutamate-gated Chloride channel (GluCl); Glutamate Receptor lonotropic
Delta-1 (GRIDT), both involved in the cholinergic synapse neuro-transmission
mediated by glutamate; ARRestin Domain-containing protein 3 (ARRD), involved
with the transport and activation of many transmembrane receptors. The primer
sets for cyproconazole exposure were: CYtochrome P450 3A56 (CYP), a phase-|
biotransformation enzyme; UDP-Glucuronosyltransferase 2B9 (UDPG), a phase-Il
biotransformation enzymes, ABC-transporter 1 (ABC), a phase lll biotransformation
enzyme, and sphingomyelin phosphodiesterase (SMPD), sphingomyelin are involved
in stress signaling. The reference genes, also known as housekeeping genes, were
tyrosine 3-monooxygenase (YWHAZ) and Eukaryotic Transcription Initiation Factor 1A
(ETIF). The primer sets nAchR, SMCT, GluCl, YWHAZ and ETIF were previously designed
in our lab (Bakker et al., 2022; M. E. de Boer et al., 2009; T. E. de Boer et al., 2010).
All other primers were designed, as part of this work, using the NCBI Primer BLAST
tool (Ye et al., 2012). See Table 3.2 for a full description of the primers.

The expression values were obtained from the CFX Connect Real Time PCR
Detection System accompanying software (BIO-RAD, USA). These expression
values were log2-transformed to generate expression values for adherence to
homogeneity. For each primer set, a generalized additive model (GAM) was fitted
over the log2-transformed expression values using the R-package mgcv v1.8.40.
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Two models were compared using likelihood-ratio tests considering a model
including neonicotinoid without cyproconazole and a model including both, as
previously described in (Bakker et al., 2022, under review)

Two models were fitted to determine biomarker reliability in indicating toxic
exposure of either imidacloprid and cyproconazole even under mutual exposure.

E=g"(Bo+ X% b5 (X)) (Eq.3.4)
E= 9_1 (ﬁo + Zf;1 ﬁjsj(xj) + 2};2:1 3psp(xp)) (Eq 35)

in which E is the expected value of the log2-normalised expression values, g' the
inverse linkage function, 0 the intercept, j and p the coefficients for neonicotinoid
() and cyproconazole exposure (p), s; and s, smooth terms for neonicotinoid (j)
and cyproconazole exposure (p) with k the basis size, respectively.

Basis size (k) for the neonicotinoid smooth term (k;) was set to four and for the
cyproconazole smooth term (k) it was set to three, i.e. the maximum size for this
experimental design. Gaussian error distribution of the residuals was assumed, thin
plate regression splines and restricted maximum likelihood (REML) were used to fit
the models. Models were compared using an F-test of their fits and the alternative
model was accepted when p < 0.1. Adherence of homogeneity of residuals was
visually checked by histogram frequency plot and quantile-quantile plots.

Results and discussion

Binary mixture toxicity on springtail reproduction

Reliable gene expression biomarkers should be able to indicate the stress intensity
and pesticide type, even when an organism is exposed to a mixture or chemicals
with interacting effects on toxicity to the phenotype. Non-additive toxicity, i.e.,
interaction effects, of pesticide mixtures on the phenotype stems from molecular
interaction effects and, thus, gene expression. Therefore, we here tested the
effects of two binary pesticide mixtures on the reproduction of F. candida: (1)
the neonicotinoid pesticides imidacloprid and clothianidin, and (2) imidacloprid
and the fungicide cyproconazole. We analyzed the phenotypic data with recently
developed Hand GP models (Shapovalova et al., 2022) to assess mixture interaction
effects, such as synergism or antagonism, on springtail reproduction.
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Figure 3.2: The Hand Gaussian Process (GP) was used to model toxicity interaction
effects of imidacloprid in combination with either (a) clothianidin or (b) cyproconazole
on springtail reproduction. The middle panels show the additive (yellow), synergistic
(green) or antagonistic (red) effects of the pesticide mixtures on the reproduction of Folsomia
candida. The intensities of the pesticide toxicity interaction effects are indicated by the hue
of the colors with darker colors indicating stronger interaction effects. The lower bound and
upper bound 95 % Confidence Interval (Cl) of the Hand GP interaction effect estimates are
shown in the panels on the right and left in both a and b rows. Pesticide concentrations are
in mg kg dry soil.

These analyses showed concentration-dependent additive and interaction effects
of the binary pesticide mixtures on springtail reproduction. The neonicotinoids
imidacloprid and clothianidin showed antagonistic effects at low to medium
concentrations and synergistic effects at high concentrations of both compounds,
as indicated by red and green shaded areas in Figure 3.2a, respectively. The
mixture toxicity of imidacloprid and cyproconazole was antagonistic at low- to
medium-concentrations of cyproconazole, whereas no synergistic interaction was
observed (Figure 3.2b). At high concentrations of cyproconazole, i.e., above 400
mg kg dry soil, imidacloprid and cyproconazole toxicity was additive, as indicated
by a yellow shaded area in Figure 3.2b. Under all concentrations of imidacloprid,
toxicity to springtail reproduction was antagonistic between imidacloprid and
cyproconazole (red shaded areas in Figure 3.2b). A high degree of uncertainty
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regarding the combined effects of both pesticide mixtures was observed at high
concentrations, as illustrated by the wide confidence intervals in Figures 3.1a
and b. We, therefore, validated the hand GP model results by comparison with
the results of the conventional MuSyc model (Wooten et al., 2021), which gave
comparative results (see Table S3.1).

Interestingly, both binary pesticide mixtures induced antagonistic effects at low to
medium concentrations, suggesting that both pesticide mixtures had differential
mechanisms of toxic action. For the neonicotinoids, we expected additive effects
because imidacloprid and clothianidin have the same mechanism of action
(overstimulating the nicotinic acetylcholine receptors) and have comparable
toxicity to F. candida reproduction (de Lima e Silva et al., 2020). Moreover,
imidacloprid and clothianidin are commonly reported to have additive toxic
effects on the reproduction of other invertebrates (Taillebois & Thany, 2022).
Our results highlight that even at low concentrations, interaction effects between
neonicotinoids can occur and, therefore, filtering for genes affected by their
interaction effects is a crucial step to develop biomarkers that can reliably indicate
the broader neonicotinoid family.

Neonicotinoids can synergize with other pollutants by inhibiting cytochrome
P450 enzymes (CYPs) in F. candida (Bakker et al., 2022). These enzymes are the
primary route of pesticide detoxification in invertebrates (Hawkins et al., 2019; van
Straalen & Roelofs, 2011). In particular, azole fungicides, such as cyproconazole,
tend to synergize with neonicotinoids by probable inhibition of CYP enzymes
in various bee species (Feyereisen, 2018; Glavan & Bozic, 2013; Raimets et al.,
2017; Sgolastra et al., 2017). Here, however, we observed antagonistic, and not
synergistic, effects for the mixture of imidacloprid and cyproconazole. There
are two possible explanations. First, other neonicotinoids than imidacloprid are
more prone to interaction effects by CYP inhibitions due to faster detoxification
and, hence, CYP inhibition synergized with these neonicotinoids more than with
imidacloprid (Beadle et al., 2019; Manjon et al., 2018), or the formation of more
toxic metabolites of imidacloprid by CYP enzymes decreases, not increases, when
CYP enzymes are inhibited (Suchail et al., 2004). Even though these results did
not fully match our expectations, it is clear that imidacloprid and cyproconazole
interact with each other, and analyzing the transcriptomic response to mixtures of
these pesticides, therefore, also allows us to filter out genes that are involved in
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the interaction effect. At the same time, analyzing contrasting types of pesticides
allows us to distinguish between genes indicative of specific pesticides or those
playing a role in a nonspecific stress response.

Performance of Gaussian Process modelling approaches in
differential gene expression analysis

Conventional differential gene expression analysis (DGEA) methods are ill-suited
in their application to transcriptomic data obtained under mixture exposure as
they rely on parametric models. Here, we focus on two limitations of parametric
models when applied to this type of transcriptomic data. First, parametric models
are deficientin analyzing complex nonlinear concentration-response relationships.
Second, parametricmodels have predefined concentration-responserelationships.
When the shape of the concentration-response relationship is defined in one
dataset, this fit cannot be applied to another dataset. Results obtained from
two experimentally distinct datasets cannot be analyzed in conjunction without
batch-effect correction. We compared the performance of General Linear Models
(GLMs) as implemented by conventional DGEA software, the popular R-package
DESeq2, with our custom-made Gaussian Process (GP) modelling approach. These
approaches implement parametric and non-parametric models, respectively.

To allow a fair comparison, we treated the transcriptomic data from both mixture
exposures separately and compared models with the same consideration of the
influence of the pesticides on gene expression. First, we determined genes affected
by imidacloprid and clothianidin, by comparing models considering the influence of
imidacloprid, clothianidin, and theirinteraction effecton gene expressionand amodel
only consisting of noise estimation. To identify genes affected by cyproconazole, we
compared a model considering imidacloprid, cyproconazole, and their interaction
effect, with a model that only considered the influence of imidacloprid on gene
expression. The model comparison yielded two sets of differentially expressed
genes (DEGs). DEGs that are affected by neonicotinoids or their interaction effect,
and DEGs that are affected by cyproconazole. Henceforth, we will refer to these DEG
sets as the results of experiments 1 and 2. Figure 3.3 suggests that especially for the
top 10-20% of differentially expressed genes the p-value results obtained with the
simplified GP approach and DESeq2 are significantly correlated. Thus, overall the
two approaches provided comparable results.
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Figure 3.3: Spearman’s correlation between gene rankings on the basis of parameter-
free or parametrized model comparisons for differentially expressed genes in the
springtail Folsomia candida. The parameter-free models were implemented by our custom-
made statistical framework using Gaussian Process (GP) and parametrized Generalized
Linear Models (GLMs) as implemented in the DESeq2 R-package. Data was obtained from
springtails exposed to imidacloprid in mixtures with either clothianidin (a) or cyproconazole
(b). Both GP and GLM model comparisons ranked genes based on the effects of imidacloprid,
clothianidin and their interaction effect (a) or of imidacloprid, cyproconazole and their
interaction effect (b) on gene expression. This resulted in two sets of differentially expressed
gene (DEGs), one for each experiment. Correlations between the gene ranking of the models
was determined by sliding-window, correlating the ranks of DEGs by incorporating a larger
percentage of DEGs at each step. Incorporation started at highly ranked genes and continued
by incorporating lower ranked genes.

Further, we illustrate the importance of nonlinear and nonstationary assumptions
in differential gene expression analysis. For that, we provide an illustrative
example of a GP model fit under two assumptions: 1) gene expression can be
nonlinear and nonstationary, where non-stationarity implies that gene expression
can have rapid changes when exposed to a certain effect concentration, 2) gene
expression can be described by a linear function. For the GP model with nonlinear
and nonstationary assumptions, a Matern32 kernel was assumed, while for a
GP model which assumes a linear relationship between concentration and gene
expression, a linear and stationary kernel was assumed. Figure 3.4 provides an
illustrative example for a Bacillopeptidase F gene (Fcan01_00630) in experiments
1 and 2 with the nonlinear and linear GP models. Figure 3.4a shows that a GP
model with a nonlinear assumption has a nonlinear pattern, and gene expression
level increased at higher concentrations of imidacloprid. This is also confirmed
by a p-value of 0.038 when the GP model with neonicotinoid terms and GP noise
models are compared. Figure 3.4b illustrates a fit with a linear kernel which allows
only for a linear relationship between gene expression and concentration. While
we observed an increasing trend in the gene expression, it was not statistically
significant compared to the noise model. Thus, a GP model with Matern32 kernel
hasthe potential to capture relationships that would be ignored with a linear model.
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Figure 3.4: Gaussian process (GP) model fit assuming two kernels with differential
assumptions, modelling the gene expression of Bacillopeptidase F gene (Fcan01_00630)
in the springtail Folsomia candida in experiments 1 (left panels) or 2 (right panels).
The experiments involved exposure of the springtails to imidacloprid in mixtures with
either clothianidin (experiment 1) or cyproconazole (experiment 2). In panels a, the GP
model assumed a Matern32 kernel that allows for nonlinearity and nonstationary, i.e.,
rapid changes in the data, and fit of the concentration-response surface. In panels b, the GP
model assumed a linear kernel that did not permit nonlinear and nonstationary fits of the
concentration-response relationship. A GP model assuming a linear kernel models acts like
parametric Generalized Linear Models conventionally used in methods for Differential Gene
Expression Analysis. Gene expression was scaled to lie between 0 and 1 in both experiments
jointly. The blue dots on the panels depict scaled gene expression values. The color of the fit-
surfaces changes according to the modelled scaled gene expression, ranging from low (dark
blue) to medium (yellow) scaled gene expression values.

Finally, we provide an illustrative example which compares independent
and joint analyses of the two exposures on the same gene Bacillopeptidase F
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(Fcan01_00630). For this comparison, we fitted two Gaussian processes models
to single imidacloprid exposure data with Matern32 kernel and a joint model with
the same kernel assumption. Figures 3.5a and b illustrate independent model fits,
and Figure 3.5cis a joint analysis of the data from both exposures. For experiment
1, the gene was identified as differentially expressed, with a p-value of 0.00018
compared to the noise model, but it was not in experiment 2, with a p-value 0.85
compared to the noise model. When the genes from both experiments were
combined, the gene was identified as differentially expressed with a p-value of
0.015 compared to the noise model. This demonstrates the importance of the joint
analysis when one toxic compound is shared in two (or more) experiments. Overall,
if experiments 1 and 2 were analyzed independently, at a 5% significance level,
4801 and 1318 genes were identified as differentially expressed in experiments 1
and 2, respectively, which resulted in 3483 genes with inconsistent results. At 15%,
this number increased to 5151. Thus, inconsistency is relatively high when the
experiments are treated independently.

Differential Gene Expression Analysis and Gene Set Enrichment

Transcriptomicdataobtained undermixtureexposurehadnonlinearconcentration-
response relationships, a high variability of gene expression patterns, and displayed
genetic interaction effects. We generated transcriptomic data of the springtail F.
candida after exposure to the aforementioned binary pesticide mixtures for a wide
range of stress intensities with a fine-scale resolution. We extended a GP model
statistical framework to allow its application to transcriptomic data obtained from
two mixture experiments and analyzed this data jointly. With this approach, we
were able to distinguish differentially expressed genes (DEGs) with responses to
either neonicotinoids or cyproconazole from those with interaction effects. From
these lists of DEGs, we selected candidate biomarkers based on their molecular
functions with known close association to the mechanisms of toxic action of these
pesticides. With this step, we filtered out DEGs that were part of the presumed
non-specific or universal stress response.

We compared 11 models with the log-likelihood ratio test, see Table 3.1. We selected
neonicotinoid DEGs by comparing the models containing: 1) only dependence on
imidacloprid (i.e., model 1 or M1), 2) additive components of imidacloprid and
clothianidin (M3), 3) additive components and interaction terms of imidacloprid
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and clothianidin (M5), and 4) imidacloprid and the interaction term for imidacloprid
and clothianidin (M6). Similarly, for DEGs affected by cyproconazole, the models
contained: 1) only dependence on imidacloprid (M1), 2) additive components of
imidacloprid and cyproconazole (M2), 3) additive components and the interaction
term of imidacloprid and cyproconazole (M8), and 4) imidacloprid and the
interaction term for imidacloprid and cyproconazole (M7). We excluded genes
affected by the interaction effects of the neonicotinoids or cyproconazole for
biomarker discovery, including 142 and 122 DEGs, respectively. DEGs affected
by the additive effects of neonicotinoid exposure (n=2049) and by cyproconazole
(n=1058) were all considered candidate biomarkers.
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Figure 3.5: Visualization comparing Gaussian process (GP) fits that model the effects
of imidacloprid on scaled gene expression of the springtail Folsomia candida in two
experiments separately (a and b) and jointly (c). The exposures were in a grid-design
and consisted of imidacloprid with either clothianidin (experiment 1) or cyproconazole
(experiment 2). Gene expression was scaled from 0 to 1 for both experiments jointly. Then,
models were fitted to the gene expression data of experiments 1 and 2 separately (a and b)
or jointly (c). The panels show the fit of the GP models only for the imidacloprid exposure
data in the absence of other pesticides or control condition. The GP model fits are solid
blue lines and its confidence intervals are blue shaded areas around the model fit. The
scaled gene expression values are depicted by red or blue crosses for data derived from
experiments 1 or 2, respectively.

Gene Set Enrichment (GSE) Analysis of the DEGs for neonicotinoid exposure
indicated significant enrichment of 37 Gene Ontology (GO) and Kyoto
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Encyclopedia of Genes and Genomes (KEGG) categories, hereafter referred to as
GSE terms (Figure S3.1A). Among the enriched GSE terms were those associated
with neurotransmission, for example, GO:0007267, GO:0055085, G0O:0022857,
G0:0005576, and GO:0005615. We used these GSE terms to select putative
biomarkers because neurotransmission-associated genes have previously been
identified as reliable indicators of neonicotinoid exposure in F. candida (Bakker et
al., under review, 2022). For neonicotinoids, we selected three putative biomarkers;
i.e., nAchR, SMCT, and ARRD, based on previous findings and as their associated
GSE terms related to neurotransmission (Anand et al., 2018; Bakker et al., under
review, 2022), see Table 3.2.

Among the DEGs indicative for the response to cyproconazole, we observed
significant enrichment of 36 GSE terms (Figure S3.1B). The majority of these GSE
terms were associated with biotransformation, the direct detoxification pathway
for organic compounds. Another noteworthy GSE term was the sphingolipid
signaling pathway (k004071) and metabolism (ko00600) relating to a stress
signaling pathway, which we did not observe in the GSE analysis of DEGs for
neonicotinoid exposure. We selected DEGs categorized within the GSE terms
linked to CYP metabolism (GO:0055114, G0:0016614, GO:0016705, GO:0016788,
ko00980, and ko00982), ABC transporters (ko02010), and sphingolipid signaling
(k004071 and ko00600) for biomarker selection. For cyproconazole exposure, we
selected three candidate biomarkers on the bases of these GSE terms; i.e, ABC,
CYP, and SMPD, see Table 3.2.

Validation of candidate biomarkers on spiked soil

We assessed the reliability of six putative gene-expression biomarkers for
either neonicotinoids or cyproconazole, see Table 3.1. To this end, we exposed
the springtail F. candida to imidacloprid and cyproconazole in spiked LUFA2.2
soil to determine the reliability of the biomarkers in indicating either pesticide
in combination or absence of the other pesticide. The influence of single and
mutual exposure to imidacloprid and cyproconazole on biomarker expression
was determined by Generalized Additive Models (GAMs), as previously described
(Bakker et al., under review, 2022). Loglikelihood-ratio tests were used to determine
the influence of imidacloprid or cyproconazole on biomarker expression, referred
to as GAM smooth terms hereafter.
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The expression of all neonicotinoid biomarkers, nAchR, SMCT, and ARRD, increased
with the concentration of imidacloprid compared to the control conditions as
indicated by the fit of the GAMs, see Figure 3.6. The expression of the three-
neonicotinoid biomarker was significantly influenced by imidacloprid exposure
as indicated by the imidacloprid GAM term p-values (p<0.01), see Figure 3.6A.
Importantly, cyproconazole exposure did not influence the expression of either
of the three neonicotinoid biomarkers as indicated by the overlapping confidence
intervals of the GAM fits and non-significant p-value of the cyproconazole GAM
term (p>0.1), see Figure 3.6A. Therefore, all neonicotinoid biomarkers responded
in a concentration-dependent manner to imidacloprid exposure and not to the
mutual exposure with cyproconazole.

Two out of three cyproconazole candidate biomarkers, ABC and CYP, increased
in expression in response to cyproconazole exposure, but not by imidacloprid
exposure, as indicated by the flat fit of the GAMs, the p-values of the cyproconazole
smooth terms (p<0.05), and their separated confidence intervals for each level of
cyproconazole exposure, see Figure 3.6B. In particular, the highest concentration
of cyproconazole increased biomarker gene expression compared to no
cyproconazole exposure, as indicated by the GAM fits see Figure 3.6. The results
indicate that these two biomarkers, both associated with biotransformation, i.e.,
ABC and CYP, signal cyproconazole exposure even in animals mutually exposed
to imidacloprid. For the third cyproconazole candidate biomarker, SMPD, we
did not observe changes in its expression in response to either pesticide, which
contradicts the results from the transcriptome analysis. The GAM smooth terms
of both imidacloprid or cyproconazole were non-significant for SMPD (p>0.1), and
the GAM fit remained flat (see Figure 3.6).

In summary, our results confirm that the candidate biomarkers ARRD, nAchR,
SMCT, CYP, and ABC, responded only to their intended pesticide even under mutual
exposure. These biomarkers also indicated the intensity of the exposure. These
outcomes validate that application for GP models in DGEA and, subsequent,
biomarker discovery. As we have chosen biomarkers on the basis of their GSE
terms, this step proofed insightful in identifying robust biomarkers.
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Figure 3.6: Expression patterns of candidate pesticide biomarkers for (A) neonicotinoid
and (B) cyproconazole exposure in the springtail Folsomia candida. Springtails
were exposed for 48h to a mixture of the two pesticides at a range of concentrations in
spiked soils. The concentrations of imidacloprid applied were Effect Concentrations (ECs)
roughly equal to 0, 1, 10 to 50% reduction in juvenile counts (x-axis). The cyproconazole
("CYPRQ") concentrations were 0, 10, and 40 mg kg" dry soil. Each panel represents the
normalized expression pattern of one gene: arrestin domain containing protein 3 (ARRD),
nicotinic Acetylcholine Receptor subunit alphal (nAchR), sodium-coupled monocarboxylate
transporter 1 (SMCT), ABC-transporter 1 (ABC), cytochrome P450 3A56 (CYP) and sphingomyelin
phosphodiesterase (SMPD). Below the names are the significance levels of the generalized
additive models (GAMs), smooth terms of neonicotinoid (NN) and cyproconazole (CYPRO).
Significance levels of the smooth terms are depicted by the following symbols: p>0.1 “N.S”,
p<=0.1"", p<=0.05 “*", p<=0.01 “**". GAM mean functions are shown in solid lines, the 95
% confidence intervals are shown as outlined transparent bands and dots depict the log2-
transformed normalized expression values. Each concentration of CYPRO exposure is shown
as a separate color, i.e. blue (0), orange (10) and red (40). Mean function and confidence
interval outlined bands are shown in grey when the influence of CYPRO was not included in
the GAM model fit, due to not being significant.
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A roadmap for biomarker discovery in mixture exposure transcriptomic
data

Most non-target invertebrates are exposed to complex mixtures of pesticides.
Gene expression biomarkers can supplement current environmental risk
assessment methods to monitor these pesticide mixtures. Identifying gene
expression patterns characteristic for the class of pesticide even under genetic
interaction effects with other pesticide is essential for biomarker discovery.
However, current differential gene expression analysis (DGEA) methods used in
biomarker discovery are ill-suited for mixture transcriptomic data due to their
dependency on parametric models. Mixture exposure transcriptomic data suffer
from three aspects; i.e., nonlinear concentration-response relationships, genetic
interaction effects, and high data variability of the gene expression patterns. We
demonstrated that GP models successfully identified differentially expressed
genes (DEGs) in transcriptomic data containing all three aspects. By identifying the
DEGs on the bases of their molecular functions, we identified reliable biomarkers
for neonicotinoid and cyproconazole exposure. This work can be used as a
roadmap for biomarker discovery and is not limited to pesticide research. The GP
models can be used in DGEA in pharmacology or multiple stressors in any branch
of biology.
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Chapter 3: supplementary information

Table S3.1: indicates the results for the interaction effects analysis with the MuSyC
model of experiments exposing Folsomia candida to imidacloprid and clothianidin
(Experiment 1) or imidacloprid and cyproconazole (Experiment 2), both single and
in mixtures. The model analyzed data for mixture interaction effects of the pesticides in
springtail reproduction after 21 days exposure in LUFA 2.2 soil. The following parameter
values indicate no interaction if =0 and a12 = a21 =y12 =y21 = 1. In experiment 1, the model
indicates synergy due to the change in Hill slope coefficient as y21 > 1; in experiment 2, the
model indicates additivity, i.e., no interaction. Overall, the estimates in both models contain
a lot of uncertainty about the predicted effect, which is expected as at low- and mid-range
concentrations, the measurements had high variance.

Experiment 1 Experiment 2
imidacloprid and clothianidin imidacloprid and cyproconazole
Changein Estimate CI95% CI95% Effect Estimate CI95% Cl95% Effect
lower  upper lower  upper
B -0.21 -0.4 0.1 =0 -1.40 -0.90 0.06 =1
synergistic
efficacy
a, 3.25 0.02 955878.77 =1 0.50 0.0 54.2 =1
effective
dose
a,, 3.42 0.04 80.27 =1 0.24 0.0 1.1 =1
effective
dose
Yiz 0.14 0.0 8.63 =1 0.96 0.95 1.03 =1
Hill slope
coefficient
Yz 16.4 9.04 40.99 >1 5.49 0.0 50.7 =1
Hill slope
coefficient
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Chapter 4

Pesticide toxicity is typically assessed by exposing model organisms to individual
compounds and measuring effects on survival and reproduction. These tests
are time-consuming, labor-intensive and do not accurately capture the effect
of pesticide mixtures. Moreover, it is unfeasible to screen the nearly infinite
combinations of mixtures for synergistic effects on model organisms. Therefore,
reliable molecular indicators of pesticide exposure have to be identified, i.e.
biomarkers. These biomarkers can form the basis of rapid and economical
screening procedures to assess the toxicity of pesticides even under synergistic
interaction with other pollutants. In this study, we screened the expression patterns
of eight genes for suitability as a biomarker for neonicotinoid exposure in the soil
ecotoxicological model Folsomia candida (springtails). Springtails were exposed
to the neonicotinoids imidacloprid and thiacloprid either alone or with various
levels of piperonyl butoxide (PBO), which inhibits cytochrome P450 enzymes
(CYPs): a common point of synergistic interaction between neonicotinoid and
other pesticides. First, we confirmed PBO as a potency enhancer for neonicotinoid
toxicity to springtail fecundity, and then used it as a tool to confirm biomarker
robustness. We identified two genes that are reliably indicative for neonicotinoid
exposure even under metabolic inhibition of CYPs by PBO, nicotinic acetylcholine
receptor subunit alpha 1 (nAchR) and sodium-coupled monocarboxylate transporter
(SMCT). These results can form the basis for developing high-throughput screening

procedures for neonicotinoid exposure in varying mixture compositions.

Key words: springtails; imidacloprid; thiacloprid; quantitative real-time PCR;
piperonyl butoxide
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Introduction

Neonicotinoids are the most commonly used insecticides globally of the past
three decades (Borsuah et al., 2020), but are harmful to non-target organisms
like pollinators (Goulson, 2013; Pisa et al., 2014) and soil invertebrates (de Lima
e Silva et al., 2017, 2020, 2021). As a consequence, ecosystem services crucial for
sustainable agriculture, such as nutrient cycling, pest control and pollination, are
under threat by the use of neonicotinoid insecticides (EASAC, 2015; FAO, ITPS,
GSBI, 2020; Gunstone et al., 2021).

Current environmental risk assessment (ERA) and policy regarding pesticides
is based on phenotypic toxicity tests that measure effects on the survival and
reproduction of model organisms after exposure to individual pesticides.
Extrapolation of these findings to ecotoxicological effects in the field is difficult as
most agricultural soils are polluted by pesticide mixtures (Pelosi et al., 2021; Silva
et al., 2019), and the synergistic interactions between pesticides within mixtures
is @ major knowledge gap (Gunstone et al., 2021). Furthermore, the predicted
effect concentrations derived from these phenotypic tests can only be used in ERA
after measuring the exposure concentration of the pollutants in soil, a laborious
and costly procedure. On the contrary, gene expression responses can be used
to determine the type of pollution even under varying mixture composition
(Fontanetti et al., 2011; Shi et al., 2017). Determining the effects of the near infinite
number of possible soil pollution mixtures on the gene expression of model
organisms is unfeasible. Therefore, reliable genetic responses, i.e. biomarkers,
have to be identified that remain indicative for a group of soil pollutants even
under synergistic interaction with other pollutants. Gene expression biomarkers,
in turn, can be used in biomonitoring; a cost-effective tool to screen for samples
that, in case of detecting a potential risk, may be subjected to subsequent chemical
analysis to identify the chemical(s) of concern. In this way, gene-expression assays
may provide ERA with more accurate metrics of adverse effects by pesticides than
traditional toxicity tests.

The selection of candidate gene expression patterns requires an understanding of
the molecular mediators behind pesticide toxicity in a relevant non-target model
organism. Most studies on the molecular mechanisms that mediate neonicotinoid
toxicity in invertebrates have been carried out in honey bees. However, the honey bee
is not an ideal representative for non-target soil invertebrates because it does not live
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in the soil, its genome is limited in its detoxification capacity (Claudianos et al., 2006),
and ithas an unusual life history due to its social lifestyle (Gradish et al., 2019). Folsomia
candida is a more suitable representative for non-target soil invertebrates because (1)
it belongs to the springtails (Collembola), which is one of the most prevalent non-
targetinvertebrate groups (Rusek, 1998), and a key component of the soil food web by
promoting nutrient cycling (FAO, ITPS, GSBI, 2020); (2) F. candida is well established as
a soil ecotoxicological model species since the 1960s (van Gestel, 2012); (3) its genome
has been sequenced and annotated facilitating the development of molecular tools for
studying its genomic responses to pollution (Faddeeva-Vakhrusheva et al., 2017), and
(4) F. candida is representative for the sensitivity to neonicotinoids of other springtail
species (de Lima e Silva et al., 2021). Together, these aspects make F. candida an ideal
candidate for the development of biomarker assays for the monitoring of pesticide

exposure in soil.

For the successful applications of neonicotinoid biomonitoring, gene-expression
patterns have to be identified that are indicative for the exposure to a variety of
neonicotinoids and remain to do so even under synergistic interaction with other
pollutants. Neonicotinoids are commonly subdivided in two groups, depending
on the inclusion of either nitro- or cyano-moieties into their chemical structure
(Buszewski et al., 2019). Although both groups share the same mode-of-action, the
nitro-substituted neonicotinoids are more toxic than the cyano-substituted ones
to the fecundity and survival of various springtail species (de Lima e Silva et al.,
2017, 2020, 2021). In the honey bee, the differential toxicity of the two groups of
neonicotinoids has been attributed to an increased detoxification rate of the cyano-
substituted ones by CYP enzymes (Iwasa et al., 2004; Manjon et al., 2018). Moreover,
CYP inhibition has also been proposed to trigger synergistic interactions between
neonicotinoids and other pesticides such as triazole fungicides (Feyereisen, 2018;
Glavan & Bozic, 2013; Raimets et al., 2017; Sgolastra et al., 2017). Finally, various
studies on the genomic response of F. candida to various pollutants have identified
CYP genes as biomarkers for a variety of chemicals (G. Chen et al., 2014; M. E. de
Boer et al., 2009; Nota et al., 2009; Roelofs et al., 2012). Based on these findings,
CYPs have emerged as promising biomarkers for the toxicity of neonicotinoid
exposure. Yet, it remains to be confirmed if expression patterns of CYP genes
provide a reliable indication for the toxicity of both cyano- and nitro-substituted
neonicotinoids, as well as for synergistic interaction with other pesticides. This
also needs to be confirmed still for other biomarkers identified for neonicotinoid
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exposure in the honey bee (Christen et al., 2016; Fent et al., 2020; Manjon et al.,
2018). Given the central role of CYPs in mediating differential effects of the two
major classes of the neonicotinoid family and their role in mediating synergy,
we propose inhibition of CYPs could serve as “stress-test” to assess biomarker
robustness. For this we applied piperonyl butoxide (PBO), which is a CYP inhibitor
that forms a metabolite-inhibitory complex with CYPs and thereby prevents
the binding of other substrates (Hodgson & Levi, 1999). By choosing PBO over
toxicants, we can ensure that observed effects on biomarker gene-expression are
the result CYP inhibition, rather than, other synergistic interactions.

The integration of multiple biomarkers into a panel for biomonitoring and ERA is
highly recommended, because the range of effects soil pollution has on organisms
is diverse (Lionetto et al., 2019). The aim of this study was to assess the suitability
of candidate genes to construct a panel of biomarkers for the assessment of soil
polluted with neonicotinoids. For this we considered three criteria: (1) the panel
should indicate exposure of both nitro- and cyano-substituted neonicotinoids, (2)
the response of the panel should relate in a concentration-dependent manner
with the adverse fitness effect of neonicotinoid exposure on F. candida, and (3) the
expression patterns of biomarkers in the panel should be reliable under synergistic
interaction caused by CYP inhibition by PBO. To represent the two major classes
of neonicotinoids we selected imidacloprid and thiacloprid, as representatives of
nitro- and cyano-substituted neonicotinoids, respectively. First, we determined the
effect of PBO on the fecundity of springtails and its potency-enhancing effects when
combined with thiacloprid and imidacloprid. Then, we screened the expression of
eight candidate biomarker genes at various PBO and neonicotinoid concentrations
using RT-qPCR. These were derived from previous studies on the genomic response
of F. candida to various pollution types, which have identified gene expression
patterns that may have potential to be applied as biomarkers (M. E. de Boer et al.,
2009; Nota et al., 2009; Qiao et al., 2015; Roelofs et al., 2012).

Materials and methods

Test animals

Folsomia candida culture has been maintained by the A-LIFE section Ecology &
Evolution of the Vrije Universiteit Amsterdam for > 20 years. The culture is kept in
the dark at 16 + 1 °C and 75 % relative air humidity (RH). The culture was reared
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in 1000 ml polypropylene containers with approximately 2 cm deep substrate of
moistened activated charcoal and Paris plaster, at a 1:8 ratio, and continuously
fed ad libitum with instant baker's yeast (Algist Bruggeman N.V., Ghent, Belgium).
To obtain age-synchronized individuals, batches of approximately 30 adults
were sampled from the culture and placed in 125 ml translucent polypropylene
containers filled with a 2 cm deep layer of the aforementioned substrate and
covered with perforated lids to allow air flow. These were kept at 20 + 1 °C, 75 %
RH and a 16:8 light-to-dark regime for about 48 hours to allow egg laying. After
this period, the adults were removed and the substrate frequently moistened with
demineralized water up to the point of saturation until the eggs hatched, about 10
days after egg-laying. The age-synchronized juveniles were fed with baker's yeast
and the substrate was moistened three times a week.

Chemicals and test soil

Thiacloprid and imidacloprid, both 98 % pure, were provided by Bayer CropScience,
Monheim, Germany. Piperonyl butoxide (PBO; 90 % pure) was obtained from
Sigma-Aldrich, the Netherlands. All tests were carried out in natural LUFA 2.2 soil,
Lufa Speyer, Germany. Soil attributes as determined by the supplier were: total
organic carbon content 2.1%, water-holding-capacity (WHC) 46.5% (w/w), and soil
pH 5.5 (0.01 M CaCl,).

To spike the soil with thiacloprid or imidacloprid, stock solutions in demineralized-
water were thoroughly mixed in with dry soil to reach a moisture content of 22 % of
its dry weight, corresponding with 50 % of its WHC. Thiacloprid was first dissolved
in acetone amounting to approximately 3 % of the stock solution volume before
adding ultra-pure water. Imidacloprid was directly dissolved in ultra-pure water.
Before use, stock solutions of both test chemicals were left overnight and stirred
at 300 rounds per minute, at room temperature and covered with aluminum foil.

For PBO treatments, 15 grams or 10 % of the dry soil per treatment was placed into
100 ml glass jars wrapped with aluminum foil. The soil was submerged in a PBO-
acetone solution and stirred every half hour for two hours, after which it was left
overnight in the fume hood to allow complete evaporation of the acetone. Then,
the remaining soil for a treatment was added, mixed, moistened to 50 % of its
WHC and again mixed thoroughly. In all tests, acetone controls were included as
well as water controls that were not pretreated with acetone. All other treatments
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had 10 % of their dry soil undergoing acetone pretreatment as described above.

Soils were prepared one day before the springtails were added. The concentration
ranges used for single exposure to PBO were 0, 100, 200, 400, 600, 800 and 1000 mg
kg dry soil. For mutual exposure with neonicotinoids: PBO 0, 1 and 10 mg kg dry
soil was combined with thiacloprid at 0, 0.25, 0.5, 1, 2, 4, 8 and 16 mg kg dry soil or
imidacloprid at 0, 0.05,0.1,0.2, 0.4, 0.8, 1.6 mg kg dry soil. For the gene expression
assays, soil was spiked at 0, 10 and 100 mg PBO kg dry soil (all concentrations <<
EC,), and combined with either 0, 0.1, 0.2 and 0.4 mg imidacloprid kg dry soil or
0, 0.5, 1 and 2 mg thiacloprid kg™ dry soil. The neonicotinoid concentrations for
the gene-expression assays were chosen to represent EC,, EC, and EC,, values for
reproduction effects of imidacloprid and thiacloprid from previous studies and fall
within the proposed application concentrations of neonicotinoids (de Lima e Silva
etal., 2017, 2020, 2021).

To determine the accuracy of soil spiking, 3-5 grams of soil were sampled and
stored at -20 °C immediately after moistening and mixing and at the end of the
toxicity tests. A selection of four samples taken before and one taken at the end of
the toxicity test were analyzed by Groen Agro Control, Delfgauw, the Netherlands,
following certified analytical methods. Detection limit was 0.01 mg kg™ dry soil.

Toxicity tests

Toxicity tests followed OECD guideline 232 for collembolan reproduction testing
in soil (OECD, 2016) with the exception that the age of the animals was 21-23 days
instead of 11-13 days after hatching and the test duration was reduced from 28
to 21 days.

Ten age-synchronized animals were added together with roughly the same number
of grains of baker's yeast to each 100 ml glass test jar containing approximately
30 g moist test soil. Every week the water content of the soil was maintained using
demineralized water and yeast was added when depleted. Toxicity tests were
conducted at 20 £+ 1 °C, 75 % RH, and a 16:8 light-dark regime. The tests were
terminated by waterlogging the content of each jar and decanting it into 300 ml
polypropylene beakers. Jars were rinsed to ensure all its content was collected in
the beakers. The beakers were then stirred and left to rest for at least 5 minutes
to allow all animals to float to the surface. Then the surface was photographed
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by a Nikon Coolpix P510, and the adult and juvenile F. candida on the pictures
were counted with Image J-based software Fiji (version Image.) 1.52p) using the
Cell Counter plugin (Kurt de Vos, version from 2010).

Gene expression analysis

Thirty age-synchronized springtails, i.e. 21-23 days after hatching, were exposed to
soils spiked as described above. No food was added. After 48 hours, the jars’ content
was waterlogged. The springtails were scooped from the water surface into separate
containers using a fine mesh sieve and transferred into 1.5 ml reaction tubes using
an aspirator. The reaction tubes were snap frozen with liquid nitrogen and stored
at -80 °C. RNA was extracted with the SV Total RNA extraction kit (Promega, USA),
following the manufacturer's guidelines. Purity and quantity of Total RNA was
assessed by spectrophotometric measurements using a Nanodrop (Thermo-Fisher).
The quality was checked on a 1 % agarose gel containing 0.5 % ethidium bromide.
Approximately 500 ng of RNA was reverse transcribed into cDNA using Promega
MML-V reverse transcriptase kit, following the manufacturer's instructions. To
verify DNA contamination, a no cDNA sample was prepared for one out of seven
samples by omitting reverse transcriptase from the reactions. Quantitative PCR
(gPCR) analysis was performed on a CFX Connect Real Time PCR Detection System
(BIO-RAD, USA), using BIO-RAD 96 well plates and Cyber Green mix. The selected
genes consisted of: (1) Three Cytochrome P450 monooxygenases (CYPs) that are
affected by PBO enzymatic inhibition: CYP3A73 and CYP6e2, which are involved in
biotransformation of xenobiotics, and the CYP methyl farnesoate epoxidase (FE),
which is involved in the maturation of juvenile hormone lll, (2) Markers for the action
of neonicotinoids on neural signaling: nicotinic acetylcholine receptor-subunit alpha1
(nAchR), which is the direct target of neonicotinoid activation, and sodium-coupled
monocarboxylate transporter 1 (SMCT) involved in the transmembrane transport
of monocarboxylates such as nicotinate, and (3) Adverse effect indicators: heat
shock protein 70 (HSP70), a general stress response protein; isopenicillin N synthase
(IPNS), which catalyzes the formation of isopenicillin and response to stress; and a
marker for fecundity: vitellogenin-1 (VIT), which is required for egg yolk formation
and transport. Primer sequences are listed in Table S4.1 with reference annotations
according to Ensembl Metazoa version 50 (Cunningham et al., 2019). The primers
of SMCT and nAchR were designed using the tool Primer Blast (Ye et al., 2012). The
other primers were taken from previous studies (M. E. de Boer et al., 2009; Roelofs
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etal.,, 2012). All samples were run in comparison to two reference genes, i.e. tyrosine
3-monooxygenase (YWHAZ) and eukaryotic transcription initiation factor 1A (ETIF), and
a no template and a no cDNA measurement. All measurements were performed in
duplicate and measurements were rejected and repeated when they differed by half
a threshold cycle (Ct). In case the measurements of either reference gene differed
by half a threshold cycle (Ct), measurements for all primer sets were repeated for
that sample.

Data analysis

Data analysis was performed in R 4.0.0 (R Core Team, 2019). Graphics were
generated via ggplot2 (Wickham, 2016). Concentration-response curves were
fitted using the R-package drc (Ritz et al., 2015) following the three-parameter
logistic dose-response model. The EC,; values for the toxicity of imidacloprid
and thiacloprid for the various levels of PBO exposure were compared using a
likelihood ratio test.

The relative potencies, expressed as the ratio of ECx values at different PBO levels,
were also calculated by the drc package in R as described in Ritz et al., (2006),
with the 95 % confidence intervals estimated using the delta method (Beckman &
Weisberg, 1987) to determine deviation from 1.

General Additive Models (GAMs) were fitted over the log2-transformed gene
expression values and analyzed using the R-package mgcv (Wood, 2011). Two
models were fitted. The null model only took into consideration the influence of
neonicotinoid exposure (equation 4.1), the full model did include the influence of
neonicotinoid and PBO exposure (equation 4.2).

E =g (Bo + I}, Bu5; (X)) (Eq. 4.1)
E=g7"(Bo+ Zj2i Bi5i () + Ty Bosp(Xp)) (Eq. 4.2)

in which E is the expected value of the log2-normalized expression values, g' the
inverse linkage function, B, the intercept, §;and p the coefficients for neonicotinoid
(j) and PBO exposure (p), ; and S, smooth terms for neonicotinoid (j) and PBO
exposure (p), and k the basis size.

Error was assumed normally distributed by selecting Gaussian-family models
and the smooth terms were estimated by restricted maximum likelihood (REML).
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The basis size (k) of the smooth terms (s) was set to maximum, i.e. to four for S,
the neonicotinoid smooth term (k1), and three for Sy the PBO smooth term (k2)
(equations 1 and 2). Model fit was checked via numerous metrics. Residuals were
inspected visually to see adherence to homogeneity using quantile-quantile plots
and a histogram frequency plot of the residuals. The three models were compared
using an F-test (Table S4.2). Full model was accepted when the p-value was lower
than 0.1. The p-values per smooth term were determined at default by mgcv via
F-tests.

Results

Soil concentrations

Chemical concentrations were measured in test soils spiked at concentrations
around the EC,, for the toxicity of imidacloprid (0.4 mg kg dry soil) and thiacloprid
(1 mg kg dry soil). The measured concentration of imidacloprid was on average 45
% higher than the nominal one, and concentrations at the beginning and end of the
exposure period were similar. The measured concentration of thiacloprid was 1.3
% lower than the nominal one, and decreased to 31 % of its original concentration
at the end of the 21-day test period. Across both neonicotinoid exposures, PBO
was detected at concentrations between 66 and 119 % of the nominal ones. PBO
degraded to about 57 % of its original concentration at the end of the exposures
(Table S4.3). All effect values are based on nominal concentrations.

Effects of neonicotinoids and PBO on springtail fecundity

All controls, including the ones treated with acetone or with 1 and 10 mg PBO kg™
dry soil, met the validity criteria set out by the OECD guideline 232, which are >80
% adult survival, >100 juveniles and a variation in juvenile numbers <30 % (Table
S4.4). In the 1 mg kg' PBO reference group of the thiacloprid test, the coefficient
of variance of juvenile numbers was slightly above the limit with 34 % (Table S4.4).
To facilitate visual comparison of the concentration-response curves, all juvenile
counts are shown as a percentage of the respective reference group mean.

PBO and the neonicotinoids did not cause sufficient mortality at the highest test
concentrations to enable calculating LC, values. PBO reduced the number of
juveniles by 1% (EC,) at 288 mg kg™ dry soil, and had an EC, of 424 and an EC, of
602 mg PBO kg dry soil (Figure S4.1).
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EC,, EC,, and EC,, values for the effects on imidacloprid on juvenile numbers were
0.11, 0.21 and 0.37 mg kg’ dry soil, respectively (Table 4.1). The concentration-
response curves showed higher juvenile counts for the treatment of 0 mg PBO kg’
dry soil, and intermediate effects for 1 mg PBO kg dry soil. The lowest juvenile
counts were observed for 10 mg PBO kg’ dry soil, see Figure 4.1A. The relative
potency of imidacloprid at 10 mg PBO kg' dry soil was significantly increased
compared to 0 mg PBO kg’ dry soil between the 19 and 51 % relative potencies:
see Figure 4.1B. The likelihood ratio test showed that PBO did not significantly
affect the EC,, of imidacloprid (df, LR = 5.88, p = 0.12, Loglikelihood Ratio test).

Table 4.1: Toxicity of piperonyl butoxide (PBO) and its effect on the toxicity of
imidacloprid and thiacloprid to Folsomia candida after 21 days exposure in LUFA 2.2
soil. EC,, EC,; and EC,, are effective concentrations reducing juvenile numbers by 1, 10
and 50 % compared to the control, respectively. Values in parenthesis are 95% confidence
intervals calculated using the delta method.

Exposure PBO EC, EC,, EC,,
(mg kg’ dry soil) (mgkg'drysoil) (mgkg'drysoil) (mgkg'dry soil)

PBO NA 288 (160-418) 424 (324-524) 602 (544-660)
Thiacloprid 0 0.14(-0.1-0.38) 0.40(0.02-0.78)  1.0(0.70-1.4)
1 0.53(0.26-0.81)  0.88(0.62-1.1) 1.4(1.2-1.6)
10 0.03(-0.01-0.06)  0.14(0.03-0.25)  0.63(0.40-0.87)
Imidacloprid 0 0.11(0.05-0.17)  0.21(0.15-0.27)  0.37(0.33-0.41)
1 0.06 (0.03-0.10)  0.16(0.11-0.20)  0.36 (0.31-0.40)
10 0.04 (0.01-0.07)  0.12(0.07-0.16)  0.30(0.25-0.35)

Thiacloprid affected springtail reproduction with EC,, EC,  and EC,, values of 0.14,
0.40 and 1.0 mg kg dry soil, respectively (Table 4.1). The concentration-response
curves (Figure 4.1C), and EC, values (Figure 4.1D) show an increase in the potency
of thiacloprid at 10 mg PBO kg dry soil and a reduced potency at 1 mg PBO kg™
dry soil. The effect of PBO on the EC,, was significant (df, LR = 19.34, p = 0.0002,
Loglikelihood Ratio test). The influence of PBO on the potency of thiacloprid was in
particular pronounced at low concentrations, i.e. between 0 and 0.5 mg thiacloprid
kg dry soil.
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Figure 4.1: The effect of piperonylbutoxide (PBO) on the toxicity of the neonicotinoids
imidacloprid (A, B) and thiacloprid (C, D) to the fecundity of the springtail Folsomia
candida after 21 days exposure in LUFA 2.2 soil. Panels A and C show the fit to the data
of the three-parameter concentration-response model for exposures to imidacloprid (panel
A; blue) and thiacloprid (panel C; green) at various levels of PBO: solid lines and squares
for 0 mg kg dry soil, long-dashed lines and circles for 1 mg PBO kg™ dry soil, and short-
dashed lines and triangles for 10 mg PBO kg dry soil. In panels A and C, the numbers of
juveniles produced by the springtails are shown as a percentage of the reference group
means. Panels B and D show the relative potencies of the neonicotinoids comparing the PBO
regimes as indicated in the portrait headers. Solid black lines follow the relative potencies,
and 95 % confidence intervals calculated using the delta method are shown in grey bands
outlined with grey lines. When the relative potencies deviated from equal potencies, i.e. the
confidence interval not overlapping with 1 Toxic Unit, lines are shown in red indicating a
significant effect of PBO addition on the toxicity of the neonicotinoid. The dashed red line
indicates equal potency.

The direct comparison of the effect of PBO on the potency of imidacloprid and
thiacloprid was hampered by the rather large variation in juvenile numbers in the
reference groups of the thiacloprid tests. We assume itis coincidental and probably
due to high variability in the control responses which is common in F. candida
toxicity tests (Crouau & Cazes, 2003). Therefore, we compared models constrained
and unconstrained in their EC, -values and calculated relative potencies between
PBO exposure levels. This allows determining differential toxicity of compounds
even when the control groups are dissimilar (Ritz et al., 2006, 2015).
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Effects of neonicotinoids and PBO on biomarker gene expression

Imidacloprid suppressed the expression of all three CYPs (CYP6e2, CYP3A13, and
FE), but did not exert significant effects on HSP70 and VIT expression (Figure 4.2).
IPNS was upregulated by imidacloprid; although the pattern did not relate linearly
with an increase of neonicotinoid exposure but rather reflected the variation
within the data at the highest imidacloprid concentration (0.4 mg kg' dry soil),
see Figure S4.2. Imidacloprid strongly upregulated the expression of nAchR and
SMCT in a concentration-dependent manner (Figure 4.2). For SMCT, we observed
a concentration-dependent upregulation by imidacloprid until a concentration of
0.2 mg kg dry soil, where after gene regulation remained at the same level.

Thiacloprid did not influence the expression of CYP6e2, CYP3A13, IPNS and HSP70
(Figure 4.3). FE expression was inhibited by thiacloprid exposure until 1 mg kg™
soil and subsequently expression returned to control expression levels. VIT was
upregulated by thiacloprid. Thiacloprid strongly upregulated the expression of
nAchR and SMCT in a concentration-dependent manner, up to concentrations of 1
and 2 mg thiacloprid kg dry soil after which gene expression levels remained at

the same level.

PBO exposure strongly enhanced the expression of all CYPs when co-exposed with
both neonicotinoids (Figures 4.2 and 4.3). For all CYPs, the effect of PBO on gene
expression was greater than the influence of the neonicotinoids, as determined
by the significance levels of the GAM smooth term coefficients; Figures 4.2 and
4.3. VIT was upregulated by PBO in a concentration-dependent manner under
co-exposure of both neonicotinoids. HSP70 and SMCT were upregulated by PBO
under mutual exposure with thiacloprid (Figure 4.3). For HSP70, upregulation
occurred at the highest concentration of PBO (10 mg kg' dry soil). PBO did not
influence HSP70 and SMCT under mutual exposure with imidacloprid. nAchR was
down-regulated by PBO under mutual exposure with imidacloprid in particular at
the highest concentration of PBO at 10 mg kg dry soil (Figure 4.1). nAchR was not
affected by PBO exposure under mutual exposure with thiacloprid (Figure 4.2).
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Figure 4.2: The influence of piperonylbutoxide (PBO) on the effect of imidacloprid on
the gene expression of the springtail Folsomia candida exposed for 48 hours in LUFA 2.2
soil. Imidacloprid concentrations are depicted as reference groups without imidacloprid,
EC,, and the effect concentrations (EC) reducing the number of juveniles by 1, 10 and 50 %,
i.e. EC,, EC, and EC,,. Each panel represents the results of one gene, the names listed in the
portrait headers are abbreviations for: cytochrome P450 monooxygenases (CYP) 3A13,
CYP6e2, methyl farnesoate epoxidase (FE), Heat Shock Protein 70 (HSP70), isopenicillin N
synthase (IPNS), vitellogenin-1 (VIT), nicotinic acetylcholine receptor-subunit alpha1 (nAchR),
and sodium-coupled monocarboxylate transporter 1 (SMCT). Below the names are the
significance levels of the general additive model (GAM) smooth terms of neonicotinoid (NN)
and PBO (P), depicted by the following symbols: p>0.1 “N.S", p<= 0.1 “.", p<= 0.05 “*", p<=0.01
“**" GAM mean functions are shown in solid lines, 95 % confidence intervals as outlined
transparent bands and dots depict the log2-transformed normalized expression values. PBO
exposure levels are shown in blue, orange and red for 0, 10 and 100 mg PBO kg dry soil.
Mean function and confidence interval outlined bands are shown in grey when the influence
of PBO was not included in the GAM model fit.
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Figure 4.3: The influence of piperonylbutoxide (PBO) on the effect of thiacloprid on the
gene expression of the springtail Folsomia candida exposed for 48 hours in LUFA 2.2 soil.
Thiacloprid concentrations are depicted as reference groups without thiacloprid, EC, and the
effect concentrations (EC) reducing the number of juveniles by 1, 10 and 50 %, i.e. EC,, EC,, and
EC,,. Each panel represents the results of one gene, the names listed in the portrait headers
are abbreviations for: cytochrome P450 monooxygenases (CYP) 3A13, CYP6e2, methyl farnesoate
epoxidase (FE), Heat Shock Protein 70 (HSP70), isopenicillin N synthase (IPNS), vitellogenin-1 (VIT),
nicotinic acetylcholine receptor-subunit alphal (nAchR), and sodium-coupled monocarboxylate
transporter 1 (SMCT). Below the names are the significance levels of the general additive model
(GAM) smooth terms of neonicotinoid (NN) and PBO (P), depicted by the following symbols:
p>0.1 “N.S", p<= 0.1 “.", p<= 0.05 “*", p<=0.01 “**”. GAM mean functions are shown in solid
lines, the 95 % confidence intervals are shown as outlined transparent bands and dots depict
the log2-transformed normalized expression values. PBO exposure levels are shown in blue,
orange and red for 0, 10 and 100 mg PBO kg dry soil. Mean function and confidence interval
outlined bands are shown in grey when the influence of PBO was not included in the GAM
model fit.
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Discussion

Cytochrome P450 enzymes (CYP) are important mediators of differential
toxicity between nitro- and cyano-substituted neonicotinoids in bees (Beadle et
al., 2019; Iwasa et al., 2004; Manjon et al., 2018) and form a probable point of
molecular synergistic interaction between neonicotinoids and triazole fungicides
(Feyereisen, 2018; Glavan & Bozic, 2013; Raimets et al., 2017; Sgolastra et al., 2017).
Therefore, we proposed the use of PBO as a “stress-test” to assess the reliability
of biomarkers in indicating the exposure of the two major neonicotinoid classes,
i.e. nitro- and cyano-substituted, in F. candida. To this end, we screened various
genes to verify whether collectively their expression adhered to three criteria: (1)
indicate exposure of both nitro- and cyano-substituted neonicotinoids, (2) in a
concentration-dependent manner relate with the adverse effects of neonicotinoid
exposure on F. candida fecundity, and (3) be reliable under synergistic interaction
by CYP metabolic inhibition.

PBO can be applied as a stress-test for both nitro- and cyano-substituted
neonicotinoids In this study, we applied PBO to determine the reliability of
biomarkers in indicating the two major classes of neonicotinoids, i.e. nitro- and
cyano-substituted, and as a model for synergistic interaction. In other words, we
proposed PBO as a “stress-test” for biomarker robustness. The application of PBO
in this manner was mainly based on earlier findings in different bee species (Beadle
et al., 2019; Iwasa et al., 2004; Manjon et al., 2018). However, the genome of the
honey bee has less redundancy in xenobiotic detoxification enzymes compared
to other species (Claudianos et al., 2006), while F. candida has a genome with a
diverse range of xenobiotic detoxification enzymes (Faddeeva-Vakhrusheva et al.,
2017). Therefore, we first had to confirm that CYP-mediated metabolism had a
comparative influence on neonicotinoid detoxification as in other species and also
mediated differential toxicity of nitro- and cyano-substituted neonicotinoids. Our
results show that PBO enhances the potency of both nitro- and cyano-substituted
neonicotinoids and that this potency-enhancing effect is larger for the cyano-
substituted thiacloprid. Our results are, therefore, in line with earlier findings in
bees (Beadle et al., 2019; Gomez-Eyles et al., 2009; Manjon et al., 2018) and indicate
that CYP detoxification mediates neonicotinoid similarly in F. candida compared to
previously studied species.
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Moreover, we observed that PBO affects neonicotinoid toxicity at concentrations
lower than the EC, for PBO effects on springtail fecundity, i.e. 288 mg PBO kg
dry soil. Because PBO enhanced the potency of the neonicotinoids to springtail
reproduction far below concentrations at which it becomes toxic itself, we may
attribute the potency-enhancing effect of PBO on neonicotinoid toxicity to F.
candida fecundity to the metabolic inhibition of CYP enzymes by PBO.

Because of these two findings, PBO can serve as a “stress-test” to determine if
biomarkers remain reliable indicators of the exposure to two major classes of

neonicotinoids even under synergistic interaction by CYP-inhibiting pollutants.

Stability of biomarkers for neonicotinoid exposure

In our study, the three CYP genes did not adhere to any of the three biomarker
criteria mentioned above, but mainly responded to the PBO treatment. Fent et
al. (2020) surveyed the expression of two CYP genes in honey bee brains that
were previously identified by Manjon et al. (2018) to metabolize imidacloprid and
thiacloprid. However, these CYP genes were not differentially expressed at either
low or high dosages of thiacloprid after 48 hours exposure. Our results indicate
that CYP genes associated with xenobiotic detoxification, i.e. CYP6e2 and CYP3A13,
were downregulated after exposure to thiacloprid and showed no significant
response to imidacloprid. Based on our findings and those of Fent et al. (2020), it is
doubtful that CYP genes involved in xenobiotic detoxification, even when involved
in neonicotinoid detoxification in F. candida would respond to neonicotinoid
exposure and could be used as biomarkers under our criteria. Therefore, we
conclude that CYP genes are poor candidates to include in a panel of biomarkers
for neonicotinoid exposure.

The genes IPNS, VIT and HSP70 in F. candida that have previously been shown
to respond to variety of stress types (M. E. de Boer et al., 2009; Roelofs et al.,
2012), and thereby could provide adherence of the biomarker panel to criteria
2, did not relate in a concentration-dependent manner to the adverse effect of
neonicotinoids. Only two genes, when considered together, did adhere to all three
criteria, nAchR and SMCT. Because PBO altered the expression of nAchR under co-
exposure with imidacloprid and of SMCT under co-exposure with thiacloprid, we
conclude that combined within a biomarker panel they provide a robust indication
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for cyano- or nitro-substituted neonicotinoid exposure, also under synergistic
interaction of CYP inhibition (criteria 1 and 3).

These results confirm the potential of our approach to identify robust biomarkers
for neonicotinoid toxicity, in the context of synergistic interactions with other
pollutants. At the same time, the results also demonstrate that the majority of the
prominent candidate-biomarkers proposed to date are notsuitable. To supplement
a biomarker panel that could include SMCT and nAchR, subsequent studies could
aim at using high-throughput screening methods, such as transcriptomics, to
identify additional biomarkers that relate concentration-dependently to higher
levels of neonicotinoid exposure.

A thorough Environmental Risk Assessment (ERA) of soils requires various lines
of information on the physiochemical properties of the soil and the chemical
presence, and on the ecological and toxicological impacts of soil pollution (Apitz et
al., 2005). Providing support for these lines of evidence can be cumbersome and
costly. In particular in case of complex mixtures, chemical analysis of the soil can
result in an underassessment of risk because it may not include all, biologically
relevant, chemicals and their degradation products (Escher et al., 2020). In
addition, chemical analysis usually focuses on total chemical concentrations while
risk is related to the biologically available fraction. Gene expression responses are
immediate and specific to the type of pollution and can, thereby, provide accurate
information on exposure, bioavailability and bioaccumulation of contaminants in
organisms even when no effects on phenotypic traits are observed (Lionetto et
al., 2019). The ERA of pesticides in the soil is in particular pressing case, because
most European agricultural soils are polluted with a mixture of pesticides and
their derivates and physiochemical properties of soil can alter the bioavailability
and, therefore, exposure of these pesticides’ mixtures (Pelosi et al., 2021; Silva
et al., 2019; van Gestel, 2012). Gene expression biomarkers can help focusing
the efforts of the risk assessors to the most offending samples and inform their
further analyses, while providing biologically relevant information on the type,
toxicity and exposure of contaminants, single and in mixtures (Escher et al., 2020;
Fontanetti et al., 2011; Lionetto et al., 2019; Shi et al., 2017).
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Conclusion

For the successful biomonitoring of a variety of neonicotinoids using gene
expression, a panel of biomarkers have to be identified that remain robust
indicators for the two main classes of neonicotinoids even under synergistic
interaction by CYP inhibition. Our study demonstrated that PBO can be used
to test the reliability of genetic expression patterns for both major classes of
neonicotinoids. Subsequently, we used PBO as a tool to confirm the validity of
SMCT and nAchR as indicators of neonicotinoid exposure even under synergistic
interaction by CYP inhibition. The biomarkers can form the basis of rapid and cost-
effective tools in biomonitoring of neonicotinoid exposure in soil.
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Table S4.3: Nominal and measured concentrations of imidacloprid (IMI), thiacloprid
(THIA) and piperonyl butoxide (PBO) in LUFA 2.2 soil, on the day of soil spiking and the
end of the exposure, days 0 and 21, respectively. Recovery was calculated as the ratio of
measured and nominal concentration and expressed as a percentage. The recovery was not
calculated for the samples measured after 21 days exposure, shown as NA (not applicable).

Neonicotinoid PBO
sampling Nominal Recovery Nominal Measured Recovery
day (mgkg' Measured (%) (mgkg' (mgkg’ (%)
dry soil) (mg kg’ dry soil)  dry soil)
dry soil)
IMI 0 0 0 0 0 0 0
0 0.4 0.61 153 0 0 0
0 0.4 0.62 156 1 0.66 66
0 0.4 0.50 126 10 8.4 84
21 0.4 0.53 NA 10 4.56 NA
THIA 0 0 0 0 0 0 0
0 1 1.03 103 0 0 0
0 1 0.9 90 1 1.19 119
0 1 1.03 103 10 10.6 106
21 1 0.32 NA 10 6.24 NA

Table S4.4: Reference group (control) performance of Folsomia candida in toxicity tests
with neonicotinoids with piperonyl butoxide (PBO) in LUFA 2.2 soil. Reference groups
were exposed to soils only treated with demineralized water, pretreated with acetone or
pretreated with acetone and either 1 or 10 mg PBO kg' dry soil, abbreviated as water,
acetone and PBO 1 or PBO 10, respectively. Also added are the validity criteria according
to the OECD guideline 232 (OECD, 2016). Only the reference group of the 1 mg PBO kg
treatment did not adhere to these criteria and therefore is marked in bold.

Compounds Control Mean adult Mean juvenile Coefficient of
type mortality (%) count variance (%)
Imidacloprid and PBO Water 9 1055 14
Acetone 17 1085 12
PBO 1 8 1090 18
PBO 10 12 1137 12
Thiacloprid and PBO Water 6 565 20
Acetone 2 532 17
PBO 1 14 411 34
PBO 10 12 607 12
PBO Water 6 877 24
Acetone 8 781 21
OECD validity criteria <20 >100 <30
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Figure S4.1: The effects of piperonyl butoxide (PBO) on the fecundity of Folsomia
candida after 21 days exposure in LUFA 2.2 soil. The juvenile counts are shown as circles,
the solid line shows the fit of a three-parameter logistic model. Effect concentration (EC) for
the reduction in juvenile counts by 10 % and 50 %, EC, and EC,, are shown as a dark red
diamond and a red dot, respectively. Whiskers show the 95% confidence interval estimators
as obtained using the delta method.
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Figure S4.2: Quantile-quantile plots of the residuals compared to their theoretical
normal distribution. The residuals are from the Generalized Additive Models (GAMs)
fitted on log2-transformed normalized gene expression measured with quantitative
PCR (qPCR) on Folsomia candida exposed in LUFA2.2 soil to imidacloprid (panel
collection A) and thiacloprid (panel collection B) and piperonyl butoxide for 48 hours.
Quantile-quantile plots per target gene, their names are above the panels. The names are
abbreviations for: cytochrome P450 monooxygenases (CYP) 3A13, CYP6e2, methyl farnesoate
epoxidase (FE), Heat Shock Protein 70 (HSP70), isopenicillin N synthase (IPNS), vitellogenin-1 (VIT),
nicotinic acetylcholine receptor-subunit alphal (nAchR), and sodium-coupled monocarboxylate
transporter 1 (SMCT). Residuals are shown as dots on the panels, perfect agreement between
the residuals and the normal distribution is shown as solid black lines, 95 % confidence
intervals are shown as grey bands.
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Figure S4.3: Histogram frequency plots of residuals from Generalized Additive Models
(GAMs)fitted on log2-transformed normalized expression from quantitative PCR (qPCR)
measurements on the gene expression of Folsomia candida exposed to imidacloprid
(collection of panels A) and thiacloprid (collection of panels B) and piperonyl butoxide
in LUFA2.2 soil for 48 hours. Models per target gene as indicated by the name above each
panel, which are abbreviations for: cytochrome P450 monooxygenases (CYP) 3A13, CYP6e2,
methyl farnesoate epoxidase (FE), Heat Shock Protein 70 (HSP70), isopenicillin N synthase (IPNS),
vitellogenin-1 (VIT), nicotinic acetylcholine receptor-subunit alphat (nAchR), and sodium-coupled
monocarboxylate transporter 1 (SMCT). Frequency of the residual occurrence indicated by
height of each bar. Value of the residual shown below the axes labelled with “residuals”
using ticks. Bars should center in height around zero and decrease in size equally to both
sized when the residuals follow the normal distribution.
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Chapter 5

Neonicotinoid insecticides are harmful to non-target soil invertebrates, which are
crucial for sustainable agriculture. Gene expression biomarkers could provide
economical and high-throughput metrics of neonicotinoid exposure and toxicity
to non-target invertebrates and could help guide remediation efforts or policy
enforcement. Gene expression of Glutathione S-Transferase 3 (GST3), which
negates oxidative stress, has previously been proposed as a biomarker for the
neonicotinoid imidacloprid in the soil ecotoxicological model species Folsomia
candida (Collembola). It remains unclear, however, how reliably gene expression
of neonicotinoid biomarkers, such as GST3, can indicate the exposure to the
broader neonicotinoid family under varying oxidative stress conditions. In this
work, we exposed springtails to two neonicotinoids, thiacloprid and imidacloprid,
alongside diethyl maleate (DEM), a known GST metabolic inhibitor that imposes
oxidative stress. First, we determined the influence of DEM on neonicotinoid
toxicity to springtail fecundity. Second, we surveyed the gene expression of four
biomarkers, including GST3, under mutual exposure regimes to neonicotinoids
and DEM. We observed no effect of DEM on springtail fecundity. Moreover, the
expression of GST3 was only influenced by DEM under mutual exposure with
thiacloprid but not with imidacloprid. The results indicate that GST3 is not a
robust indicator of neonicotinoid exposure and that oxidative stress mediates
the toxicity of imidacloprid and thiacloprid differentially. Due to influence of DEM
on biomarker expression, future research should investigate biomarker reliability
under increased oxidative stress conditions as provided by DEM exposure.

Key words: springtails; neonicotinoids; biomarkers; glutathione-S-transferase;
diethyl maleate
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Introduction

Remediation efforts and policy enforcement for soil pollution are currently based
on the chemical screening of soil samples, which is a laborious and expensive
process. Moreover, chemical analysis of the soil can only provide evidence for
the presence of contaminants and not their toxicity to non-target invertebrates.
Gene expression biomarkers can provide metrics indicating the exposure to or
the toxicity of soil pollutants, like pesticides, to soil invertebrates even under
synergistic interactions in mixtures with other pollutants (Fontanetti et al., 2011;
Shi et al., 2017). Additionally, biomarkers could serve as a tool in environmental
biomonitoring by serving as an inexpensive and high-throughput screening
method of soil samples (Fontanetti et al., 2011).

Neonicotinoids are harmful to non-target invertebrates that are crucial to
sustainable agriculture, such as pollinators (Pisa et al., 2014) and soil invertebrates
(de Lima e Silva et al., 2017, 2020, 2021). As such, it is essential to have biomarkers
available that indicate the exposure to or possible effects of these insecticides in
soil. One molecular pathway that may provide a source for candidate biomarkers
for neonicotinoid exposure in non-target invertebrates are the genes involved
in the biotransformation and detoxification of xenobiotic substances. The
biotransformation pathway comprises three phases: | oxidation, Il conjugation,
and Ill excretion. Glutathione S-transferases (GSTs) are among the major enzymes
involved in phase Il biotransformation and negate oxidative stress by reducing
free radicals and conjugating phase | metabolites for further excretion (Lohning &
Salinas, 1999). For the neonicotinoid imidacloprid, previous research has identified
Glutathione-S-Transferase 3 (GST3) as a potential gene expression biomarker in the
soil ecotoxicological model species Folsomia candida (Collembola) (Sillapawattana
& Schaffer, 2017). However, marked differences exist between the toxicity of
individual neonicotinoids to non-target invertebrates, and distinct molecular
mechanisms mediating their toxicity (Buszewski et al., 2019).

Two neonicotinoids with large differential toxicity to the fecundity and survival
of springtails are imidacloprid and thiacloprid (de Lima e Silva et al., 2017, 2020,
2021). In various bee species, the differential toxicity of these insecticides has
been attributed to a more readily biotransformation of thiacloprid compared to
imidacloprid (Beadle et al., 2019; Manjon et al., 2018). Therefore, in order to apply
GST3 as a biomarker for neonicotinoid exposure, its gene expression should be a
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reliable indicator for multiple neonicotinoids and, in particular, for imidacloprid
and thiacloprid.

Neonicotinoid toxicity is mediated, in part, by GST enzyme activity although it
remains unclear what the exact mechanism is (Sillapawattana & Schaffer, 2017).
Three possible mechanisms are: (1) direct metabolism of phase | biotransformation
products, (2) negation of oxidative stress caused by neonicotinoid metabolism or
toxicity, and (3) a combination of these two mechanisms (Lohning & Salinas, 1999;
Sillapawattana & Schaffer, 2017). One finite resource, the co-factor glutathione
(GSH), limits the extent by which GST enzymes can carry out these roles at any
moment (Lohning & Salinas, 1999). Moreover, various putative biomarkers for
neonicotinoid pollution identified in the honey bee and F. candida (Bakker et al.,
2022; Christen etal., 2018; Christen & Fent, 2017) are also involved in their response
to oxidative stress, in particular; Heat Shock Protein 70 (HSP70), responsible for the
refolding of proteins, and Vitellogenin (Vg), involved in egg-yolk protein production
(King & Macrae, 2015; Perez & Lehner, 2019; Seehuus et al., 2006). Therefore,
increased oxidative stress conditions by altered GST activity may impact the
reliability of key neonicotinoid biomarkers in indicating exposure.

We aimed at investigating the expression of HSP70, GST3 and the Vitellogenin
Receptor (VgR), as biomarkers under the mutual exposure of imidacloprid or
thiacloprid with diethyl maleate (DEM), which depletes cellular GSH levels, thereby
limiting GST-mediated negation of oxidative stress (Plummer et al., 1981). By
choosing DEM over pollutants found in the soil, we ensure the observed effects
on gene expression are the result of increased oxidative stress conditions and
not of additional toxic effects with unknown molecular mechanisms. In this
way, DEM serves as a “stress-test” that can provide evidence for the role of GST-
mediated detoxification in neonicotinoid toxicity and its reliability as a biomarker
for indicating neonicotinoid exposure. Additionally, the target receptor of
neonicotinoids, nicotinic Acetylcholine Receptor (nAchR), was also tested as it was
proven to be a prominent neonicotinoid biomarker in previous studies on the
honey bee (Christen et al., 2016) and F. candida (Bakker et al., 2022). First, we
determined the influence of DEM on neonicotinoid toxicity to springtail fecundity.
Second, we surveyed the gene expression of four biomarkers under mutual
exposure of the two neonicotinoids with DEM.
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Methods

Animals, chemicals and test soil

Folsomia candida were obtained from inhouse cultures at the Vrije Universiteit
Amsterdam, Amsterdam Institute for Life and Environment (A-LIFE) (Berlin strain).
Rearing and age synchronization of the individuals has been described in de Lima
e Silva et al. (2017; 2020).

Imidacloprid and thiacloprid, both > 98% purity, were provided by Bayer
CropSciences, Monheim, Germany. Diethyl maleate (DEM; >98% purity) was
obtained from Sigma-Aldrich, the Netherlands.

The LUFA2.2 test soil originated from Lufa, Speyer, Germany. The soil attributes,
reported by the supplier, were: total organic carbon content 2.1%, water-holding-
capacity (WHC) 46.5% (w/w), and soil pH 5.5 (0.01 M CaCl,). Imidacloprid was
directly dissolved in ultra-pure water. Thiacloprid was first dissolved in acetone
amounting to 3 % of the total stock solution volume consisting of ultra-pure water.
Both stock solutions were stirred overnight at 300 rounds per minute, in the dark
and at room temperature. Water controls were included in all tests by moistening
LUFA2.2 soil with demineralized water to 50 % of its WHC and mixed thoroughly.
For other treatments, 10 % of the dry soil per treatment was completely inundated
by acetone, with the desired concentration of DEM, in a glass jar and stirred every
half hour for two hours, in the dark, covered with aluminum foil. Hereafter, the soil
was left overnight in a fume hood to allow complete evaporation of the acetone.
The remaining soil was added, mixed, and moistened and mixed again as described
above. All test soils were prepared the day before the springtails were added. The
concentrations for the DEM single exposure were: 0, 1.1, 3.3, 10, 30, 90 mg kg dry
soil. The concentrations for mutual exposure with neonicotinoids were 1 and 6 mg
DEM kg dry soil; 0, 0.25, 0.5, 1, 2, 4, 8 and 16 mg thiacloprid kg dry soil; 0, 0.05,
0.1, 0.2, 0.4, 0.8, 1.6 mg imidacloprid kg dry soil. For the control groups of the
neonicotinoid toxicity tests, DEM concentrations were roughly equal to the Effect
Concentrations (EC ) reducing the number of juveniles by 1 and 25 %. To calculate
the pesticide recoveries and accuracy of their application, 3-5 gram portions of
test soil were stored at -20 °C and sent to Groen Agro Control, Delfgauw, the
Netherlands. Here, the pesticide soil concentrations were measured following a
certified protocol and with a detection limit of 0.01 mg kg™
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For the gene expression assay, ad hoc chosen DEM concentrations of 0, 10 and 20
mg DEM kg dry soil were combined with 0, 0.1, 0.2 and 0.4 mg imidacloprid kg™ dry
soil or 0, 0.5, 1 and 2 mg thiacloprid kg dry soil. The neonicotinoid concentrations

represented roughly the neonicotinoid EC, , EC . and EC, for effects on springtail

10"
fecundity from earlier studies in our laboratory (de Lima e Silva et al., 2020, 2021).

Toxicity tests

The toxicity tests followed OECD guidelines 232 for Collembolan reproduction
testing in soil (OECD, 2016) with two deviations: the duration of the test was
shortened from 28 to 21 days, and the initial age of the animals was increased from
11-13to 21-23 days. At the end of the toxicity tests, the samples were emptied into
plastic beakers and their contents waterlogged using tap water, stirred gently and
left to rest for at least 5 minutes to allow all animals to come floating to the surface.
The surface was photographed by a Nikon Coolpix P510 and the F. candida adults
and juveniles were counted using Image-] based software Fiji (v. 1.52p) with the
Cell Counter plugin (Kurt de Vos, version from 2010).

Gene Expression Assay.

Two-day exposures of roughly 30 age-synchronized, 21-23 day old, F. candida,
followed by RNA isolation, cDNA transcription and quantitative real-time PCR were
carried out as previously described (M. E. de Boer et al., 2009, 2011). The selected
genes were: nicotinic Acetylcholine Receptor-subunit alpha1 (nAchR), the binding site
of neonicotinoids; Heat Shock Protein 70 (HSP70), involved in protein refolding after
endured stressors, such as oxidative stress (King & Macrae, 2015); Vitellogenin
Receptor (VgR), which activation leads to egg yolk production and transport, but
has been linked to oxidative stress response as well (Perez & Lehner, 2019;
Seehuus et al., 2006); Glutathione-S-Transferase 3 (GST3), which negates oxidative
stress by reducing reactive compounds: and two reference genes; Tyrosine
3-Monooxygenase (YWHAZ) and Eukaryotic Transcription Initiation Factor 1A (ETIF).
The primer sets for nAchR (Bakker et al., 2022), YWHAZ, ETIF, HSP70 and VgR were
taken from earlier work (M. E. de Boer et al., 2011; Roelofs et al., 2012). The GST3
primer set was custom made for this work with Primer BLAST (Ye et al., 2012),
based on the GTS3 gene described in (Nakamori et al., 2010; Sillapawattana &
Schaffer, 2017). Normalized gene expression values were obtained using the gPCR

120



Validation of biomarkers for neonicotinoid exposure in
Folsomia candida under mutual exposure to diethyl maleate

accompanying software CFX manager by creating a gene study and exporting the
untransformed values. For the primer sequences and efficiencies, see Table S5.1
in the Supplementary Information.

Data analysis.

All statistics were carried out in the R programming language v4.0.0 (R Core Team,
2019). Three parameter logistic concentration-response curves were fitted over
the number of juveniles or adult F. candida to calculate the effect concentrations
for survival and reproduction using the R-package drc v3.0-1 (Ritz et al., 2015).
Models constrained and unconstrained in their EC_-estimate, i.e. concentration
reducing juvenile counts by 50 %, were compared using the loglikelihood ratio
test. Graphics were generated using ggplot2 v3.3.5 throughout this work (Wickham,
2016).

For each primer set, a generalized additive model (GAM) was fitted over the log2-
transformed normalized gene expression values using the R-package mgcv v1.8-
37 (Wood, 2011). The null-model considered only neonicotinoid influence on gene
expression, equation 1, and the alternative model also included the influence of
DEM, equation 2.

E=g 7' (Bo+ It By (X)) (Eq. 5.1)
E=g (o +Zi2, Bysi(x)) + Tyt Bosp(Xp)) (Eq.5.2)

in which E is the expected value of the log2-normalized expression values, g' the
inverse linkage function, B;the intercept, B;and B the coefficients for neonicotinoid
() and DEM exposure (p), s; and s, smooth terms for neonicotinoid (j) and DEM
exposure (p) with k the basis size, respectively.

Basis size (k ) for the neonicotinoid smooth term (k,) was set to four and for the DEM
smooth term (k,) it was set to three, i.e. the maximum size for this experimental
design. Gaussian error distribution of the residuals was assumed, thin plate
regression splines and restricted maximum likelihood (REML) were used to fit the
models. Models were compared using an F-test of their fits and the alternative
model was accepted when p < 0.1. Adherence of homogeneity of residuals was
visually checked by histogram frequency plot and quantile-quantile plots.
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Results & Discussion

Soil concentrations

Neonicotinoid concentrations were measured in test soil spiked with
concentrations around the EC, for effects on springtail fecundity for imidacloprid
(0.2 and 0.4 mg kg' dry soil) and thiacloprid (1 mg kg' dry soil). Measured
imidacloprid concentrations were on average 87 % (SD 6.7 %, n=6) of the nominal
ones (Table S5.2). The measured and nominal concentrations of thiacloprid were
highly similar with an average recovery of 98 % (SD 12.5 %, n=3). Imidacloprid
degraded to 85 % of its measured concentration between the onset and the end
(day 21) of the toxicity test. Thiacloprid degraded almost completely to only 2.5 %
of its initial measured concentration within the 21-day test period. Because of the
high recovery of both test compounds at the start of the exposures, all data are
based on the nominal concentrations.

Test validity

With the exception of two groups, all reference groups, including those treated with
1 or 6 mg DEM kg dry soil, met the validity criteria of OECD guideline 232 (OECD,
2016), namely: mean juvenile count > 100, variation in control juvenile counts <
30 %, adult survival > 80%, see Table S5.3. For the single diethyl maleate (DEM)
exposures, the variation in the number of juveniles was 36 % in the control and
for the thiacloprid toxicity test it was 32 % in the 6 mg DEM kg dry soil reference
group (i.e. without thiacloprid). A high variation in the number of juveniles is
common in F. candida reproduction tests (Crouau & Cazes, 2003), and the higher
variation was not coincidental to any particular treatment across the three toxicity
tests. We therefore conclude that the springtail health was of sufficient quality at
the start of the toxicity tests and did not bias the results.

Effects of DEM on springtail fecundity and mortality

DEM reduced the adult springtail survival by 1, 10 and 50 % at 2.99, 6.73 and 14.2
mg DEM kg dry soil, i.e. the LC,, LC, and LC
Table 5.1. DEM, as a single compound, reduced the number of juveniles by 1 %
(EC,) at 1.15 mg kg dry soil and had an estimated EC,, of 3.7 and EC_; of 10.9 mg
DEM kg™ dry soil (Table 5.1). The DEM concentrations affecting survival (LC) and

s respectively, see Figure S5.1 and
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fecundity (EC)) did not differ much, as also shown by the similar concentration-
response curves (Figure S5.1) and overlapping 95% confidence intervals (Table
5.1). The close effect concentrations for survival and fecundity suggest that DEM
reduces fecundity as a direct consequence of reduced survival and elicits little
sublethal toxic effect.

Table 5.1: Toxicity of diethyl maleate (DEM) on reproduction (EC) and survival (LC)
and its effect on the toxicity of imidacloprid and thiacloprid to the reproduction of
Folsomia candida after 21 days of exposure in LUFA2.2 soil. EC,, EC, and EC, are effective
concentrations reducing juvenile numbers by 1, 10 and 50 % compared to the control,
respectively. LC,, LC,, and LC,; are lethal concentrations reducing adult survival by 1, 10 and
50 %, respectively. Values in parenthesis are 95% confidence intervals calculated using the
delta method.

Exposure DEM EC, EC,, EC,,
(mg kg' dry soil) (mg kg’ dry soil) (mgkg' dry soil) (mg kg’ dry soil)

Imidacloprid 0 0.02 (0:0.05) 0.08 (0.03:0.12) 0.24 (0.19:0.29)

1 0.06 (0.01:0.12) 0.15(0.08:0.22) 0.32(0.26:0.37)

6 0.02 (0:0.04) 0.07(0.03:0.11) 0.24 (0.17:0.30)
Thiacloprid 0 0.09(-0.02:0.19)  0.44 (0.14:0.74) 1.94 (1.35:2.53)

1 0.12(-0.02-0.19)  0.52(0.18:0.85) 1.96 (1.41:2.50)

6 0.20(-0.02:0.43)  0.72(0.28:1.16) 2.28(1.71:2.86)
DEM NA 1.15(-1.90:4.21)  3.70(-1.75:9.16)  10.8 (5.49:16.1)
DEM NA 2.99(0.31:5.66) 6.73(3.63:9.83) 14.18(10.61:17.75)

Effects of DEM on neonicotinoid toxicity to springtail fecundity

The neonicotinoids thiacloprid and imidacloprid did not cause sufficiently high
adult mortality at their test highest concentrations, therefore no LC, values could

be calculated. Thiacloprid reduced juvenile counts with EC,, EC,,, and EC, values

10
0f 0.09, 0.44, and 1.94 mg kg™ dry soil, respectively (Table 5.1). The EC values were
not affected by DEM exposure as their 95 % confidence intervals were overlapping.
The concentration-response curves for each level of DEM were overlapping or at
least adjacent, see Figure 5.1. Also, the EC,, estimates did not differ between the
levels of DEM exposure (p=0.66, Loglikelihood Ratio Test). Combined, the results
indicate no influence of DEM exposure on the toxicity of thiacloprid to springtail

fecundity.
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Figure 5.1: The effect of diethyl maleate (DEM) on the toxicity of the neonicotinoids
imidacloprid (A) and thiacloprid (B) to the fecundity of the springtail Folsomia candida
after 21 days exposure in LUFA2.2 soil. Juvenile counts per sample are shown as markers.
Lines show the fit to the data of the three-parameter logistic model. Line and marker type
vary per level of DEM: solid lines and squares for 0 mg kg” dry soil, long-dashed lines and
circles for 1 mg DEM kg dry soil and short-dashed lines and triangles for 6 mg DEM kg dry
soil.

In the absence of DEM, the estimated EC,, EC
of imidacloprid on springtail fecundity were 0.02, 0.08, and 0.24 mg kg' dry

. and EC, values for the effects
soil, respectively (Table 5.1). The EC -estimates for the effects of imidacloprid
on springtail fecundity showed overlapping 95 % confidence intervals between
the different levels of DEM exposure, see Table 5.1. The concentration-response
curves largely overlapped for intermediate till high concentrations of imidacloprid,
i.e. 0.1 mg kg' dry soil and above, indicating similar effects of imidacloprid on
springtail fecundity independent of DEM exposure. The comparison of the
EC,,-values between the levels of DEM showed moderate effects of DEM on
imidacloprid toxicity (p=0.07, Loglikelihood Ratio Test). However, as the 95%
confidence intervals of the EC values largely overlapped, we conclude that DEM
also did not alter the toxicity of imidacloprid to springtail fecundity.

Our data indicate that when applied in combination with the two neonicotinoids,
DEM did not alter the toxicity of either thiacloprid or imidacloprid. Most research
investigating the influence of DEM exposure on neonicotinoid toxicity has been
performed on neonicotinoid-resistant insect pests with the aim to provide evidence
that increased GST enzymatic activity contributes to neonicotinoid resistance.
Imidacloprid is the most well studied neonicotinoid in this body of research. No
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influence of DEM on the survival of the neonicotinoid susceptible strains of brown
planthopper, melon/cotton aphid (Aphis gossypii), sweet potato whitefly (Bemisia
tabaci) or the English grain aphid (Sitobion avenae) under imidacloprid exposure
was found (Bao et al., 2016; Salehi-Sedeh et al., 2020; Seyedebrahimi et al., 2016; B.
Z. Zhang et al., 2020). DEM also did not influence the toxicity of the neonicotinoid
dinotefuran to the survival of the melon/cotton aphid A. gossypii (A. Chen et al.,
2020). Lastly, no influence was found of DEM on the toxicity of the neonicotinoid
acetamiprid to the honey bee (Apis mellifera) and the Iwasa sweet potato whitefly
(B. tabaci) (Feng et al., 2010; Iwasa et al., 2004). Therefore, our results are in line
with previous findings that GST inhibition by DEM does not increase the toxicity of
neonicotinoids to insects and related organisms like springtails.

Gene expression responses to DEM and neonicotinoids.

For gene expression responses, the adherence of the Generalized Additive Models'
fit to homogeneity was confirmed by inspecting frequency and quantile-quantile
plots, see Figure S5.2 and Figure S5.3. No noteworthy deviation from the residuals

to homogeneity was found.

Neonicotinoid exposure did not influence the gene expression of VgR and GST3, see
Figure 5.2. Both neonicotinoids enhanced the expression of nAchR and imidacloprid
also enhanced the expression of HSP70. The gene expression patterns upon
thiacloprid exposure are different from those under imidacloprid exposure by one
key aspect: imidacloprid induced gene expression in a concentration-dependent
manner, while gene expression upon thiacloprid exposures was at maximum
or minimum at intermediate exposure levels and returned to control levels at
high exposure concentrations (see Figure 5.2). Similarly, previous findings in F.
candida found enhanced gene expression of nAchR under the exposure of both
neonicotinoids and non-linear gene expression patterns of various biomarkers
upon thiacloprid exposure (Bakker et al., 2022). Previous findings and the results of
this work indicate that different molecular mechanisms mediate the toxicity of the
two neonicotinoids at higher exposure levels.
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Figure 5.2: The influence of diethyl maleate (DEM) on the gene expression of the
springtail Folsomia candida induced by 48 hours exposure to the neonicotinoids
imidacloprid (A) or thiacloprid (B) in LUFA2.2 soil. Each panel represents the results of
one gene, the abbreviations are listed in the portrait headers: nicotinic Acetylcholine Receptor
subunit alpha1 (nAchR), Glutathione-s-Transferase 3 (GST3), Vitellogenin Receptor (VgR) and Heat
Shock Protein 70 (HSP70). Below the names are the significance levels of the generalized
additive models (GAMs) smooth terms of neonicotinoid (NN) and DEM (D). Significance levels
of the smooth terms are depicted by the following symbols: p>0.1 “N.S", p<= 0.1 “.", p<= 0.05
“*" p<=0.01“**". GAM mean functions are shown in solid lines, the 95 % confidence intervals
as outlined transparent bands, and dots depict the log2-transformed normalized expression
values. Each level of DEM exposure is shown as a separate color, i.e. blue, orange and red
for 0, 10 and 20 mg DEM kg dry soil, respectively. Mean function and confidence interval
outlined bands are shown in grey when the influence of DEM was not included in the GAM
model fit.

DEM increased the expression of HSP70 and VgR under the mutual exposure with
both neonicotinoids, see Figure 5.2. For both genes, expression was increased
by DEM exposure compared to neonicotinoid exposure in the absence of DEM.
The extent by which DEM induced the expression of VgR and HSP70 was similar
between the two levels of DEM as indicated by overlapping confidence intervals,
see Figure 5.2. The influence of DEM on nAchR and GST3 was different in the mutual
exposures to the two neonicotinoids. Under mutual exposure with thiacloprid,
DEM decreased the expression of nAchR and altered the expression of GST3. GST3
expression was increased at 10 mg DEM kg™ dry soil and decreased by 20 mg DEM
kg dry soil under co-exposure with thiacloprid, showing a non-linear response of
GST3 to DEM exposure. Hence, the results indicate that thiacloprid toxicity exerts
a stronger oxidative stress response compared to imidacloprid because the gene

126



Validation of biomarkers for neonicotinoid exposure in
Folsomia candida under mutual exposure to diethyl maleate

expression of all four biomarkers was altered only following mutual exposure to
DEM with thiacloprid.

Sillapawattana & Schaffer (2017) observed GST3 upregulation and increased GST
enzymatic activity under imidacloprid exposure. They offered three scenarios
for their findings: 1) GSTs bind neonicotinoids or their toxic metabolites without
metabolism, similar to how GSTs mediate pyrethroid insecticide toxicity (Ketterman
et al., 2011); 2) GSTs are directly involved in the metabolism of neonicotinoids
or their metabolites by conjugation with GSH; 3) GSTs remove Reactive Oxygen
Species (ROS) produced by neonicotinoid metabolism or its toxic effects. In
this work, we observed no upregulation of the GST3 by the two neonicotinoids.
Therefore, we found no evidence to supports these scenarios. We did find that
oxidative stress conditions were increased by DEM. Support for this comes from
the expression of VgR and HSP70. Both genes perform a diverse set of functions
(Perez & Lehner, 2019; Wu et al., 2021) and have both been linked to the oxidative
stress response (King & Macrae, 2015; Seehuus et al., 2006). Various GSTs are
encoded by F. candida and it is possible that other GSTs are involved in the direct
metabolism of neonicotinoids or its metabolites and respond to neonicotinoid
exposure. Future research into the expression of these GSTs under neonicotinoid
exposure is needed to refute or support the three scenarios. For the biomarker
GST3, we found that its gene expression was no reliable indicator of neonicotinoid
exposure, neither for imidacloprid nor for thiacloprid.

The gene-expression results suggest that DEM exposure increases oxidative stress
conditions and altered the gene-expression patterns of all candidate biomarkers
under mutual exposure with at least one neonicotinoid. However, for both
neonicotinoids no effects of DEM exposure were found on neonicotinoid toxicity
to F. candida fecundity. Toxicity is multifaceted and can relate to, among others,
behavior, reproduction or survival. A possible explanation for the observed effect
of DEM on gene expressions and not fecundity, could be that DEM has little
sublethal effects and, hence, has fewer interaction effects with neonicotinoids
affecting reproduction. Secondly, the gene-expression is a more specific and
sensitive metric of pesticide exposure compared to fecundity and precedes effects
observed on the phenotype. Therefore, effects can be observed not (yet) affecting
downstream phenotypic measures of toxicity.
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The effects of toxics on gene expression is diverse and, hence, multiple biomarkers
have to be combined in order to provide a reliable read-out of pesticide soil pollution
(Lionetto et al.,, 2019). No suitable selection of candidate biomarkers has been
identified in this study to indicate neonicotinoid exposure. However, the aim of this
study was to investigate the influence of oxidative stress on biomarker reliability not
provide a comprehensive panel of biomarkers. In our previous study, we found that
the expressions of nAchR and Sodium-Coupled Monocarboxylate Transporter (SMCT)
1 were reliable indicators of neonicotinoid exposure when used in combination
(Bakker et al., 2022). Therefore, future studies should attempt to incorporate novel
biomarkers into a panel that includes nAchR and SMCT for neonicotinoid exposure.
The current work provides a tool, i.e. mutual exposure with DEM, for testing the
resulting biomarker reliability under varying oxidative stress conditions.

Conclusion

Our goal was to investigate the reliability of Folsomia candida (springtail)
biomarkers as indicators of neonicotinoid exposure in soil under increased
oxidative stress conditions exerted by co-exposure to DEM, a metabolic inhibitor
of GST enzymes. In particular, we surveyed the previously described imidacloprid
biomarker GST3 (Sillapawattana & Schaffer, 2017). We found that DEM did not
influence the toxicity of two neonicotinoids, i.e. imidacloprid and thiacloprid, to
springtail fecundity. Moreover, both neonicotinoids did not affect the expression
of GST3. However, DEM exposure influenced the gene expression of VgR and HSP70
under mutual exposure with both neonicotinoids. Combined, the results indicate
that GST enzyme activity does not strongly mediate neonicotinoid toxicity to
springtail fecundity and that the expression of GST3 is not a reliable biomarker for
neonicotinoid exposure. Additionally, we observed that the gene expression of all
considered candidate biomarkers was altered by DEM co-exposure, at least for one
of the two neonicotinoids. This suggests that increased oxidative stress conditions
are an important factor for the reliability of biomarkers indicating neonicotinoid
exposure. Therefore, our data support the hypothesis that DEM could provide a
“stress-test” to study biomarker reliability under such conditions. The results of
this work give insights into the influence of GST-mediated biotransformation on
neonicotinoid toxicity and indicate that different molecular mechanisms mediate
the toxicity of imidacloprid and thiacloprid in an important soil ecotoxicological
model species.
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Chapter 5

Table S5.2: Concentrations of imidacloprid and thiacloprid in LUFA2.2 soil measured
on the day of soil spiking and the end of the 21-day exposure of Folsomia candida.
Recovery was calculated by dividing the measured over the nominal concentration and
expressing it as a percentage. The recovery is not calculated for the samples analyzed after
21 days exposure, or if the nominal concentration was zero (shown as NA, not applicable).

L nominal concentration measured concentration Recoveries
neonicotinoid d

(mg kg'dry soil) (mg kg'dry soil) (%)
Imidacloprid 0 0 0 NA
0.2 0 0.18 90
0.2 0 0.17 84
0.2 0 0.19 96
0.4 0 0.36 90
0.4 0 0.31 78
0.4 0 0.32 81
0.4 21 0.28 NA
Thiacloprid 0 0 0 NA
2 0 2.04 102
2 0 1.68 84
2 0 2.16 108
2 21 0.05 NA

Table S5.3: Reference group (control) performance of Folsomia candida in LUFA2.2 soil
in toxicity tests with diethyl maleate (DEM) and/or the neonicotinoids imidacloprid
or thiacloprid. Reference groups were exposed to soils only treated with demineralized
water, pretreated with acetone or pretreated with acetone and either 1 or 6 mg DEM kg™
abbreviated as water, acetone and DEM 1 or DEM 6, respectively. Also added are the validity
criteria according to the OECD guideline 232 (OECD, 2016). The reference group of DEM 6
in the thiacloprid test and water control of the DEM test are marked in bold as they did not
meet these criteria with a coefficient of variance of 32 and 36 %, respectively.

Compounds “ope  mortality %) | count  variance ()
Imidacloprid and DEM water 20 964 (N
acetone 8 991 11
DEM 1 18 771 12
DEM 6 10 820 19
Thiacloprid and DEM water 8 743 18
acetone 16 843 30
DEM 1 6 822 19
DEM 6 6 852 32
DEM water 10 670 36
acetone 8 695 21
OECD validity criteria <20% >100 <30
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Validation of biomarkers for neonicotinoid exposure in
Folsomia candida under mutual exposure to diethyl maleate
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Figure S5.1: The effects of diethyl maleate (DEM) on the survival (A) and reproduction
(B) of Folsomia candida after 21 days exposure in LUFA 2.2 soil. The juvenile and adult
counts are shown as circles on the panels, the solid line shows the fit of a three-parameter
logistic model. Concentrations affecting survival and reproduction by 10 % and 50 %, LC,;
and LC, (A) or EC, and EC, (B)respectively, are shown as red and orange. Whiskers show the
95% confidence interval estimators as obtained using the delta method.
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Figure S5.2: Adherence of the residual distribution to homogeneity shown as quantile-
quantile plots (A) and histogram frequency plots (B) for all Generalized Additive
Models (GAMs) fitted on log2-transformed normalized gene expression measured by
PCR from Folsomia candida exposed for 48 hours to imidacloprid and diethyl maleate
(DEM) in LUFA2.2 soil. Residuals are shown as dots on the quantile-quantile plot panels (A),
a solid black line indicates perfect adherence to homogeneity with grey bands indicating 95
% confidence intervals. Residuals are shown as ticks on the x-axis of the histogram frequency
plots (B) with their frequency of occurrence indicated by the height of the bars. Each plot
shows the result of one primer set, their names are abbreviated above the panels: nicotinic
Acetylcholine Receptor subunit alpha 1 (nAchR), Glutathione-S-Transferase 3 (GST3), Vitellogenin
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Receptor (VgR) and Heat Shock Protein 70 (HSP70).
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Figure S5.3: Adherence of the residual distribution to homogeneity shown as quantile-
quantile plots (A) and histogram frequency plots (B) for all Generalized Additive
Models (GAMs) fitted on log2-transformed normalized gene expression measured by
gPCR from Folsomia candida exposed for 48 hours to thiacloprid and diethyl maleate
(DEM) in LUFA2.2 soil. Residuals are shown as dots on the quantile-quantile plot panels (A),
asolid black line indicates perfect adherence to homogeneity with grey bands indicating 95 %
confidence intervals. Residuals are shown as ticks on the x-axis on the histogram frequency
plots (B) with their frequency of occurrence indicated by the height of the bars. Each plot
shows the result of one primer set, their names are abbreviated above the panels: nicotinic
Acetylcholine Receptor subunit alpha 1 (nAchR), Glutathione-S-Transferase 3 (GST3), Vitellogenin
Receptor (VgR) and Heat Shock Protein 70 (HSP70).
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Chapter 6

In this Ph.D. thesis, | investigated various aspects of the toxicogenomic fingerprint
identification and subsequent biomarker development in the springtail Folsomia
candida (Collembola) for assessing pesticide contamination in soil.

My research questions were divided into two categories:
1. How to identify toxicogenomic fingerprints?
2. Arebiomarkers derived from toxicogenomic fingerprints robust indicators
of neonicotinoid exposure under various stress conditions?

How to identify toxicogenomic fingerprints?

This work addressed various questions for toxicogenomic fingerprint identification.
1. What is the most opportune exposure duration for toxicogenomic
fingerprint identification?
2. Can multiple omics data types be combined for toxicogenomic fingerprint
identification?
3. Arethe current statistical methods suitable for identifying toxicogenomic
fingerprints?

What is the most opportune exposure duration for toxicogenomic
fingerprint identification?

| sought to identify toxicogenomic fingerprints for diagnosing pesticide-soil
pollution. In chapter 2, | analyzed time-resolved transcriptomic and proteomic
data from F. candida under imidacloprid exposure and found that the most
opportune timepoint for toxicogenomic fingerprint identification was 48 hours
post the onset of exposure. Remarkably, this timepoint was already the most
commonly used exposure duration for F. candida gene-expression surveys (M. E.
de Boer etal., 2009, 2011; T. E. de Boer et al., 2010; Nota et al., 2009; Sillapawattana
& Schaffer, 2017). One might argue that a standardized exposure duration for
toxicants with varying toxicodynamics and toxicokinetics would hamper our
ability to link omics results obtained under such a timepoint to toxicity occurring
on the phenotype. In other words, every toxicant has a different rate of uptake,
distribution, metabolism, and excretion and, therefore, differential rates at which
its mechanisms of toxic action occur (Aschieri et al., 2003; Jager, 2020). These
differential rates may hamper our ability to link the cause and consequence of
toxic exposure from responses observed at the molecular level to adverse effects
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on the phenotype, e.g., reproduction. Additionally, in the discussion of chapter 2,
| have argued that the differential transcript and protein abundances observed
at the 48h timepoint could be the result of the influence of imidacloprid on the
response of F. candida to its transfer from a culture on Paris plaster into test soil.
When this is true, it further erodes the biological relevance of the 48h timepoint
for toxicogenomic fingerprint identification as it is not solely indicative of toxic

mechanisms that mediate imidacloprid toxicity.

Resolving the toxicodynamics and toxicokinetics of toxicants is essential to the
prognosis of the possible risk of a toxicant as it improves our prediction of the
mechanisms of interaction that mediate its toxicity. Improving our understanding
of these mechanisms forms the basis for pollution prognosis and diagnosis.
However, it is difficult to extrapolate such findings to field-relevant conditions as
environmental pollution is complex, and soil type, climatic factors, and mixture
components will influence the toxicodynamics and toxicokinetics of every
toxicant in a mixture (van Gestel, 2012). Therefore, resolving toxicodynamics and
toxicokinetics when pursuing pollution diagnosis is somewhat fruitless. Perhaps,
omics data may one day provide a single high-throughput source for identifying
toxicogenomic fingerprints, toxicodynamics, and toxicokinetics (Spurgeon et
al., 2010). Until then, the 48h exposure duration, however arbitrary, provides a
pragmatic way forward to standardize gene and protein surveys in F. candida.

Can multi-omics data be combined for toxicogenomic fingerprint
identification?

The underlying “quantitative assumption” of multi-omics data integration is that
conserved shifts of biomolecule abundances across multiple levels of biological
organization lend more relevance to their associated molecular functions (Rohart
et al, 2017; Yugi et al., 2016). In chapter 2, | demonstrated that the shifts in
transcript and protein abundances from the same gene occurred in the absence
of a time lag. Although this finding seems to provide credibility to the quantitative
assumption of multi-omics data integration, in chapter 2, | also reported two
findings counter to the assumption. First, | did not observe a conserved signature
between the omics data of the affected molecular function of F. candida to
imidacloprid exposure. Second, | found that only a small proportion of the entire
transcriptome and proteome correlated (269 out of 4364 overlapping genes).
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My findings suggest that we should combine the results of multiple omics data
analyses rather than aiming at an integrative approach.

A possible solution for optimizing the quantitative correspondence between
omics data is implementing more advanced models to account for any nonlinear
relationship between shifts in the transcript and protein abundances (X. Zhang et
al., 2018). Although | am confident that this will improve multi-omics integration,
this approach does not address my most fundamental concern. In chapter 1, |
discussed that shifts in the transcript and protein abundances have different
meanings. Transcription occurs within minutes, while protein levels are affected
in hours (Canzler et al., 2020). Meanwhile, transcripts have a high turnover and
proteins a slow turnover, i.e., minutes or hours to months (Canzler et al., 2020).
Lastly, the relationship between the transcript's abundances and its function
is strongly correlated. In contrast, the protein abundance does not indicate its
function, e.g., enzymatic activity. Therefore, | concluded in chapter 2 that the
transcriptome can be seen as a direct proxy of energy expenditure, the proteome
of energy investment. In light thereof, the true power of multi-omics data analysis
is not their quantitative correspondence, i.e., integration, but rather their ability to
provide information on separate processes that coincide. Combining the results of
omics data analysis is more valuable to understanding mechanisms that mediate
toxicity than when their analysis is forced into one integrated approach.

Are the current statistical methods suitable for identifying
toxicogenomic fingerprints?

For the application of toxicogenomic fingerprints in diagnosing pesticide soil
contamination, the reliability of gene expression patterns in indicating pollution
should be monitored under varying exposure conditions, such as pesticide
mixtures and stress intensities. Exposure conditions however, are highly variable
in agricultural soils (Pelosi et al., 2021; Silva et al., 2019). Therefore, in chapter 3,
| obtained transcriptomic data from F. candida under mixture exposure of two
neonicotinoids, imidacloprid and clothianidin, or imidacloprid and cyproconazole
(an azole fungicide). The exposures were in a grid design finely resolved for
stress intensities. From these data, | obtained toxicogenomic fingerprints for
neonicotinoids and cyproconazole, and validated that biomarkers derived from
these toxicogenomic fingerprints remained robust indicators for the exposure of
either imidacloprid or cyproconazole even under combined exposure.
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Transcriptomic data obtained under the mixture exposure contains high variability
of gene expression, nonlinear concentration-expression patterns, and genetic
interaction effects (Altenburger et al., 2012). In chapter 3, | argued that current
differential gene expression analysis methods are unsuitable for assessing
transcriptomic data primarily due to their implementation of parametric models.
Therefore, we implemented Gaussian Process models to identify differential
gene-expression patterns for the type of pesticide exposure, even from data that
contains all three challenges of mixture transcriptomic data. The new approach
was successful in the identification of toxicogenomic fingerprints for both
neonicotinoid and cyproconazole exposure.

After identifying toxicogenomic fingerprints, further measures are required to
assess their reliability in indicating the exposure intensity. To explain how this
can be done, | have to refer again to the dynamic energy budget (Jager, 2020). At
any given moment, an organism’s energy uptake and storage limit its actions, i.e.,
its energy budget. The energy budget expenditure consists of three parts: first,
in the absence of stress, energy will be distributed between resource acquisition,
development, and reproduction. Second, under severe stress, the universal stress
response is prioritized. Third, under mild stress, the specific-stress response is
dominant - the latter consists of specific actions that vary between types of stress,
i.e., the toxicogenomic fingerprints. Therefore, the ratios between these three
types of energy expenditure can provide a read-out of the type and intensity
of toxic exposure (Murphy et al., 2018). The transcriptome would be ideal as it
captures the broadest spectrum of these actions from any omics data type, and
transcript performance, i.e., protein synthesis, is more directly relatable to the
transcript's abundance than proteins or metabolites (Canzler et al., 2020). Even
though transcriptomics does not provide a direct measure of energy storage in
lipids, proteins, or metabolites, it can measure the proportion of the transcriptome
involved in energy extraction from or deposition in storage. By relating
toxicogenomic fingerprints (i.e., exposure indicators) to the dynamic energy budget
expenditure, toxicogenomic fingerprints become not only an exposure indicator
but also an effect-based indicator. In summary, after identifying toxicogenomic
fingerprints, i.e., the specific stress response, their expression must be related to
the energy budget before the intensity of exposure can be determined.

In order to infer shifts in the dynamic energy budget from transcriptomics, new
methods must be developed. These shifts can only be detected when the relative
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expression of genes under one condition can be compared to the same relative
expression in another condition. Currently, a method based on weighted gene
co-expression network analysis (WGCNA) is one of the few that allows for such an
assessment(Langfelder & Horvath, 2008). This framework calculates the correlation
between gene expression in an assay and compares the resulting correlation
network in various conditions. This approach is referred to as differential network
analysis (Shojaie, 2021). However, the method of WGCNA is over 14 years old and
ill-adapted to large experiments due to computational constraints when calculating
the correlation of gene-to-gene expressions and subsequent comparison of
the gene co-expression networks. Feature compression can resolve these
constraints by combining genes based on their expression patterns and sequence
similarity. Calculating the correlation of the expression patterns of all genes (n)
in an assay is a computational cost of n? i.e., the computation cost increases
exponentially per gene. When comparing networks between conditions, the size
of the network n? is compared to a network of n? in another condition. Likewise,
per gene, the computational costs for network comparison grow exponentially.
The computational cost savings of feature compression is exponential for two
computationally intense steps of the WGCNA approach. Moreover, the WGCNA
software currently only accommodates assessing a linear correlation between
gene cluster expression and an experimental condition (Langfelder & Horvath,
2008). Future endeavors should seek to implement nonlinear experimental-
condition to gene-expression relationships. Implementing both additions to the
WGCNA approach would prove a powerful tool for tracking the correlation of
gene clusters and their molecular function under varying stress conditions. The
improved WGCNA differential network analysis will allow scientists to track gene
expression between conditions and relative to each other. This may provide a
means to link toxicogenomic fingerprint expression to other expenditures of the
dynamic energy budget.

Are biomarkers derived from toxicogenomic fingerprints robust
indicators of neonicotinoid exposure?

In chapters 2 and 3, | identified toxicogenomic fingerprints and derived various
biomarkers for neonicotinoid exposure. In chapters 4 and 5, | have demonstrated
a high variability of these biomarker expressions under mutual exposure of two
neonicotinoids, imidacloprid and thiacloprid, together with two metabolicinhibitors
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piperonyl butoxide (PBO) and diethyl maleate (DEM). | elected imidacloprid
and thiacloprid as these have differential toxicity to springtail reproduction
and survival (de Lima e Silva et al., 2017, 2021). In bee species, this differential
toxicity is attributed to varying rates of detoxification of these neonicotinoids
by biotransformation enzymes (Beadle et al., 2019; Manjon et al., 2018). The
metabolomic inhibitors provided a “stress-test” by their probable inhibition of
biotransformation enzymes. Chapters 4 and 5 sought to identify biomarkers
that remained reliable indicators for both neonicotinoids even under metabolic
inhibition of their primary route of detoxification. Using the same statistical
approach based on Generalized Additive Models (GAMs), | investigated biomarker
reliability for indicating exposure to both neonicotinoids. | found that no biomarker
could reliably indicate the exposure of both neonicotinoids in the presence of both
metabolic inhibitors. For example, the expression of the neonicotinoid target site,
nicotinic acetylcholine receptor (nAChR), was overall increased by exposure to either
neonicotinoid. However, under metabolic inhibition, nAChR expression varied;
hence, the expression did not reliably indicate neonicotinoid exposure intensity in
all cases. Therefore, | concluded that multiple biomarkers must be integrated into
a single panel for diagnosing neonicotinoid soil pollution. When combined, these
biomarkers remain robust indicators of neonicotinoid pollution.

I am not alone in proposing multiple biomarker integration into a single panel for
diagnosing environmental pollution (Fontanetti et al., 2011; Lionetto et al., 2019).
We argue that the effects of toxic exposure vary; therefore, multiple biomarkers
must be incorporated into a single panel to capture this range of effects. However,
extending a biomarker panel by including various genes for each pollutant type
is impractical when diagnosing pesticide pollution. Unlike pollutants that activate
pathways solely for exogenic compound detoxification (such as metals), pesticides
inhibit or enhance pathways already expressed in the absence of stress and
synergize with key processes of concern (Hawkins et al., 2019). Baseline expression
of pesticide biomarkers based on endogenous pathways already varies in the
absence of pesticide exposure. Therefore, biomarker expression must not only
be related to its expression under control conditions but also to the expression of
other biomarkers that represent various pathways and key processes of concern.
Following this line of logic, a pesticide exposure biomarker panel must assess
the expression of a vast number of biomarkers. However, these biomarkers
are measured by Real-Time quantitative PCR (qPCR), which imposes practical
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limitations on the possible number of biomarkers in a panel, simply because
there is limited space on gPCR machines, and the labor and material costs of these
surveys increase with the number of biomarkers measured.

A yet not existing methodology to forgo practical limitations on the number of
biomarkers is to measure the transcriptome directly. The advantage is that this
data is unconstrained in any way to the number of genes surveyed and, thereby,
it can remain indicative of the exposure to any (novel) contaminant. However,
the drawback of unconstrained customization is that a method requires a high
degree of expertise and optimization whenever applied to a new type of pollution.
A promising middle ground between gene-expression biomarkers by qPCR and
transcriptomic data for diagnosing pollution is the EcoToxChip. The ExoToxChip
is based on gPCR. However, instead of one gene per well, it measures the
expression of 30 genes per well on a mass-produced 96-well plate (Basu et al.,
2019). As these 96-well plates are mass-produced, labor intensity, the complexity
of the data analysis, and the material costs of EcoToxChip are low. Regrettably,
the EcoToxChip only accommodates (semi-)aquatic organisms missing a vital
section of the terrestrial ecosystem, i.e., the soil. Moreover, whether this method
remains indicative for any type of novel contaminant remains unknown as it has
been developed recently. Developing an EcoToxChip for F. candida risk assessors
will gain clear metrics of soil pollution that can bridge the gap until the academic
community provides a standardized implementation of transcriptomic data for

diagnosing environmental pollution.

The solution to the low reliability of a single biomarker in indicating pesticide
pollution is multiple biomarker integration into a panel. The solution to the low
scalability of incorporating multiple biomarkers into a panel can be the application
of transcriptomic data or an EcoToxChip in diagnosing pesticide soil pollution.
In both cases, we are no longer measuring biomarkers but toxicogenomic
fingerprints. No single gene is measured, rather the expression of entire pathways
or processes of concern is assessed. Therefore, in this section, | argued that we
should move from biomarkers to toxicogenomic fingerprints for diagnosing

complex environmental pollution mixtures.
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The future of ecotoxicogenomics

In the previous sections, | have discussed and given my opinion on various
improvements and future perspectives for toxicogenomic fingerprint identification
and its implementation in environmental risk assessment. Therefore, | will limit
my discussion to one final future perspective of ecotoxicogenomics. My opinions
mentioned above were:

1. The practical benefit of standardized exposure duration for F. candida
gene expression surveys outweighs concerns over differences in toxicant
toxicodynamics and toxicokinetics when applying gene expression for
diagnosing environmental pollution.

2. The combined results of multiple omics data analysis are more valuable
than their integrative assessment.

3. Methodologies are required to assess energy budget allocation by
tracking shifts in gene expression and their molecular function over
various exposure conditions.

4. We should move from biomarkers to toxicogenomic fingerprints for
diagnosing complex environmental pollution mixtures.

If my vision is attenable and successful, toxicogenomic fingerprints could identify
the type of exposure and its intensity. These outcomes match the aims of Adverse
Outcome Pathways (AOPs). However, | believe AOPs remain essential for the
acceptability of, e.g., toxicogenomic fingerprints as a tool for environmental risk
assessment. That the necessity of AOPs is questionable does indicate its main
pitfall: are AOPs a tool for environmental risk assessors or for academics? Of course,
AOPs do not require to submit to either role. Nevertheless, the development of
AOPs will speed up, and its acceptability by a broader community will improve
when we clarify the envisioned role of AOPs.

A crucial first step for the acceptability of AOPs by risk assessors is to identify and
align AOPs to their mindset. The debate surrounding the acceptability of AOPs
by risk assessors often focuses on how mechanisms underlying toxic effects can
be incorporated more accurately into AOPs or their various possible applications
(Garcia-Reyero & Perkins, 2011). | believe we should invert the discussion, not
focus on what is possible but on what is crucial for the end users. Not focus on
possible application, but: what will AOPs allow risk assessors to achieve they
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currently cannot? Not focus on how risk assessors can apply AOPs, but when will
AOPs have failed.

The term toxicogenomic fingerprints convey two crucial aspects: i.e., what it is and
what it does. Toxicogenomic fingerprints are genome-wide molecular imprints by
which we can identify toxic exposure akin to fingerprints for human identification.
In contrast, the term AOP only conveys what it is and not what it does. Other AOP
terminology also does not convey the purpose of its components. For example,
Key Events are defined as necessary and relevant responses of the organism
to toxic exposure (OECD, 2018). Better terminology would be: Key Evens are
reliable and informative responses of the organism allowing the environmental
risk assessment of pollutants. We cannot only improve the current AOP
acceptability by improving terminology, but the end goal should also be to help
prioritize technical developments. Originally, AOPs were designed to be species
and chemical agnostic to allow broad application (Ankley et al., 2010). However,
worthwhile pursuits will allow for quantitative (JAOPs) and domain-specific AOPs
(Becker et al., 2015; LaLone et al., 2013). In other words, it seeks to accurately
correlate responses across different levels of biological organization and allow
species-specific AOPs. First, a gAOP cannot be developed in a species agnostic
manner as the quantitative correspondence between the layers of biological
organization is inevitably not conserved between species. Second, an end-user
can only apply an AOP confidently when assured that the information it provides
is reliable for their species. Therefore, both domain-specific AOPs and qAOPs will
improve the acceptability of the AOP concept as they inform the end-users of the
AOP reliability and in which cases this is ensured. Succinctly, there is a discrepancy
between the developers and users of technology, academics, and risk assessors,
respectively. The developers ask what problem they can solve with their invention.
The users ask whether this technology allows them to achieve their goals more
effectively and reliably.

Conclusion

This thesis provided statistical and methodological approaches to identify
toxicogenomic fingerprints to assess pesticide-soil contamination. First, | identified
the 48h time point as the most opportune moment for toxicogenomic fingerprint
identification. Second, | argued that the results of multiple types of omics data
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could be combined in toxicogenomic fingerprint identification. Third, | proposed
Gaussian Process models for toxicogenomic fingerprint identification. Lastly, the
biomarkers derived from these toxicogenomic fingerprints are “stress-tested”
under metabolic inhibition and deemed robust indicators for neonicotinoid

exposure.

In the general discussion, | am dismissive of toxicodynamics, toxicokinetics, and
certain developments of AOPs without putting the end-user experience first. In
academia, we tend to describe and inform on the technical limitation we face rather
than critically assess the intent that drives our work. Academia focuses on finding
technical solutions and accurately describing complex processes. This tendency
is highly understandable because this is the monopoly of academia in society.
However, one might forget that hidden in my thesis's figures, tables, equations,
and jargon-riddled pages, my research aimed to contribute to methods to diagnose
complex environmental pollution. When concerned with technical details, it is easy
to forget that the world is experiencing its sixth extinction event, and pesticides
contribute to this rapid loss of biodiversity (Eldredge, 2009; FAO, ITPS, GSBI, 2020).
We are running out of time to develop high-throughput methods to diagnose
pesticide pollution and guide abatement efforts. | firmly believe that by letting the
envisioned end-goal guide our research, we can speed up the development and
acceptability of new methodology to this end. Therefore, | want to conclude my
thesis: we are running out of time; let us put intent first.

147







References




Afgan, E., Baker, D., van den Beek, M., Blankenberg, D., Bouvier, D., Cech, M., Chilton, J.,
Clements, D., Coraor, N., Eberhard, C., Gruning, B., Guerler, A., Hillman-Jackson, J., Von
Kuster, G., Rasche, E., Soranzo, N., Turaga, N., Taylor, J., Nekrutenko, A., & Goecks, J.
(2016). The Galaxy platform for accessible, reproducible and collaborative biomedical
analyses: 2016 update. Nucleic Acids Research, 44(W1), W3-W10. https://doi.org/10.1093/
nar/gkw343

Altenburger, R., Scholz, S., Schmitt-Jansen, M., Busch, W., & Escher, B. . (2012). Mixture toxicity
revisited from a toxicogenomic perspective. Environmental Science and Technology, 46(5),
2508-2522. https://doi.org/10.1021/es2038036

Anand, S., Foot, N., Ang, C. S., Gembus, K. M., Keerthikumar, S., Adda, C. G., Mathivanan,
S.. & Kumar, S. (2018). Arrestin-Domain Containing Protein 1 (Arrdc1) Regulates the
Protein Cargo and Release of Extracellular Vesicles. Proteomics, 18(17), 1-6. https://doi.
org/10.1002/pmic.201800266

Ankley, G. T., Bennett, R. S., Erickson, R. ., Hoff, D. J., Hornung, M. W., Johnson, R. D., Mount,
D. R., Nichols, J. W., Russom, C. L., Schmieder, P. K., Serrrano, J. A, Tietge, J. E., &
Villeneuve, D. L. (2010). Adverse outcome pathways: A conceptual framework to support
ecotoxicology research and risk assessment. Environmental Toxicology and Chemistry,
29(3), 730-741. https://doi.org/10.1002/etc.34

Apitz, S. E., Davis, J. W., Finkelstein, K., Hohreiter, D. W., Hoke, R, Jensen, R. H., Jersak, J., Kirtay,
V.J., Mack, E. E., Magar, V. S., Moore, D., Reible, D., & Stahl, R. G. (2005). Assessing and
managing contaminated sediments: part |, developing an effective investigation and
risk evaluation strategy. Integrated Environmental Assessment and Management, 1(1), 2-8.
https://doi.org/10.1897/IEAM_2004a-002.1

Aschieri, P., JurCo, B., Schupp, P., & Wess, J. (2003). Noncommutative GUTs, Standard
Model and C,P,T. Nuclear Physics B, 651(1-2), 45-70. https://doi.org/10.1016/S0550-
3213(02)00937-9

Bakker, R., Ekelmans, A., Xie, L., Vooijs, R., Roelofs, D., Ellers, J., Hoedjes, K. M., & van Gestel,
C. A. M. (2022). Biomarker development for neonicotinoid exposure in soil under
interaction with the synergist piperonyl butoxide in Folsomia candida. Environmental
Science and Pollution Research, 1-17. https://doi.org/10.1007/s11356-022-21362-z

Bakker, R., Xie, L., Vooijs, R., Hoedjes, K. M., & van Gestel, C. A. M. (n.d.). Validation of
biomarkers for neonicotinoid exposure in Folsomia candida under mutual exposure
to diethyl maleate. Environmental Science and Pollution Research, 1-16. https://doi.
org/10.21203/rs.3.rs-1489709/v1

Bao, H., Gao, H., Zhang, Y., Fan, D., Fang, J., & Liu, Z. (2016). The roles of CYP6AY1 and
CYP6ER1 in imidacloprid resistance in the brown planthopper: Expression levels and
detoxification efficiency. Pesticide Biochemistry and Physiology, 129, 70-74. https://doi.
org/10.1016/j.pestbp.2015.10.020

Barsnes, H., & Vaudel, M. (2018). SearchGUI: A Highly Adaptable Common Interface for
Proteomics Search and de Novo Engines. Journal of Proteome Research, 17(7), 2552-2555.
https://doi.org/10.1021/acs.jproteome.8b00175

Basu, N., Crump, D., Head, J., Hickey, G., Hogan, N., Maguire, S., Xia, J., & Hecker, M. (2019).
EcoToxChip: A next-generation toxicogenomics tool for chemical prioritization and
environmental management. Environmental Toxicology and Chemistry, 38(2), 279-288.
https://doi.org/10.1002/etc.4309

Beadle, K., Singh, K. S., Troczka, B. )., Randall, E., Zaworra, M., Zimmer, C. T., Hayward, A., Reid,
R., Kor, L., Kohler, M., Buer, B., Nelson, D. R., Williamson, M. S., Davies, T. G. E., Field,
L. M., Nauen, R., & Bass, C. (2019). Genomic insights into neonicotinoid sensitivity in
the solitary bee Osmia bicornis. PLOS Genetics, 15(2), e1007903. https://doi.org/10.1371/
journal.pgen.1007903

150



References

Becker, R. A., Ankley, G. T., Edwards, S. W., Kennedy, S. W., Linkov, I., Meek, B., Sachana,
M., Segner, H., Van Der Burg, B., Villeneuve, D. L., Watanabe, H., & Barton-Maclaren, T.
S. (2015). Increasing Scientific Confidence in Adverse Outcome Pathways: Application
of Tailored Bradford-Hill Considerations for Evaluating Weight of Evidence. Regulatory
Toxicology and Pharmacology, 72(3),514-537. https://doi.org/10.1016/j.yrtph.2015.04.004

Beckman, R. J., & Weisberg, S. (1987). Applied Linear Regression. In Technometrics (Vol. 29,
Issue 1). https://doi.org/10.2307/1269895

Bielow, C., Mastrobuoni, G., & Kempa, S. (2016). Proteomics Quality Control: Quality Control
Software for MaxQuant Results. Journal of Proteome Research, 15(3), 777-787. https://
doi.org/10.1021/acs.jproteome.5b00780

Binukumar, B. K., & Gill, K. D. (2010). Cellular and molecular mechanisms of dichlorvos
neurotoxicity: Cholinergic, nonchlolinergic, cell signaling, gene expression and
therapeutic aspects. Indian Journal of Experimental Biology, 48(7), 697-709.

Bonmatin, J. M., Giorio, C., Girolami, V., Goulson, D., Kreutzweiser, D. P., Krupke, C., Liess,
M., Long, E., Marzaro, M., Mitchell, E. A, Noome, D. A., Simon-Delso, N., & Tapparo, A.
(2015). Environmental fate and exposure; neonicotinoids and fipronil. Environmental
Science and Pollution Research, 22(1), 35-67. https://doi.org/10.1007/s11356-014-3332-7

Borsuah, J. F., Messer, T. L., Snow, D. D., Comfort, S. D., & Mittelstet, A. R. (2020). Literature
review: Global neonicotinoid insecticide occurrence in aquatic environments. Water
(Switzerland), 12(12), 1-17. https://doi.org/10.3390/w12123388

Brack, W. (2003). Effect-directed analysis: A promising tool for the identification of organic
toxicants in complex mixtures? Analytical and Bioanalytical Chemistry, 377(3), 397-407.
https://doi.org/10.1007/s00216-003-2139-z

Buszewski, B., Bukowska, M., Ligor, M., & Staneczko-Baranowska, I. (2019). A holistic study
of neonicotinoids neuroactive insecticides—properties, applications, occurrence,
and analysis. Environmental Science and Pollution Research, 34723-34740. https://doi.
org/10.1007/s11356-019-06114-w

Camp, A. A., & Lehmann, D. M. (2021). Impacts of Neonicotinoids on the Bumble Bees Bombus
terrestris and Bombus impatiens Examined through the Lens of an Adverse Outcome
Pathway Framework. Environmental Toxicology and Chemistry, 40(2), 309-322. https://doi.
org/10.1002/etc.4939

Canzler, S., Schor, J., Busch, W., Schubert, K., Rolle-Kampczyk, U. E., Seitz, H., Kamp, H., von
Bergen, M., Buesen, R., & Hackermdller, J. (2020). Prospects and challenges of multi-
omics data integration in toxicology. Archives of Toxicology, 94(2), 371-388. https://doi.
org/10.1007/s00204-020-02656-y

Casida, J. E. (2011). Neonicotinoid metabolism: Compounds, substituents, pathways,
enzymes, organisms, and relevance. Journal of Agricultural and Food Chemistry, 59(7),
2923-2931. https://doi.org/10.1021/jf102438c

Chambers, M. C., MacLean, B., Burke, R., Amodei, D., Ruderman, D. L., Neumann, S., Gatto, L.,
Fischer, B., Pratt, B., Egertson, J., Hoff, K., Kessner, D., Tasman, N., Shulman, N., Frewen,
B., Baker, T. A., Brusniak, M. Y., Paulse, C., Creasy, D., ... Mallick, P. (2012). A cross-
platform toolkit for mass spectrometry and proteomics. Nature Biotechnology, 30(10),
918-920. https://doi.org/10.1038/nbt.2377

Chen, A., Zhang, H., Shan, T., Shi, X, & Gao, X. (2020). The overexpression of three cytochrome
P450 genes CYP6CY14, CYP6CY22 and CYP6UN1 contributed to metabolic resistance
to dinotefuran in melon/cotton aphid, Aphis gossypii Glover. Pesticide Biochemistry and
Physiology, 167(March), 104601. https://doi.org/10.1016/j.pestbp.2020.104601

Chen, G., de Boer, T. E., Wagelmans, M., van Gestel, C. A. M., van Straalen, N. M., & Roelofs,
D. (2014). Integrating transcriptomics into triad-based soil-quality assessment.
Environmental Toxicology and Chemistry, 33(4), 900-909. https://doi.org/10.1002/etc.2508

151




Christen, V., & Fent, K. (2017). Exposure of honey bees (Apis mellifera) to different classes
of insecticides exhibit distinct molecular effect patterns at concentrations that mimic
environmental contamination. Environmental Pollution, 226, 48-59. https://doi.
org/10.1016/j.envpol.2017.04.003

Christen, V., Mittner, F., & Fent, K. (2016). Molecular Effects of Neonicotinoids in Honey Bees
(Apis mellifera). Environmental Science and Technology, 50(7), 4071-4081. https://doi.
org/10.1021/acs.est.6b00678

Christen, V., Schirrmann, M., Frey, ). E., & Fent, K. (2018). Global Transcriptomic Effects of
Environmentally Relevant Concentrations of the Neonicotinoids Clothianidin, Imidacloprid,
and Thiamethoxam in the Brain of Honey Bees (Apis mellifera). Environmental Science and
Technology, 52(13), 7534-7544. https://doi.org/10.1021/acs.est.8b01801

Chua, J. P., De Calbiac, H., Kabashi, E., & Barmada, S.J. (2021). Autophagy and ALS: mechanistic
insights and therapeutic implications. Autophagy, 00(00), 1-29. https://doi.org/10.1080/1
5548627.2021.1926656

Claudianos, C., Ranson, H., Johnson, R. M., Biswas, S., Schuler, M. A., Berenbaum, M. R,,
Feyereisen, R., & Oakeshott, . G. (2006). A deficit of detoxification enzymes: Pesticide
sensitivity and environmental response in the honeybee. Insect Molecular Biology, 15(5),
615-636. https://doi.org/10.1111/j.1365-2583.2006.00672.x

Cragg, R. G., & Bardgett, R. D. (2001). ScienceDirect - Soil Biology and Biochemistry How changes
in soil faunal diversity and composition within a trophic group influence decomposition
processes. 33,2073-2081.

Crouau, Y., & Cazes, L. (2003). What causes variability in the Folsomia candida reproduction
test? Applied Soil Ecology, 22(2), 175-180. https://doi.org/10.1016/50929-1393(02)00128-2

Cunningham, F., Achuthan, P., Akanni, W., Allen, J., Amode, M. R.,, Armean, |. M., Bennett, R,
Bhai, J., Billis, K., Boddu, S., Cummins, C., Davidson, C., Dodiya, K. J., Gall, A., Girén, C. G.,
Gil, L., Grego, T., Haggerty, L., Haskell, E., ... Flicek, P. (2019). Ensembl 2019. Nucleic Acids
Research, 47(D1), D745-D751. https://doi.org/10.1093/nar/gky1113

Dastogeer, K. M. G., Tumpa, F. H., Sultana, A., Akter, M. A., & Chakraborty, A. (2020). Plant
microbiome-an account of the factors that shape community composition and diversity.
Current Plant Biology, 23(April), 100161. https://doi.org/10.1016/j.cpb.2020.100161

de Boer, M. E., Berg, S., Timmermans, M.J. T. N., den Dunnen, J. T., van Straalen, N. M., Ellers, J., &
Roelofs, D. (2011). High throughput nano-liter RT-qPCR to classify soil contamination using a
soil arthropod. BMC Molecular Biology, 12. https://doi.org/10.1186/1471-2199-12-11

de Boer, M. E., de Boer, T. E., Marién, J.,, Timmermans, M. J. T. N., Nota, B., van Straalen, N.
M., Ellers, J., & Roelofs, D. (2009). Reference genes for QRT-PCR tested under various
stress conditions in Folsomia candida and Orchesella cincta (Insecta, Collembola). BMC
Molecular Biology, 10. https://doi.org/10.1186/1471-2199-10-54

de Boer, M. E., Ellers, J., Van Gestel, C. A. M., Den Dunnen, . T., Van Straalen, N. M., & Roelofs,
D.(2013). Transcriptional responses indicate attenuated oxidative stress in the springtail
Folsomia candida exposed to mixtures of cadmium and phenanthrene. Ecotoxicology,
22(4), 619-631. https://doi.org/10.1007/510646-013-1053-1

de Boer, T. E., Holmstrup, M., van Straalen, N. M., & Roelofs, D. (2010). The effect of soil
pH and temperature on Folsomia candida transcriptional regulation. Journal of Insect
Physiology, 56(4), 350-355. https://doi.org/10.1016/j.jinsphys.2009.11.004

de Lima e Silva, C., Brennan, N., Brouwer, J. M., Commandeur, D., Verweij, R. A., & van Gestel,
C. A. M. (2017). Comparative toxicity of imidacloprid and thiacloprid to different species
of soil invertebrates. Ecotoxicology, 26(4), 555-564. https://doi.org/10.1007/s10646-017-
1790-7

152



References

de Lima e Silva, C., Rooij, W., Verweij, R. A., & Gestel, C. A. M. (2020). Toxicity in Neonicotinoids
to Folsomia candida and Eisenia andrei. Environmental Toxicology and Chemistry, 39(3),
548-555. https://doi.org/10.1002/etc.4634

de Lima e Silva, C., van Haren, C., Mainardi, G., de Rooij, W., Ligtelijn, M., van Straalen, N.
M., & van Gestel, C. A. M. (2021). Bringing ecology into toxicology: Life-cycle toxicity
of two neonicotinoids to four different species of springtails in LUFA 2.2 natural soil.
Chemosphere, 263. https://doi.org/10.1016/j.chemosphere.2020.128245

de Matthews, A. G., van der Wilk, M., Nickson, T., Fujii, K., Boukouvalas, A., Leén-Villagra,
P., Ghahramani, Z., & Hensman, J. (2017). GPflow: A Gaussian Process Library using
TensorFlow Mark van der Wilk. Journal of Machine Learning Research, 18, 1-6. https://
jmlr.org/papers/v18/16-537.html

Dean, R. T., & Dunsmuir, W. T. M. (2016). Dangers and uses of cross-correlation in analyzing
time series in perception, performance, movement, and neuroscience: The importance
of constructing transfer function autoregressive models. Behavior Research Methods,
48(2), 783-802. https://doi.org/10.3758/513428-015-0611-2

Durinck, S., Spellman, P. T., Birney, E., & Huber, W. (2009). Mapping identifiers for the
integration of genomic datasets with the R/ Bioconductor package biomaRt. Nature
Protocols, 4(8), 1184-1191. https://doi.org/10.1038/nprot.2009.97

Duvenaud, D. K. (2014). Automatic Model Construction with Gaussian Processes. PhD
Thesis, University of Cambridge, Jjune, XIll, 144. https://www.repository.cam.ac.uk/
handle/1810/247281%0Ahttps://www.cs.toronto.edu/~duvenaud/thesis.pdf

EASAC. (2015). Ecosystem Services, Agriculture and Neonicotinoids (Issue April).
Eldredge, N. (2009). E/dridge-6th-extinction. 1-6.

Escher, B. I, Stapleton, H. M., & Schymanski, E. L. (2020). Tracking complex mixtures of
chemicals in our changing environment. Science, 367(6476), 388-392. https://doi.
org/10.1126/science.aay6636

Ewald, J., Soufan, O., Xia, J., & Basu, N. (2021). FastBMD: an online tool for rapid benchmark
dose-response analysis of transcriptomics data. Bioinformatics, 37(7), 1035-1036.
https://doi.org/10.1093/bioinformatics/btaa700

Ewels, P., Magnusson, M., Lundin, S., & Kaller, M. (2016). MultiQC: Summarize analysis results
for multiple tools and samples in a single report. Bioinformatics, 32(19), 3047-3048.
https://doi.org/10.1093/bioinformatics/btw354

Faddeeva-Vakhrusheva, A., Kraaijeveld, K., Derks, M. F. L., Anvar, S. Y., Agamennone, V.,
Suring, W., Kampfraath, A. A, Ellers, J., Le Ngoc, G., van Gestel, C. A. M., Marién, J., Smit,
S., van Straalen, N. M., & Roelofs, D. (2017). Coping with living in the soil: The genome
of the parthenogenetic springtail Folsomia candida. BMC Genomics, 18(1). https://doi.
org/10.1186/512864-017-3852-x

FAO, ITPS, GSBI, S. and E. (2020). State of knowledge of soil biodiversity - Status, challenges
and potentialities. In Soil in the Environment. FAO. https://doi.org/10.4060/cb1928en

Feng, Y., Wu, Q., Wang, S., Chang, X., Xie, W., Xu, B., & Zhang, Y. (2010). Cross-resistance
study and biochemical mechanisms of thiamethoxam resistance in b-biotype bemisia
tabaci (Hemiptera: Aleyrodidae). Pest Management Science, 66(3), 313-318. https://doi.
org/10.1002/ps.1877

Fent, K., Schmid, M., Hettich, T., & Schmid, S. (2020). The neonicotinoid thiacloprid causes
transcriptional alteration of genes associated with mitochondria at environmental
concentrations in honey bees. Environmental Pollution, 266, 115297. https://doi.
org/10.1016/j.envpol.2020.115297

Feyereisen, R. (2018). Toxicology: Bee P450s Take the Sting out of Cyanoamidine
Neonicotinoids.  Current Biology, 28(9), R560-R562. https://doi.org/10.1016/j.
cub.2018.03.013

153




Fontanetti, Carmem, S., Nogarol, Larissa, R., de Souza, Raphael, B., Perex, Danielli, G., &
Maziviero, Guilnerme, T. (2011). Bioindicators and Biomarkers in the assessment of soil
toxicity. Soil Contamination, 143-169.

Fountain, M. T., & Hopkin, S. P. (2005). Folsomia candida (Collembola): A “standard” soil
arthropod. Annual Review of Entomology, 50(February 2005), 201-222. https://doi.
org/10.1146/annurev.ento.50.071803.130331

Garcia-Reyero, N., & Perkins, E. J. (2011). Systems biology: Leading the revolution in
ecotoxicology. Environmental Toxicology and Chemistry, 30(2), 265-273. https://doi.
org/10.1002/etc.401

Gatto, L., & Lilley, K. S. (2012). Msnbase-an R/Bioconductor package for isobaric tagged mass
spectrometry data visualization, processing and quantitation. Bioinformatics, 28(2), 288-
289. https://doi.org/10.1093/bioinformatics/btr645

Glavan, G., & Bozic, J. (2013). The synergy of xenobiotics in honey bee Apis mellifera:
mechanisms and effects. Acta Biologica Slovenica, 56(October 2015), 11-25.

Godfray, H. C. )., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., Pretty, J.,
Robinson, S., Thomas, S. M., & Toulmin, C. (2010). Food Security: The Challenge of Feeding
9 Billion People. Science, 327(5967), 812-818. https://doi.org/10.1126/science.1185383

Goeminne, L. J. E., Sticker, A., Martens, L., Gevaert, K., & Clement, L. (2020). MSqRob Takes
the Missing Hurdle: Uniting Intensity- And Count-Based Proteomics. Analytical Chemistry,
92(9), 6278-6287. https://doi.org/10.1021/acs.analchem.9b04375

Gomez-Eyles, J. L., Svendsen, C., Lister, L., Martin, H., Hodson, M. E., & Spurgeon, D. J.
(2009). Measuring and modelling mixture toxicity of imidacloprid and thiacloprid on
Caenorhabditis elegans and Eisenia fetida. Ecotoxicology and Environmental Safety, 72(1),
71-79. https://doi.org/10.1016/j.ecoenv.2008.07.006

Gornall, J., Betts, R., Burke, E., Clark, R., Camp, J., Willett, K., & Wiltshire, A. (2010). Implications
of climate change for agricultural productivity in the early twenty-first century.
Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554), 2973-2989.
https://doi.org/10.1098/rstb.2010.0158

Goulson, D. (2013). An overview of the environmental risks posed by neonicotinoid
insecticides. Journal of Applied Ecology, 50(4), 977-987. https://doi.org/10.1111/1365-
2664.12111

Gradish, A. E., Van Der Steen, J., Scott-Dupree, C. D., Cabrera, A. R,, Cutler, G. C., Goulson, D.,
Klein, O., Lehmann, D. M., Lickmann, J., O'Neill, B., Raine, N. E., Sharma, B., & Thompson,
H. (2019). Comparison of Pesticide Exposure in Honey Bees (Hymenoptera: Apidae) and
Bumble Bees (Hymenoptera: Apidae): Implications for Risk Assessments. Environmental
Entomology, 48(1), 12-21. https://doi.org/10.1093/ee/nvy168

Gunstone, T., Cornelisse, T., Klein, K., Dubey, A., & Donley, N. (2021). Pesticides and Soil
Invertebrates: A Hazard Assessment. Frontiers in Environmental Science, 9(May), 1-21.
https://doi.org/10.3389/fenvs.2021.643847

Haas, J., & Nauen, R. (2021). Pesticide risk assessment at the molecular level using honey bee
cytochrome P450 enzymes: A complementary approach. Environment International, 147,
106372. https://doi.org/10.1016/j.envint.2020.106372

Haider, S., & Pal, R. (2013). Integrated Analysis of Transcriptomic and Proteomic Data. Current
Genomics, 14(2), 91-110. https://doi.org/10.2174/1389202911314020003

Hawkins, N. J., Bass, C., Dixon, A., & Neve, P. (2019). The evolutionary origins of pesticide
resistance. Biological Reviews, 94(1), 135-155. https://doi.org/10.1111/brv.12440

Hodgson, E., & Levi, P. E. (1999). Interactions of Piperonyl Butoxide with Cytochrome P450.
In Piperonyl Butoxide (pp. 41-ll). Elsevier. https://doi.org/10.1016/B978-012286975-
4/50005-X

154



References

Innocenti, G., & Sabatini, M. A. (2018). Collembola and plant pathogenic, antagonistic and
arbuscular mycorrhizal fungi: A review. Bulletin of Insectology, 71(1), 71-76.

Iwasa, T., Motoyama, N., Ambrose, J. T., & Roe, R. M. (2004). Mechanism for the differential
toxicity of neonicotinoid insecticides in the honey bee, Apis mellifera. Crop Protection,
23(5), 371-378. https://doi.org/10.1016/j.cropro.2003.08.018

Jager, T. (2020). Revisiting simplified DEBtox models for analysing ecotoxicity data.
Ecological Modelling, 416(December 2019), 108904. https://doi.org/10.1016/j.
ecolmodel.2019.108904

Kalaitzis, A. A., & Lawrence, N. D. (2011). A simple approach to ranking differentially
expressed gene expression time courses through Gaussian process regression. BMC
Bioinformatics, 12. https://doi.org/10.1186/1471-2105-12-180

Kaufman, L., & Rousseeuw, P. J. (1990). Finding Groups in Data. In L. Kaufman & P. J.
Rousseeuw (Eds.), Finding Groups in Data: An introduction to Cluster Analysis. John Wiley &
Sons, Inc. https://doi.org/10.1002/9780470316801

Ketterman, A. J., Saisawang, C., & Wongsantichon, J. (2011). Insect glutathione transferases.
Drug Metabolism Reviews, 43(2), 253-265. https://doi.org/10.3109/03602532.2011.5529
11

Kim, S., & Pevzner, P. A. (2014). MS-GF+ makes progress towards a universal database search
tool for proteomics. Nature Communications, 5. https://doi.org/10.1038/ncomms6277

King, A.M.,&Macrae, T.H.(2015). Insectheatshock proteins during stress and diapause. Annual
Review of Entomology, 60, 59-75. https://doi.org/10.1146/annurev-ento-011613-162107

LaLone, C. A, Villeneuve, D. L., Burgoon, L. D., Russom, C. L., Helgen, H. W., Berninger, |J.
P., Tietge, J. E., Severson, M. N., Cavallin, J. E., & Ankley, G. T. (2013). Molecular target
sequence similarity as a basis for species extrapolation to assess the ecological risk of
chemicals with known modes of action. Aquatic Toxicology, 144-145, 141-154. https://
doi.org/10.1016/j.aquatox.2013.09.004

LaLone, C. A, Villeneuve, D. L., Wu-Smart, J., Milsk, R. Y., Sappington, K., Garber, K. V.,
Housenger, J., & Ankley, G. T. (2017). Weight of evidence evaluation of a network of
adverse outcome pathways linking activation of the nicotinic acetylcholine receptor in
honey bees to colony death. Science of the Total Environment, 584-585, 751-775. https://
doi.org/10.1016/j.scitotenv.2017.01.113

Langfelder, P., & Horvath, S. (2008). WGCNA: An R package for weighted correlation network
analysis. BMC Bioinformatics, 9. https://doi.org/10.1186/1471-2105-9-559

Larras, F., Billoir, E., Baillard, V., Siberchicot, A., Scholz, S., Wubet, T., Tarkka, M., Schmitt-
Jansen, M., & Delignette-Muller, M. L. (2018). DRomics: A Turnkey Tool to Support the
Use of the Dose-Response Framework for Omics Data in Ecological Risk Assessment.
Environmental Science and Technology, 52(24), 14461-14468. https://doi.org/10.1021/acs.
est.8b04752

Lee,J.W.,Won, E.]., Raisuddin, S., & Lee, J. S.(2015). Significance of adverse outcome pathways
in biomarker-based environmental risk assessment in aquatic organisms. journal of
Environmental Sciences (China), 35, 115-127. https://doi.org/10.1016/j.jes.2015.05.002

Leung, K. M. Y. (2018). Joining the dots between omics and environmental management.
Integrated Environmental Assessment and Management, 14(2), 169-173. https://doi.
org/10.1002/ieam.2007

Levitsky, L. I., Ivanov, M. V., Lobas, A. A., Bubis, J. A, Tarasova, |. A., Solovyeva, E. M.,
Pridatchenko, M. L., & Gorshkov, M. V. (2018). IdentiPy: An Extensible Search Engine for
Protein Identification in Shotgun Proteomics. Journal of Proteome Research, 17(7), 2249-
2255. https://doi.org/10.1021/acs.jproteome.7b00640

155




Lionetto, M. G., Caricato, R., & Giordano, M. E. (2019). Pollution Biomarkers in Environmental
and Human Biomonitoring. The Open Biomarkers Journal, 9(1), 1-9. https://doi.
org/10.2174/1875318301909010001

Lohning, A. E., & Salinas, A. E. (1999). Glutathione S-transferases--a review. Current Medicinal
Chemistry, 6(January), 279-3009.

Love, M. I, Huber, W., & Anders, S. (2014). Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12), 1-21. https://doi.
org/10.1186/s13059-014-0550-8

Manjon, C., Troczka, B.J., Zaworra, M., Beadle, K., Randall, E., Hertlein, G., Singh, K. S., Zimmer,
C. T., Homem, R. A,, Lueke, B., Reid, R., Kor, L., Kohler, M., Benting, J., Williamson, M.
S., Davies, T. G. E., Field, L. M., Bass, C., & Nauen, R. (2018). Unravelling the Molecular
Determinants of Bee Sensitivity to Neonicotinoid Insecticides. Current Biology, 28(7),
1137-1143.e5. https://doi.org/10.1016/j.cub.2018.02.045

Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing
reads. EMBnet.Journal, 17(1), 10. https://doi.org/10.14806/ej.17.1.200

Mehta, S., Easterly, C. W., Sajulga, R., Millikin, R. J., Argentini, A., Eguinoa, |., Martens, L.,
Shortreed, M. R., Smith, L. M., McGowan, T., Kumar, P., Johnson, J. E., Griffin, T. J., &
Jagtap, P. D. (2020). Precursor intensity-based label-free quantification software tools
for proteomic and multi-omic analysis within the galaxy platform. Proteomes, 8(8), 1-15.
https://doi.org/10.3390/PROTEOMES8030015

Mellacheruvu, D., Wright, Z., Couzens, A. L., Lambert, J. P., St-Denis, N. A,, Li, T., Miteva, Y.V,
Hauri, S., Sardiu, M. E., Low, T. Y., Halim, V. A, Bagshaw, R. D., Hubner, N. C., Al-Hakim,
A., Bouchard, A,, Faubert, D., Fermin, D., Dunham, W. H., Goudreault, M., ... Nesvizhskii,
A. I. (2013). The CRAPome: A contaminant repository for affinity purification-mass
spectrometry data. Nature Methods, 10(8), 730-736. https://doi.org/10.1038/nmeth.2557

Moriya, Y., Itoh, M., Okuda, S., Yoshizawa, A. C., & Kanehisa, M. (2007). KAAS: An automatic
genome annotation and pathway reconstruction server. Nucleic Acids Research,
35(SUPPL.2), 182-185. https://doi.org/10.1093/nar/gkm321

Murphy, C. A, Nisbet, R. M., Antczak, P., Garcia-Reyero, N., Gergs, A., Lika, K., Mathews,
T., Muller, E. B., Nacci, D., Peace, A,, Remien, C. H., Schultz, I. R, Stevenson, L. M., &
Watanabe, K. H. (2018). Incorporating Suborganismal Processes into Dynamic Energy
Budget Models for Ecological Risk Assessment. Integrated Environmental Assessment and
Management, 14(5), 615-624. https://doi.org/10.1002/ieam.4063

Nakamori, T., Fujimori, A., Kinoshita, K., Ban-nai, T., Kubota, Y., & Yoshida, S. (2010). mRNA
expression of a cadmium-responsive gene is a sensitive biomarker of cadmium exposure
in the soil collembolan Folsomia candida. Environmental Pollution, 158(5), 1689-1695.
https://doi.org/10.1016/j.envpol.2009.11.022

Nota, B., Bosse, M., Ylstra, B., van Straalen, N. M., & Roelofs, D. (2009). Transcriptomics reveals
extensive inducible biotransformation in the soil-dwelling invertebrate Folsomia candida
exposed to phenanthrene. BMC Genomics, 10, 1-13. https://doi.org/10.1186/1471-2164-
10-236

OECD. (2016). Collembolan reproduction test in soil. Guidelines for Testing Chemicals 232, July.

OECD.(2018). Users Handbook supplement to the Guidance Document for developing and assessing
Adverse Outcome Pathways. 1, 60. https://doi.org/https://doi.org/10.1787/5jlv1m9d1g32-
en

Pantano, L. (2020). DEGreport: Report of DEG analysis. http://Ipantano.github.io/DEGreport/

Pathiraja, D., Wee, J., Cho, K., & Choi, I. G. (2022). Soil environment reshapes microbiota
of laboratory-maintained Collembola during host development. Environmental
Microbiomes, 17(1), 1-14. https://doi.org/10.1186/s40793-022-00411-7

156



References

Patro, R., Duggal, G., Love, M. I, Irizarry, R. A., & Kingsford, C. (2017). Salmon provides fast
and bias-aware quantification of transcript expression. Nature Methods, 14(4), 417-419.
https://doi.org/10.1038/nmeth.4197

Pelosi, C., Bertrand, C., Daniele, G., Coeurdassier, M., Benoit, P., Nélieu, S., Lafay, F., Bretagnolle,
V., Gaba, S., Vulliet, E., & Fritsch, C. (2021). Residues of currently used pesticides in soils
and earthworms: A silent threat? Agriculture, Ecosystems and Environment, 305(September
2020). https://doi.org/10.1016/j.agee.2020.107167

Perez, M. F., & Lehner, B. (2019). Vitellogenins - Yolk Gene Function and Regulation in
Caenorhabditis elegans. Frontiers in Physiology, 10(August). https://doi.org/10.3389/
fphys.2019.01067

Pfaff, J., Reinwald, H., Ayobahan, S. U., Alvincz, J., Gockener, B., Shomroni, O., Salinas, G.,
During, R. A., Schafers, C., & Eilebrecht, S. (2021). Toxicogenomic differentiation of
functional responses to fipronil and imidacloprid in Daphnia magna. Aquatic Toxicology,
238(July). https://doi.org/10.1016/j.aquatox.2021.105927

Pisa, L. W., Amaral-Rogers, V., Belzunces, L. P., Bonmatin, J. M., Downs, C. A., Goulson, D.,
Kreutzweiser, D. P., Krupke, C., Liess, M., Mcfield, M., Morrissey, C. A., Noome, D. A,
Settele, J., Simon-Delso, N., Stark, J. D., Van Der Sluijs, J. P., Van Dyck, H., & Wiemers, M.
(2014). Effects of neonicotinoids and fipronil on non-target invertebrates. Environmental
Science and Pollution Research, 22(1), 68-102. https://doi.org/10.1007/s11356-014-3471-x

Pitombeira de Figueirédo, L., Daam, M. A., Mainardi, G., Marién, J., Espindola, E. L. G., van
Gestel, C. A. M., & Roelofs, D. (2019). The use of gene expression to unravel the single
and mixture toxicity of abamectin and difenoconazole on survival and reproduction
of the springtail Folsomia candida. Environmental Pollution, 244, 342-350. https://doi.
org/10.1016/j.envpol.2018.10.077

Plummer, J. L., Smith, B. R, Sies, H., & Bend, J. R. (1981). Chemical depletion of glutathione
in vivo. In Methods in Enzymology (Vol. 77, pp. 50-59). https://doi.org/10.1016/S0076-
6879(81)77010-1

Qiao, M., Wang, G. P., Zhang, C., Roelofs, D., van Straalen, N. M., & Zhu, Y. G. (2015).
Transcriptional profiling of the soil invertebrate Folsomia candida in pentachlorophenol-
contaminated soil. Environmental Toxicology and Chemistry, 34(6), 1362-1368. https://doi.
org/10.1002/etc.2930

Raimets, R., Karise, R., Mand, M., Kaart, T., Ponting, S., Song, J., & Cresswell, J. E. (2017).
Synergistic interactions between a variety of insecticides and an ergosterol biosynthesis
inhibitor fungicide in dietary exposures of bumble bees (Bombus terrestris L.). Pest
Management Science, December. https://doi.org/10.1002/ps.4756

Redler, R. L., & Dokholyan, N. V. (2012). The complex molecular biology of Amyotrophic
Lateral Sclerosis (ALS). In Progress in Molecular Biology and Translational Science (Vol.
107). https://doi.org/10.1016/B978-0-12-385883-2.00002-3

Reeb, P. D., & Steibel, J. P. (2013). Evaluating statistical analysis models for RNA sequencing
experiments. Frontiers in Genetics, 4(SEP), 1-9. https://doi.org/10.3389/fgene.2013.00178

Rehberger, K., Kropf, C., & Segner, H. (2018). In vitro or not in vitro: a short journey through
a long history. Environmental Sciences Europe, 30(1). https://doi.org/10.1186/s12302-018-
0151-3

Ren, X., & Kuan, P. F. (2020). Negative binomial additive model for RNA-Seq data analysis.
BMC Bioinformatics, 21(1), 1-15. https://doi.org/10.1186/s12859-020-3506-x

Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., & Smyth, G. K. (2015). Limma
powers differential expression analyses for RNA-sequencing and microarray studies.
Nucleic Acids Research, 43(7), e47. https://doi.org/10.1093/nar/gkv007

157




Ritz, C., Baty, F., Streibig, J. C., & Gerhard, D. (2015). Dose-response analysis using R. PLoS
ONE, 10(12), 1-13. https://doi.org/10.1371/journal.pone.0146021

Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2009). edgeR: A Bioconductor package for
differential expression analysis of digital gene expression data. Bioinformatics, 26(1),
139-140. https://doi.org/10.1093/bioinformatics/btp616

Roelofs, Aarts, M. G. M., Schat, H., & Van Straalen, N. M. (2008). Functional ecological genomics
to demonstrate general and specific responses to abiotic stress. In Functional Ecology.
https://doi.org/10.1111/j.1365-2435.2007.01312.x

Roelofs, D., de Boer, M., Agamennone, V., Bouchier, P., Legler, J., & van Straalen, N. (2012).
Functional environmental genomics of a municipal landfill soil. Frontiers in Genetics,
3(MAY), 1-11. https://doi.org/10.3389/fgene.2012.00085

Rohart, F., Gautier, B., Singh, A., & L& Cao, K. A. (2017). mixOmics: An R package for ‘omics
feature selection and multiple data integration. PLoS Computational Biology, 13(11),
1-19. https://doi.org/10.1371/journal.pcbi.1005752

Rusek, J. (1998). Biodiversity of Collembola and their functional role in the ecosystem.
Biodiversity and Conservation, 7(9), 1207-1219. https://doi.org/10.1023/A:1008887817883

Ruttan, V.W.(2002). Productivity Growth in World Agriculture: Sources and Constraints. Journal
of Economic Perspectives, 16(4), 161-184. https://doi.org/10.1257/089533002320951028

Salehi-Sedeh, F., Khajehali, J., Nematollahi, M. R., & Askari-Saryazdi, G. (2020). Imidacloprid
resistance status and role of detoxification enzymes in Bemisia tabaci (Hemiptera:
Aleyrodidae) populations from Iran. Journal of Agricultural Science and Technology, 22(5),
1267-1277.

Seehuus, S. C., Norberg, K., Gimsa, U., Krekling, T., & Amdam, G. V. (2006). Reproductive protein
protects functionally sterile honey bee workers from oxidative stress. Proceedings of the
National Academy of Sciences of the United States of America, 103(4), 962-967. https://doi.
org/10.1073/pnas.0502681103

Seyedebrahimi, S. S., Talebi Jahromi, K., Imani, S., Hosseini Naveh, V., & Hesami, S. (2016).
Characterization of imidacloprid resistance in Aphis gossypii (Glover) (Hemiptera:
Aphididae) in Southern Iran. Turkish Journal of Entomology, 39(4). https://doi.
org/10.16970/ted.67424

Sgolastra, F., Medrzycki, P., Bortolotti, L., Renzi, M. T., Tosi, S., Bogo, G., Teper, D., Porrini, C.,
Molowny-Horas, R., & Bosch, J. (2017). Synergistic mortality between a neonicotinoid
insecticide and an ergosterol-biosynthesis-inhibiting fungicide in three bee species. Pest
Management Science, 73(6), 1236-1243. https://doi.org/10.1002/ps.4449

Shapovalova, Y., Heskes, T., & Dijkstra, T. (2022). Non-parametric synergy modeling of
chemical compounds with Gaussian processes. BMC Bioinformatics, 23(1), 1-30. https://
doi.org/10.1186/512859-021-04508-7

Shi, Z., Tang, Z., & Wang, C. (2017). A brief review and evaluation of earthworm biomarkers in
soil pollution assessment. Environmental Science and Pollution Research, 24(15), 13284-
13294. https://doi.org/10.1007/s11356-017-8784-0

Shojaie, A. (2021). Differential network analysis: A statistical perspective. WIREs Computational
Statistics, 13(2), 1-16. https://doi.org/10.1002/wics.1508

Sillapawattana, P., & Schéffer, A. (2017). Effects of imidacloprid on detoxifying enzyme
glutathione S-transferase on Folsomia candida (Collembola). Environmental Science and
Pollution Research, 24(12), 11111-11119. https://doi.org/10.1007/511356-016-6686-1

Silva, V., Mol, H. G. J., Zomer, P., Tienstra, M., Ritsema, C. J., & Geissen, V. (2019). Pesticide
residues in European agricultural soils - A hidden reality unfolded. In Science of the Total
Environment (Vol. 653, pp. 1532-1545). https://doi.org/10.1016/j.scitotenv.2018.10.441

158



References

Simdes, T., Novais, S. C., Natal-da-Luz, T., Devreese, B., de Boer, T., Roelofs, D., Sousa, J. P., van
Straalen, N. M., & Lemos, M. F. L. (2019). Using time-lapse omics correlations to integrate
toxicological pathways of a formulated fungicide in a soil invertebrate. Environmental
Pollution, 246, 845-854. https://doi.org/10.1016/j.envpol.2018.12.069

Simon-Delso, N., Amaral-Rogers, V., Belzunces, L. P., Bonmatin, J. M., Chagnon, M., Downs,
C., Furlan, L., Gibbons, D. W., Giorio, C., Girolami, V., Goulson, D., Kreutzweiser, D. P.,
Krupke, C. H., Liess, M., Long, E., Mcfield, M., Mineau, P., Mitchell, E. A., Morrissey, C. A.,
... Wiemers, M. (2015). Systemic insecticides (Neonicotinoids and fipronil): Trends, uses,
mode of action and metabolites. Environmental Science and Pollution Research, 22(1),
5-34. https://doi.org/10.1007/s11356-014-3470-y

Simon, E., Van Velzen, M., Brandsma, S. H., Lie, E., Laken, K., De Boer, J., Bytingsvik, J., Jenssen,
B. M., Aars, J., Hamers, T., & Lamoree, M. H. (2013). Effect-directed analysis to explore
the polar bear exposome: Identification of thyroid hormone disrupting compounds
in plasma. Environmental Science and Technology, 47(15), 8902-8912. https://doi.
org/10.1021/es401696u

Solntsev, S. K., Shortreed, M. R., Frey, B. L., & Smith, L. M. (2018). Enhanced Global Post-
translational Modification Discovery with MetaMorpheus [Research-article]. Journal of
Proteome Research, 17(5), 1844-1851. https://doi.org/10.1021/acs.jproteome.7b00873

Soneson, C., Love, M. I, & Robinson, M. D. (2016). Differential analyses for RNA-seq:
Transcript-level estimates improve gene-level inferences. F1000Research, 4, 1-23.
https://doi.org/10.12688/F1000RESEARCH.7563.2

Spurgeon, D. J., Jones, O. A. H., Dorne, J. L. C. M., Svendsen, C., Swain, S., & Stlirzenbaum,
S. R. (2010). Systems toxicology approaches for understanding the joint effects of
environmental chemical mixtures. Science of the Total Environment, 408(18), 3725-3734.
https://doi.org/10.1016/j.scitotenv.2010.02.038

Storey, J. D., Bass, A. J., Dabney, A., & Robinson, D. (2020). gvalue: Q-value estimation for false
discovery rate control. http://github.com/jdstorey/qvalue

Suchail, S., De Sousa, G., Rahmani, R., & Belzunces, L. P. (2004). In vivo distribution and
metabolisation of 14C-imidacloprid in different compartments of Apis mellifera L. Pest
Management Science, 60(11), 1056-1062. https://doi.org/10.1002/ps.895

Taillebois, E., & Thany, S. H. (2022). The use of insecticide mixtures containing neonicotinoids
as a strategy to limit insect pests : Efficiency and mode of action. Pesticide Biochemistry
and Physiology, 184(May), 105126. https://doi.org/10.1016/j.pestbp.2022.105126

Tange, O. (2011). GNU Parallel: the command-line power tool. The USENIX Magazine, 36(1),
42-47. https://www.usenix.org/publications/login/february-2011-volume-36-number-1/
gnu-parallel-command-line-power-tool

van Gestel, C. A. M. (2012). Soil ecotoxicology: State of the art and future directions. ZooKeys,
176(SPECIAL ISSUE), 275-296. https://doi.org/10.3897/zookeys.176.2275

van Straalen, N. M., & Roelofs, D. (2008). Genomics technology for assessing soil pollution.
Journal of Biology, 7(6), 19. https://doi.org/10.1186/jbiol80

van Straalen, N. M., & Roelofs, D. (2011). Stress responses. In An Introduction to Ecological Genomics.
Oxford University Press. https://doi.org/10.1093/acprof:0s0/9780199594689.003.0201 LK -
https://vu.on.worldcat.org/oclc/5564637021

Vaudel, M., Burkhart, J. M., Zahedi, R. P., Oveland, E., Berven, F. S., Sickmann, A., Martens, L.,
& Barsnes, H. (2015). PeptideShaker enables reanalysis of MS-derived proteomics data
sets: To the editor. Nature Biotechnology, 33(1), 22-24. https://doi.org/10.1038/nbt.3109

Wall, D. H., Nielsen, U. N., & Six, J. (2015). Soil biodiversity and human health. Nature,
528(7580), 69-76. https://doi.org/10.1038/nature15744

159



Wang, D., Hensman, J., Kutkaite, G., Toh, T. S., Galhoz, A,, Dry, J. R., Saez-Rodriguez, J., Garnett,
M. J.. Menden, M. P., & Dondelinger, F. (2020). A statistical framework for assessing
pharmacological responses and biomarkers using uncertainty estimates. ELife, 9, 1-21.
https://doi.org/10.7554/ELIFE.60352

Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.
https://ggplot2.tidyverse.org

Willis Chan, D. S., Prosser, R. S., Rodriguez-Gil, J. L., & Raine, N. E. (2019). Assessment of risk to
hoary squash bees (Peponapis pruinosa) and other ground-nesting bees from systemic
insecticides in agricultural soil. Scientific Reports, 9(1), 1-13. https://doi.org/10.1038/
s41598-019-47805-1

Wood, S. N. (2011). Fast stable restricted maximum likelihood and marginal likelihood
estimation of semiparametric generalized linear models. journal of the Royal Statistical
Society. Series B: Statistical Methodology, 73(1), 3-36. https://doi.org/10.1111/j.1467-
9868.2010.00749.x

Wooten, D. J., Meyer, C. T., Lubbock, A. L. R., Quaranta, V., & Lopez, C. F. (2021). MuSyC is a
consensus framework that unifies multi-drug synergy metrics for combinatorial drug
discovery. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-24789-z

Wu, Z,, Yang, L., He, Q., & Zhou, S. (2021). Regulatory Mechanisms of Vitellogenesis in Insects.
Frontiers in Cell and Developmental Biology, 8(January), 1-11. https://doi.org/10.3389/
fcell.2020.593613

Ye, J., Coulouris, G., Zaretskaya, I., Cutcutache, I., Rozen, S., & Madden, T. L. (2012). Primer-
BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC
Bioinformatics, 13(1), 134. https://doi.org/10.1186/1471-2105-13-134

Young, M. D., Wakefield, M. J., Smyth, G. K., & Oshlack, A. (2010). Gene ontology analysis for
RNA-seq: accounting for selection bias. Genome Biology, 11(2). https://doi.org/10.1186/
gb-2010-11-2-r14

Yugi, K., Kubota, H., Hatano, A., & Kuroda, S. (2016). Trans-Omics: How To Reconstruct
Biochemical Networks Across Multiple “Omic” Layers. Trends in Biotechnology, 34(4),
276-290. https://doi.org/10.1016/j.tibtech.2015.12.013

Zhang, B. Z., Su, X., Xie, L. F,, Zhen, C. A,, Hu, G. L., Jiang, K., Huang, Z. Y., Liu, R. Q., Gao, Y.
F., Chen, X. L., & Gao, X. W. (2020). Multiple detoxification genes confer imidacloprid
resistance to Sitobion avenae Fabricius. Crop Protection, 128(November 2019). https://
doi.org/10.1016/j.cropro.2019.105014

Zhang, Q. Q., & Qiao, M. (2020). Transcriptional response of springtail (Folsomia candida)
exposed to decabromodiphenyl ether-contaminated soil. Science of the Total Environment,
719, 134859. https://doi.org/10.1016/j.scitotenv.2019.134859

Zhang, X., Xia, P., Wang, P., Yang, J., & Baird, D. (2018). Omics advances in Ecotoxicology.
Environmental Science & Technology, acs.est.7b06494. https://doi.org/10.1021/acs.
est.7b06494

160



References

161






Summary




Most agricultural soils are polluted with pesticide mixtures. In part, this pesticide
pollution has led to a global decline in invertebrates, which provide ecosystem
services essential to sustainable agriculture. Rapid and cost-effective tools are
necessary to determine the environmental risk of pesticide soil contamination
and guide pesticide abatement efforts to protect these non-target invertebrate
populations. Conventional environmental risk assessment measures the soil
concentration of an extensive panel of pesticides using chemical analysis. This
labor-intensive process does not indicate the bioavailable fraction of pesticides
or the hazard they pose to non-target invertebrates. Bioanalytical tools can
supplement conventional chemical screening to assess the environmental risk of
bioavailable and hazardous fractions of the pesticide pollution mixtures.

One bioanalytical tool is gene regulation biomarkers, i.e., transcripts or proteins.
For the successful implementation of biomarkers in assessing pesticide mixture
pollution, they should indicate the type of toxic exposure, even under synergistic
interaction with other pollutants and over a range of exposure intensities.
To this end, the molecular mechanisms that mediate pesticide toxicity must
be elucidated. Without understanding these mechanisms, it is impossible to
determine if the observed gene regulation patterns are unique identifiers of
the type of pollution or part of a broader stress response elicited by multiple
pollutants. The characteristic molecular functions affected by toxic exposure are
called toxicogenomic fingerprints. In comparison, biomarkers are the single genes
derived from toxicogenomic fingerprints that provide a read-out of its occurrence.

Under toxicogenomic fingerprint-based pesticide monitoring, soil samples are
sent to a testing facility where lab-reared animals are exposed. These sentinels
can provide a read-out of their response to toxic exposure and function as a living
probe to assess the bioavailable and hazardous fraction of the pollutant mixture.
Folsomia candida (springtails) would be ideal for this role; it is easily reared in the
lab, requires a small amount of soil compared to other model species, and has
been a soil ecotoxicological model for decades. | choose to focus on toxicogenomic
fingerprint development for neonicotinoid soil pollution as neonicotinoids are the
most commonly used type of insecticides of the past three decades and among
the most toxic class of pesticides to invertebrates.

My research questions were divided into two categories: (1) How to identify
toxicogenomic fingerprints? (2) Are biomarkers derived from toxicogenomic

164



Summary

fingerprints robust indicators of neonicotinoid exposure under various stress
conditions?

In chapter 2, | investigated what would be most optimal exposure time to
obtain transcriptomic and proteomic (omic) data for toxicogenomic fingerprint
identification in Folsomia candida. Moreover, | investigated if shifts in transcript and
protein abundances from the same gene occurred simultaneously or were delayed
and whether this delay would hamper the combined analysis of both omics data.
To this end, | obtained transcriptomic and proteomic data from Folsomia candida
exposed to the neonicotinoid imidacloprid or control conditions every 12 hours for
a total of 72 hours. | found that the 48-hour time point had the most differential
gene regulation between control and treatment, marking the most opportune
moment for toxicogenomic fingerprint identification. The results indicated no time
lag between gene expression (transcripts) and regulation (proteins) relevant for the
combined analysis of the omics data. The results contribute to the identification
of toxicogenomic fingerprints, i.e., research question 1, by identifying the most
opportune time point and facilitating justification for combining the results of
omics data obtained at the same time point.

Toxicogenomic fingerprints should remain reliable indicators for pesticide
exposure over various stress intensities and in mixtures with other pesticides.
Gene expression patterns in transcriptomic data obtained under mixture exposure
commonly are: non-linear (1), highly variable (2), and under genetic interaction
(3). These three common characteristics impede the correct identification of
characteristic gene-expression patterns, i.e., toxicogenomic fingerprints, with
conventional statistical software based on generalized linear models. In chapter
3, | sought to identify toxicogenomic fingerprints from the transcriptomic data
obtained from Folsomia candida exposed to two binary mixtures of pesticides that
were finely resolved for stress intensity. | studied a mixture of two neonicotinoids
(imidacloprid and clothianidin) and a mixture of a neonicotinoid (imidacloprid)
combined with an azole fungicide (cyproconazole). Together with co-authors,
| employed a statistical framework based on Gaussian Process (GP) models to
analyze the binary mixture data jointly and identify toxicogenomic fingerprints for
either neonicotinoids or cyproconazole. In turn, | identified putative biomarkers
from these toxicogenomic fingerprints. These biomarkers remained indicative
of their target pesticide type even under combined exposure with the other
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pesticide type in spiked soils. The results demonstrated the validity of GP models
for toxicogenomic fingerprint identification, i.e., research question 1, and can
overcome the three common characteristics of transcriptomic data obtained
under mixture exposures.

Toxicogenomic fingerprints, and derived biomarkers, should remain reliable
indicators of neonicotinoid exposure under various stress conditions (research
question 2). The cytochrome P450 enzymes (CYPs), which are key enzymes
involved in biotransformation processes, mediate neonicotinoid toxicity and
commonly form points of synergistic interaction with other pollutants in various
invertebrates. In chapter 4, | investigated the influence of CYP-mediated
metabolism on neonicotinoid biomarker reliability. | exposed Folsomia candida
to two neonicotinoids (imidacloprid and thiacloprid) and a metabolic inhibitor of
CYP enzymes: piperonyl butoxide (PBO). First, | found that putative inhibition of
CYP metabolism by PBO enhanced the neonicotinoid toxicity to Folsomia candida
reproduction in spiked soil. Second, only two biomarkers provided a reliable
indication of the exposure to both neonicotinoids under metabolic inhibition
of CYP enzymes. The results indicate that a panel of biomarkers is required for
assessing neonicotinoid soil contamination.

Previous research proposed glutathione-S-transferase (GST) gene expression as a
biomarker for neonicotinoid exposure in Folsomia candida. However, this group
of enzymes has many cross-functional roles and is part of the oxidative stress
response, a hallmark of the universal stress response. For their application
in assessing neonicotinoid soil pollution, biomarkers should remain robust
even under the effects of other stressors, such as increased oxidative stress
conditions. As these genes are part of the universal stress response, | sought to
determine their reliability in indicating neonicotinoid exposure. In chapter 5, |
used the metabolic inhibitor diethyl maleate (DEM), which inhibits GST enzymes.
| exposed Folsomia candida to two neonicotinoids (imidacloprid, thiacloprid) and
DEM in spiked soil. | found no effect of DEM exposure on neonicotinoid toxicity
to springtail reproduction. Then, | demonstrated that oxidative stress response
genes, such as a GST, did not reliably indicate exposure to both neonicotinoids.
The results suggest that oxidative stress response can greatly impact biomarker
reliability and, therefore, DEM can prove as a valuable validation step in biomarker
development.
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In chapter 6, | discuss future perspectives for toxicogenomic fingerprint
identification and application for the purpose of diagnosing pesticide soil
pollution, and formulate four key recommendations. First, the practical benefit
of standardized exposure duration for Folsomia candida gene expression surveys
outweighs concerns over differences in toxicant toxicodynamics and toxicokinetics
when applying gene expression for diagnosing environmental pollution. Second,
the combined results of multiple omics data analysis are more valuable than their
integrative assessment. Third, new methodologies are required to assess energy
budget allocation by tracking shifts in gene expression and their molecular function
over various exposure conditions. Four, as a discipline, we should move from
biomarkers to toxicogenomic fingerprints to diagnosing complex environmental

pollutant mixtures.
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De meeste landbouwgronden zijn vervuild met een mengsel van
bestrijdingsmiddelen, ofwel pesticiden. Deze verontreiniging draagt bij aan de
wereldwijde afname van ongewervelde dieren, zoals insecten, die cruciaal zijn voor
een duurzame landbouw. Snelle en kostenbesparende methoden zijn nodig om
de milieurisico’s van deze bodemverontreiniging in kaart te brengen en daarmee
maatregelingen te kunnen nemen die kunnen leiden tot een afname van derisico's.
Deze maatregelen kunnen ongewervelde dieren en andere bodemorganismen
beschermen die bevorderlijk zijn voor de landbouw. De gangbare risicobeoordeling
van bodemverontreiniging met pesticiden is gebaseerd op het meten van de
concentraties van een heel scala aan pesticiden in de bodem door middel van
chemische analyse. Dit is een dure en arbeidsintensieve aangelegenheid die
echter geen inzicht geeft in de fractie van het pesticidemengsel dat risicodragend
of biologisch beschikbaar is voor ongewervelde dieren en andere bodemleven.
Bio-analytische methoden kunnen deze tekortkoming van de gangbare chemische
analyse aanvullen en zijn wel in staat de risicodragende en biologische beschikbare
fractie van de pesticideverontreiniging vast te stellen.

Eén bio-analytische methode die voor dit doel geschikt is, zijn genetische
biomarkers, zoals genexpressie (transcriptomic) of eiwitexpressie (proteomic)
niveaus. Voor een succesvolle implementatie van deze biomarkers in de
risicobeoordeling van pesticiden moeten zij een indicatie kunnen geven van het
type verontreiniging, ook in aanwezigheid van andere mogelijk giftige stoffen. De
moleculaire mechanismen die de giftigheid van pesticiden voor ongewervelde
dieren bepalen moeten opgehelderd worden voor het succesvol ontwikkelen
van deze biomarkers. Dit is nodig omdat anders niet bepaald kan worden of
de waargenomen patronen van genexpressie of eiwitexpressie uniek zijn voor
het type verontreiniging of onderdeel vormen van een algemene stressreactie.
Karakteristieke moleculaire reacties voor een type giftige blootstelling worden
toxicogenomische vingerafdrukken genoemd. Ter vergelijking, biomarkers zijn
gebaseerd op de reactie van één gen en zijn een middel om toxicogenomische
vingerafdrukken waar te nemen.

Toxicogenomisch-gebaseerde bepalingen van pesticiden beginnen met het sturen
van bodemmonsters naar een testcentrum. Hier worden in het laboratorium
gekweektedierenaandebodemmonstersblootgesteld. Dezedierenkunnendienen
als levende sondes die een indicatie geven van de risicodragende en biologisch
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beschikbare fractie van het mengsel aan pesticiden in het bodemmonster. De
springstaart Folsomia candida is uiterst geschikt voor deze functie, omdat dit dier
gemakkelijk gekweekt kan worden in het laboratorium, weinig bodem nodig heeft
in vergelijking tot andere bodemdieren en al sinds decennia als modelorganisme
wordt gebruikt voor bodem-ecotoxicologisch onderzoek. Ik heb mij gericht op het
bepalen van de toxicogenomische vingerafdruk van neonicotinoiden, een groep
van insecticiden die wereldwijd veel is gebruikt in de afgelopen drie decennia en
die behoren tot de meest giftige pesticiden voor ongewervelden, met name voor
insectachtigen.

Mijn onderzoekvragen waren verdeeld in twee categorieén: (1) Hoe kunnen
toxicogenomische vingerafdrukken bepaald worden? (2) Kunnen de biomarkers
afkomstig van toxicogenomische vingerafdrukken een betrouwbare indicatie
geven van bodemverontreiniging en zijn ze in staat dit ook te blijven doen onder
wisselende stressomstandigheden?

In het hoofdstuk 2 van mijn proefschrift onderzocht ik de optimale duur
van blootstelling van Folsomia candida voor het verkrijgen van genexpressie
(transcriptomic) en eiwitexpressie (proteomic) data. Deze omics data kunnen
de basis vormen voor het bepalen van toxicogenomische vingerafdrukken
van pesticiden. Verder wilde ik onderzoeken of er een vertraging plaats vond
tussen de veranderingen in het niveau van genexpressie en eiwitexpressie. Een
vertraging hiervan kan de gecombineerde analyse van de twee typen omics data
belemmeren. Om dit te onderzoeken, stelde ik Folsomia candida gedurende 72
uur bloot aan het neonicotinoid imidacloprid en een niet behandelde controle.
Hierbij nam ik elke 12 uur monsters. De genexpressie- en eiwitexpressie-niveaus
verschilden het meest tussen de imidacloprid-behandeling en de controle na 48
uur blootstelling. Hiermee was dit tijdstip het meest geschikt voor het verkrijgen
van omics data en het bepalen van toxicogenomische vingerafdrukken. Verder
vond ik dat veranderingen van de genexpressie- en eiwitexpressie niveaus van
hetzelfde gen synchroon verliepen. Ik concludeerde daarom dat deze twee typen
omics data samen geanalyseerd kunnen worden. Dit hoofdstuk draagt bij aan
onderzoekvraag 1, omdat ik het meest gunstigste tijdstip voor het meten van de
toxicogenomische vingerafdruk bepaalde en verantwoording verleen voor de
gecombineerde analyse van de twee typen omics data.
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Toxicogenomische vingerafdrukken moeten betrouwbare indicatoren zijn
voor pesticide-blootstelling, ook wanneer er sprake is van blootstelling aan
verscheidende stressfactoren of meerdere chemische stoffen (mengsels). Er
zijn echter drie algemeen voorkomende aspecten van genexpressie-patronen
verkregen bij blootstelling van organismen aan mengsels van stoffen: deze
genexpressie-patronen zijn niet lineair (1), zeer variabel (2) en zijn onderhevig aan
genetische interactie (3). Deze drie aspecten belemmeren de toepassing van de
huidige methodiek gebaseerd op generalistische lineaire statistische modellen
voor het bepalen van toxicogenomische vingerafdrukken. In hoofdstuk 3 richtte
ik mij op het identificeren van toxicogenomische vingerafdrukken in genexpressie
data. De transcriptomic data waren afkomstig van een bloostelling aan twee binaire
pesticide mengsels, ieder met een zeer verfijnde reeks aan concentraties (stress-
intensiteiten). Deze mengsels bestonden uit twee neonicotinoiden (imidacloprid en
clothianidin) of een neonicotinoid (imidacloprid) en een fungicide (cyproconazole).
Samen met coauteurs gebruikte ik een statische aanpak gebaseerd op zogenaamde
Gaussian Proces (GP) modellen die de data van de twee mengselblootstellingen
gecombineerd analyseerden. Hiermee identificeerde ik kandidaat-biomarkers
voor blootstelling aan neonicotinoiden of aan cyproconazole. Deze biomarkers
bleken indicatief voor het bedoelde pesticide zelfs in mengsel met het andere type
pesticide in bodems die in het laboratorium waren behandeld. Deze resultaten
lieten zien dat GP-modellen ingezet kunnen worden voor het bepalen van
toxicogenomische vingerafdrukken (onderzoeksvraag 1). Verder konden met de
GP-modellen de drie veel voorkomende uitdagingen worden overwonnen, die
veel voorkomen in transcriptomic data verkregen bij blootstelling aan mengsels
van stoffen.

Toxicogenomische vingerafdrukken, en hun afgeleide biomarkers, moeten
betrouwbare indicatoren zijn voor neonicotoiden, zelfs onder blootstelling aan
verscheidende stressoren (onderzoeksvraag 2). De biotransformatie-enzymen
van de familie van de cytochroom P450s (CYPs) zijn betrokken bij het mediéren
van de giftigheid van pesticiden, maar spelen ook vaak een rol in het optreden
van synergistische interacties met andere verontreinigende stoffen. In hoofdstuk
4 onderzocht ik de invloed van het CYP-gemedieerde metabolisme op de
betrouwbaarheid van biomarkers voor neonicotinoiden. Ik stelde Folsomia candida
bloot aan twee neonicotoiden (imidacloprid en thiacloprid) en een remmer van
CYP-enzymen: piperonyl butoxide (PBO). Ten eerste vond ik dat de waarschijnlijke
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CYP-remming door PBO de giftigheid van neonicotoiden versterkte, gemeten als
een verlaagde voortplanting van Folsomia candida. Ten tweede gaven slechts twee
biomarkers een betrouwbare meting van de blootstelling aan beide neonicotoiden
en onder metabolische remming van CYP-enzymen. Dit toont aan dat meerdere
biomarkers nodig zijn voor een betrouwbare bepaling van de blootstelling aan
neonicotoiden.

Voorgaand onderzoek had de genexpressie van het enzym glutathione-S-transferase
(GST) aangewezen als een biomarker voor blootstelling aan neonicotinoiden
in Folsomia candida. Dit enzym heeft echter verscheidende functies en is het
betrokken bij de oxidatieve stressreactie, een zeer kenmerkend onderdeel van
de universele stressreactie in organismen. Voor de toepassing als biomarkers
voor pesticiden in de bodem, moeten zij een betrouwbare indicatie geven van de
blootstelling aan neonicotoiden ook bij aanwezigheid van andere stressoren, zoals
verhoogde oxidatieve stress. Omdat GSTs ook betrokken zijn bij de universele
stressreactie, wilde ik hun betrouwbaarheid onderzoeken als biomarkers voor
blootstelling aan neonicotoiden. In hoofstruk 5, gebruikte ik een metabolische
remmer van GSTs: diethyl maleate (DEM). Ik stelde Folsomia candida bloot aan
twee neonicotoiden (imidacloprid en thiacloprid) en DEM in bodems die in het
laboratorium waren behandeld. Ik vond geen effect van DEM op de giftigheid van
de neonicotoiden voor de voortplanting van Folsomia candida. Daarna toonde ik
aan dat genen die betrokken waren bij de oxidatieve stressreactie, zoals GSTs,
geen betrouwbare indicatie gaven van de blootstelling aan beide neonicotoiden.
Deze resultaten suggereerden dat de oxidatieve stressreactie grote invioed heeft
op de betrouwbaarheid van de biomarker. Daardoor kan DEM van grote waarde
zijn bij het valideren van biomarkers voor pesticidenblootstelling.

In hoofdstuk 6 heb ik perspectieven besproken voor de toepassing van
toxicogenomische vingerafdrukken voor het bepalen van de risico’s van bodems
verontreinigd met pesticiden. Ik heb daarbijvier belangrijke aanbevelingen gedaan.
Ten eerste, het praktische voordeel van een gestandaardiseerde blootstellingsduur
voor genexpressie-bepalingen is van groter belang dan mogelijke zorgen over
verschillen in toxicodynamiek (opnamesnelheid) en toxicokinetiek (snelheid van
het zichtbaar worden van effecten) tussen verontreinigende stoffen. Ten tweede,
de resultaten van een gecombineerde analyse van meerdere typen omics-data
zijn meer informatief dan de resultaten van een geintegreerde analyse. Ten
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derde, nieuwe methoden zijn nodig om veranderingen in het energiebudget van
organismen waar te nemen op het niveau van genexpressie en voor gelijktijdige
blootstellingen aan verscheidene typen stressoren of aan mengsels van chemische
stoffen. Ten vierde, als een onderzoeksgemeenschap zouden wij onze focus
moeten verleggen van biomarkers naar toxicogenomische vingerafdrukken voor

het bepalen van de milieurisico’s van complexe mengsels van verontreinigende
stoffen.
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