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Introduction 

Economics, as a discipline that aims to understand human behaviors, has evolved 

dramatically over the past decades as it embraces other disciplines with different 

methodological approaches. In particular, the embracement of psychology led to an 

emergence of behavioral and experimental economics, which has unquestionably 

become a part of mainstream economics.  

One other important aspect in the evolution of modern economics has been 

its integration of biological perspectives. This was first done by adopting 

neuroscientific tools and brain imaging data to study economic decision making. It 

was not a surprise that economists found interest in the brain as biologically the 

brain is where decisions are made. More recently and similarly, economists have 

also begun to incorporate molecular genetic data in their research thanks to ever-

increasing resources for genetic data. Again, provided that economics is a study of 

human behaviors, it was far from a surprise that genetic data can be of great use for 

economic research. It was already shown by decades of twin studies that a 

substantial portion of variation can be statistically attributed to genetic factors in 

virtually any human behaviors, including those of particular interest to economists 

such as risk-taking preference, subjective well-being, personality, and cognition 

(Polderman et al., 2015). In interdisciplinary collaboration, economists have 

contributed to understanding genetic mechanisms of such traits in a series of 

behavioral genetic studies (Okbay et al., 2016; Lee et al., 2018; Karlsson Linnér et al., 

2019; Okbay et al., 2022). In recent years, there have been several studies within 

economics that take direct advantage of molecular genetic data and results from 

behavioral genetic studies (von Hinke et al., 2016; Barth et al., 2019; Papageorge and 

Thom, 2020; Karlsson Linnér and Koellinger, 2022).   

In a similar vein, this thesis presents interdisciplinary studies that combine 

economics, neuroscience, and molecular genetics. However, the main goal of this 

thesis is not about understanding human behaviors themselves; instead, this thesis 

explores biological correlates of socioeconomic inequality. Biological factors have 

immense philosophical and ethical importance for socioeconomic inequality. In 

particular, sources of inequality due to genetic differences, which, for instance, can 

influence intelligence and personality, can be considered illegitimate and unfair 

(Roemer, 1998). Such sources of inequality are unfair because individuals do not 

have controls over what genes to inherit from their parents. Similarly, neural 

differences can also be unfair sources of inequality as far as the brain development 

https://www.zotero.org/google-docs/?qeJajz
https://www.zotero.org/google-docs/?xUAdA3
https://www.zotero.org/google-docs/?xUAdA3
https://www.zotero.org/google-docs/?JRCFXM
https://www.zotero.org/google-docs/?JRCFXM
https://www.zotero.org/google-docs/?Iq5TN7
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was shaped by factors over which individuals have no control, including 

neurobiological consequences of genetic predispositions as well as different rearing 

environments that affect one’s brain development. Hence, biological factors are one 

of the major elements that constitute inequality of opportunity, a share of inequality 

that is not due to different levels of effort.  

Such unfair portions of inequality are not the notion that only resides in 

philosophical theories. A large body of empirical evidence has shown that 

individuals are less tolerant of inequality and in more favor of redistributive policies 

if they believe that inequality originates mainly from differences in factors beyond 

one’s control rather than from differences in effort and choice (Fong, 2001; Alesina 

and Giuliano, 2011; Durante et al., 2014; Alesina et al., 2018). Accordingly, the extent 

to which inequality can be attributed to biological factors has direct policy 

relevance. It is therefore important to probe biological aspects of socioeconomic 

inequality to assess the demand for policy interventions which can address unfair 

portions of inequality. This thesis is a collection of studies that highlight such 

biological aspects and their relevance for inequality. 

Every chapter of this thesis presents results that rely on a genome-wide 

association study (GWAS) (see Harden and Koellinger (2020) for a detailed 

introduction). The GWAS scans through the entire genome, examining the 

association between the outcome and each genetic marker that is additively coded. 

Here the type of genetic markers used is called single nucleotide polymorphism 

(SNP), which is the most common type of genetic variation. The GWAS results, a 

collection of estimated association results of each SNP, can then be used in follow-

up analyses in numerous ways. Notably, using only GWAS summary statistics, we 

can estimate genetic correlations between pairs of traits, even when GWAS results 

are produced from different samples (Bulik-Sullivan et al., 2015). These pairwise 

genetic correlations can in turn be used for multivariate approaches which allow 

researchers to perform a joint analysis of genetically similar traits (Grotzinger et al., 

2019; Turley et al., 2018). Most importantly, the GWAS results can be summarized 

into a single score that additively aggregates individual SNP effects, a so-called 

polygenic index (PGI). Such a PGI can then be exploited for various purposes: for 

example, to conduct a polygenic prediction of a trait (Barth et al., 2019), use it as a 

control variable to account for genetic heterogeneity relevant for a particular trait 

(DiPrete et al., 2018), and study gene-environment interactions (Barcellos et al., 

2018). These tools are actively used throughout this thesis to investigate the genetic 

factors of socioeconomic outcomes.  

The studies presented in this thesis are not the first to link biological factors 

to inequality. For instance, Barth et al. (2019) showed empirical relationships 

https://www.zotero.org/google-docs/?MusFEM
https://www.zotero.org/google-docs/?MusFEM
https://www.zotero.org/google-docs/?PurYom
https://www.zotero.org/google-docs/?HdpQbR
https://www.zotero.org/google-docs/?SEhtEB
https://www.zotero.org/google-docs/?SEhtEB
https://www.zotero.org/google-docs/?T5e1TP
https://www.zotero.org/google-docs/?jEy57l
https://www.zotero.org/google-docs/?wAOKLa
https://www.zotero.org/google-docs/?wAOKLa
https://www.zotero.org/google-docs/?A3f3h1
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between household wealth at retirement and genetic associations of educational 

attainment, highlighting the role of genetic factors in the intergenerational 

persistence of wealth. Similarly, Papageorge and Thom (2020) explored the 

association between labor market outcomes and the polygenic index for educational 

attainment. Furthermore, the neural correlates of socioeconomic status have also 

been extensively studied. As reviewed in Noble and Giebler (2020) and Farah (2017), 

a number of brain features in different modalities at different life stages have now 

been linked to disparities in socioeconomic outcomes. This thesis adds further 

layers to this growing body of evidence on the biological aspects of inequality, as 

outlined below.           

Chapter 1 is a direct investigation of the genetic contribution to inequality in 

education, income, and health. We conducted the first genome-wide association 

(GWAS) of individual income using data from the UK Biobank (UKB), which 

allowed us to construct a PGI that summarizes genetic associations of income. By 

leveraging this PGI along with the natural experiment of random genetic differences 

between siblings, we show that siblings who “won the genetic lottery”, in the sense 

that they inherited a larger number of genetic variants associated with higher 

income, are more likely to achieve better outcomes later in their life. These include 

attaining a higher educational qualification, earning higher income, and having 

better health status. Hence, genes contribute to differences in lifetime outcomes 

even among siblings. We also emphasize that these results do not imply biological 

determinism or irrelevance of policy, by showing that genetic endowments on 

outcomes partly work via behavioral and environmental channels that can be 

influenced.  

Chapter 2 turns the attention to brain structure. Socioeconomic status (SES) 

has been shown to correlate with brain structure, while what underlies this relation 

has not been extensively studied. In this study, we assess genetic and environmental 

contributions to SES differences in neuroanatomy in an unprecedentedly large 

sample and detailed anatomical specificity. We first establish robust relations 

between SES and grey matter volume across a number of brain regions, including 

both cortical and subcortical regions. By constructing a PGI for SES, we then parse 

these regional correlates into predominantly genetic factors and those potentially 

due to the environment. We find that genetic influences are particularly stronger in 

some areas, such as prefrontal and insular cortices. On the other hand, some areas, 

cerebellar and lateral temporal regions in particular, show far less genetic 

influences, suggesting that environmental factors are likely to be more important 

for SES differences in gray matter volume of these areas. Such a regionally varying 

https://www.zotero.org/google-docs/?IkpX99
https://www.zotero.org/google-docs/?oMC43E
https://www.zotero.org/google-docs/?yaQ2CF
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balance of genetic and environmental influences implies a complex interplay of 

genetic and environmental factors on SES-brain relations. 

Chapter 3 extends a part of the work initiated in Chapter 1. This chapter 

presents results from a large-scale GWAS meta-analysis of income in a sample of 

approximately 756,000 individuals. We collected GWAS results from 31 cohorts 

conducted on four income measures: individual, occupational, household, and 

parental income. We then meta-analyzed these results in a multivariate framework. 

By comparing our results of the income GWAS with the well-established GWAS 

results of educational attainment (EA), we show that the genetic associations of EA 

can be concordant or discordant with respect to income. Here, the concordance 

implies that the genetic associations of higher EA are well-translated into higher 

income. However, if discordant, this translation is suppressed. Examining 

differences between these concordant and discordant genetic associations of EA, we 

show distinguishable stratified genetic correlations of EA with behavioral and 

psychiatric traits as well as brain imaging traits. By contrasting the well-powered 

GWAS of income with the GWAS of EA, our results provide novel insights into the 

genetic architecture of socioeconomic factors.    

Finally, Chapter 4 describes genetic data collected from 2,598 individuals in 

the German Socio-Economic Panel (GSOEP) innovation sample. The GSOEP data is 

one of the most popular panel data sets with a rich set of information on SES, family, 

personality, preferences, and health, and has been a valuable resource for research. 

This paper introduces to the research community the genetic data that we collected 

for the GSOEP’s innovation sample. By showing predictiveness of PGIs constructed 

for body height, body mass index, and EA, we demonstrate potential usefulness of 

the genetic data of the GSOEP for socioeconomic research.   
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1. Introduction 

The origins, extent, and consequences of income inequalities differ across nations, 

regions, time and social systems (Chetty and Hendren, 2018; Corak, 2013; Kuznets, 

1955; Piketty and Saez, 2003; Roine and Waldenström, 2015). However, a universal 

fact is that parents influence the starting-points of their children by providing them 

with family-specific environments and by passing down a part of their genes. This 

phenomenon creates individual-specific social and genetic endowments that are 

due to luck in the sense that they are exogenously given rather than the result of 

one's own actions. Thus, inequalities of opportunity (Roemer and Trannoy, 2015) 

can partly arise from the outcomes of two family-specific “lotteries” that take place 

during conception — a “social lottery” that determines who our parents are, and a 

“genetic lottery” that determines which part of their genomes our parents pass on 

to us. Inequalities in opportunity restrict the extent of intergenerational social 

mobility (Becker et al., 2018; Belsky et al., 2018; Durlauf and Seshadri, 2018; Jäntti 

and Jenkins, 2015) and limit how much credit people can claim for achievements 

such as their education or income (Rawls, 1999; Roemer, 1998). The relative 

importance of social and genetic luck has policy relevance because the extent to 

which people are willing to tolerate or endorse inequality partially depends on 

whether they perceive that disparity originates from differences in effort and choice 

(e.g., working hard) or from differences in circumstances that are outside of one’s 

control (e.g., luck in the social or genetic lotteries). The empirical results suggest that 

inequality that can ultimately be traced back to luck may be perceived as unfair and 

people may favor redistributive policies more strongly if inequality is the result of 

luck rather than agency (Alesina et al., 2018; Alesina and La Ferrara, 2005; Almås et 

al., 2010; Cappelen et al., 2013; Clark and D’Ambrosio, 2015; Gromet et al., 2015). It 

has even been suggested that GDP per capita as a measure of economic 

development should be replaced with a measure of the degree to which 

opportunities for income acquisition in a nation have been equalized (Roemer and 

Trannoy, 2016).  

If the outcomes of the genetic or social lottery influence economic outcomes, 

it can challenge common intuitions about the relative importance of luck and 

agency. For example, it is tempting to appraise good performance at work due to 

conscientiousness as rooted in individual agency. However, if genetics partly 

influence personality traits such as conscientiousness (Lo et al. 2016), luck and 

agency will be intertwined, and genetic fortune could be expected to affect 

outcomes throughout the life course not only via direct biological effects, but also 

through behavioral and environmental channels. It is important for science and 
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policy to understand the extent to which genetic and social fortune contribute to 

inequality, the mechanisms that are at work, and whether and how the 

consequences of exogenously given endowments can be altered.  

The current paper makes progress in this regard by using large-scale 

molecular genetic and family data to test the influence of genetic and family-specific 

endowments on income inequality and its consequences for health. Specifically, we 

develop a new polygenic index for individual income and exploit random 

differences between ~35,000 biological siblings in this index to estimate the 

consequences of the genetic lottery for income on a range of life-time outcomes. We 

show that the well-known gradient between socioeconomic status and health is 

partly rooted in exogenously given genetic and social endowments. Furthermore, 

we demonstrate that a substantial part of genetic luck for income and its link with 

health appears to operate via educational attainment and its accompaniments, i.e., 

environmental factors that are in principle malleable through policy interventions. 

Finally, we show that the effects of schooling on income remain strong and positive 

even when potential confounds from linear effects of common genetic variants are 

explicitly controlled for. Our results demonstrate the relevance of exogenously 

given genetic endowments for inequalities in income, education, and health. They 

also illustrate that the implications of the genetic lottery are not immutable because 

they operate at least partly via behavioral and environmental channels. Finally, our 

results emphasize the importance of education for inequality.  

Our paper builds on recent work in social science genetics (Abdellaoui et al., 

2019; Hill et al., 2019, 2016; Lee et al., 2018; Okbay et al., 2016; Rietveld et al., 2013) 

and applications of this work in economics. For example, Belsky et al. (2018) used 

family data to explore the links between a genetic index for educational attainment 

and various measures of social mobility. Furthermore, Barth et al. (2020) and 

Papageorge and Thom (2019) studied the associations between a genetic index for 

educational attainment and a variety of economic decisions and outcomes, without, 

however, using a within-family research design that would allow them to identify 

causal effects.  

We accompany this article with a frequently asked questions (FAQ) 

document that explains in plain and simple language what we have done, what we 

found, what our results mean, and — importantly — what they do not mean 

(https://bit.ly/3f5TXoV). This FAQ document aims to address a wider audience of 

nonexperts in an effort to responsibly communicate scientific results, which is 

especially important given the dark history and abuses of social science genetics 

(Editors, 2013; Nuffield Council on Bioethics, 2002).  
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1.1. Background 

One approach researchers have used to quantify the relevance of luck due to genetic 

and family-specific endowments in the past are twin studies, which decompose 

observed differences in outcomes into genetic, family-specific, and residual 

variance components, leveraging the insight that monozygotic (MZ) twins are 

genetically (almost) completely identical, whereas dizygotic (DZ) twins have a 

genetic similarity of ≈50% (Falconer and Mackay, 2009; Plomin et al., 2012). The 

identifying assumptions in classic twin studies include that MZ and DZ twins are 

different from each other only because of genetic reasons and not, for example, 

because parents treat MZ twin pairs systematically different from DZ twin pairs. 

Furthermore, classic twin studies assume that all genetic influences are additively 

linear and that parents are randomly matched rather than assorted based on 

similarity. Violations of these assumptions can lead to either upward or downward 

bias in the estimated variance components and have consequently sparked an 

extensive debate in the literature (Felson, 2014; Lerner, 2006; Purcell, 2002; Visscher 

et al., 2008; Zuk et al., 2012). Additionally, the findings from twin studies are 

typically based on samples from specific Western, educated, industrialized, rich, 

and democratic (WEIRD) populations (Henrich et al., 2010), thereby missing the 

importance of factors such as policies, culture, attitudes, institutions or economic 

development that do not vary much within the considered samples, but that can 

matter a great deal for differences between groups and over time.  

Keeping these limitations in mind, the main conclusion from twin studies is 

that genetic differences account for a substantial part of the observed differences in 

income, educational attainment, or occupational choice in the samples analyzed 

(Nicolaou and Shane, 2010; Polderman et al., 2015; Rietveld et al., 2013; Rowe et al., 

1998; Taubman, 1976). For example, according to a meta-analysis of 10 studies based 

on 24,484 partly overlapping twin pairs, 52% (SE = 0.03) of the variance in 

educational attainment can be attributed to genetic influences and 27% (SE = 0.03) 

to family-specific environments (Polderman et al., 2015; Rietveld et al., 2013; Rowe 

et al., 1998). The first study of this kind in economics (Taubman, 1976) found a large 

influence of genetic and family-specific effects on earnings and years of schooling 

in a sample of white male twins who served in the U.S. Armed Forces during World 

War II. The article described these findings as “disturbing” given the author’s 

inclination to accept socioeconomic inequalities due to “hard work and effort” 

much more than those arising from the contributions of one’s parents.  

Studies that considered genetic factors as potential contributors to 

socioeconomic inequality tend to trigger controversy, worry, and opposition 
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(Comfort, 2018). These concerns have to be taken seriously because 

misinterpretations of genetic influences and heritability estimates as measures of 

“purely biological” and “immutable” factors have been abused to justify ideologies 

about “natural rank orders” among individuals. This type of thinking has 

contributed to discrimination and some of the most horrifying atrocities in human 

history, including the Holocaust, involuntary sterilization programs, and state-

sponsored violence targeting minorities and the poor (Kevles, 1995; Ladd-Taylor, 

2020; Zimmer, 2018). Unfortunately, these ideologies and dangers still exist today.  

Viewing genetic influences as immutable factors that are independent from 

the environment is not only dangerous but also factually incorrect: the heritability 

of a trait puts no upper bound on the potential relevance of the environment 

(Goldberger, 1979, 1978; Jencks, 1980). Indeed, the heritability of a trait can even be 

entirely caused by environmental conditions.1 Furthermore, genetic influences on 

socioeconomic outcomes are most likely indirect, working via social and behavioral 

pathways that strongly depend on institutions, norms, policies, and incentives that 

are man-made and mutable (Jencks, 1980). Genetic influences that work via 

environmental pathways, for example by selection into particular surroundings 

such as colleges, may lead to substantial disparities in outcomes such as income for 

environmental reasons that are everything but universal, perpetual, or “given by 

nature”. As a result, genetic influences on socioeconomic outcomes can differ across 

divergent environments, making them neither inalterable nor purely biological 

factors. Thus, heritability estimates or genetic associations by themselves are 

uninformative about whether an environmental change such as a policy reform 

would affect an outcome or not. Rather, they are snapshots of a particular moment 

in time, a particular context, and most often of a particular ancestral population, one 

that is traditionally afforded higher income and education.  

In response to some of these challenges, it has been suggested that 

“economists might do well to abandon the enterprise of determining the heritability 

of socioeconomic achievement measures” altogether (Goldberger, 1978; Manski, 

2011). Although interest in the potential contributions of genetic factors to economic 

outcomes and behaviors has never entirely ceased (Bowles and Gintis, 2002; 

Cesarini et al., 2010, 2009; Sacerdote, 2002; Zax and Rees, 2002), most economists 

 
1
 For example, a hypothetical society that discriminates against people with red hair in college admissions 

would induce a heritability of educational attainment and a correlation between genes that influence hair 

pigmentation and college attendance, even though hair pigmentation may be orthogonal to academic aptitude 

(Jencks, 1972).   
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seem to have largely followed Goldberger’s advice and turned their attention away 

from genetics and heritability estimates in the past four decades.2  

However, genetic influences do not disappear just because one chooses to 

ignore them. Instead, genetic influences remain both a challenge and an opportunity 

for attempts to understand economic realities such as the origins and consequences 

of inequalities in income. First, genetic influences are a challenge because they may 

induce omitted variable bias in observational, nonexperimental studies. For 

example, a central issue for understanding the origins of inequality is to grasp the 

effects of education on income. One of the challenges in attempts to accurately 

estimate the returns to schooling are unobserved differences in “ability” that may 

have a genetic component (Heckman et al., 2006).3 As a result, unaccounted genetic 

factors that are related to both educational attainment and income may lead to false 

conclusions about the extent to which differences in income can be attributed to 

schooling (DiPrete et al., 2018). Second, ignoring any source of variability of an 

outcome and relegating it to the error term of a regression necessarily leads to 

noissier, less precise estimates of the observed variables of interest. This 

phenomenon also holds for genetic sources of variability. Obviously, both 

uncertainty and bias can be serious obstacles in attempts to generate useful 

empirical insights.  

Of course, these challenges are not new and economists already have 

potentially powerful tools to address them. For example, natural experiments and 

instrumental variable techniques can be used to identify causal effects, but they 

hinge on the availability of truly exogenous shocks that are relevant and 

measurable. Another popular way to address potential bias from unobserved 

heterogeneity is individual fixed-effects models. However, these models require 

panel data featuring both regressors and regressands that vary among individuals 

over time, which restricts the type of questions one can ask. When genetic 

differences among people and their correlations with economic outcomes are 

observed directly, it opens up new opportunities to avoid unobserved variable bias 

 
2
 This development away from genetics in economics is in stark contrast to what happened in psychology, 

where estimating the heritability of traits and their co-heritability has been an active field of research since the 

1970s that produced an extensive body of empirical evidence that can be succinctly summarized as “all human 

behavioral traits are heritable” (Turkheimer, 2000), with an average heritability estimate of around 50% across 

all traits (Polderman et al., 2015). 
3
 “Ability” is often mentioned in economic studies on the returns to schooling, but it is also a historically-

burdened term that has been used to validate and carry out violent campaigns against the poor and racially-

defined minorities at different points in history (Tabery, 2015). This background contributes to the discomfort 

and caution applied to current genetics research (Roberts, 2015). We use quotation marks in our mention of 

the term “ability” to recognize this historical legacy and the potentially misleading nature of this term. 
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and to obtain more accurate estimates of nongenetic influences (Benjamin et al., 

2012; Harden and Koellinger, 2020).  

Furthermore, genetic data have two properties that make them particularly 

interesting for applied empirical work (Mills et al., 2020). First, the genetic sequence 

of each person is fixed at conception and does not change throughout one’s lifetime. 

Thus, reverse causality from behavior or environmental exposures to the genome 

can be ruled out. Therefore, genetic data provide researchers with the potential to 

construct noisy but exogenously given proxies for individual characteristics and 

outcomes that will emerge and change over the life course, allowing us to trace 

development paths. Second, each child is the result of a natural experiment that 

randomly mixes the genetic sequences of her biological parents. Thus, with the 

possible exception of monozygotic twins, all children who share the same biological 

parents exhibit random genetic differences. These exogenous shocks of the “genetic 

lottery” are a natural experiment that may be useful to identify causal relationships 

(Davies et al., 2019). Here, we provide an example of how random differences 

between siblings in a genetic score for income lead to inequalities in socioeconomic 

outcomes and health later in life and we begin to explore the possible mechanisms.  

2. Data  

2.1. Genetic data 

The genome is encoded in a sequence of DNA (deoxyribonucleic acid) molecules. 

This sequence contains hereditary information that provides building instructions 

for all living organisms. In humans, the genome consists of 23 pairs of 

chromosomes, with one chromosome in each pair passed down by the father and 

one by the mother. Each chromosome is composed of two connected DNA strands 

that together resemble a twisted “ladder” (i.e., a double-helix). The “rails” of the 

“ladder” consist of a sugar-phosphate backbone and a nitrogenous base (adenine 

[A], cytosine [C], thymine [T], or guanine [G]) is attached to each sugar-phosphate 

group. Together, these components construct a “nucleotide”. The nitrogenous bases 

bind to each other in a strictly complementary way such that A always binds with 

T and G always binds with C, forming the “rungs” of the “ladder”. The bases of the 

two copies of each chromosome may vary if father and mother passed down 

different variants.  

Human DNA consists of ≈3 billion nucleotide pairs, the overwhelming 

majority of which are shared across individuals. Here, we study variations in 

nucleotide pairs in which some people carry a different base at a particular location 

https://paperpile.com/c/nILLfl/VkANt+YlV7w
https://paperpile.com/c/nILLfl/VkANt+YlV7w
https://paperpile.com/c/nILLfl/SequH
https://paperpile.com/c/nILLfl/30Z5a
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(e.g., AT instead of GC). These so-called single nucleotide polymorphisms (SNPs) 

are the most common form of genetic variation that exists. Relatively common SNPs 

that vary among >1% of humans make up less than 2% of all ≈3 billion base pairs 

of human DNA (Auton et al., 2015), rendering these SNPs both informative about 

common genetic differences between people as well as relatively cheap4 and easy to 

measure (e.g., using saliva samples and high-throughput genotyping arrays) (Mills 

et al., 2020).5  

Because individuals have two copies of each chromosome, they typically 

have either two ATs, two GCs, or one AT and one GC at each position in their DNA. 

Therefore, SNPs can be numerically represented as count variables that indicate the 

number of copies of a chosen reference molecule (AT or GC), taking the values 0, 1, 

or 2. 

SNP data exhibit two types of correlations that must be taken into account. 

The first type consists of SNP correlations among the rows in the data (i.e., 

individuals) which increase if two individuals are related to each other and decrease 

with the number of generations that lie between them and their last common 

ancestor. While relatedness among individuals in a dataset can occur simply due to 

sampling multiple individuals from the same family, there can also be more subtle 

types of population structures underlying SNP data that can be traced back to 

shared ancestors many generations ago. Subgroups of the population that have 

different allele frequencies may also have different outcomes due to nongenetic 

factors such as cultural norms, policies, geographic environments, or economic 

circumstances, which can induce bias known as population stratification (Hamer 

and Sirota, 2000). Thus, many research questions that rely on genetic data need to 

control for unobserved variable bias due to population structure (Price et al., 2006; 

Young et al., 2019, 2018).  

Second, there is also a correlation structure among the SNPs themselves, i.e., 

the data columns. In molecular genetics, this is called linkage disequilibrium (LD) 

and it refers to the fact that genetic variants that are in close physical proximity to 

one another on a chromosome tend to be inherited together, creating persistent 

 
4
 The collection of a saliva sample, DNA extraction, and genotyping using a machine-readable array can 

currently be achieved for around $50 or less. 
5
 In addition to the common SNPs analyzed here, other types of genetic variation exist such as rare and 

multiallelic SNPs or structural genetic variants including inversions, deletions, insertions, copy number 

variants, or translocations (Auton et al. (2015)). To the extent that these unobserved genetic variants are not or 

only weakly correlated with common SNPs, their influence cannot be detected well using SNP data. Thus, 

methods that use these data tend to underestimate the extent of genetic influences (Witte, Visscher, and Wray 

(2014)). To measure structural and rare genetic variants, full genome sequencing would be required, which is 

much more expensive than the array-based scans of common SNPs that we and the vast majority of all studies 

in human genetics rely on, and which would imply substantially smaller sample sizes. 

https://paperpile.com/c/nILLfl/x57Ij
https://paperpile.com/c/nILLfl/SequH
https://paperpile.com/c/nILLfl/SequH
https://paperpile.com/c/nILLfl/srTqp
https://paperpile.com/c/nILLfl/srTqp
https://paperpile.com/c/nILLfl/UppMS+17y2O+XCqlm
https://paperpile.com/c/nILLfl/UppMS+17y2O+XCqlm
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correlational patterns. LD is driven by several factors including biological 

mechanisms such as chromosomal crossover that happens during the formation of 

egg and sperm cells (i.e., meiosis), but also by mating patterns, selection, or 

migration events (Mills et al., 2020). We detail below how we addressed potential 

biases from population structure and how we adjusted for LD in the construction 

of the genetic indices that are central for our applications.  

2.2. UK Biobank (UKB) 

The UKB is an ongoing population-based longitudinal study that was established 

to allow investigations of genetic and nongenetic factors that influence health 

outcomes in middle and old age. The UKB recruited 502,522 participants who were 

between 40-69 years old when they entered the study between 2006-2010 (Fry et al., 

2017; Sudlow et al., 2015). All participants gave consent, answered questions, had 

physical measurements taken and provided samples of blood, urine and saliva at a 

baseline assessment center visit.  

We use the molecular genetic data (see Appendix VI) and several available 

measures of SES of the UKB participants (standardized occupation codes, 

household income, educational attainment, and regional measures of 

socioeconomic status that were derived by the UKB from home locations and 

national statistics). We also use the digital health records of all participants, which 

are provided by UKB via continuously updated data linkage with the National 

Health Service (NHS). The NHS provides free medical treatment to all UK residents 

and is funded through general taxation. Thus, in contrast to other countries, access 

to medical treatment and the availability of digital health records in the UK is not a 

function of income or SES. Specifically, digital health records for England are 

available from hospital inpatient episodes (1996-2017), cancer registries (1971-2016), 

and death registries (2006-2018)6, providing clinical diagnoses for all instances 

according to the International Classification of Diseases (ICD; 9th or 10th revision), 

which defines the universe of diseases, disorders, injuries and other related health 

conditions in a comprehensive, hierarchical fashion (World Health Organization, 

2019). We examined all available hospital inpatient records, cancer episodes, and 

deaths for different types of disease using all major ICD chapters with a prevalence 

rate higher than 10% (16 in total). As an overall measure of health, we aggregate the 

available digital health records to examine whether participants had ever been 

hospitalized for any disease or diagnosed with any type of cancer. The available 

digital health records are left-censored, which prevents us from observing disease 

 
6
 See http://biobank.ndph.ox.ac.uk/showcase/exinfo.cgi?src=Data_providers_and_dates  

https://paperpile.com/c/nILLfl/SequH
https://paperpile.com/c/nILLfl/o258t+SL01x
https://paperpile.com/c/nILLfl/o258t+SL01x
https://paperpile.com/c/nILLfl/Os5Rh
https://paperpile.com/c/nILLfl/Os5Rh
http://biobank.ndph.ox.ac.uk/showcase/exinfo.cgi?src=Data_providers_and_dates
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episodes from earlier periods where the participants were younger. It should 

therefore be kept in mind that our estimates with respect to disease occurrence and 

hospitalization are likely to be underestimated.   

In addition, we use four proxies for health that are not subject to left-

censoring and that are continuously distributed: body-mass-index (BMI), waist-to-

hip ratio (WHR), blood pressure, and a measure of lung function (Global Burden of 

Disease Obesity Collaborators et al., 2017; Huxley et al., 2010; Srikanthan et al., 

2009). Finally, we use a summary index of overall health that is a weighted sum of 

all binary and continuously distributed health indicators mentioned above.7 Table 

A1 provides a list of these variables and their definitions. In addition, Tables A2 

and A3 show relevant descriptive statistics.  

2.3. Health and Retirement Study (HRS) 

The HRS is an ongoing longitudinal survey on health, retirement, and aging that is 

representative of the US population aged 50 years or older (Sonnega et al., 2014). 

The survey contains a wide range of socioeconomic outcomes, including income, 

educational attainment, working hours, and standardized job codes. Since 2006, 

data collection has expanded to include biomarkers and a subset of the participants 

has been genotyped (Weir, 2013). We use the second release of the HRS genetic data 

here (see Appendix VI). Our primary outcome of interest in the HRS is hourly 

wages, which are constructed from self-reports of income and hours worked. We 

use a cleaned and harmonized dataset produced by the RAND corporation,8 which 

includes twelve waves from 1992 to 2014. We convert nominal wages into real 

wages using the consumer price index (base =1982-84). 

2.4. Polygenic indices 

All heritable human behaviors are associated with very many genetic variants, each 

of which accounts for a very small percentage of the behavioral variability. This 

stylized fact is known as the “Fourth Law of Behavior Genetics” (Chabris et al., 

2015). Due to the sheer number of SNPs that are potentially relevant for human 

behavior and economic outcomes, it is difficult to incorporate them directly in an 

 
7
 The summary index of every health measure is constructed by following (Anderson, 2008). This method 

takes a weighted average of standardized outcomes where weights are determined by the inverse of the 

correlation matrix. Outcomes highly correlated with each other are assigned less weight, while outcomes 

receive more weight if they are uncorrelated and therefore represent new information. The weights we used in 

our study are reported in Table A4.  
8
 Health and Retirement Study, (RAND HRS Longitudinal File, version P) public use dataset. Produced and 

distributed by the University of Michigan with funding from the National Institute on Aging (grant number 

NIA U01AG009740). Ann Arbor, MI, 2017.  

See https://www.rand.org/well-being/social-and-behavioral-policy/centers/aging/dataprod/hrs-data.html 

https://paperpile.com/c/nILLfl/7Ifgc+AtCpQ+PPyIy
https://paperpile.com/c/nILLfl/7Ifgc+AtCpQ+PPyIy
https://paperpile.com/c/nILLfl/7Ifgc+AtCpQ+PPyIy
https://paperpile.com/c/nILLfl/gDndE
https://paperpile.com/c/nILLfl/CsNgR
https://paperpile.com/c/nILLfl/61C2b
https://paperpile.com/c/nILLfl/61C2b
https://paperpile.com/c/nILLfl/a33M6
https://www.rand.org/well-being/social-and-behavioral-policy/centers/aging/dataprod/hrs-data.html
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econometric model. Instead, an efficient and well-established way of exploiting the 

SNP data is to construct a polygenic index (PGI) that additively summarizes the 

effects of more than 1 million SNPs. Formally, a PGI 𝑠𝑖 is a weighted sum of SNPs: 

(1)   𝑠𝑖 = ∑ �̂�𝑗𝑥𝑖𝑗
𝐽
𝑗=1  

where 𝑥𝑖𝑗 is individual i’s genotype at SNP j. The weights �̂�𝑗 are estimated in a 

genome-wide association study (GWAS) (see Appendix III) which scans all 

measured genetic variations among people for associations with the outcome of 

interest. Since the number of SNPs J is typically orders of magnitude greater than 

the number of individuals in the sample, it is impossible to fit all SNPs 

simultaneously in a multiple regression. Instead, the outcome is regressed on each 

SNP separately, resulting in J regressions in total. Importantly, in order to avoid 

overfitting, the GWAS estimation sample does not include individuals for which a 

PGI is constructed.  

PGI for several economic outcomes are already available, thanks to large-

scale GWAS on traits such as educational attainment (Lee et al., 2018; Okbay et al., 

2016; Rietveld et al., 2013), risk tolerance (Karlsson Linnér et al., 2019), subjective 

well-being (Turley et al., 2018), and household income (Hill et al., 2019, 2016). 

However, no PGI for individual income exists until now, despite the fact that 

individual income is one of the most central topics in economics and one of the most 

important proxies for well-being (Sacks et al., 2012; Stevenson and Wolfers, 2013) 

and health throughout the lifecourse (Adler et al., 1994; Chetty et al., 2016; 

Wilkinson and Marmot, 2003). The primary reason for this deficiency is that most 

datasets that contain genetic information have been collected for medical research 

purposes and lack measures of individual income. The few existing genetic datasets 

that do contain high-quality measures of income are, unfortunately, too small to 

allow conducting statistically well-powered GWAS on individual income (e.g. the 

Health and Retirement Study and the Wisconsin Longitudinal Study).  

We remedy this issue by conducting GWAS on a good proxy for individual 

income, occupational wages, which we imputed from standardized occupation 

codes in the UKB, one of the largest existing genotyped datasets in the world. In 

essence, our imputation algorithm reflects the typical log wage of occupations in 

the UK, adjusted for demographic characteristics such as sex and age. Appendix I 

describes the procedure in detail. The income PGI that we created here adds to the 

growing array of polygenic indices that are useful for economists and other social 

scientists. Furthermore, a PGI for individual income is crucial for several of the 

analyses we present below, including our estimates of the returns to schooling.  

https://paperpile.com/c/nILLfl/J9R6D+PRAoH+baggd
https://paperpile.com/c/nILLfl/J9R6D+PRAoH+baggd
https://paperpile.com/c/nILLfl/nyXty
https://paperpile.com/c/nILLfl/Cvvkh
https://paperpile.com/c/nILLfl/rqfjJ+5C2z2
https://paperpile.com/c/nILLfl/5QN1u+R8D9Y
https://paperpile.com/c/nILLfl/cQfND+RHBTq+V0ouU
https://paperpile.com/c/nILLfl/cQfND+RHBTq+V0ouU
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Specifically, we follow a preregistered analysis plan (https://osf.io/rg8sh/) 

and conduct GWAS on occupational wages using 252,958 individuals in the UKB, 

excluding siblings and their close relatives to obtain an independent sample for 

follow-up analyses using the PGI. In Appendix III, we provide detailed descriptions 

of the GWAS and discuss the results of the GWAS on occupational wages with the 

full sample including the sibling sample (N=282,963). In short, our GWAS on 

occupational wages identified 45 approximately independent genetic loci from 

3,920 SNPs that are significant after Bonferroni correction for multiple testing (p < 

5×10-8).9  The estimated effect size of each individual SNP is very small (𝑅2 < 0.04%), 

which is consistent with previous GWAS results for socio-economic outcomes 

(Chabris et al., 2015; Hill et al., 2019; Lee et al., 2018; Rietveld et al., 2013). The effects 

of 1,197,148 SNPs are then aggregated into a PGI in the sibling sample. We take the 

correlations between SNPs into account by using a Bayseian approach that adjusts 

the estimated GWAS weights �̂�𝑗 with information about correlations between SNPs 

(Vilhjálmsson et al., 2015) (see Appendix IV). The resulting PGI is then standardized 

to have zero mean and unit variance. This PGI captures approximately 3% of the 

variation in occupational wages in the UKB sibling sample and 1% of self-reported 

wages in holdout samples from the U.S. (Table A7).10 For simplicity, we refer to this 

polygenic index as the “income PGI” below. 

Our GWAS results for occupational wages are similar to those for 

educational attainment, which was previously studied in GWAS sample size of N > 

1,000,000 (Lee, Wedow, et al. (2018). The genetic similarity between occupational 

wages and educational attainment can be quantified by the so-called genetic 

correlation coefficient between both traits11, which is 0.923 (SE = 0.01). Thus, 

occupational wages and educational attainment are genetically very similar but not 

identical traits (see Appendix III). The genetic similarity between occupational 

wages and educational attainment can be exploited to improve the accuracy of the 

income PGI by applying a multivariate statistical method called Multi-Trait 

Analysis of Genome-wide association summary statistics (MTAG) (Turley et al., 

2018). MTAG increases the accuracy of a PGI by “borrowing” information from 

 
9
 The summary statistics of the genome-wide association study (GWAS) presented here can be downloaded at 

https://osf.io/rg8sh/. These data are useful for many purposes such as constructing genetic indices, computing 

genetic correlations (Bulik-Sullivan et al., 2015), and for genetically informed study designs involving income 

(Harden and Koellinger, 2020). 
10

 The difference in R2 of the PGI across samples is likely due to differences in heritability and the true genetic 

architecture of different measures of income (i.e. occupational wages versus self-reported wages) across 

different environments (i.e. UK versus US), see (de Vlaming et al., 2017).   
11

 The genetic correlation between two traits quantifies the extent to which they share the same molecular 

genetic architecture, ranging from -1 to 1 (Bulik-Sullivan et al., 2015; Harden and Koellinger, 2020; Okbay et 

al., 2016).  

https://osf.io/rg8sh/
https://paperpile.com/c/nILLfl/61C2b+J9R6D+baggd+5C2z2
https://paperpile.com/c/nILLfl/OjHrw
https://paperpile.com/c/nILLfl/baggd/?noauthor=1
https://paperpile.com/c/nILLfl/Cvvkh
https://paperpile.com/c/nILLfl/Cvvkh
https://osf.io/rg8sh/
https://paperpile.com/c/nILLfl/lZ8Br
https://paperpile.com/c/nILLfl/VkANt
https://paperpile.com/c/nILLfl/4K44R
https://paperpile.com/c/nILLfl/PRAoH+lZ8Br+VkANt
https://paperpile.com/c/nILLfl/PRAoH+lZ8Br+VkANt
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GWAS estimates of genetically similar traits, which could also be obtained from 

partly or even completely overlapping GWAS samples. The MTAG approach 

substantially boosts the accuracy of the income PGI. For instance, the R2 of the 

income PGI increases in the UKB holdout sample of siblings from 2.77% to 4.47% 

for occupational wages and from 0.66% to 1.40% for BMI when MTAG is used 

(Table A9).  

3. Statistical considerations 

Our main analysis examines the consequence of the genetic lottery for income on 

socioeconomic and health outcomes, taking advantage of the large sibling sample 

from the UKB. Consider the following baseline specification for outcome y for 

individual i from family j: 

(2)   𝑦𝑖𝑗 = 𝛿𝑠𝑖𝑗 + 𝑧′𝑖𝑗𝜃 + 𝛼𝑗 + 𝑒𝑖𝑗 

where 𝑠𝑖𝑗 is the PGI for income, 𝑧𝑖𝑗 a vector of covariates, and 𝛼𝑗 unobserved family-

specific effects. In what follows, we discuss two important sources of potential bias 

when estimating the effects of the genetic lottery (𝛿) and how we address these 

issues.   

3.1. Confounds due to family environment 

Estimates of 𝛿 can be confounded due to the fact that the PGI only summarizes 

genetic associations, which are not necessarily the same as the causal genetic effects. 

The causal genetic effect can be defined as the average (counterfactual) change in 

an individual’s outcome that would occur as a result of a ceteris paribus change of 

that individual’s genotype at conception. In practice, however, GWAS are typically 

conducted in population samples and the obtained GWAS results and PGI can, and 

often do, contain environmental confounds, for example due to the environment 

that parents provide for their children (Kong et al. 2018).12 More generally, when 

𝑐𝑜𝑣(𝑠𝑖𝑗, 𝛼𝑗)  ≠  0 and 𝛼𝑗 is not specifically controlled for, estimates of 𝛿 will be 

inflated as a result of family-specific environmental conditions that influence 𝑦𝑖𝑗.  

 
12

 Another example is population stratification, i.e. environmental effects that correlate with more distant 

genetic ancestry that subgroups of the population share with each other such as cultural norms, policies, 

geographic environments, or economic circumstances (Hamer & Sirota, 2000). GWAS typically try to address 

bias from population stratification by restricting samples to a relatively homogenous population, e.g. by 

limiting the study sample to individuals of European descent, and second by controlling for first 40 principal 

components from the SNP data. This is also the approach we followed here. These strategies help to some 

extent, but they are typically not sufficient to eliminate bias due to population stratification when socio-

economic outcomes are studied in large GWAS samples (Abdellaoui et al., 2019; Haworth et al., 2019). 

https://paperpile.com/c/nILLfl/QtnGS+o5gIK


Chapter 1 

28 

This bias is particularly relevant for socioeconomic outcomes (Kong et al., 2018; Lee 

et al., 2018; Young et al., 2018).  

To break the link between 𝑠𝑖𝑗and 𝛼𝑗, the natural experiment of meiosis can be 

exploited in a sample of siblings who share the same biological parents. During 

meiosis, the two copies of each parental chromosome are randomly combined and 

then separated to create a set of two gametes (e.g., two eggs or two sperm), each of 

which contains only one new, resampled copy of each chromosome. The resulting 

genetic differences between full siblings and dizygotic twins are therefore random 

and independent from family-specific ancestry and environmental factors that vary 

between families.     

In a sample of siblings, the unobserved family-specific effects can simply be 

accounted for by including family fixed effects. Hence, a within-family regression 

will yield estimates of the coefficient for the PGI (δ) that are immune to parental 

genetic nurture and the uncontrolled population structure in GWAS that cannot be 

traced back to causal genetic effects. For this purpose, our main analysis relies on a 

hold-out sample of approximately 35,000 siblings from the UKB. 

3.2. Measurement error in the PGI 

Empirically estimated PGI are noisy proxies for “true” PGI that would capture the 

linear effects of all genetic variants in their entirety. The differences between the 

“true” and the available PGI are primarily due to two reasons. First, currently 

available genotyping technologies focus on common genetic variants, but they miss 

rare or structural genetic variants that are not highly correlated with the observed 

common variants (see footnote 7). For this reason, most empirical work in complex 

trait genetics is currently limited to studying the effects of common genetic variants, 

including this study. Second, GWAS estimates of the effect sizes of individual SNPs 

are noisy because they are obtained from finite sample sizes. The noise in the 

estimated effects of SNPs translates into noise in the PGI that is akin to classic (i.e. 

random) measurement error (Daetwyler et al., 2008; de Vlaming et al., 2017) which 

can be adjusted using instrumental variable regression (DiPrete et al., 2018). In our 

concrete example, we estimate that a PGI of all common genetic variants could 

potentially capture up to ≈10% of the variation in occupational wages, which is the 

share of variance in occupational wages that can be attributed to the combined 

linear effects of common genetic variants among UKB participants (See Appendix 

II). Thus, noisy GWAS estimates attenuate the accuracy of the currently available 

income PGI by more than 50%.  

https://paperpile.com/c/nILLfl/stEQk+baggd+17y2O
https://paperpile.com/c/nILLfl/stEQk+baggd+17y2O
https://paperpile.com/c/nILLfl/0N68o+4K44R
https://paperpile.com/c/nILLfl/E699m
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To address attenuation bias due to measurement error, we use genetic 

instrument variable (GIV) regression (DiPrete et al., 2018), which constructs an 

instrument for the noisy PGI by randomly splitting the GWAS sample into two 

independent subsamples that allow for constructing two (even noisier) indicators 

of the PGI. Under the reasonable assumption that the error terms of both indicators 

are independent, one of them can be used as an instrument for the other to obtain 

coefficient estimates that are corrected for measurement error.  

More formally, define a PGI 𝑠𝑖 = 𝑠𝑖
∗ + 𝑢𝑖 , where 𝑠𝑖

∗ is the true PGI and 𝑢𝑖 is additive 

measurement error. Because the PGI is a linear combination of SNP effects, we can 

write ui = x′i (b – 𝛃), where xi is the vector of SNP data for individual i, 𝛃 is the vector 

of true SNP effects, and b is the vector of estimated SNP effects. That is, the PGI can 

be decomposed into a true part and the contribution from the estimation error in 

the GWAS (i.e., b – 𝛃). 

Suppose that we generate two PGI, by randomly splitting the GWAS sample 

into two independent subsamples to obtain two estimates of 𝛃, where 𝑠𝑖
(1) is 

constructed using the estimate from one subsample and 𝑠𝑖
(2) using the estimate 

from the other subsample, where the additive measurement error in 𝑠𝑖
(2) is denoted 

by 𝑢𝑖
(2). 

Now, if we are to use 𝑠𝑖
(2) = 𝑠𝑖

∗ + 𝑢𝑖
(2) as an instrument for 𝑠𝑖

(1), 𝑠𝑖
(2) must 

capture the true PGI term 𝑠𝑖
∗ only in the first stage regression. This implies that the 

noise terms 𝑢𝑖
(1)and 𝑢𝑖

(2) of the two PGI must be uncorrelated with each other. 

Thus, the estimation error of GWAS, b – 𝛃, cannot be correlated across the two 

subsamples, so that Cov(𝑢𝑖
(1), 𝑢𝑖

(2)) = 0. In practice, the two most important steps 

that need to be taken are (1) excluding genetic relatives from all subsamples and (2) 

adding fairly rigorous controls against population structure to the GWAS. To the 

extent that Cov(𝑢𝑖
(1), 𝑢𝑖

(2)) = 0 holds, using one PGI as an instrument for the PGI in 

a two-stage least squares regression will yield effect size estimates for the PGI that 

are no longer attenuated by finite GWAS sample sizes (DiPrete et al., 2018). 

However, even this correction of measurement error in PGI due to finite GWAS 

sample sizes does not address the fact that the influence of rare and structural 

genetic variants that are not well tagged by current genotyping arrays remain 

unobserved. Therefore, estimates of the effects of the genetic lottery that we report 

below are lower bounds for the influences of all genetic variants.  

To obtain GWAS results for GIV analyses, we split the UKB GWAS 

estimation sample randomly into two subsamples, each containing 126,478 

individuals. The subsamples have the same male-female ratio and the individuals 

in each sample are genetically related to those in the other sample with no more 

than first degree cousins or great-grandparents. We re-conducted a GWAS of 

https://paperpile.com/c/nILLfl/E699m
https://paperpile.com/c/nILLfl/E699m
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occupational wages on these two subsamples and constructed two PGI for the 

sibling sample to use for GIV analyses. Note that these GIV PGI are not augmented 

with the GWAS results of educational attainment using MTAG.  

Table 1.  Association between socioeconomic status (SES) measures and health outcomes in the UK 

Biobank  

 

 

log occupational wage  

per hour 
  College education 

 OLS OLS-FE   OLS OLS-FE 

Dependent variable 
 

  summary index -0.126*** -0.049   -0.112*** -0.046*** 

  (N = 13,862 | 26,550) (0.009) (0.018)   (0.005) (0.011) 
 

  waist-to-hip ratio -0.019*** -0.007   -0.017*** -0.007** 

  (N = 17,658 | 35,028) (0.002) (0.003)   (0.001) (0.002) 
 

  BMI -1.248*** -0.103   -1.298*** -0.415** 

  (N = 17,644 | 34,968) (0.108) (0.202)   (0.055) (0.111) 
 

  blood pressure -2.531*** -0.788   -1.885*** -1.185* 

  (N = 15,818 | 31,372) (0.326) (0.663)   (0.171) (0.371) 
 

  lung function 0.279*** 0.097   0.188*** 0.082** 

  (N = 15,506 | 29,844) (0.019) (0.040)   (0.010) (0.022) 
 

  ever hospitalized -0.061*** -0.019   -0.047*** -0.007 

  (N = 17,692 | 35,132) (0.009) (0.021)   (0.005) (0.011) 
 

  ever diagnosed with cancer 0.006 -0.008   0.002 0.004 

  (N = 17,692 | 35,132) (0.008) (0.018)   (0.004) (0.011) 
 

  infectious and parasitic diseases -0.030*** -0.017   -0.028*** -0.003 

  (N = 17,692 | 35,132) (0.006) (0.014)   (0.003) (0.008) 
 

  neoplasms 0.013 -0.007   0.006 0.005 

  (N = 17,692 | 35,132) (0.008) (0.017)   (0.004) (0.010) 
 

  diseases of blood organs and immune system -0.028** -0.006   -0.031*** -0.009 

  (N = 17,692 | 35,132) (0.009) (0.020)   (0.005) (0.012) 
 

  endocrine, nutritional, and metabolic 

diseases 
-0.054*** -0.011   -0.069*** -0.024 

  (N = 17,692 | 35,132) (0.008) (0.018)   (0.004) (0.011) 
 

  mental, behavioral, nervous system disorders -0.071*** -0.047   -0.059*** -0.026 

  (N = 17,692 | 35,132) (0.008) (0.019)   (0.004) (0.010) 
 

  diseases of the eye and adnexa -0.006 -0.009   -0.017*** -0.019 

  (N = 17,692 | 35,132) (0.006) (0.014)   (0.004) (0.009) 
 

  diseases of the circulatory system -0.081*** -0.017   -0.086*** -0.038* 

  (N = 17,692 | 35,132) (0.010) (0.022)   (0.005) (0.012) 
 

  diseases of the respiratory system -0.051*** -0.027   -0.047*** -0.018 

  (N = 17,692 | 35,132) (0.008) (0.017)   (0.004) (0.010) 
 

  diseases of the digestive system -0.090*** -0.026   -0.075*** -0.010 

  (N = 17,692 | 35,132) (0.011) (0.024)   (0.006) (0.014) 
 

  diseases of the skin and subcutaneous tissue -0.014 -0.011   -0.023*** -0.018 

  (N = 17,692 | 35,132) (0.007) (0.015)   (0.004) (0.009) 
 

  diseases of musculoskeletal system and 

connective tissue 
-0.065*** -0.026   -0.068*** -0.029 

  (N = 17,692 | 35,132) (0.010) (0.022)   (0.005) (0.012) 
 

  diseases of genitourinary system -0.063*** -0.014   -0.053*** -0.017 

  (N = 17,692 | 35,132) (0.010) (0.021)   (0.005) (0.012) 
 

  symptoms and signs not elsewhere classified -0.068*** -0.024   -0.066*** 0.000 

  (N = 17,692 | 35,132) (0.011) (0.024)   (0.006) (0.013) 
 

  injury, poisoning, and other external causes -0.035*** -0.030   -0.015** -0.002 

  (N = 17,692 | 35,132) (0.008) (0.018)   (0.004) (0.011) 
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4. The SES-health gradient in the UK Biobank 

It is well-known that people with high SES also tend to live longer and healthier 

lives than those with lower SES (Chetty et al., 2016; Piotrowska et al., 2015; 

Stringhini et al., 2017a; Wilkinson and Marmot, 2003). Natural experiments show 

that higher education has a positive causal effect on health (Grossman, 2006, 2000). 

However, studies looking at income and health have produced mixed results about 

causal effects and come with many methodological challenges (Kawachi et al., 2010; 

O’Donnell et al., 2015).  

The UK Biobank offers a unique opportunity to gain additional insights into 

the relationship between SES and health thanks to its broad coverage of the UK 

population; its large sample size, which includes one of the largest samples of 

genotyped siblings in the world; as well as the availability of detailed health records 

from assessment center visits and digital health records that are continuously 

updated and that span the entire universe of medical diagnoses. In addition to 

descriptive analyses of the SES-health gradient for a variety of health outcomes, this 

particular type of data also allows us to estimate the extent to which exogenously 

given endowments from the social and the genetic lottery drive the relationships 

between SES and health. As a first step, we conduct a family fixed-effects analysis 

in the sibling sample that allows us to control for the outcomes of the social lottery 

(i.e., the parental environment that both siblings share) and a part of the genetic 

lottery (i.e., the genetic similarity of siblings that is due to their descent from the 

same biological parents). The remaining differences in SES and health outcomes 

between siblings are the result of their random genetic differences as well as unique 

environmental influences that are unrelated to their shared genetic endowments.    

Table 1.  Association between socioeconomic status (SES) measures and health outcomes in the UK 

Biobank  

 

 

log occupational wage  

per hour 
  College education 

 OLS OLS-FE   OLS OLS-FE 

  external causes of morbidity and mortality -0.045*** -0.043   -0.023*** -0.007 

  (N = 17,692 | 35,132) (0.008) (0.019)   (0.004) (0.011) 
 

  other health conditions -0.052*** -0.025   -0.067*** -0.026 

    (N = 17,692 | 35,132) (0.011) (0.025)   (0.006) (0.014) 

Note: The table reports the coefficients from separate regressions of health outcomes on log occupational 

wages per hour and a dummy variable for college education, with or without family fixed effects (FE). 

Standard errors clustered by family are reported in parentheses. Significance at family-wise error rate 5% 

(*), 1% (**), 0.1% (***), where multiple hypothesis testing is corrected by Holm's method (Holm, 1979) 

for each set of analysis. For each outcome, the sample is restricted to sibling pairs for both of whom the outcome is 

observed. The summary index is a weighted average of all the health outcomes constructed according to 

Anderson (2008) such that lower values imply a better health. All regressions controlled for a sex dummy, 

year of birth, year of assessment, and the interaction terms between the sex dummy and all other covariates. 

Regressions on log hourly wages also included dummies for year and age of observation. 

https://paperpile.com/c/nILLfl/cQfND+7DH1S+uVxSF+RHBTq
https://paperpile.com/c/nILLfl/cQfND+7DH1S+uVxSF+RHBTq
https://paperpile.com/c/nILLfl/T3VCH+d7XUK
https://paperpile.com/c/nILLfl/2QE8M+VbIep
https://paperpile.com/c/nILLfl/2QE8M+VbIep
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Table 1 shows the relationship between SES, approximated by having a 

college degree and occupational wage, and health outcomes in the UKB. The first 

five rows of the table show estimates for the gradient with continuous proxies of 

health that include the waist-to-hip ratio, BMI, blood pressure, lung function, as 

well as the summary index for health. The results imply strong health advantages 

for people with higher SES. For example, a ten percent increase in occupational 

wages is associated with ≈ 0.12 decrease in BMI (95% CI: 0.09-0.34). The same 

picture emerges for the digital health records that were grouped into specific 

disease categories: Individuals with higher occupational wages and a college degree 

exhibit a lower tendency for severe disease outcomes that would require 

hospitalization (ever hospitalized). High SES is also associated with a lower likelihood 

of being diagnosed with all major disease categories, with the exception of 

neoplasms and cancers. The association between SES and health outcomes is 

particularly strong for endocrine, nutritional, and metabolic diseases; mental, 

behavioral, and nervous system disorders; and diseases of the circulatory and 

digestive systems. For example, having a college degree decreases the risk of ever 

being hospitalized for diseases of the circulatory system by ≈ 8 percentage points 

(95% CI: 6.12-10.10). These estimates are a lower bound of the SES-health gradient 

because the well-known healthy volunteer bias in the UK Biobank attenuates the 

estimates (Fry et al., 2017).  

The results in Table 1 also clearly demonstrate that exogenously given 

family-specific endowments are responsible for the majority of the gradient 

between SES and health. In particular, when we control for family fixed effects, all 

estimated coefficients between SES and health are closer to zero and only the 

associations of SES with circulatory system disorders, waist-hip-ratio, lung 

function, and the summary index across all health outcomes remain statistically 

distinguishable from zero. The substantial contributions of family-specific genetic 

and environmental effects that are outside of one’s control emphasize moral 

concerns about these observed health inequalities (Alesina et al., 2018; Alesina and 

La Ferrara, 2005; Almås et al., 2010; Cappelen et al., 2013; Gromet et al., 2015).   

5. Consequences of the genetic lottery for income 

We now turn to the consequences of the genetic lottery based on the random 

differences between siblings in their polygenic index for income. Our approach 

allows us to examine the causal impact of the genetic lottery for income on lifetime 

outcomes in the present-day UK. 

https://paperpile.com/c/nILLfl/SL01x
https://paperpile.com/c/nILLfl/c53Or+gHzbN+i9l2g+M4zsj+gpMpZ
https://paperpile.com/c/nILLfl/c53Or+gHzbN+i9l2g+M4zsj+gpMpZ
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 There are 18,807 genetic sibling groups in the UKB (38,698 individuals). Our 

analyses are restricted to pairs that have the respective outcome variables available 

for both individuals,13 leading to varying sample sizes between 8,780 and 17,633 

pairs per outcome. We regressed each of the SES and health outcomes on the income 

PGI and covariates.14 For each outcome, we estimated the regression with and 

without family fixed effects. In the OLS estimation, the MTAG income PGI is used, 

whereas GIV estimation uses the ordinary income PGI estimated from the UKB 

subsamples.15 All PGIs are standardized to have zero mean and unit variance. We  

 
13

 Only 1,003 sibling groups have more than 2 members. We dropped sibling groups if more than two siblings 

were available for a given outcome.  
14

 See the note in Table 2 and 3 for the included covariates.  
15

 This is because the GWAS results for educational attainment are from a meta-analysis of many cohorts. 

Table 2.  Associations between the polygenic index for income and measures of socioeconomic 

achievement and health in UK Biobank siblings 

 
 OLS OLS-FE GIV GIV-FE 

Socioeconomic outcomes 
 

  log hourly wage 0.074*** 0.046*** 0.147*** 0.084** 

  (N=17,692) (0.002) (0.007) (0.008) (0.022) 
 

  top household income 0.056*** 0.034*** 0.122*** 0.092** 

  (N=27,412) (0.003) (0.007) (0.008) (0.025) 
 

  log regional income 0.041*** 0.015*** 0.080*** 0.041* 

  (N=31,692) (0.001) (0.003) (0.005) (0.012) 
 

  neighborhood score 1.523*** 0.643* 2.869*** 1.598 

  (N=29,166) (0.088) (0.203) (0.284) (0.694) 
 

  years of education 1.394*** 0.771*** 2.774*** 1.498*** 

  (N=35,132) (0.026) (0.066) (0.095) (0.237) 
 

  college degree 0.131*** 0.069*** 0.258*** 0.145*** 

  (N=35,132) (0.002) (0.006) (0.009) (0.021) 

health proxies 
 

  waist-to-hip ratio -0.007*** -0.004** -0.015*** -0.009 

  (N=35,498) (0.000) (0.001) (0.001) (0.003) 
 

  BMI -0.563*** -0.286*** -0.994*** -0.497 

  (N=35,432) (0.027) (0.063) (0.086) (0.223) 
 

  blood pressure -0.847*** -0.608 -1.678*** -0.795 

  (N=31,770) (0.078) (0.208) (0.250) (0.735) 
 

  lung function 0.055*** 0.017 0.112*** 0.052 

  (N=30,240) (0.005) (0.013) (0.015) (0.047) 

Note: The table reports the coefficient estimates for the standardized polygenic index for income (PGI). Standard 

errors clustered by family are reported in parentheses. Significance at family-wise error rate 5% (*), 1% (**), 0.1% 

(***), where multiple testing is controlled using Holm’s method (Holm, 1979) for each set of analysis. For each 

outcome, the sample is restricted to sibling pairs for both of whom the outcome is observed. FE: family fixed effects 

included. OLS regressions use MTAG PGI for income (i.e. a PGI for income that also takes information from a 

GWAS on educational attainment into account). GIV regressions use two (non-MTAG) income PGI estimated from 

two independent samples, where one PGI instruments the other. All analyses included dummy variables for the year 

of birth, male, and being the younger sibling as well as the first 20 genetic PCs. For economic outcomes, we use 

age dummies instead of the year of birth and add dummies for the year of survey. For health outcomes we also 

control for the age dummies instead but not for the year of survey. In every case, we also include the interaction 

terms between the male dummy and the rest of covariates. 
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Table 3.  Associations between the polygenic index for income and disease diagnosis outcomes in UK 

Biobank siblings 

 
 OLS OLS-FE GIV GIV-FE 

 

  ever hospitalized -0.021*** -0.012 -0.036*** -0.028 

  (N=35,602) (0.002) (0.006) (0.006) (0.020) 
 

  ever diagnosed with cancer -0.001 0.001 0.000 0.007 

  (N=35,602) (0.002) (0.006) (0.006) (0.021) 
 

  infectious and parasitic diseases -0.013*** -0.005 -0.026*** 0.004 

  (N=35,602) (0.002) (0.005) (0.005) (0.017) 
 

  neoplasms 0.000 0.001 0.002 0.007 

  (N=35,602) (0.002) (0.006) (0.006) (0.021) 
 

  diseases of blood organs and immune system -0.012*** 0.001 -0.024** 0.002 

  (N=35,602) (0.002) (0.007) (0.007) (0.023) 
 

  endocrine, nutritional, and metabolic 

diseases 
-0.026*** -0.011 -0.030*** 0.007 

  (N=35,602) (0.002) (0.006) (0.007) (0.022) 
 

  mental, behavioral, nervous system disorders -0.027*** -0.009 -0.048*** 0.002 

  (N=35,602) (0.002) (0.006) (0.007) (0.021) 
 

  diseases of the eye and adnexa -0.006*** -0.005 -0.016* -0.018 

  (N=35,602) (0.002) (0.005) (0.005) (0.017) 
 

  diseases of the circulatory system -0.035*** -0.013 -0.066*** -0.035 

  (N=35,602) (0.003) (0.007) (0.008) (0.025) 
 

  diseases of the respiratory system -0.022*** -0.010 -0.045*** -0.026 

  (N=35,602) (0.002) (0.006) (0.007) (0.021) 
 

  diseases of the digestive system -0.033*** -0.013 -0.068*** -0.043 

  (N=35,602) (0.003) (0.008) (0.008) (0.027) 
 

  diseases of the skin and subcutaneous tissue -0.008*** -0.005 -0.013* -0.013 

  (N=35,602) (0.002) (0.005) (0.006) (0.018) 
 

  diseases of musculoskeletal system and 

connective tissue 
-0.035*** -0.023* -0.065*** -0.037 

  (N=35,602) (0.002) (0.007) (0.008) (0.025) 
 

  diseases of genitourinary system -0.022*** -0.011 -0.051*** -0.006 

  (N=35,602) (0.002) (0.007) (0.008) (0.024) 
 

  symptoms and signs not elsewhere classified -0.033*** -0.016 -0.064*** -0.032 

  (N=35,602) (0.003) (0.008) (0.008) (0.027) 
 

  injury, poisoning, and other external causes -0.009*** -0.004 -0.018* -0.023 

  (N=35,602) (0.002) (0.006) (0.006) (0.021) 
 

  external causes of morbidity and mortality -0.011*** -0.004 -0.020* -0.027 

  (N=35,602) (0.002) (0.006) (0.007) (0.022) 
 

  other health conditions -0.032*** -0.022 -0.056*** -0.039 

  (N=35,602) (0.003) (0.008) (0.009) (0.027) 

Note: The table reports the coefficient estimates for the standardized polygenic indice for income (PGI). Standard errors 

clustered by family are reported in parentheses. Significance at family-wise error rate 5% (*), 1% (**), 0.1% (***), where 

multiple testing is controlled using Holm’s method (Holm, 1979) for each set of analysis. For each outcome, the sample is 

restricted to sibling pairs for both of whom the outcome is observed. FE: family fixed effects included. OLS regressions use 

MTAG PGI for income (i.e. a PGI for income that also takes information from a GWAS on educational attainment into 

account). GIV regressions use two (non-MTAG) income PGI estimated from two independent samples, where one PGI 

instruments the other. All analyses included dummy variables for the year of birth, male, and being the younger sibling as 

well as the first 20 genetic PCs. For economic outcomes, we use age dummies instead of the year of birth and add dummies 

for the year of survey. For health outcomes we also control for the age dummies instead but not for the year of survey. In 

every case, we also include the interaction terms between the male dummy and the rest of covariates. 
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adjusted for multiple hypothesis testing using Holm’s method (Holm, 1979) in each 

set of analyses.16  

Figure A1 shows the distribution of the sibling difference in the MTAG 

income PGI in absolute value. Most of the sibling pairs exhibit a very small 

difference.17 Half of the sibling pairs have a difference in income PGI values smaller 

than 0.63, measured in standard deviations of PGI in the sibling sample. The results 

of our within-family PGI analyses are presented in Table 2 and 3. The OLS estimates 

reported in the first column of Table 2 and 3 demonstrate that the MTAG income 

PGI is associated with all socioeconomic and almost all health-related outcomes we 

investigated. Furthermore, as reported in the third column, GIV regression 

estimates, which correct for measurement error in the PGI are typically twice as 

large as their corresponding OLS estimates.  

Across the board, we find that a higher income PGI is associated with more 

favorable lifetime outcomes including higher educational attainment, higher 

occupational wages, living in a better neighborhood, a lower BMI and waist-to-hip 

ratio, lower blood pressure, a lower chance of having ever been hospitalized, and a 

lower probability of being diagnosed with all disease categories in the digital health 

records that that we investigated, again with the exception of cancer and neoplasms 

(Figure A2). When we correct for the attenuation bias in our results due to the 

measurement error in the PGI using GIV regression (but before we control for 

family fixed effects), our estimates show that a one-standard-deviation increase in 

the genetic propensity for higher income is associated with a 15% increase in 

occupational wages, a 7-percentage-point-increase in the likelihood of having a 

university education, an almost one-point-decrease in BMI, and a 4-percentage-

point decrease in the likelihood of ever being hospitalized for the given age. Thus, 

the phenotypic associations between SES and health are mirrored in the associations 

between the PGI for income and health.  

This pattern of results is consistent with the finding that measures of SES 

such as educational attainment show pervasive and often substantial genetic 

correlations with health outcomes that range between -0.3 for Alzheimer’s disease, 

depressive symptoms, and body fat percentage to 0.6 with Mother’s age at death 

 
16

 Holm’s method controls the familywise error rate like Bonferroni correction, while it offers a uniformly 

more powerful correction by sequentially adjusting rejection criteria.  
17

 22% of the variation in the MTAG income PGI comes from within-family differences, while 78% comes 

from between-family variation. The correlation of a genotype between two siblings is 0.5 in expectation, which 

implies that 25% of the variation in the PGI is due to within-family differences in expectation. However, in the 

presence of assortative mating, the PGI of siblings can be more similar to each other than in expectation, which 

can lower the share of the within-family variation to below 25%.  

https://paperpile.com/c/nILLfl/ogcQ9
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(Bulik-Sullivan et al., 2015; Harden and Koellinger, 2020), illustrating that health 

and SES are also tightly intertwined at a genetic level.  

However, a substantial part of the correlations between PGI for 

socioeconomic outcomes and disease is likely to be due to indirect genetic effects 

such as genetic nurture (Kong et al., 2018) or subtle forms of population 

stratification such as correlations between gene frequencies and neighborhood 

characteristics that are also correlated with SES and health outcomes (Abdellaoui et 

al., 2019; Haworth et al., 2019). When comparing our OLS estimates of the coefficient 

for income PGI with and without family fixed-effects, we observe that the within-

family effects are typically halved (Figure A2). For instance, the estimated effect of 

a one standard deviation increase in the PGI for log occupational wage per hour 

decreases from 0.074 (95% CI: 0.07-0.08) to 0.046 (95% CI: 0.03-0.06) after controlling 

for family fixed-effects. Likewise, the estimate of a one standard deviation increase 

in the income PGI with family fixed effects implies a 0.29 reduction in BMI (95% CI: 

0.16-0.41), while it is estimated to be a 0.52 reduction without family fixed effects 

(95% CI: 0.51-0.62). However, even with the smaller point estimates and the larger 

standard errors from within-family analyses, we still find statistically significant 

associations of the income PGI with all socioeconomic outcomes we investigated as 

well as with BMI, waist-to-hip ratio, and diseases of the musculoskeletal system and 

connective tissues. Thus, approximately one half of the observed associations 

between our income PGI, socioeconomic attainment, and health outcomes in late 

adulthood are due to random genetic differences between siblings.   

Finally, combining the GIV regression with family fixed-effects allows us to 

estimate the combined linear causal effects of common SNPs while adjusting the 

PGI for measurement error. Despite substantially larger standard errors of the point 

estimates due to the two-stage least squares approach of the GIV regression, we find 

effects of the genetic lottery for a number of outcomes that are statistically 

distinguishable from zero, including occupational wages, household income, 

regional income, years of schooling, and having a college degree. For example, a 

one-standard-deviation increase in income PGI is estimated to increase the chance 

of obtaining a college degree by 14.5 percentage points (95% CI: 10.4-18.6) and an 

annual household income greater than £52,000 by 9.2 percentage points (95% CI: 

4.3-14.1). Although none of the health and disease measures is statistically 

significant in GIV fixed-effects estimations due to lower estimation precision, the 

point estimates are very similar to the statistically significant OLS estimates in the 

first column of Tables 2 and 3.  

We repeated these analyses with a PGI for income that was not augmented 

by using MTAG (Table A13) and obtained qualitatively similar results, but with 

https://paperpile.com/c/nILLfl/lZ8Br+VkANt
https://paperpile.com/c/nILLfl/stEQk
https://paperpile.com/c/nILLfl/QtnGS+o5gIK
https://paperpile.com/c/nILLfl/QtnGS+o5gIK
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smaller point estimates in OLS regression due to the larger measurement error in 

the non-augmented PGI. We also conducted these analysis using a PGI for 

educational attainment (Table A13), with very similar results. Interesting, the PGI 

for educational attainment remains associated with health outcomes even after we 

add controls for actually achieved educational attainment, albeit with smaller effect 

sizes. 

These results are inline with findings from Selzam et al. (2019) who 

compared PGI predictions within- and between-family for standardized test scores, 

IQ, and health-related outcomes using the Twins Early Development Study from 

the UK. They found that PGI are still predictive within-family while within-family 

estimate sizes for the PGI are typically smaller than between-family estimates. The 

differences are particularly large for standardized test scores, for which family 

background seems to play a more important role. These differences tend to 

disappear once parental socioeconomic variables are controlled for, suggesting that 

it is mainly the family’s socioeconomic status that confounds the PGI. Similar 

findings for within-family estimates were also reported by Belsky et al. (2018). 

6. Decomposition of the genetic lottery effects 

The previous section demonstrated that the genetic lottery for income has 

incontrovertible  consequences for a broad range of life-time outcomes. However, 

as mentioned in section I.A, these genetic influences do not imply purely biological 

mechanisms, nor do they imply that policy interventions are doomed to be 

unsuccessful (Goldberger 1979; Jencks 1980; Harden and Koellinger 2020). To 

illustrate these important points, consider an intervenable pathway 𝑚𝑖𝑗 for 

individual i in family j through which the genetic lottery for income may affect an 

outcome such as health (e.g. access to favorable environmental conditions such as 

high-quality health care, healthy nutrition, or clean air and water). This intervenable 

pathway  𝑚𝑖𝑗 can be added to model (2) and an auxiliary regression can be 

conducted, where 𝑚𝑖𝑗 is the dependent variable: 

(3)   𝑦𝑖𝑗 = �̃�𝑗 + 𝛿1𝑠𝑖𝑗 + 𝛿2𝑚𝑖𝑗 + 𝑧′𝑖𝑗�̃� + �̃�𝑖𝑗 

(4)   𝑚𝑖𝑗 = 𝛼𝑚
𝑗 + 𝛾𝑠𝑖𝑗 + 𝑧′𝑖𝑗𝜃𝑚 + 𝑒𝑚

𝑖𝑗 

Then, the coefficient of the PGI 𝛿 from the model (2) can be written as: 

(5)   𝛿 = 𝛿1+𝛾 ⋅ 𝛿2 

https://paperpile.com/c/nILLfl/Kj5Er/?noauthor=1
https://paperpile.com/c/nILLfl/BKaZc/?noauthor=1
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Therefore, the effect of genetic lottery 𝛿 can be decomposed into the effect working 

via pathway 𝑚𝑖𝑗 (𝛾 ⋅ 𝛿2) and the residual effect that does not work via that pathway 

(𝛿1).  Estimates of each parameter (𝛿1, 𝛿2, 𝛾) can simply be obtained by estimating 

the equations (3) and (4) separately and the pathway effect (𝛾 ⋅ 𝛿2) can be estimated 

as the product of estimates of 𝛾 and 𝛿2. The standard errors can be computed by the 

delta method. 

As an empirical illustration, we focus on having a college degree as an 

example of 𝑚𝑖𝑗. Colleges are social institutions that have admission policies, 

procedures, and graduation requirements that are shaped by their decision makers 

and that can be influenced by policy. In this sense, colleges are intervenable 

institutions. They create value by giving their attendees access to potentially 

valuable assets (e.g. knowledge and skills). They can also bestow advantages on 

their attendees by serving as a signaling mechanism for potential employers that 

have imperfect information about job applicants (Arcidiacono et al., 2010; Michael, 

1973). Of note, colleges remain intervenable institutions independent from how 

heritable it is to have a college degree and to which extent the genetic architecture 

of having a college degree is shared with other lifetime outcomes such as income or 

health. In fact, policy interventions could change both the heritability of having a 

college degree as well as it’s molecular genetic architecture dramatically. For 

example, a policy that randomly assigns people to college could lower the 

heritability of educational attainment substantially. Alternatively, a policy that 

forbids men to go to college would lead to a perfect correlation between having a 

college degree and whether an individual has one or two X chromosomes, without 

any meaningful biological mechanism that would stop men from going to college 

in a different environment. And yet, as long as colleges grant some advantages to 

their attendees that have health benefits, any genetic variant that is associated with 

college attendance would also have an indirect health benefit, but these health 

effects of genes could in principle be intervened upon.  

To increase statistical power, we limit our empirical analyses to five lifetime 

outcomes that are continuously distributed and available for many UKB 

participants (occupational wages, BMI, waist-to-hip ratio, blood pressure, and lung 

function). The participants were at least aged 40, with the mean age of 57, when they 

were assessed for these measures. This limits concerns about potential reverse 

causality of these outcomes on college attendance.  

https://paperpile.com/c/nILLfl/VIzOj+iw178
https://paperpile.com/c/nILLfl/VIzOj+iw178
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While we can interpret the total effects of the genetic lottery as causal in the 

within-family model, this is not the case for the decomposed effects. In order for the 

intervenable pathway  𝑚𝑖𝑗 to be causal, it would be required that the PGI is 

exogenous with respect to both the late-adulthood outcomes and college education 

conditional on the covariates and, second, that having a college degree is exogenous 

with respect to the outcomes later in life conditional both on the PGI and the 

covariates.18 Whereas the first part of these assumptions is plausibly satisfied given 

the random distribution of the PGI between siblings, the second part is likely to be 

violated in practice. In particular, this condition requires that there is no unobserved 

variable that affects both the late-adulthood outcomes and college education, which 

is clearly unrealistic. Having a college degree can be expected to affect many health-

relevant circumstances, including income, neighborhood quality, and lifestyle-

related choices that could influence health (e.g., smoking, alcohol consumption, 

 
18

 This is the same logic as the sequential ignorability assumption in causal mediation analysis (Heckman and 

Pinto, 2015; Imai et al., 2010)  

Table 4.  Decomposition of the genetic lottery effects in the UK Biobank siblings 

 

 estimation 
effect via college 

education 
residual effect total effect 

effect via college 

education % 
 

 Occupational wage OLS 0.014*** 0.031*** 0.046*** 31.7 

  (N=17,578)  (0.002) (0.006) (0.007)  

 

   GIV 0.030*** 0.057* 0.087*** 34.7 

    (0.006) (0.021) (0.022)  

 

  waist-to-hip ratio OLS -0.0004** -0.003** -0.004*** 11 

  (N=35,028)  (0.0001) (0.001) (0.001)  

 

   GIV -0.001* -0.008 -0.008 10.1 

    (0.000) (0.003) (0.003)  

 

  BMI OLS -0.025* -0.256*** -0.281*** 8.8 

  (N=34,968)  (0.008) (0.064) (0.064)  

 

   GIV -0.052* -0.415 -0.467 11.2 

    (0.019) (0.228) (0.224)  

 

  blood pressure OLS -0.077* -0.546* -0.622* 12.3 

  (N=31,372)  (0.027) (0.210) (0.209)  

 

   GIV -0.159* -0.596 -0.755 21 

    (0.060) (0.748) (0.735)  

 

  lung function OLS 0.005** 0.013 0.018 29.4 

  (N=29,844)  (0.002) (0.014) (0.013)  

 

 GIV 0.011* 0.041 0.052 21.2 
  (0.004) (0.048) (0.047)  

Note: * p<0.05, ** p<0.01, *** p<0.001 with Bonferroni correction for testing 5 outcomes. Standard errors clustered by 

family are reported in parentheses. The standard errors for the indirect effects are computed using the delta method. All 

regressions used family fixed effects. The table reports decomposition of the genetic lottery effects i for 4 health measures 

and occupational wages into the effect working via college education and the residual effect. "effect via college 

education %" reports the proportion of the  effect via college education in the total effect. OLS regressions use MTAG 

PGI for income. GIV regressions use two income PGI estimated from two independent samples, where one PGI 

instruments the other. Covariates are the top 20 genetic PCs and dummy variables for the year of birth, male, the age at 

the time of assessment, and being a younger sibling, as well as the interaction terms between the male dummy and the 

rest of covariates. For occupational wages, we use age dummies instead of the year of birth and add dummies for the 

year of survey. For each outcome, the sample is restricted to sibling pairs for both of whom the outcome is observed.  

https://paperpile.com/c/nILLfl/qXXQs+LBcK4
https://paperpile.com/c/nILLfl/qXXQs+LBcK4


Chapter 1 

40 

diet, and physical activity) despite conditioning on family fixed effects. Therefore, 

the decomposed effects we estimate here do not illustrate the causal mechanism of 

the genetic effect. Instead, the results reported in Table 4 illustrate that the genetic 

lottery for income affects occupational wages and health partly via college 

education and its unobserved accompaniments — videlicet pathways that can be 

environmentally intervened upon (Barcellos et al., 2018).  

For occupational wages and all the objective health outcomes that we 

examined, we observe that the effect of the MTAG income PGI that operates via 

college education and its accompaniments is statistically significant after Bonferroni 

correction for multiple testing. A one-standard-deviation increase in the PGI boosts 

the probability of attaining a college degree by up to 14.5 percentage points (Table 

2), and having a college degree is in turn associated with lower waist-to-hip ratio, 

BMI, and blood pressure as well as better lung function and higher occupational 

wages. The intervenable pathway that is approximated by  having a college degree 

accounts for almost 35% of the total effect of the income PGI on occupational wages. 

For the health outcomes, 9% - 29% is accounted for by the indirect path, with the 

lowest indirect effect for BMI and the highest for lung function. Obviously, these 

are lower bound estimates for how much of the effect of the genetic lottery could be 

intervened upon because the residual effects of the PGI could include other 𝑚𝑖𝑗 that 

imperfectly correlated with having a college degree. While the estimated residual 

effects of the PGI on the health outcomes in Table 4 are often too noisy to draw a 

clear statistical inference, we find statistically significant effects of the 𝑚𝑖𝑗 pathway 

that is approximated by having a college degree in every case.  

Thus, educational attainment and its accompaniments play a crucial role in 

the relationship between genetic fortune for income and health outcomes in later 

life. Thus, the genetic associations we report here clearly do not imply biological 

determinism.    

7. Returns to schooling  

The results above show a clear relationship between genetic predisposition (i.e., the 

results of genetic lottery), educational attainment, and income. This reinvigorates 

the much-debated question in economics of how sensitive estimates of the returns 

to schooling are to hitherto unobserved genetic confounds. Could it be that the 

strong, positive relationship between schooling and income is biased upwards by 

unobserved differences in family backgrounds and “ability”19 that are at least 

 
19

 See footnote 5. 

https://paperpile.com/c/nILLfl/PZLrX
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partially rooted in genetic factors (Griliches, 1977; Heckman et al., 2006; Mincer, 

1958)? We address this question for the first time with an explicit control for 

potential confounds from common genetic variants that may influence both 

education and income. Specifically, we use data from the HRS and our 

(nonaugmented) PGI for income and apply GIV regression to correct for 

measurement error in the PGI (DiPrete et al., 2018).  

The coefficient we estimate is not the ex ante expected rate of return, which 

depends on psychic and financial costs of education, expected tax rates, expected 

number of working years after completing school, expected option values of 

additional years of education, and other information known to the economic agent 

at the time schooling decisions are being made (Heckman et al., 2006). The approach 

we take here is much more humble. It addresses the question of whether the ex post 

average growth rate of income with respect to schooling is potentially biased by 

hitherto unobserved linear effects of common genetic variants. Nevertheless, we use 

the more well-known phrase “returns to schooling” throughout the rest of the paper 

to improve understandability.  

We pool individual observations in the HRS across the waves spanning from 

1992 to 2014, which provides us with a weighted average of cross-sectional 

estimates, and we estimate a standard Mincer equation. We also consider a more 

flexible specification to capture potentially nonlinear returns to higher education by 

including a dummy variable for college education as well as an interaction term for 

having a college degree and years of schooling. As relevant proxies for family 

backgrounds, we also add controls for years of schooling for both parents. 

As a measure of genetic confounds, we would ideally want to have a PGI 

that captures only directly pleiotropic effects on educational attainment and 

individual income (rather than genetic effects that are mediated by educational 

attainment). Thus, a PGI for educational attainment cannot be used as a control 

variable in this context because it would remove the covariation in years of 

schooling and income that we intend to identify. However, it is possible to obtain 

reasonable upper and lower bounds of the relationship between education and 

income conditional on genetic effects using GIV regression (DiPrete et al., 2018).   

More specifically, the GIV regressions of the returns to schooling estimate 

the following equations with two-stage least squares:  

(6)   𝑦𝑖 = 𝛽0
𝑐 + 𝛽1

𝑐𝑒𝑑𝑢𝑖 + 𝛽2
𝑐𝑠𝑦|𝑒𝑑𝑢,𝑖

(1) + 𝑧′𝑖𝛾𝑐 + 𝑒𝑖
𝑐 

(7)   𝑠𝑦|𝑒𝑑𝑢,𝑖
(1) = 𝛿1

𝑐𝑠𝑦,𝑖
(2) +  𝛿2

𝑐𝑒𝑑𝑢𝑖 + 𝑧′𝑖𝜃
𝑐 + 𝑢𝑖

𝑐 

(8)   𝑦𝑖 = 𝛽0
𝑢 + 𝛽1

𝑢𝑒𝑑𝑢𝑖 + 𝛽2
𝑢𝑠𝑦,𝑖

(1) + 𝑧′𝑖𝛾
𝑢 + 𝑒𝑖

𝑢 

https://paperpile.com/c/nILLfl/LxzyD+CBu5n+4przE
https://paperpile.com/c/nILLfl/LxzyD+CBu5n+4przE
https://paperpile.com/c/nILLfl/E699m
https://paperpile.com/c/nILLfl/4przE
https://paperpile.com/c/nILLfl/E699m
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(9)   𝑠𝑦,𝑖
(1) = 𝛿1

𝑢𝑠𝑦,𝑖
(2) +  𝛿2

𝑢𝑒𝑑𝑢𝑖 + 𝑧′𝑖𝜃
𝑢 + 𝑢𝑖

𝑢 

where GIV-C and GIV-U are described by equations (6) and (7) as well as (8) and 

(9), respectively. 𝑦𝑖 denotes log hourly wages and 𝑒𝑑𝑢𝑖 the years of schooling for 

individual i. 𝑠𝑘,𝑖
(1) is a PGI summarizing the GWAS effects of outcome k estimated 

with the first subsample, where outcome k is log hourly wage (y) for GIV-U while it 

is the log hourly wage conditional on years of schooling (𝑦|𝑒𝑑𝑢) for GIV-C. 𝑠𝑦,𝑖
(2) is 

a PGI constructed from a GWAS on hourly wage estimated with the second 

subsample. 𝒛𝒊 is a vector of control variables and 𝑒𝑖 and 𝑢𝑖 are error terms.  

Extensive simulations under a wide variety of conditions found the GIV-U 

estimate to be downwardly biased and the GIV-C estimate to be upwardly biased 

as long as no environmental endogeneity was present (DiPrete et al., 2018). Thus, 

when taken together, the use of GIV-U and GIV-C will generally produce bounds 

on the true effect of T.  Moreover, in the simulations performed by DiPrete, Burik, 

and Koellinger (2018), the upward bias of GIV-C was always smaller than the 

upward bias in OLS.  

Intuitively, GIV-U provides the lower bound for the relationship between 

education and income conditional on the currently observed linear SNP effects 

because the PGI that is used as a control in this regression also captures genetic 

effects on income that work via education. On the other hand, GIV-C provides an 

upper bound because although it mimics a regression of income on education 

conditional on all SNPs, it does so only imperfectly (see Table 1 in DiPrete et al. 

(2018)) and some of the bias due to direct pleiotropic effects of SNPs on education 

and income may remain in the estimate. 

When environmental sources of endogeneity are present, of course, the GIV-

U + GIV-C bounding strategy may fail, just as all other methods fail. As a practical 

matter, therefore, accurate estimates of the effects of education on wages require 

strategies for identifying and reducing the impact of environmental endogeneity. 

Therefore, the bounds reported here only reflect the extent of confounds due to the 

linear effects of common genetic variants in the returns to schooling.    

In addition to the two GIV models, we consider a baseline OLS model 

excluding PGI, as well as a naïve model, where the PGI is included as a control 

variable without accounting for attenuation bias due to estimation errors in the 

GWAS. Note that we do not use the MTAG income PGI here. 

Table 5 presents our results. The estimate with the baseline controls for the pooled 

sample (Panel A, column 1) suggests that one additional year of schooling is 

associated with an average increase in hourly wages of 11% (95% CI: 9.7-12.4), 

which is slightly higher than earlier estimates from cross-sectional OLS in other US 

https://paperpile.com/c/nILLfl/E699m
https://paperpile.com/c/nILLfl/E699m/?noauthor=1
https://paperpile.com/c/nILLfl/E699m/?noauthor=1
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samples (Card, 1999; Harmon et al., 2003; Heckman et al., 2006). However, the HRS 

is a sample of elderly individuals who are approaching or who already are at the 

end of their professional careers, which could contribute to the slightly higher 

returns to schooling we find here. Previous attempts to uncover causal estimates of 

the returns to schooling have shown that the cross-sectional OLS estimates tend to 

be lower than instrumental variable based approaches (Harmon et al., 2003). The 

second column shows the results when the PGI is naïvely controlled for, i.e., by 

simply adding the income PGI as an additional control variable in an OLS 

regression. The estimated returns to schooling decreases slightly to 10.7% (95% CI: 

9.4-12.1) for each additional year of schooling. Notably, a one-standard-deviation 

increase in the PGI in this model is associated with 3% higher hourly wages even 

after adjusting for educational attainment (95% CI: 1.3-4.8). Due to the measurement 

error in the PGI for income, this is a downward biased, lower-bound estimate of the 

relevance of genetic effects on income after controlling for education. 

The coefficient estimates for the returns to schooling decrease marginally 

(~0.5 percentage points) after including controls for parental education, which is a 

proxy for both genetic and environmental advantages that parents pass on to their 

children. Interestingly, the coefficient estimates of income PGI are also slightly 

lower in models that include these controls (~0.2 percentage points), possibly 

because parental education captures some of the indirect genetic effects that work 

via favorable environmental conditions that highly educated parents tend to 

provide for their children (Kong et al., 2018).  

Columns 3 and 4 in Panel 1 show the estimates that correct the measurement 

error in the income PGI with GIV-C and GIV-U regression, providing upper and 

lower bounds, respectively, of the coefficients for educational attainment 

conditional on observed genetic confounds. Our results suggest that the average 

return for an additional year of schooling is between 10.3% and 10.4% even after 

adjusting for the now observed linear common genetic confounds (95% CI: 8.7-11.8; 

8.8-12.0). Furthermore, GIV yields substantially larger estimates of the genetic 

effects, with a one-standard-deviation increase in the PGI being associated with 

8.4% to 15.8% higher hourly wages after adjusting for educational attainment (95% 

CI: 2.9-13.9; 5.2-26.4). These results decrease slightly when controls for parental 

education are included (7.9% and 14.8%).  

https://paperpile.com/c/nILLfl/LyUwC+0x58W+4przE
https://paperpile.com/c/nILLfl/0x58W
https://paperpile.com/c/nILLfl/stEQk
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Our sex-specific estimation results suggest that the returns to schooling are 

substantially higher for women than for men in the HRS, which is in line with 

previous studies. The gender differential in returns to schooling has been well 

documented and has previously been attributed to differences in discrimination, 

tastes, and circumstances of highly educated women compared to less educated 

women (Dougherty, 2005). In particular, the baseline OLS model estimates an 

average return of 7.8% (95% CI: 5.7-10) for an additional year for schooling for men 

(Panel B, column 1) but almost twice as much for women (13.3%; 95% CI: 11.5-15.1) 

(Panel C, column 1). The estimated returns decrease by almost the same small 

magnitude for both men and women when we adjust for potential genetic 

confounds (Panels B and C, columns 2-4). Furthermore, having a college degree 

seems to yield an additional 10% (95% CI: 1-18) income advantage for women over 

and above the 12% (95% CI: 9-15) higher hourly wages for an additional year of 

schooling in the GIV models (Panel C, column 3-4).  

As a robustness check, the same analyses in the HRS are repeated with 3-year 

moving averages of wages, which reduces measurement error and transitory 

variance in the wage distribution. As reported in Table A10, the overall results are 

largely similar to the original results, while some statistical precision is lost due to 

a smaller sample size.  

Our results are comparable to the results of studies that used differences 

between monozygotic twins to estimate the returns to schooling. For instance, 

Ashenfelter and Rouse (1998) report that including family fixed effects reduces the 

returns to schooling from 11% (95% CI: 0.09-0.13) to 7% (95% CI: 0.03-0.11) in the 

Princeton Twins survey data. Similarly, Behrman et al. (1994) show that the returns 

to schooling decreases from 7% (95% CI: 0.07-0.07) to 3.5% (95% CI: 0.03-0.04) in the 

National Academy of Science-National Research Council Twins and the Minnesota 

Twin Registry. Although some of these estimates are noisy, controlling for family 

fixed-effects seems to reduce the returns to schooling more sharply in MZ-twin 

designs than in our approach. This is not surprising given that our approach 

controls only for currently observed linear genetic confounding effects and parental 

education as a measure of family background, whereas the twin approach entirely 

eliminates the bias arising from all family-specific environments and all linear 

genetic confounds.  

Oster (2019) notes that coefficient stability alone cannot provide evidence 

against omitted variable bias —it does so only if the additional controls are 

sufficiently important in explaining the outcome variation. There is only a marginal 

increase in 𝑅2 when we use the naïve control strategy. However, while we cannot 

obtain 𝑅2 from IV regression directly, the substantially larger coefficient estimate of 

https://paperpile.com/c/nILLfl/msD9e
https://paperpile.com/c/nILLfl/uxSeG/?noauthor=1
https://paperpile.com/c/nILLfl/xXOls/?noauthor=1
https://paperpile.com/c/nILLfl/r1whv/?noauthor=1
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the PGI in GIV regressions may imply a nonnegligible change in 𝑅2 when the 

measurement error in the PGI is adequately corrected for.  

In summary, controlling for now observable confounds from linear effects of 

common genetic variants slightly decreases the estimated returns to schooling, but 

not by more than 0.8 percentage points. At the same time, the estimated relationship 

between genetic predisposition and realized income remains substantial even after 

we control for educational attainment. Even in regressions that explicitly control for 

one’s own and one’s parents’ education, a one-standard-deviation increase in the 

PGI is associated with an 8-15% higher average wage in the pooled GIV-C and GIV-

U models.  

8. Discussion 

Conceptually, genetic endowments are a form of luck — they are one-time, 

irreversible, exogenously given, individual-specific endowments that result from 

the natural experiment of meiosis that randomly mixes the genotypes of one's 

biological parents. We have shown here that genetic fortune for high income, in the 

form of random genetic differences between siblings, contributes to inequalities 

throughout the life course, influencing the education people attain, which 

occupations they pursue, how much they earn, the quality of the neighborhoods 

they live in, and the type of health outcomes they will tend to experience in late 

adulthood. Our results illustrate how tightly health, skills, work, achievements, and 

genetic luck are coupled: the idea that human agency in the form of choices and 

effort could be neatly separated from luck is unsubstantiated in light of the life-long 

consequences of the genetic lottery that influence behavior and achievements. The 

inequalities due to genetic luck that we showed here clearly violate the principle of 

equal opportunity. They also raise questions about how much credit and 

responsibilities society can or should attribute to individual's socio-economic and 

health-related outcomes in life (Rawls, 1999; Roemer, 1998). If inequalities partly 

result from a genetic lottery, the case in favor of a social contract that provides 

insurance against unfavorable outcomes is strong (Alesina et al., 2018; Alesina and 

La Ferrara, 2005; Cappelen et al., 2013; Gromet et al., 2015).  

Specifically, our results show that the positive relationship between SES and 

health (Chetty et al., 2016; Stringhini et al., 2017b; Wilkinson and Marmot, 2003) is 

due partly to family-specific genetic and environmental endowments that affect 

both factors. Furthermore, siblings who “won” the genetic lottery for income are 

more likely to have favorable health outcomes later in life (e.g., lower BMI), but this 

genetic advantage is partly mediated by obtaining a college degree. Although our 

https://paperpile.com/c/nILLfl/4ww2Y+R0AaN
https://paperpile.com/c/nILLfl/gpMpZ+M4zsj+gHzbN+c53Or
https://paperpile.com/c/nILLfl/gpMpZ+M4zsj+gHzbN+c53Or
https://paperpile.com/c/nILLfl/cPX4m+cQfND+RHBTq
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study design does not allow us to identify the causal effect of education on health, 

our results strongly suggest that high educational attainment and its 

accompaniments tend to bring about a lifestyle that has health benefits. 

Furthermore, we have shown that genetic fortune for income also causes differences 

in educational attainment. However, even when we control for the currently 

observed genetic confounds, the positive relationship between income and 

educational attainment remains strong, with an average of 8-11% higher hourly 

wages for each additional year of schooling. These results illustrate that the causal 

pathways from genes to behavior, achievements, and health involve environmental 

and behavioral pathways that can be intervened upon, such as education. Thus, 

genes contribute to inequality, but this does not imply biological determinism or an 

irrelevance of policy.   

Genetic predispositions, such as those we studied here, have relevance for all 

branches of economics that are concerned with differences between individuals 

(Harden and Koellinger, 2020). The rapidly growing availability of genetic data and 

improvements in computing power and statistical methods now allow us to 

investigate links between genetic and environmental factors, human behavior, and 

economic outcomes directly. This new type of data now permits economists to use 

genetically-informed study designs that enrich our empirical toolbox and that allow 

us to ask new questions and to gain new insights on core questions of our discipline. 

Our results here are illustrations of this.  
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1. Introduction 

Socioeconomic status (SES), typically measured by income, education, occupation, 

and neighborhood quality, is a powerful predictor of important life outcomes 

including physical and mental health, academic achievement, and cognitive abilities 

(Adler and Stewart, 2010; Chetty et al., 2016; Ridley et al., 2020; Sacks et al., 2012; 

Stringhini et al., 2017). The brain plays a central role in these relations, most 

obviously in mental health and intellectual capabilities, but also in physical health 

through neuroendocrine and inflammatory pathways (McEwen and Gianaros, 

2010; Muscatell, 2018). Thus, neuroscience provides a window on the biosocial 

pathways linking SES and human health and capabilities.  

Neuroscience research on SES has revealed a generally positive relation with 

overall brain volume, as well as with regional cortical and subcortical volumes and 

cortical surface areas (Farah, 2017; Merz et al., 2019; Noble and Giebler, 2020). We 

note variability across studies in the regions most associated with SES, which may 

be due in part to the relatively small samples studied, to differences in the ways SES 

has been measured and analyzed (e.g., choices of covariates) (Button et al., 2013; 

Noble and Giebler, 2020), and to different environments with different levels of 

assistance to individuals of low SES (Walhovd et al., 2021; Weissman et al., 2021). 

One of the goals of the present study is to establish the relation of SES to regional 

grey matter volumes (GMV), in the largest sample so far examined for voxel-level 

data, using a comprehensive measure of SES and controls for a number of potential 

confounds, based on a well-powered, pre-registered analysis plan. 

The second goal of the study is to differentiate genetic from environmental 

causes of the SES-GMV relation. The role of genes and environment in various 

outcomes associated with SES has been debated for decades and has provoked 

controversy in part because of perceived implications for policy (Herrnstein and 

Murray, 1994). 

Here, we pursue these two goals using data from the UK Biobank (UKB), a 

large-scale prospective epidemiological study of individuals aged 40–69 years at 

recruitment (Bycroft et al., 2018; Miller et al., 2016). We conducted voxel-based 

morphometry (VBM) analysis to investigate GMV associations with SES, which was 

measured by a rich set of SES indicators. To probe the genetic basis of the SES-GMV 

relation, we constructed a polygenic index of SES from multiple genome-wide 

association study (GWAS) results (effective N = 849,744), which included a large-

scale meta-analysis of educational attainment (Lee et al., 2018). We then examined 

to which extent the estimated SES-GMV associations can be attributed to the shared 

common genetic architectures of SES. 
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2. Results 

After selecting participants who had undergone both MRI and genotyping, and had 

complete SES information related to occupation, income, education, and 

neighborhood quality, we excluded participants with clinical diagnoses related to 

brain pathology, morbid obesity, heavy alcohol drinking, or low data quality. The 

resulting sample was 23,931 individuals, with a mean age of 62, 57% of whom were 

female. This sample size provides 90% statistical power to detect effects as small as 

R2 > 0.17% at the 5% significance level (corrected for multiple testing by permutation 

testing; uncorrected p < 2.19×10-6; see Section 4.3). T1 images were preprocessed with 

the Computational Anatomy Toolbox (CAT) 12, and anatomical regions were 

labeled according to the Neuromorphometrics atlas. 

SES was represented in the analyses to follow by two summary measures, 

derived from available SES variables using a generalized version of principal 

component (PC) analysis (Figs. 1 and S2). This approach better accommodates 

measurement error and allows us to appreciate the multidimensional nature of SES 

with just two components. PC1SES mainly captures the positive correlations between 

the different SES measures and is most strongly influenced by occupations, 

occupational wages, and education. PC2SES primarily reflects occupations and 

neighborhood qualities that are not strongly linked with educational attainment or 

income, e.g., individuals who live in relatively poor neighborhoods despite having 

high educational attainment. As shown later, PC2SES contributes to capturing non-

genetic variation in SES. 

2.1. Socioeconomic status and grey matter volume 

We first examined the relation between total intracranial volume (TIV) and SES by 

regressing TIV on PC1SES and PC2SES, controlling for sex, age, genetic population 

structure, and a number of image-related technical covariates (see Section 4.2). 

PC1SES is positively associated with TIV (standardized 𝛽= 0.10; p = 1.1⨉10-87; 95% CI 

[0.09, 0.11]), while for PC2SES the relation is statistically indistinguishable from zero 

(standardized 𝛽= 0.01; p = 0.14; 95% CI [-0.00, 0.02]). The two PCs together explain 

1.6% of the variance of interest in TIV beyond the covariates (partial R2)—slightly 

higher than TIV’s relation to educational attainment (1.4%), and lower than its 

relation to fluid intelligence (2.6%) (Nave et al., 2019). 

Next, we conducted VBM analysis to test the association of these two PCs 

with regional GMV across the brain, using the same set of covariates. Higher SES is 

associated with larger GMV across the brain (Fig. 2A). 89.5% of the voxels have a 

statistically significant association with SES at a familywise error rate of 5%, all of 
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which are positive. For statistically significant voxels, the average partial R2 is 0.4% 

and the highest is 1.2%, with the strongest associations in the left ventral striatum 

and the right frontal pole. Thus, the positive relation between total brain volume 

and SES arises from many relatively small sources of structural variation that are 

widespread across the brain. 

Accordingly, when TIV is controlled for, just 8.5% of the voxels have a 

statistically significant association with SES and the average effect size in partial R2 

is reduced by over half to 0.17% for the statistically significant voxels (see Section 

4.3.1). As shown in Fig. 2B, the strongest positive associations between SES and 

relative GMV fall in the prefrontal, insular, frontal opercular, lateral parietal, and 

lateral temporal regions, as well as in subcortical areas including the cerebellum, 

striatum, and thalamus. While SES-GMV associations are mainly driven by PC1SES, 

PC2SES contribute relatively more in lateral temporal, cerebellar, and ventromedial 

prefrontal regions than in other regions (Figs. 2B and S4A). 

The regions implicated in these analyses include many reported in previous 

studies of SES and brain structure. While the cerebellum has not often been linked 

to SES, this may reflect its omission from many morphometric studies (but see 

Cavanagh et al. (2013), for a study of SES and cerebellar volume specifically, with 

positive findings). Conversely, hippocampus volume is often noted to correlate 

with SES. Although this was also found in the present study, it was not among the 

strongest relations. 

We also explored the influence of individual aspects of SES, such as 

education and income, by conducting a cluster-based analysis (Figs. S8 and S9) as 

well as VBM on each measure separately (Figs. S5 and S11). The overall pattern of 

results is similar, with years of schooling being most strongly associated. 

SES-health relations are often stronger at lower levels of SES, where more 

extreme deprivation may impose unique effects on health (Adler and Ostrove, 1999; 

Schnittker, 2004) and this pattern is also seen in SES effects on the cortex in children 

(Noble et al., 2015). Stronger SES-GMV associations were found here in the lower 

SES participants of our sample as well (Fig. S6) (Rose and Pevalin, 2003). Regionally, 

this is particularly apparent in the striatum (low SES, N = 15,611, max partial R2 = 

0.65%, TIV adjusted; high SES, N = 8,320, max partial R2 = 0.17%, TIV adjusted). 

An alternative measure of the strength of the SES-GMV relation is the ability 

of aggregate GMV measures to predict SES. Indeed, the small effect sizes for 

individual voxels do not imply that the association between SES and overall GMV 

structure is also small. To show this, we constructed brainwide GMV scores to 

predict PC1SES and PC2SES via a stacked block ridge regression (Mbatchou et al., 2021) 

with 5-fold cross-validation. These scores predict ΔR2  = 4.9% (95% CI [4.4, 5.4]) of 
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out-of-sample variation in PC1SES and ΔR2 = 0.5% (95% CI [0.3, 0.7]) in PC2SES (see 

Section 4.3.2 for details). 

2.2. Genetic and environmental components of SES-GMV relation 

The second question to be addressed is the contribution of genetic and 

environmental influence to the SES-GMV relations reported here. We approached 

this by first estimating the SNP-based heritability of SES and brain measures as well 

as the pairwise genetic correlations among them, which indicated that the genetic 

architectures of SES and brain structure are partly overlapping (see Section 4.6.1). 

We then constructed a polygenic index for SES (PGISES) using the results of the 

genome-wide association study (GWAS). In view of the sensitivity of GWAS results 

to differences in ancestry, we derived the index from UKB participants of European 

ancestry only, excluding the scanned participants and other participants genetically 

related to them. The genetic data consisted of relatively common genetic variants 

(single-nucleotide polymorphisms or SNPs) with minor allele frequency ≥1%, 

which were related to educational attainment, occupational wages, household 

income, local average income, and neighborhood quality, combined using Genomic 

SEM (Grotzinger et al., 2019; Lee et al., 2018) (effective N = 849,744). PGISES is strongly 

associated with PC1SES (ΔR2 = 7.1%, p < 10-300) and weakly with PC2SES (ΔR2 = 0.02%, 

p = 0.03) (see Section 4.2.4 for details). PGISES could then be used with images from 

participants of European ancestry (N = 20,799) to help discriminate genetic from 

environmental causes of GMV differences. 

PGISES was then used to predict TIV (ΔR2 = 0.8%, p = 7.4⨉10-64) and GMV 

across the entire brain via VBM. The latter analysis revealed positive associations in 

widely distributed voxels (Fig. 3A row b.), with the most pronounced associations 

in the anterior insula, frontal operculum, prefrontal, anterior cingulate, and 

striatum. There is substantial overlap between the neuroanatomical correlates of 

SES and PGISES. Controlling for TIV, approximately 41% of the GMV voxels 

associated with SES are also associated with PGISES. This overlap is especially 

apparent in the insular and prefrontal cortices, with roughly 96% and 64% of the 

voxels associated with PCSES also associated with PGISES, respectively.  

We then examined to which extent the shared common genetic architectures 

of SES and GMV account for the observed phenotypic associations by comparing 

TIV-adjusted regression results of GMV on SES with and without controlling for 

PGISES. For 13% of the voxels significantly associated with SES before PGISES is 

controlled for, there is a statistically significant change in at least one of the 

coefficients for PC1SES and PC2SES  after accounting for PGISES . Controlling for PGISES 
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reduces the SES-GMV associations across the entire brain, with the greatest 

reduction in the anterior insula, frontal operculum, ventrolateral prefrontal cortex, 

and ventral striatum of both hemispheres, consistent with VBM of PGISES mentioned 

earlier (Fig. 3B). When we correct for measurement error in PGISES using genetic 

instrumental variable regression (DiPrete et al., 2018), we estimate that PGISES 

accounts for more than half of the SES-GMV associations for many of these regions. 

On average, 38% of the SES-GMV associations (min = 3%, max = 87%) can be 

statistically attributed to PGISES (see Section 4.3.3 for details).  

The remaining associations between GMV and SES could be either due to 

environmental influences on both or due to rare SNPs, structural variants (e.g. 

inversions, deletions), or interactions among genes (i.e. epistasis) that PGISES does 

not fully account for. Forty-three percent of the voxels significantly associated with 

SES fall into this category, remaining associated with SES after controlling for PGISES 

(Fig. 3A row c.). The SES-GMV association is least attenuated by genetic controls in 

the cerebellum and lateral temporal, lateral parietal, posterior cingulate and 

primary motor regions, as well as some areas of the dorsolateral and ventromedial 

prefrontal cortex (vmPFC) and the thalamus. Controlling for PGISES accounts for less 

than 30% of the SES-GMV association in many of these regions. These results 

suggest that the aforementioned regions may be particularly susceptible to the 

influence of the socioeconomic environment. This is consistent with the relatively 

stronger association of PC2SES to GMV in many of these areas, as PC2SES was found 

to be barely heritable (see Section 4.6.7). In sum, a substantial portion of the SES-

GMV relation is attributable to known genetics, and that portion varies according 

to region of the brain. The remaining portion of this relation is also substantial, and 

likely includes the effects of the environment. 

Next, we sought to extend our evidence concerning environmental 

influences through the study of a specific environmental factor. Numerous 

environmental exposures are associated with SES and are plausible causal 

contributors to the SES-GMV relation found here. These include prenatal and 

childhood factors with lifelong effects, as well as adulthood exposures such as 

chronic life stress, nutritional status, physical exercise, environmental toxins, 

smoking and other substance use. Experimental research with animals and human 

research with longitudinal, quasi-experimental or experimental studies show that 

these are all capable of impacting the brain. On the basis of recent research with the 

same sample relating mid-life obesity to cognitive and brain aging (Morys et al., 

2021), we chose to extend our analyses by including body mass index (BMI) as 

marker for a set of behavioral factors that could mediate the SES-GMV relation, 

including nutrition, physical activity, and obesity, which can impact the brain 
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through their downstream effects on blood pressure, blood lipids, glucose 

metabolism and inflammation. In addition to the logical point that PGISES controls 

would account for genetic influences of BMI on the SES-GMV relation, there is also 

experimental evidence of SES affecting BMI through the environment: increasing 

SES causes BMI to decrease (Ludwig et al., 2011). 

BMI accounts for an average of 44% of the SES-GMV associations that remain 

after controlling for PGISES (Figs. 3C and 4). This result is not due to neurological 

disease associated with BMI, such as stroke or neurodegenerative disease, because 

neurological disease was an exclusionary criterion for our sample. The effect is 

particularly large in the thalamus and the cerebellum as well as the lateral temporal 

region and some areas of the vmPFC. Furthermore, for the 91% of the voxels with 

significant SES-GMV association in the European ancestry sample, at least 50% of 

the estimated SES-GMV association can be statistically attributed to PGISES and BMI 

combined, with 67% on average. 

We then explored the possible functional implications of the volumetric 

differences observed here by relating them spatially to the results of meta-analyzed 

fMRI studies, based on NeuroQuery and 492 cognitive concepts from the Cognitive 

atlas knowledge base (Figs. 5 and S15) (Dockès et al., 2020; Poldrack et al., 2011). 

The neuroanatomical correlates of SES are most strongly expressed in language, 

perceptual cognitive functions, self-monitoring, and communication with statistical 

significance at the false discovery rate of 5%. These functional associations of SES 

appear to be driven by genetic influences (PGISES), while PGISES also distinctly 

reflects functions related to decision-making (risk and uncertainty), altruism, and 

empathy as well as broader categories of concepts as shown. The regions presumed 

to be more environmentally susceptible (Fig. 5C) tend to relate more to functions 

pertaining to executive control and learning and memory, none of which, however, 

were statistically significant at the false discovery rate of 5%.  

3. Discussion  

In sum, our results show that socioeconomic status is linked with brain anatomy 

through a regionally varying balance of genetic and environmental influences. The 

functions of the implicated brain regions span many cognitive and affective 

capacities. A measurement-error corrected polygenic index enabled us to separate 

regions whose correlations with SES can be partly attributed to common genetic 

variants, at least in individuals of European ancestry, from other regions more 

susceptible to environmental and behavioral exposures that correlate with SES, 

notably BMI. Our results suggest that brain health is more susceptible to SES-related 
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environmental stressors in specific regions, including reduced grey matter volume 

in the cerebellum among individuals with low SES.  

Our study is not the first to introduce the genetic aspect in neuroscience of 

SES (Judd et al., 2020; Mitchell et al., 2020; Raffington et al., 2019). Notably, global 

and regional measures of cortical regions have been found to have association with 

a polygenic index for educational attainment (Judd et al., 2020; Mitchell et al., 2020). 

Total surface area has also been shown to correlate independently with both 

parental education and a polygenic index for educational attainment (Judd et al., 

2020). To our knowledge, our study is the first to show varying degrees of the 

genetic contribution to the relationship between SES and brainwide regional 

measures, including subcortical regions. Specifically, we identified many regions 

that remained associated with SES even after adjusting for genetic controls (PGISES).  

In an age of growing inequality and socioeconomic disparities in health, 

achievement and wellbeing, understanding the neural embedding of SES has social 

as well as scientific relevance. Poverty and social deprivation are associated with 

widespread regional reductions of grey matter volume, which the present results 

confirm with unprecedented certainty and anatomical specificity. A novel 

implication of our findings is that this association can be explained in part, but only 

in part, by genetic predisposition to different degrees across the brain. It has been 

argued that genetically caused disadvantages cannot, at present, be ameliorated by 

policies that improve the social and economic environment (Murray, 2020). 

However, this reasoning is invalid for at least two reasons. First, even entirely 

genetic conditions can be treated with environmental interventions, for example 

phenylketonuria (Paul, 2015). Second, genetic contributions to complex behavioral 

outcomes such as SES are likely to work via environmental channels that can be 

influenced (Harden and Koellinger, 2020; Jencks, 1980). In particular, the variance 

captured by PGISES is expected to contain indirect genetic effects such as genetic 

nurture (Kong et al., 2018) that work via different family environments, including 

family-specific differences in child-rearing and neighborhood quality. An extensive 

note in Section 4.5 concerns the interpretation and limitations of our results.   

For policy purposes, genetic influences should not be taken as a sign of 

intractability (Goldberger, 1979; Jencks, 1980).  Rather, our findings imply that 

biological and social factors both contribute to neural disparities and that policy 

interventions may influence and interact with biological factors. While it would be 

premature to base specific policies on our results, future research in this direction 

could provide insights that can be translated into targeted interventions (see Farah 

(2018) for in-depth discussion). For example, further insights into whether cognitive 

https://paperpile.com/c/4AFbYT/enpfj+PDzMn+g4scW
https://paperpile.com/c/4AFbYT/PDzMn+g4scW
https://paperpile.com/c/4AFbYT/g4scW
https://paperpile.com/c/4AFbYT/g4scW
https://paperpile.com/c/4AFbYT/j6evU
https://paperpile.com/c/4AFbYT/ooK6f
https://paperpile.com/c/4AFbYT/HVMSL+VplAp
https://paperpile.com/c/4AFbYT/g955n
https://paperpile.com/c/4AFbYT/RJqvb+HVMSL
https://paperpile.com/c/4AFbYT/aMhmP/?noauthor=1
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stimulation during early life or anti-poverty policies (Farah et al., 2021; Noble et al., 

2021; Weissman et al., 2021) reduce neural disparities would be valuable.       

4. Supplementary methods and materials 

4.1. Sample description 

We used publicly available data from the UKB, which recruited ≈500,000 

participants from the general population of the UK (Littlejohns et al., 2020; Miller et 

al., 2016). Study participants were 40-69 years old at recruitment between 2006-2010. 

Our study sample originates from 40,681 individuals whose structural T1 MRI 

images were available in January 2020 (data field 20252). To derive voxel-level grey 

matter volumes, we processed T1 images from 38,545 genotyped individuals with 

the Computational Anatomy Toolbox (CAT) 12 for SPM (see Section 4.2.1 for 

details). We then applied several filters to ensure data quality and avoid spurious 

findings. We excluded:  

- 24 individuals with mismatch between genetic (data field 22001) and self 

reported sex (data field 31) 

- 1,818 individuals with clinical diagnoses related to brain pathology 

(including dementia, Alzheimer’s, Parkinson’s, and chronic degenerative 

neurological diseases, Guillan-Barré syndrome, multiple sclerosis, other 

demyelinating diseases, stroke or ischaemic stroke, brain cancer, brain 

haemorrhage, brain or intracranial abscess, cerebral aneurysm, cerebral 

palsy, encephalitis, epilepsy, head injury, infections of the nervous system, 

meningeal cancer, meningioma, meningitis, ALS, neurological injury or 

trauma, spina bifida, subdural haematoma, subarachnoid haemorrhage, or 

transient ischaemic attack; see the pre-registered plan for ICD10 codes - 

https://osf.io/kg29c) 

- 2,705 individuals who were morbidly obese (BMI > 35)  

- 2,427 individuals who were current heavy drinkers, where heavy drinking is 

defined as consuming more than 24 drinks per week for males and more than 

18 drinks per week for females (Aydogan et al., 2019; Daviet et al., 2022), 

which is defined as the sum of data fields 1568,1578,1588,1598, and 1608.  

- 11 individuals with the image-quality rating (computed by CAT12) lower 

than “C” 

- 230 individuals with a sample homogeneity measure (mean voxel 

correlation) lower than the 1% quantile (0.805 based on all 38,545 

individuals). To compute the homogeneity measure, we first estimated a 

https://paperpile.com/c/4AFbYT/8EW9h+HErjh+Yoq9x
https://paperpile.com/c/4AFbYT/8EW9h+HErjh+Yoq9x
https://paperpile.com/c/4AFbYT/wXfsR+Hhnbt
https://paperpile.com/c/4AFbYT/wXfsR+Hhnbt
https://osf.io/kg29c/
https://paperpile.com/c/4AFbYT/L5nFT+SIRNy
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correlation matrix with elements being correlation estimates between 

individuals computed from voxel-level GMV. The mean voxel correlation 

corresponds to column-wise (or equivalently row-wise) averages of this 

matrix 

 After applying these exclusion criteria, 31,330 individuals remained in our 

sample. 7,215 individuals were further excluded due to missing data for the 

variables listed in Section 4.2. In order to rule out that our results are influenced by 

shared family environments among related individuals, we also removed close 

relatives by randomly dropping one from each pair of siblings or parent-offsprings. 

Our final sample for the main analysis included N = 23,931 individuals. In analyses 

that employed genetic data, we included N = 20,799 individuals of European 

ancestry from this sample.  

4.2. Measures 

4.2.1. Imaging-derived phenotypes (IDPs) 

We extracted GMV on the voxel level from T1-weighted structural brain MRI 

images provided in NIFTI format (data field 20252). The UKB scanned the 

participants with a Siemens Skyra 3T scanner using a standard 32-channel head coil 

(Siemens Healthcare, Erlangen, Germany) in three assessment centers (Cheadle, 

Newcastle, and Reading). The scanning and processing protocols are detailed in the 

UKB’s brain imaging documentation (https://biobank.ctsu.ox.ac.uk/ 

crystal/crystal/docs/brain_mri.pdf) as well as in publications (Alfaro-Almagro et al., 

2018; Miller et al., 2016).  

We first pre-processed the T1 images with the Computational Anatomy 

Toolbox (CAT) 12 for SPM (www.fil.ion.ucl.ac.uk/spm/software/spm12/). The 

images were corrected for bias-field inhomogeneities, tissue-segmented, spatially 

normalized to the MNI space with 1.5mm resolution by linear and non-linear 

transformations, and were modulated to ensure that the total amount of signal in 

the original image was preserved during spatial normalization. 8-mm Full-Width-

at-Half-Maximum Gaussian kernel was then used to spatially smooth the pre-

processed images. More details can be found in our pre-registered analysis plan 

(https://osf.io/kg29c/) as well as in the recent publications of BIG BEAR consortium 

(Aydogan et al., 2019; Daviet et al., 2022).   

Following the standard VBM procedures (see e.g. SPM/CAT12 

http://www.neuro.uni-jena.de/cat12/CAT12-Manual.pdf), we decided to exclude all 

voxels from the VBM analyses that did not contain any or sufficient grey matter. To 

https://biobank.ctsu.ox.ac.uk/
https://biobank.ctsu.ox.ac.uk/
https://paperpile.com/c/4AFbYT/wXfsR+rrpco
https://paperpile.com/c/4AFbYT/wXfsR+rrpco
http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://osf.io/kg29c/
https://paperpile.com/c/4AFbYT/L5nFT+SIRNy
http://www.neuro.uni-jena.de/cat12/CAT12-Manual.pdf
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determine this, we first computed the average of all GMV images and then 

thresholded the average brain image at 250 GMV intensity units. The resulting 

binarized image was then applied as a pre-mask to all individual images. After 

applying a gray matter mask derived from the data and dropping the voxels 

unlikely to contain any gray matter (Aydogan et al., 2019), GMV estimates from 

504,426 voxels were used in the analysis. 

4.2.2. SES measures 

The UKB offers a rich set of SES indicators, including education, income, 

occupation, and neighborhood quality. In order to make full and efficient use of the 

data, we took a data-driven approach to measure SES by extracting principal 

components (PC) that capture overall SES from all SES measures available in the 

UKB. Our approach can be summarized as follows: We (1) collected every available 

source of information relevant to SES in the UKB; (2) combined measures or derived 

new variables when possible or appropriate; (3) extracted PCs that represent a 

sparse, but accurate overall measure of SES; (4) and jointly tested for 

neuroanatomical association of these PCs based on an F-test. 

There are several important reasons that motivated us to use this approach. First, it 

allowed us to take into full account the multidimensional nature of SES. While each 

SES dimension tends to share the same direction of correlation, there often are cases 

that do not agree with such correlation in reality: for instance, a plumber may have 

less education than a university lecturer, but may earn higher income. Furthermore, 

the quality of a neighborhood in which an individual lives is an important 

dimension of SES, but it may be imperfectly correlated with education and income. 

Such complex aspects of SES cannot be represented by a single SES measure such 

as education or income alone.     

Second, our data-driven approach is useful for efficiently testing for the association 

between SES and neuroanatomy by summarizing the available measures and 

thereby decreasing the multiple testing burden and increasing the statistical power 

of our analyses.  

Third, this approach also makes it possible to use the detailed occupation data of 

the UKB to a fuller extent. Because it is difficult to handle many occupational 

categories in a single analysis, studies often use an aggregated summary of 

occupation by classifying occupations into a small number of predefined categories. 

One example is using the UK’s National Statistics Socio-economic Classification, 

which reduces the occupation data to 3 or 8 classes. Such a predefined classification 

can discard potentially useful information and may not truly represent different 

https://paperpile.com/c/4AFbYT/L5nFT
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levels of SES. A data-driven approach can efficiently reduce wide categorical data 

of occupation into lower continuous dimensions, while minimizing information 

loss.     

Fourth, our approach addresses important limitations of educational attainment 

measures in the study sample. In the UKB, qualifications are reported in only six 

non-hierarchical categories, some of which cover a wide range of educational levels. 

Furthermore, participants were allowed to indicate multiple categories without a 

specific instruction, which led to a large degree of variation in responses. For this 

reason, we chose not to use years of schooling as often done (Lee et al., 2018), but 

instead determined the highest qualification for each participant in a data-driven 

way and used it as a categorical variable.  

4.2.2.1. Available measures of SES in the UK Biobank 

We collected and constructed an extensive set of SES measures as described below. 

We derived some of the variables by relying on external data sources or aggregating 

several measures. The participants visited the assessment center up to four times 

and brain images were taken during the third or fourth visit (the fourth visit was 

for repeated imaging of a subset of participants). While the data used here was 

primarily collected during the brain imaging visit at the assessment centers, we 

used the latest available information if a measure was missing from this visit. 

● Occupation (81 categories) - fields 132, 20024, 22617 

- Job codes for the latest job held before the age of 65, coded in 3-digit 

UK standard occupational classification (SOC) 2000. 

● Log occupational wages (continuous) - fields 132, 20024, 22617 

- Sex-specific average occupational wage matched to 4-digit SOC codes. 

The wage data are obtained from the UK’s Office for National 

Statistics, averaged over 2002-2010.  

● Household income (5 categories) - field 738 

- Average total household income before tax. 

● Housing type (6 categories) - field 680 

- e.g., own outright, own with mortgage, rent  

● Log local average household income (continuous) - fields 20074, 20075 

- Derived by matching home locations to Middle-layer Super Output 

Areas. The income data are obtained from the UK’s Office for National 

Statistics (England and Wales only) 

● Neighborhood SES score (continuous) - fields 26411, 26412, 26414 

https://paperpile.com/c/4AFbYT/rlWNG
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- Weighted average of three composite deprivation indices for income, 

employment, and education, constructed at the level of Lower-layer 

Super Output Areas (England only). The weights were derived by 

using the inverse of the correlation matrix. This method takes a 

weighted average of multiple outcomes such that outcomes highly 

correlated with each other are assigned less weight, while outcomes 

receive more weight if they are less correlated and therefore represent 

new information. See (Anderson, 2008) for details. 

● Highest qualification (7 categories) - field 6138 

- See the following description. 

* Highest qualification 

This subsection describes how we derived the highest qualification. During the 

assessment, participants were asked to choose qualifications that they have from the 

below options: 

1 College or University degree 

2 A levels/AS levels or equivalent 

3 O levels/GCSEs or equivalent 

4 CSEs or equivalent 

5 NVQ or HND or HNC or equivalent 

6 Other professional qualifications eg: nursing, teaching 

7 None of the above 

Because participants were able to choose multiple qualifications and also because 

the vocational category (NVQ or HND or HNC or equivalent) covers an extensive 

range of educational levels, it was not straightforward to determine the highest 

qualification for qualifications below college degree. Preferably, a better 

qualification should correspond to a better SES. We therefore used the following 

procedure to determine the rank of each qualification.  

We first created a new categorical qualification variable that treats each 

combination of multiple choices as a unique response. Using the method described 

below, we extracted the first PC from this variable along with the rest of SES 

variables listed above. The average of the first PC was then computed for each 

qualification from a group of people who reported having that qualification. Note 

that these groups are not mutually exclusive as the individuals can belong to 

multiple groups. We then determined the SES-rank of qualifications based on these 

average PC scores. This approach yielded the following ranking: 

1 College or University degree 

2 A levels/AS levels or equivalent 

https://paperpile.com/c/4AFbYT/AYIKv
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6 Other professional qualifications eg: nursing, teaching 

3 O levels/GCSEs or equivalent 

5 NVQ or HND or HNC or equivalent 

4 CSEs or equivalent 

7 None of the above 

The highest qualification was chosen for each individual according to this rank, 

which was then included as a categorical variable in the principal component 

analysis described below.  

4.2.2.2. Data reduction by principal component analysis  

We reduced the dimensions of the data by extracting PCs, which represent overall 

SES implied by the available indicators. Standard principal component analysis 

(PCA) is only suitable for non-categorical data. Thus, to account for the fact that we 

have both non-categorical and categorical SES indicators, we employed a method 

that is often called factorial analysis of mixed data, which is essentially a 

generalization of PCA that can handle such mixed data (M. O. Hill and A. J. E. 

Smith, 1976; Pagès, 2014). This method combines ordinary PCA for non-categorical 

data with multiple correspondence analysis for categorical data and is implemented 

in the R package PCAmix (Chavent et al., 2017).  Our purpose here was not a 

factor extraction that finds all relevant factors as typically done, but to exploit only 

the most meaningful variation in the UKB’s SES data to facilitate efficient discovery 

of neuroanatomical correlates of SES. For this purpose, it was optimal to use the 

minimal number of PCs that could sufficiently capture the  multidimensional nature 

of SES. Given this objective, we used the first two PCs (PC1SES and PC2SES) as 

aggregate indicators of SES because these PCs were sufficient to explain the overall 

SES.  

Figs. 1B and S2 clearly demonstrate that the first two PCs are both necessary 

and sufficient to reasonably differentiate major SES groups. The later PCs no longer 

appear to contribute to distinguishing different SES levels. PC1SES mainly 

distinguishes high and low SES groups and appears to reflect the positive 

correlation among different SES measures. PC1SES mostly loads individual 

differences in occupation, educational attainment, and income (Fig. 1A). On the 

other hand, PC2SES contributes more to explaining the residual variation in the lower 

SES groups and illustrates more subtle aspects of SES. PC2SES primarily reflects 

occupation and neighborhood qualities that are not strongly linked with 

educational attainment or income (Figs. 1A and S2 and Table S2).  

https://paperpile.com/c/4AFbYT/mmDMZ+zd5GX
https://paperpile.com/c/4AFbYT/mmDMZ+zd5GX
https://paperpile.com/c/4AFbYT/06y8s
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Furthermore, the PCA results reveal the complex nature of SES within lower 

SES groups. Fig. 1B shows that the lower SES a group represents, the more 

positively correlated the two components are. While the highest SES group even has 

a lower mean value of PC2SES compared to that of the lower SES groups, relatively 

better-off individuals within the lower SES groups tend to have higher levels of both 

PC1SES and PC2SES. These observations imply that the dimensions of SES are more 

complex in the lower SES groups. Overall, these results demonstrate the 

multidimensional nature of SES, which cannot be sufficiently described by a single 

SES measure. 

Fig S3 plots the eigenvalues of the extracted PCs. PC1SES represents a 

dominantly large part of the variation from our SES measures (eigenvalue=2.77). 

The eigenvalues decrease substantially from PC2SES, which nonetheless explains an 

important amount of variation (eigenvalue=1.44). While the eigenvalues of the third 

and fourth PCs are not very different from that of PC2SES, these PCs do not appear 

to explain the meaningful variation in SES as shown earlier.  

Prior to the analyses, we standardized PC1SES and PC2SES so that they have 

zero mean and unit variance. 

4.2.3. Control variables 

We used the following variables as baseline control variables. 

● Age at brain scan (linear, squared, and cubed terms) - field 21003 

● Sex - field 31 

● Age (linear, squared, and cubed terms) ⨯ Sex 

● Total intracranial volume - estimated from CAT12 

● Site of acquisition (Cheadle, Reading, or Newcastle) - field 54 

● A natural cubic spline function of acquisition date (number of days when 

the acquisition happened since the acquisitions started) with 3 degrees of 

freedom - field 53 

● Time of test (in seconds)  - field 21862 

● Interaction terms of acquisition site with all of the above 

● The first 40 PCs of the genetic data - field 22009   

● Genotyping array (UK BiLEVE or UK Biobank Axiom array) - field 22000  

The acquisition date and time were included as control variables based on a 

recent paper (Alfaro-Almagro et al., 2020), indicating that these variables account 

for subtle differences in the UKB’s assessment protocols over time. For instance, Fig 

S1 demonstrates that there is a subtle temporal pattern over time since the UKB 

https://paperpile.com/c/4AFbYT/XNUBs
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started collecting MRI images. We used a natural cubic spline function in order to 

capture highly non-linear patterns flexibly (the analysis plan specified 5 degrees of 

freedom for this, but we used 3 degrees of freedom due to rank deficiency). The first 

40 genetic PCs were also used to control for the genetic population structure and 

the genotyping array to control for potential confounds in the genetic PCs due to 

different arrays used. The genetic PCs were derived internally by the UKB from 

unrelated individuals of mixed ancestries. 

It is important to note that psychological characteristics that are correlated 

with SES, such as cognitive ability and mental health status, were not covaried. Our 

reasoning was that correcting for these traits would result in findings less typical of 

higher and lower SES. By analogy, consider covariates appropriate for assessing sex 

differences in the brain. Sports participation is more common in men than women 

throughout the lifespan, for reasons of biology and culture, and would also be 

expected to impact brain structure though cardiovascular and other mechanisms. 

However, one might wonder how and whether correcting for sports participation 

distorts our understanding of sex differences. Our primary interest is presumably 

not in comparing men who play less sport than typical for their sex to women who 

play more, but rather men and women behaving according to their motivations and 

abilities. Returning to SES and associated psychological traits, here we have opted 

to focus on brain structure in higher and lower SES, rather than on particularly 

smart and well-adjusted low-SES individuals and particularly less smart and well-

adjusted high-SES individuals.   

4.2.4. Genome-wide association studies and construction of the polygenic index for SES 

As a measure of genetic variation associated with SES, we used a polygenic index 

(PGI) that additively summarizes the effects of more than 1 million genetic markers. 

The genetic markers used here are single nucleotide polymorphisms (SNP), which 

are the most common form of  genetic variation. A PGI 𝑠𝑖 of individual i is a 

weighted sum of SNPs: 

𝑠𝑖 = ∑ �̂�𝑗𝑥𝑖𝑗

𝑀

𝑗=1

 

where 𝑥𝑖𝑗 represents the genotype of individual i for SNP j coded as the count of the 

reference allele. We estimated the weights �̂�𝑗 from genome-wide association studies 

(GWAS), which conduct univariate regressions of an outcome on each SNP across 

the genome. The resulting estimates were then adjusted for the correlation between 

the SNPs to obtain the weights �̂�𝑗.  
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We constructed a PGI for SES (PGISES) by combining multiple GWAS results 

of SES indicators, which included educational attainment, occupational wages, 

household income, local average income, and neighborhood score (see further 

details below). We conducted GWAS on each of these measures with the UKB 

participants of European ancestry, excluding those in the analysis sample of this 

study as well as their close relatives (up to the third degree of relatedness, which 

corresponds to everyone in the relatedness table reported by the UKB (minimum 

kinship coefficient = 0.04). We ran each GWAS with a linear mixed model, estimated 

by BOLT-LMM (Loh et al., 2015b).  

Educational attainment (years of schooling) was coded in the same way as the 

recent large-scale GWAS (Lee et al., 2018). Household income was coded as the natural 

log of the midpoint income of each income bracket (for the lowest and highest 

brackets, which are open-ended, 3/4 times the upper bound and 4/3 times the lower 

bound were used as the midpoint, respectively). The remaining indicators were the 

same as described in Section 4.2.2. Except for educational attainment, GWAS was 

run on male and female samples separately and the male and female results of each 

measure were meta-analyzed by the meta-analysis version of MTAG (Turley et al., 

2018) to account for possible sex heterogeneity in socio-economic outcomes. Here 

MTAG was used especially because it is robust to the relatedness between the 

samples. MTAG can be viewed as a generalization of the conventional inverse-

variance-weighted meta-analysis. The sample sizes for each measure varied from 

250,865 to 401,026 participants. For educational attainment, the GWAS result was 

meta-analyzed with the existing GWAS meta-analysis result of educational 

attainment (Lee et al., 2018), which excludes the UKB. More details of these GWAS 

are summarized in Table S4.  

Finally, we combined these GWAS results to represent general SES by the 

common-factor GWAS function of Genomic SEM (Grotzinger et al., 2019). The 

effective sample size of this common-factor SES GWAS amounts to 849,744 (Mallard 

et al., 2019). We then constructed the PGI for SES for those of European ancestry in 

the analysis sample (N = 20,799). To adjust for the correlation between the SNPs, we 

used a Bayesian approach called LDpred (Privé et al., 2020; Vilhjálmsson et al., 2015) 

with a reference panel from the Haplotype Reference Consortium (version 1.1) 

(McCarthy et al., 2016). The SNPs included in the PGISES were limited to the 

autosomal bi-allelic SNPs established by the International HapMap 3 Consortium 

(International HapMap 3 Consortium et al., 2010), which are known to work well 

for phenotype predictions (Lee et al., 2018; Okbay et al., 2016). The SNPs were also 

filtered to ensure minor allele frequency > 0.01, the imputation score (INFO) > 0.7, 

https://paperpile.com/c/4AFbYT/WC05K
https://paperpile.com/c/4AFbYT/rlWNG
https://paperpile.com/c/4AFbYT/pJ15d
https://paperpile.com/c/4AFbYT/pJ15d
https://paperpile.com/c/4AFbYT/rlWNG
https://paperpile.com/c/4AFbYT/C3P4o
https://paperpile.com/c/4AFbYT/dNMRC
https://paperpile.com/c/4AFbYT/dNMRC
https://paperpile.com/c/4AFbYT/SY3y9+tgeuz
https://paperpile.com/c/4AFbYT/vGg5o
https://paperpile.com/c/4AFbYT/8Dmam
https://paperpile.com/c/4AFbYT/vQNOd+rlWNG
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and the missing rate < 0.05. As a result, 1,020,632 SNPs were used for PGISES. The 

PGISES was standardized to have zero mean and unit variance.  

PGISES predicts about ΔR2=7.1% of the variation of PC1SES out-of-sample 

among individuals of European ancestries, above and beyond the control variables 

(age, age2, age3, sex, interactions between sex and the age terms, genotyping array, 

and the first 40 genetic PCs). On the contrary, PGISES barely predicts PC2SES, 

explaining ΔR2=0.02% of its variation.  

4.3. Statistical analyses 

4.3.1. Voxel-based Morphometry (VBM) analysis 

4.3.1.1. Baseline analysis 

Our baseline analysis estimated the associations between voxel-level GMV and the 

two SES PCs. For each voxel j, we estimated the following regression model via 

ordinary least square (OLS): 

(1)  𝐺𝑀𝑉𝑖
𝑗 = 𝛽1

𝑗𝑃𝐶1𝑆𝐸𝑆,𝑖 + 𝛽2
𝑗𝑃𝐶2𝑆𝐸𝑆,𝑖 + 𝑍𝑖

𝑇𝛾𝑗 + 휀𝑖
𝑗 

where the GMV of voxel j is regressed on the two SES PCs. The vector 𝑍𝑖 include 

the control variables listed in Section 4.2.3. 휀𝑖
𝑗 is the error term. The GMV and the 

SES PCs were standardized to have zero mean and unit variance. An F-test was 

used for each voxel to test whether there is significant association between voxel j’s 

GMV and the SES PCs jointly with the the null hypothesis 𝛽1
𝑗 = 𝛽2

𝑗 = 0. We 

measured the association size by the variance of interest in GMV explained by the 

SES PCs beyond the covariates of no interest, i.e., partial R2 := (𝑅𝑃𝐶+𝑍
2 − 𝑅𝑍

2) / (1 −

𝑅𝑍
2). 𝑅𝑃𝐶+𝑍

2  is the R2 from the unrestricted model, which includes the two SES PCs 

and the covariates of no interest, and 𝑅𝑍
2 is the R2 from the restricted model, which 

only includes the covariates of no interest. We also quantified the relative 

contribution of PC1SES in the overall association size by (𝑅𝑃𝐶1+𝑍
2 − 𝑅𝑍

2) / (𝑅𝑃𝐶+𝑍
2 −

𝑅𝑍
2). We used permutation testing to correct for multiple hypothesis testing across 

voxels (see Section 4.3.1.3 for details).  

After the estimation, we anatomically labeled the voxels using the 

Neuromorphometrics atlas provided in CAT12 (http://Neuromorphometrics.com). 

For a summary purpose, we also generated cluster-based estimates. Each cluster 

consists of at least 200 neighboring voxels within the lobe (limbic, cerebellum, 

insular, frontal, parietal, occipital, temporal) which are significant at the familywise 

error rate of 5% in the baseline model. We then repeated the same analysis with 

mean GMV of these clusters.   

http://neuromorphometrics.com/
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4.3.1.2. Controlling for total intracranial volume (TIV) 

Analyses that aim to identify associations between localized GMV and outcomes 

typically control for TIV, since volumetric brian measures scale with the head size. 

However, controlling for TIV as a linear covariate has important statistical 

implications for identifying localized GMV patterns linked to SES, because TIV is 

positively correlated with both SES and regional GMV. In Fig. 2B, GMV of some 

voxels appear to have negative association with SES when the TIV is included as a 

control variable in the model. On the contrary, Fig. 2A shows that almost all the 

voxel-level GMV are positively associated with SES when TIV is not controlled for. 

This result indicates that the absolute GMV-SES association is unlikely to be 

negative in any brain region.  

To formally illustrate this point, consider a VBM model for SES with only the 

TIV as a covariate without loss of generality: 

(2)  𝐺𝑀𝑉𝑖 = 𝛽∼𝑇𝐼𝑉𝑆𝐸𝑆𝑖 + 𝛾𝑇𝐼𝑉𝑖 + 휀𝑖 

where 𝐺𝑀𝑉𝑖 is the GMV of some voxel and 𝛽∼𝑇𝐼𝑉 denotes the association between 

the voxel’s GMV and SES while TIV is accounted for. Each variable is standardized 

to have zero mean and unit variance without loss of generality. 𝛾 corresponds to the 

association between the GMV and the TIV, conditional on SES. The linear 

dependence between the TIV and SES can be described as: 𝐸[𝑇𝐼𝑉𝑖|𝑆𝐸𝑆𝑖] = 𝜆𝑆𝐸𝑆𝑖. If 

we denote 𝛽 as the coefficient of SES from the regression of the GMV on SES without 

the TIV as a covariate, 𝛽∼𝑇𝐼𝑉 can be written as: 

(3)  𝛽∼𝑇𝐼𝑉 = 𝛽 − 𝜆𝛾 

Therefore, if both 𝜆 and 𝛾 are positive and large, 𝛽∼𝑇𝐼𝑉 can be negative even 

when 𝛽 is positive. Our data suggests that this is indeed the case: With the baseline 

model, we estimated 𝜆 ̂ = 0.10 for PC1SES and 𝜆 ̂ = 0.01 for PC2SES. 𝛾 was on average 

0.46 with the minimum=0.11 (right exterior cerebellum) and the maximum=0.72 (left 

gyrus rectus). Since estimates of 𝛽 are positive for the vast majority of the voxels, 

one cannot conclude that the absolute GMV-SES association is truly negative even 

when estimates of 𝛽∼𝑇𝐼𝑉 are negative. Instead, such negative estimates are evidence 

that 𝜆𝛾 is large relative to 𝛽 and that the GMV-SES association is essentially very 

small or non-existent for these regions. Note that here we did not interact TIV with 

the site of acquisition for simplicity when obtaining these estimates. There was not 

much difference in TIV due to images taken in different acquisition sites. 

Therefore, caution is warranted when interpreting the results when TIV was 

adjusted for as a covariate. For this reason, we reported the VBM results both with 
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or without TIV included as a covariate. Furthermore, given the above, our results 

suggest that SES is associated with greater gray matter across almost all brain 

regions investigated, despite small exceptions with negative estimates after 

adjusting for the TIV. Note that TIV was always included as a control variable 

unless otherwise stated.     

4.3.1.3. Multiple testing correction 

To correct for multiple testing across voxels, we used permutation testing to 

determine a p-value threshold that controls the familywise error (FWE) rate of 5% 

(Nichols and Hayasaka, 2003). Following a comprehensive simulation study that 

examined several permutation approaches for the brain-imaging (Winkler et al., 

2014), we applied the method developed by Freedman and Lane (1983) to construct 

an empirical distribution of test statistics (Freedman and Lane, 1983). Consider an 

𝑁 × 𝑀 matrix Y where column j is a length-N vector of voxel j’s GMV with 𝑀 the 

number of the voxels. Each column was first residualized of the covariates of no 

interest (𝑍𝑖). Matrix Y was then permuted row-wise so that the correlation structure 

among the voxels was preserved. We then regressed each of the permuted GMV on 

the non-permuted, original regressors and recorded the maximum F-statistic. We 

repeated this process 5,000 times to form a distribution of the maximum F-statistics. 

We used the p-value computed from the 95th percentile of this distribution (F = 

13.04) as the p-value threshold for 5% FWE-corrected significance level, which 

corresponds to p = 2.193 × 10−6 (uncorrected). 

While in principle the permutation testing has to be performed for each 

different analysis, the resulting p-value thresholds differed only marginally and the 

threshold for the baseline model was the most conservative. Therefore, we used the 

2.193 × 10−6 threshold for every voxel-based analysis.       

4.3.1.4. Stratified analysis of high and low SES groups  

To investigate potential heterogeneity across different SES groups, we conducted 

the same VBM analysis separately on high and low SES groups. High and low SES 

groups were defined by National Statistics Socio-economic Classification of the UK 

(Rose and Pevalin, 2003): high SES group holds a managerial, administrative, or 

professional occupation and low SES group holds intermediate, routine, or manual 

occupation (Nhigh = 15,611, Nlow = 8,320). 

https://paperpile.com/c/4AFbYT/9QrWP
https://paperpile.com/c/4AFbYT/FrVuD
https://paperpile.com/c/4AFbYT/FrVuD
https://paperpile.com/c/4AFbYT/LSrRZ
https://paperpile.com/c/4AFbYT/sai1v
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4.3.1.5. VBM of Individual SES measures  

To gain additional insight into the neuroanatomical correlates of SES, we conducted 

additional VBM analyses on each of the five individual numerical SES measures 

used to construct the SES PGI, described in Section 4.2.4. Note that the main purpose 

of these analyses was not to discover novel neuroanatomical correlates from each 

SES measure, but rather to compare neuroanatomical correlates across these 

measures.    

4.3.2. Estimating the overall association between SES and GMV structure 

Our VBM results demonstrate that the association between SES and an individual 

GMV IDP is small and does not exceed partial 𝑅2 of 1% with TIV adjusted for. One 

might then ask how large the brainwide association between SES and the gray 

matter structure is if we can aggregate individual SES-GMV association estimates 

from individual voxels. Estimating the overall association is not an easy task 

because of the high dimension of the voxel-level GMV data and the strong spatial 

correlation among the voxels. We addressed these challenges by constructing a 

brainwide GMV score for SES with a machine learning technique. We used a 

stacked block ridge regression approach inspired by a recent whole-genome 

regression method (Mbatchou et al., 2021). This approach allows us to tackle the 

high dimension issue by stacked regressions and the spatial correlation by the use 

of ridge regressions without excessive computational burden. Ridge regressions 

also ensure that we only capture linear relationships between SES and the GMV 

structure. 

 We constructed a brainwide GMV score for each SES PC in two steps: 

(1) Voxels were first partitioned into blocks of 10,000 adjacent voxels. For each 

block, we ran a ridge regression of each SES PC on its 10,000 voxel-level 

GMVs with arbitrarily-chosen varying shrinkage parameters: {100, 1002, 

1003}. We then computed predictions for each SES PC for each value of the 

shrinkage parameters, resulting in 3 predictors for each SES PC from each 

block. This resulted in 153 predictors from 51 blocks partitioned from 504,426 

voxels. 

(2) After collecting the predictors from all the blocks, a ridge regression was run 

on them together again. The prediction from this regression was used as a 

brainwide GMV score.  

Both steps were implemented in 5-fold nested cross-validation: In the outer loop, 

the sample was split into 20% test set and 80% training set, the latter of which was 

again split into 20% validation set and 80% training set in the inner loop. In the inner 

https://paperpile.com/c/4AFbYT/rXVy5
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loop, cross-validation was used to tune the shrinkage parameter for the step-2 ridge 

regression. The outer loop was used to train the final model and obtain predictions 

for the test set given the obtained value of the shrinkage parameter from the inner 

loop. We ensured that no information from the test set was used in the model 

training. 

 To measure the overall association between each SES PC and the GMV 

structure, we used a change in R2 after including the corresponding brianwide GMV 

score to the regression. The covariates used were age, age2, age3, sex, interactions 

between sex and the age terms, TIV, genotyping array, and the top 40 genetic 

principal components. We computed confidence intervals with 1,000 bootstrapped 

samples. 

Of note, we do not claim here that this approach is the best way of 

constructing a brainwide score or estimating the brainwide association. The 

primary goal of this analysis is to demonstrate that SES is associated with GMV 

structure to a substantial degree. 

4.3.3. Incorporating genetics 

4.3.3.1. VBM with PGI 

Using PGISES, we conducted the following additional VBM analyses: (1) VBM of SES 

PCs only with individuals of European Ancestry (2) VBM of PGISES (3) VBM of the 

SES PCs controlling for PGISES. These VBMs were carried out in the same way as the 

baseline analysis detailed in Section 4.3.1. We then examined which GMV voxels 

are significantly associated with the SES PCs and/or the PGI and examined changes 

in SES-GMV associations before and after the PGI was controlled for. Note that we 

measured partial R2 of the PCs for VBM of the SES PCs controlling for PGISES as 

(𝑅𝑃𝐶+𝑃𝐺𝐼+𝑍
2 − 𝑅𝑃𝐺𝐼+𝑍

2 ) / (1 − 𝑅𝑍
2) to be able to compare it with partial R2 from VBM 

of SES PCs. In addition to probing the difference in statistical significance after the 

PGI was controlled for, we directly tested whether controlling for the PGI 

significantly altered the SES-GMV association. 

4.3.3.2. Testing differences in SES-GMV associations with and without PGI as a control 

variable  

We used a Wald test to examine whether there was a significant difference in the 

SES-GMV association before and after the PGISES was controlled for. More 

specifically, consider a model where PGISES is added to the model (1) and also set up 

an auxiliary regression of the PGI on the SES PCs and the covariates for each voxel: 
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(4)  𝐺𝑀𝑉𝑖
𝑗 = 𝛽1

𝑗
𝑃𝐶1𝑆𝐸𝑆,𝑖 + 𝛽2

𝑗
𝑃𝐶2𝑆𝐸𝑆,𝑖 + 𝜃𝑗𝑃𝐺𝐼𝑖 + 𝑍𝑖

𝑇�̃�𝑗 + 휀�̃�
𝑗 

(5)  𝑃𝐺𝐼𝑖 = 𝛿1𝑃𝐶1𝑆𝐸𝑆,𝑖 + 𝛿2𝑃𝐶2𝑆𝐸𝑆,𝑖 + 𝑍𝑖
𝑇𝜓 + 𝑢𝑖 

Using vector notations: 𝛽𝒋 = [𝛽1
𝑗   𝛽2

𝑗]𝑇, 𝛽𝑗 = [𝛽1
𝑗
  𝛽2

𝑗
]𝑇, 𝛿 = [𝛿1  𝛿2]𝑇, which are all 

length-2 vectors, it can be shown: 

(6)  𝛽𝑗 − 𝛽𝑗 = 𝜃𝑗 ⋅ 𝛿 = 𝛥𝑗 

Therefore, the vector 𝛥𝑗 represents the difference in the SES-GMV association for 

voxel j due to controlling for PGISES. 𝛥𝑗 can be estimated as the product of estimates 

of 𝜃𝑗 and 𝛿  from the model (4) and (5), respectively. A Wald test was then used to 

test the null 𝛥𝑗 = 0 with the test statistic: �̂�𝑗𝑇
𝑉𝑎�̂� (�̂�𝑗)−1�̂�𝑗 ∼ 𝜒2

2
, where 𝑉𝑎�̂� (�̂�𝑗) 

was approximated by the delta method: 𝑉𝑎�̂� (�̂�𝑗) ≈ 𝑉𝑎�̂� (�̂�𝑗)�̂�𝑇�̂� + 𝜃𝑗2
𝑉𝑎�̂� (�̂�). Note 

that this analysis is statistically equivalent to a mediation analysis with PGISES being 

a mediator (MacKinnon et al., 2000). We conducted this test only for the voxels 

whose GMV was significantly associated with the PCs. Then, the multiple testing 

was corrected for using Bonferroni correction (the corrected 5% threshold = 

1.46 × 10−6 with 34,188 tests).  

4.3.3.3. Measuring differences in SES-GMV associations with and without PGI as a 

control variable  

To represent the relative size of 𝛥𝒋 in relation to partial R2, we used the relative 

change in the net variation explained by the SES PCs after adding PGISES to the 

model with the covariates of no interest: [(𝑅𝑃𝐶+𝑍
2 − 𝑅𝑍

2)  − (𝑅𝑃𝐶+𝑃𝐺𝐼+𝑍
2 − 𝑅𝑃𝐺𝐼+𝑍

2 )]  /

 (𝑅𝑃𝐶+𝑍
2 − 𝑅𝑍

2). This measure is bounded between 0 and 1 as long as the sign of the 

coefficients for PC1SES and PC2SES do not change after controlling for PGISES. This 

expression can be interpreted as the percent change in the SES-GMV associations 

due to controlling for PGISES and essentially the part of the SES-GMV association 

that can be attributed to PGISES. Note that, because PC2SES is barely predicted by 

PGISES and even barely heritable (Table S5), the percent change in SES-GMV 

association after controlling for PGISES is essentially due to the change in PC1SES-

GMV association. We can therefore rewrite the earlier expression as: 

(7)  [(𝑅𝑃𝐶+𝑍
2 − 𝑅𝑍

2)  − (𝑅𝑃𝐶+𝑃𝐺𝐼+𝑍
2 − 𝑅𝑃𝐺𝐼+𝑍

2 )]  / (𝑅𝑃𝐶+𝑍
2 − 𝑅𝑍

2)  

≈ [(𝑅𝑷𝑪𝟏+𝑍
2 − 𝑅𝑍

2)  − (𝑅𝑃𝐶1+𝑃𝐺𝐼+𝑍
2 − 𝑅𝑃𝐺𝐼+𝑍

2 )]  / (𝑅𝑃𝐶+𝑍
2 − 𝑅𝑍

2) 

= 𝛥𝑃𝐶1 /  (𝑅𝑃𝐶+𝑍
2 − 𝑅𝑍

2) 

= [𝛥𝑃𝐶1 / (𝑅𝑃𝐶1+𝑍
2 − 𝑅𝑍

2)]  × [(𝑅𝑃𝐶1+𝑍
2 − 𝑅𝑍

2) / (𝑅𝑃𝐶+𝑍
2 − 𝑅𝑍

2)] 

https://paperpile.com/c/4AFbYT/wDitf
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where 𝛥𝑃𝐶1 = (𝑅𝑷𝑪𝟏+𝑍
2 − 𝑅𝑍

2)  − (𝑅𝑃𝐶1+𝑃𝐺𝐼+𝑍
2 − 𝑅𝑃𝐺𝐼+𝑍

2 ), the change in the net variance 

explained by PC1SES after controlling for PGISES. Hence, the percent change in SES-

GMV association is roughly the product of the percent change in PC1SES-GMV 

association (𝛥𝑃𝐶1 / (𝑅𝑃𝐶1+𝑍
2 − 𝑅𝑍

2)) and the relative contribution of PC1SES in the 

overall SES-GMV association ((𝑅𝑃𝐶1+𝑍
2 − 𝑅𝑍

2) / (𝑅𝑃𝐶+𝑍
2 −  𝑅𝑍

2)). A larger share of SES-

GMV association can be attributed to PGISES if genetic factors linked to SES play a 

bigger role for PC1SES-GMV association and/or if PC2SES contributes relatively less to 

the overall SES-GMV association. 

4.3.3.4. Measurement error correction for PGI 

PGISES is a noisy proxy of true linear effects of common genetic variants that are 

linked to SES because GWAS estimates of individual SNP effects are obtained from 

finite sample sizes. The difference between the true PGI and the available PGI can 

be viewed as the classic measurement error, which leads to an attenuation bias in 

the coefficient estimate for the PGISES. Nonetheless, it is still possible to account for 

the linear effects of common genetic variants that the true PGISES would capture 

under reasonable assumptions. We addressed this attenuation bias by using genetic 

instrumental variable (GIV) regression (DiPrete et al., 2018). The essential idea is 

that the true PGISES  can be recovered from a noisy PGISES(1) by using another PGISES(2) 

as an instrumental variable that was derived from a different GWAS sample. The 

crucial assumption here is that the noise in PGISES(1) and PGISES(2) is uncorrelated to 

each other. GIV regression can address the measurement error in PGISES to the extent 

that this assumption holds. 

To obtain PGISES(1) and PGISES(2), we randomly split the UKB GWAS sample 

into two subsamples (N=105,517~170,945) such that each subsample has the same 

male-female ratio and no individuals in one subsample are related to anyone in the 

other subsample with more than the third degree of relatedness. With each 

subsample, GWAS was run for the five numerical SES measures and the results 

were combined with Genomic SEM as described in Section 4.2.4. Then, PGISES(1) and 

PGISES(2) were constructed from one of the two independent GWAS subsample 

results in the main imaging sample.  

Using PGISES(1)  and PGISES(2), we fitted the model (4) by the GIV estimation, 

which is two-stage least squares (TSLS).  

(8)  𝐺𝑀𝑉𝑖
𝑗 = 𝛽1

𝑗
𝑃𝐶1𝑆𝐸𝑆,𝑖 + 𝛽2

𝑗
𝑃𝐶2𝑆𝐸𝑆,𝑖 + 𝜃𝑗𝑃𝐺𝐼𝑖

(1) + 𝑍𝑖
𝑇�̃�𝑗 + 휀�̃�

𝑗 

where 𝑃𝐺𝐼𝑖
(1) is the PGI estimated from the first subsample. The first-stage equation 

can be written as: 

https://paperpile.com/c/4AFbYT/URq8n


Chapter 2 

81 

(9)  𝑃𝐺𝐼𝑖
(1) = 𝛼1𝑃𝐺𝐼𝑖

(2) + 𝛼2𝑃𝐶1𝑆𝐸𝑆,𝑖 + 𝛼3𝑃𝐶2𝑆𝐸𝑆,𝑖 + 𝑍𝑖
𝑇𝜂 + 𝑒𝑖 

where the PGI estimated from the second subsample, 𝑃𝐺𝐼𝑖
(2), is used as an 

instrument for 𝑃𝐺𝐼𝑖
(1). We obtained the TSLS estimates by fitting the following 

equation: 

(10)  𝐺𝑀𝑉𝑖
𝑗 = 𝛽1

𝑗
𝑃𝐶1𝑆𝐸𝑆,𝑖 + 𝛽2

𝑗
𝑃𝐶2𝑆𝐸𝑆,𝑖 + 𝜃𝑗𝑃�̂�𝐼𝑖

(1) + 𝑍𝑖
𝑇�̃�𝑗 + 휀�̃�

∗ 𝑗 

where 𝑃�̂�𝐼𝑖
(1) is the fitted value from the equation (8). The statistical inference was 

then conducted but in the standard TSLS framework to test the association between 

the GMV and SES for each voxel conditional on PGISES (Wooldridge, 2002).  

We computed Partial R2’s based on adding or excluding 𝑃�̂�𝐼𝑖
(1) in model (10) 

instead of the unadjusted PGI. Similarly, we measured the difference in SES-GMV 

association after controlling for the PGI by GIV as [(𝑅𝑃𝐶+𝑍
2 − 𝑅𝑍

2)  − (𝑅
𝑃𝐶+𝑃�̂�𝐼(1)+𝑍
2 −

𝑅
𝑃�̂�𝐼(1)+𝑍
2 )]  / (𝑅𝑃𝐶+𝑍

2 − 𝑅𝑍
2) 

4.4. Functional annotations 

We connected our anatomical findings to known functional localizations by 

leveraging Cognitive Atlas and the extrapolatable meta-analysis tool NeuroQuery 

(Dockès et al., 2020; Poldrack et al., 2011). We first took the 518 cognitive concepts 

from Cognitive Atlas which were categorized into 10 functional categories (taken 

from https://www.cognitiveatlas.org/concepts/categories/all on 2 July 2021). Then, 

for each concept, we generated a meta-analyzed Z-score brain map using 

NeuroQuery. This toolbox allows users to generate a predictive MRI-derived spatial 

distribution for any term, based on very large-scale meta-analyses containing 

mostly functional MRI studies. We excluded 12 concepts containing a term for 

which NeuroQuery failed to generate a brain map as well as 14 concepts where none 

of the voxels had a non-zero Z score. As a result, 492 concepts remained.  

For each concept-associated brain-map, we calculated the difference in mean 

𝜒2 between voxels statistically significant nominally at 1% level and the rest of 

voxels in the VBM results. We then computed a pseudo T score for the difference in 

mean 𝜒2. These steps were implemented by regressing 𝜒2 scores on the binary 

indicator for a voxel having p-value < 0.01. A similar approach has previously been 

used (Alexander-Bloch et al., 2018) 

We then obtained its p-value from 10,000 spatial permutations of the F 

statistics map from the VBM. We used a generative model approach developed by 

Burt et al. (2020) for permutation, which allowed us to permute the volumetric brain 

map with subcortical regions while preserving spatial autocorrelation. For model 

parameters, we set ns = 1,500, knn = 800, pv = 25, resampling = True, which yielded a 

https://paperpile.com/c/4AFbYT/3laB2
https://paperpile.com/c/4AFbYT/88d78+Lah4w
https://paperpile.com/c/4AFbYT/nbf2w
https://paperpile.com/c/4AFbYT/1FSj3/?noauthor=1
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reasonable fit. We used these permutation-based p-values as a summary measure to 

evaluate the strength of signal for a given functional concept in relation to SES. We 

defined statistical significance corrected for multiple testing at the false discovery 

rate of 5% as we aimed to identify functions with stronger evidence compared to 

the rest. The full results are reported in Table S17. 

4.5. Interpretation 

4.5.1. Brain, SES, and genetics 

To aid interpretation of the association between SES and brain anatomy observed 

in late adulthood, Fig. S19 describes a simple model that illustrates how adulthood 

brain anatomy can be linked to SES, family environments, and genetics. The model 

is depicted in a directed acyclic graph (DAG), a popular graphical framework for 

identifying confounding variables (Greenland et al., 1999; Shrier and Platt, 2008; 

Tennant et al., 2020). The model does not attempt to include all possibly relevant 

factors and mediating pathways. Rather, its purpose is to identify what effects are 

potentially captured in the estimated GMV-SES association in relation to genetics 

and family environments. 

It is important to note that each arrow in the DAG represents a unidirectional 

causal relationship between two variables (nodes). For instance, the arrow from 

“SES adult” to “Brain adult” only indicates the environmental effect of adult SES on 

the adult brain. A path is a set of one or more arrows that connects multiple nodes. 

A path can be either open or closed. An open path channels statistical associations, 

which can be closed by conditioning on a variable in the middle. A path can be 

closed due to a collider, which is a variable that receives two arrows. Conditioning 

on a collider opens up a closed path, which induces a collider bias.    

 Though fairly simple, the model is capable of describing key relevant 

pathways. First, child brain development is determined by genetics and family 

environments (“Own genes → Brain child” and “Family environment → Brain child”). 

Second, SES in adulthood is a function of genetics, family environments, and child 

brain development (“Own genes → SES adult”, “Family environment → SES adult”, 

and “Brain child → SES adult”). Third, the transition to the (late) adulthood brain is 

partly influenced by adult SES (“Brain child → SES adult → Brain adult” and “Brain 

child → Brain adult”). Therefore, the model describes the roles of both genetics and 

family environments in causing differences in SES and the brain. Furthermore, the 

feedback between SES and the brain is illustrated by the path: “Brain child → SES 

adult → Brain adult”. One could extend the model by distinguishing late and early 

adulthood phases and including another feedback effect. Such an extension, 

https://paperpile.com/c/4AFbYT/eoRca+xfxQK+2mrm7
https://paperpile.com/c/4AFbYT/eoRca+xfxQK+2mrm7
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however, will not provide additional key insights as long as socioeconomic mobility 

is limited during adulthood.  

Another important feature is that the model recognizes so-called genetic 

nurture effects (Kong et al., 2018). Childhood family environments shaped by the 

parents are known to be associated with the genes of the parents (“Parental genes → 

family environment”), which are passed on to their child (“Parental genes → Own 

genes”). These links induce statistical associations between own genetics and family 

environments (“Own genes ← Parental Genes → family environment”). This fact 

statistically blurs the common dichotomy between genetics and family 

environments.    

In this study, we regressed voxel-level GMV on an adult SES measure with a 

goal to estimate the SES-GMV association. If our aim were to estimate the causal 

effect of adult SES environments on the GMV structure (i.e., “SES adult → Brain 

adult”), a resulting regression estimate will clearly be biased due to the open 

confounding paths, which transmit statistical associations. Therefore, the estimated 

SES-GMV associations in this study are expected to encompass the direct 

environmental effect of adult SES on adult brain and all the effects due to the open 

paths, which can be summarized as follows:   

1) Environmental effects of adult SES on adult brain: SES adult → Brain adult 

2) Brain causing SES: SES adult ← Brain child → Brain adult  

3) Genetic effects: SES adult ← Own genes → Brain child → Brain adult 

4) Family environment effects: SES adult ← Family environment → Brain child → 

Brain adult 

5) Genetic nurture effects on brain: SES adult ← Own genes ← Parental genes → 

Family environment → Brain child → Brain adult 

6) Genetic nurture effects on SES: SES adult ← Family environment ← Parental 

genes → Own genes → Brain child → Brain adult 

Notably, the DAG in Fig. S19 demonstrates that one needs to account for 

either childhood brain measures (i.e., lifetime longitudinal data) or measures of both 

family environments and genetics in order to identify the causal effect of the adult 

SES on the brain (“SES adult → Brain adult”), assuming the absence of no other 

unobserved confounders.    

4.5.2. Interpretation of the polygenic index for SES 

While statistical analysis using PGISES is straightforward, careful interpretations are 

required. Most importantly, the remaining associations between the GMV and SES 

https://paperpile.com/c/4AFbYT/g955n
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after conditioning on PGISES cannot entirely be interpreted as environmental effects 

of SES on the brain anatomy because PGISES only captures noisy estimates of the 

effects of measured common genetic variants. It does not include the potential 

effects of structural or rare genetic variants that are not (or only partly) captured by 

the observed common genetic variants. Nonetheless, the GMV-SES association that 

is robust to controlling for PGISES can point to regions of the brain that are more 

likely to be affected by environmental factors linked with SES.  

To interpret the results, we first need to probe what effects are likely to be 

summarized in PGISES. On the basis of the DAG presented in Fig. S19, the GWAS of 

SES will capture the direct genetic effects on SES (“Own genes → Brain child → SES 

adult” and “Own genes → SES adult”) as well as the effects due to confounders, 

namely genetic nurture effects (“Own genes ← Parental genes → Family environment 

→ SES adult” and “Own genes ← Parental genes → Family environment→ Brain child 

→ SES adult”). All of these effects will therefore be incorporated in PGISES. 

Furthermore, it is important to note that the paths via the adult brain will not be 

captured in PGISES due to the adult brain being a collider: “Own genes → Brain child 

→ Brain adult ← SES adult”. 

These observations lead to the following interpretations for the SES-GMV 

association estimates conditional on PGISES. First and most importantly, PGISES is 

expected to capture a part of the SES-GMV association due to different family 

environments and parental SES. A PGI captures the association between a 

phenotype and genetic variants, rather than causal effects of genetic variants. For 

this reason, PGISES will contain genetic nurture effects as described above. Studies 

have shown that such genetic nurture effects tend to be larger for socio-economic 

phenotypes (Kong et al., 2018; Selzam et al., 2019). Therefore, PGISES is likely to 

overstate the genetic effects associated with SES. 

 Second, what we effectively control for by controlling for PGISES is the shared 

genetic architecture between SES and developmental neuroanatomy that is 

captured by the measured genetic variants and their estimated linear associations 

with SES. Hence, controlling for PGISES is not necessarily equivalent to controlling 

for the entire common genetic variants behind the GMV-SES association. More 

specifically, in light of the DAG, PGISES will account for the following genetic effects 

on SES: “Own genes → SES adult” and “Own genes → Brain child → SES adult”, the 

latter of which works via the child brain. On the other hand, PGISES will not account 

for the genetic effects on the adult brain that do not work through adult SES: “Own 

genes → Brain child → Brain adult”. In fact, in order to account for the underlying 

genetic effects in the SES-GMV association, it would be required to construct a PGI 

for a brain IDP conditional on adult SES. However, it is currently difficult to 

https://paperpile.com/c/4AFbYT/g955n+ZwTkS
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construct such a PGI with sufficient predictive power due to a limited sample size 

available for conducting a required GWAS. Moreover, such a PGI will need to be 

constructed for each IDP representing a sufficiently narrow region.  

Despite these challenges for interpretation, PGISES is still useful for 

identifying brain regions likely to be more susceptible to the influence of socio-

economic environments than that of genetic factors. If the estimated SES-GMV 

association is relatively less attenuated after controlling for PGISES, the observed 

SES-GMV association is likely to be a result of environmental effects of SES rather 

than genetic factors. One reason is because PGISES tends to overestimate the effects 

of common genetic variants on SES. Also, at least for healthy individuals, it is highly 

unlikely that the SES-GMV association is dominantly driven by rare or structural 

genetic variants with only negligible contribution from common genetic variants 

associated with SES.  

4.6. Supplementary analyses  

4.6.1. Heritability and genetic correlation 

We estimated SNP-based heritability of SES, TIV, and the brainwide GMV scores as 

well as their pairwise genetic correlation, using genomic-relatedness-based 

restricted maximum likelihood (GREML) estimation (Lee et al., 2012; Yang et al., 

2010). The method estimates the genetic contribution to the phenotypic variance 

based on a linear mixed model, where the genetic effects are modeled as random. 

Its extension to a bivariate model estimates genetic correlation between two 

phenotypes.  

We randomly dropped one of a pair of individuals with estimated 

relatedness greater than 0.05, which resulted in N = 20,447 (Evans et al., 2018). We 

used a slightly pruned set of the SNPs used to construct PGISES with the following 

pruning parameters: window size = 1,000 variant counts, step size = 5, 𝑟2 = 0.95. As 

a result, 452,190 SNPs were included. As covariates, we included age, age2, age3, sex, 

interaction terms between the sex and age terms, genotyping array indicator, and 

top 40 genetic PCs. The estimation was implemented in BOLT-REML (Loh et al., 

2015a).    

The results are reported in Table S5. TIV and the GMV score for PC1SES were 

both partly heritable (h2 = 0.41, SE = 0.02; and h2 = 0.28, SE = 0.02, respectively). PC1SES 

was moderately heritable (h2 = 0.16, SE = 0.02) and positively genetically correlated 

with TIV (rg = 0.37, SE = 0.06). Furthermore, PC1SES had a moderate genetic 

correlation with the values of the brainwide GMV score that we constructed for 

PC1SES (rg = 0.57, SE = 0.06). Similar estimates for PC2SES and GMV score for PC2SES 

https://paperpile.com/c/4AFbYT/h1UaW+e4gqV
https://paperpile.com/c/4AFbYT/h1UaW+e4gqV
https://paperpile.com/c/4AFbYT/qwqZ8
https://paperpile.com/c/4AFbYT/fClNq
https://paperpile.com/c/4AFbYT/fClNq
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were either smaller or had much larger standard errors (h2  = 0.05, SE = 0.02 for 

PC2SES; h2  = 0.14, SE = 0.02 for GMV score; rg = 0.18, SE = 0.10 with TIV; rg = 0.34, SE 

= 0.18 with the GMV score). Overall, these results demonstrate that the genetic 

architectures of SES and brain structure are partly overlapping.   

4.6.2. Testing differences in residual SES-GMV associations due to BMI 

As presented in Figs. 3C and 3D, the remaining SES-GMV associations after 

controlling for PGISES can be substantially attributed to individual differences in 

BMI. Here we formally tested whether this is the case statistically. In other words, 

we tested whether there is a statistically significant change in at least one of the 

coefficients for PC1SES and PC2SES after accounting for BMI in addition to PGISES. The 

testing procedure was analogous to the one conducted for PGISES, which is described 

in Section 4.3.3.2, except that GIV regression was used to estimate each model. As it 

was done for PGISES, we conducted this test only for the voxels that had significant 

association with the PCs and then the multiple testing was corrected for using 

Bonferroni correction. As a result, we found that 84.4% of 34,188 voxels tested had 

a significant change in at least one of the coefficients for PC1SES and PC2SES after 

controlling for BMI in addition to PGISES. This result confirms that BMI can indeed 

statistically account for the remaining SES-GMV associations after adjusting for 

PGISES.  

Note that, to measure the contribution of BMI in explaining the remaining 

SES-GMV associations after controlling for  PGISES, we again used the relative 

change in the net variation explained by the SES PCs. Hence, following the same 

logic, we computed the contribution of BMI as: 

[(𝑅
𝑃𝐶+𝑃𝐺𝐼(1)+𝑍
2 − 𝑅

𝑃𝐺𝐼(1)+𝑍
2 ) −  (𝑅

𝑃𝐶+𝑃𝐺𝐼(1)+𝐵𝑀𝐼+𝑍
2 − 𝑅

𝑃𝐺𝐼(1)+𝐵𝑀𝐼+𝑍
2 )]  

/ (𝑅
𝑃𝐶+𝑃𝐺𝐼(1)+𝑍
2 − 𝑅

𝑃𝐺𝐼(1)+𝑍
2 ) 

4.6.3. Heterogeneity 

Sex and age are two important factors for both SES and neuroanatomy. Therefore, 

we tested whether the SES-GMV associations are heterogeneous with respect to i) 

different sex (sex interaction) and ii) different ages (age interaction). We examined 

each aspect of heterogeneity separately by using the voxel clusters and including 

the interaction terms with PC1SES and PC2SES. The interaction terms were then tested 

jointly with F-tests.  

 The results are reported in Table S23-24. The SES-GMV associations were 

generally larger for men, with the largest difference found in the biggest cluster 

from the prefrontal cortex. One exception was found in a small cluster in the 



Chapter 2 

87 

cerebellum, where the SES-GMV association was larger for women. However, none 

of the regions would survive the brainwide multiple testing correction. The SES-

GMV associations also tended to increase with age, while the age interaction 

estimates were not large enough to be statistically significant even at the 

uncorrected 5% level, except for one cluster from the anterior insular and the frontal 

operculum. These null results for age interaction may be due to the survival effect 

because the majority of the participants were older than 60. 

4.6.4. Controlling for alcohol consumption 

Our baseline analyses implicitly adjusted for heavy drinking by excluding heavy 

drinking individuals. A recent study has shown that even moderate alcohol 

consumption is associated with reduction in GMV even when educational 

attainment is adjusted for (Daviet et al., 2022). Since alcohol drinking behavior is 

known to be related to SES, it may be hypothesized that the alcohol consumption is 

a factor that constitutes the observed SES-GMV associations. However, because 

individuals with high SES tend to consume a greater amount of alcohol (Collins, 

2016), controlling for the alcohol consumption is expected to only increase estimates 

for the SES-GMV associations.  

 Our data confirms that this is indeed the case. In a cluster-based analysis, we 

controlled for the alcohol consumption (the number of drinks per week) with linear 

and square terms. The results show that the SES-GMV associations measured in 

partial R2 increased by up to 31%, but only marginally in general (Table S25). 

Therefore, our positive estimates for the SES-GMV associations cannot be directly 

attributed to the alcohol consumption. Rather, when not adjusted for, the alcohol 

intake is a factor that reduces the GMV difference between high and low SES 

individuals. 

4.6.5. Controlling for cognitive ability and mental health   

As with alcohol consumption, there may be several other pathways that may 

underlie the SES-GMV associations, notably cognitive ability and mental health. 

Since cognitive ability is positively associated with both SES and GMV, controlling 

for a cognitive ability measure is expected to decrease the magnitude of a SES-GMV 

association estimate. Similarly, since mental health status is likely to be negatively 

associated with both SES and GMV, controlling for a mental health proxy is also 

expected to decrease the magnitude of a SES-GMV association estimate. Such 

reduction in the estimate due to controlling for cognitive ability or mental health 

https://paperpile.com/c/4AFbYT/SIRNy
https://paperpile.com/c/4AFbYT/nHm6j
https://paperpile.com/c/4AFbYT/nHm6j
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can be interpreted as the part of SES-GMV association that can be statistically 

attributed to cognitive ability or mental health. 

Using GMV clusters with a fluid intelligence score (field 20016) and self-

reported mental health proxies (field 2050, 2060, 2070, 2080, 2090, 2100), we 

examined how much of observed SES-GMV association can be statistically 

attributed to cognitive ability or mental health. The testing procedure was 

equivalent to the analysis described in Section 4.3.3.2. While this procedure for the 

fluid intelligence score was straightforward by replacing PGISES with the fluid 

intelligence score, some modification was required for mental health.  

Since we have multiple proxies of mental health, an auxiliary regression, 

which corresponds to model (5), was needed for each of six mental health proxies. 

Accordingly, let each of the parameters 𝛿1, 𝛿2, and 𝜃𝑗 now represent a length-6 

column vector. The difference in the coefficients for PC1SES and PC2SES can be 

expressed as: 𝛽𝑗 − 𝛽𝑗 = [𝜃𝑗𝑇𝛿1   𝜃𝑗𝑇𝛿2]𝑇 = 𝛥𝑗, which analogously represents the 

difference in the SES-GMV association for cluster j due to controlling for the mental 

health proxies. A Wald test was again used to test the null 𝛥𝑗 = 0 with the test 

statistic: �̂�𝑗𝑇
𝑉𝑎�̂� (�̂�𝑗)−1�̂�𝑗 ∼ 𝜒2

2
, where 𝑉𝑎�̂� (�̂�𝑗) was approximated by the delta 

method: 𝑉𝑎�̂� (�̂�𝑗) ≈ [𝛿1  𝛿2]𝑇𝑉𝑎�̂� (𝜃𝑗)[�̂�1  �̂�2] + [𝜃𝑗   𝜃𝑗]𝑇𝑉𝑎�̂� (�̂�)[𝜃𝑗  𝜃𝑗]. 𝑉𝑎�̂� (�̂�) is 

the covariance matrix for a vector stacking 𝛿1 and 𝛿2. To fully estimate the off-

diagonal elements of 𝑉𝑎�̂� (�̂�), we employed a seemingly unrelated regression 

framework to estimate the auxiliary regression equations. 

 The results indeed suggest that both cognitive ability and mental health are 

possible downstream consequences that constitute the relationship between SES 

and the brain (Fig. S16). Except for a few clusters, controlling for cognitive ability 

and mental health led to statistically significant differences in the SES-GMV 

association. While Fluid intelligence accounted for about a half of the overall SES-

GMV association for some clusters, mental health accounted for much less on 

average with 25.2% at the maximum. 

To conclude, we emphasize that the purpose of these control analyses was 

not to show that factors such as cognitive ability and mental health are confounders 

to SES-GMV association. Our aim was to robustly identify the associations between 

the brain structure and SES, not the causal effect of SES on the brain structure or 

vice versa. Since our target was an associational quantity, our approach does not 

necessarily require isolating potential mediators or potential downstream 

consequences. Instead, our main analyses only controlled for the upstreatm sources 

of variation in SES and the brain structure, which included differences due to sex, 

age, and genetic population structure. Factors such as cognitive ability and mental 
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health are co-variations of key interest, which could constitute the link between SES 

and the brain rather than confound it (see Section 4.2.3). Controlling for cognitive 

abilities and mental health could lead to understating the magnitude of the 

relationship between SES and the brain as well as the relevant role of genetics. 

Therefore, we did not control for such factors in our main analysis.    

4.6.6. Heterogeneity between genetic ancestry groups 

In the first set of our analyses, where we aimed to identify robust SES-GMV 

associations, we included samples with multiple genetic ancestry groups. 

Therefore, it may be of interest to explore heterogeneity between genetic ancestry 

groups. Because the majority of the UKB sample is those of European ancestry, we 

conducted a stratified analysis on samples of European (EUR) ancestry and Non-

European (Non-EUR) ancestry, by using GMV clusters. The results suggest some 

degree of heterogeneity between EUR and non-EUR samples (Fig. S17). However, 

the estimates for the non-EUR sample were often too noisy to be informative. 

Although the results do not find statistically significant differences in the results for 

the European and non-European ancestry groups, we believe that some degree of 

heterogeneity between the two samples could exist due to the fact that the non-

European sample is from social and ethical minority groups in the UK, which 

implies that the two samples represent different underlying population samples. 

 As an additional robustness check, we also conducted a meta-analysis of the 

EUR and non-EUR specific results. We meta-analyzed the stratified analysis results 

with inverse-variance weights. Fig. S18 shows that the meta-analyzed results are 

essentially identical to the original results from the pooled analysis. These results 

also match statistical expectations. By the law of total covariance, it can be 

analytically shown that the OLS estimator with the pooled sample produces a 

weighted average of the estimates from each stratified group as well as the estimate 

reflecting the between-group differences. Because the between-ancestry difference 

in SES and the brain phenotype can be accounted for by the genetic PCs, our results 

already represented a weighted average of the European and the Non-European 

ancestry subsamples as shown in Fig. S17. The weights from this pooled analysis 

are almost identical to the inverse-variance weights used in the meta-analysis 

because the OLS estimator also exploits inverse-variance weights to minimize the 

variance. As a result, the meta-analysis produced barely different results. 
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4.6.7. The second principal component of SES 

We pre-registered to use the two PCs because the first two PCs are both necessary 

and sufficient to explain the overall SES variation in the UKB sample as 

demonstrated in Figs. 1B and S2. Whenever possible, we refrained from reporting 

results for each PC because our statistical quantity of main interest, as pre-

registered, is the joint association of the two PCs with brain structure phenotypes. 

For this reason, we measured SES-GMV association with partial R2 throughout the 

paper. While it was not our intention to examine each PC separately, we briefly 

reported results for each PC as by-products for some analyses.  

As shown in Figs. 2 and S4A, PC2SES turned out to have much weaker 

associations with the brain than does PC1SES. Nonetheless, we deemed PC2SES to be 

relevant ex-post for two reasons: First, it gave us more power to identify brain 

regions significantly associated with SES. Second, PC2SES contributed to capturing 

non-genetic variation in SES.  

Despite its weaker associations with GMV, PC2SES still captures the difference 

in GMV above and beyond what PC1SES does, which is also statistically detectable 

for some voxels. As a result, examining the joint association of the two PCs allowed 

us to find 11% more voxels significantly associated with SES compared to when 

only PC1SES was used.  

More importantly, PC2SES turned out to be barely heritable as reported in 

Section 4.6.1. If we excluded PC2SES in the analysis, we would have only kept the 

part of SES-GMV association that is more heritable; consequently, we would have 

overstated the role of genetics than what the data actually suggests. The regions that 

have relatively larger association with PC2SES, such as lateral temporal and 

cerebellar regions, tend to overlap with the regions that we found to be susceptible 

to the influence of the socioeconomic environment. Therefore, PC2SES played a 

crucial role in differentiating genetic and environmental influences to the SES-GMV 

relation.  
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Fig 3. VBM of SES and its genetic and environmental components  

A. Univariate VBM results, with `GMV as the dependent variable. Voxels significant at FWE rate of 

5% level are plotted for: a. the two PCs measuring SES, b. The polygenic index for SES (PGISES), c. 

SES while controlling for PGISES. B. Percent reduction in the association between GMV and the two 

PC for SES due to controlling for PGISES. C. Percent reduction due to controlling for body mass index 

(BMI) in the residual association between GMV and the two PC for SES after controlling for PGISES. 

The figures plot only voxels which had significant SES-GMV association before PGISES and BMI were 

controlled for. MNI coordinates are indicated for A. and B. Measurement error in PGISES was adjusted 

for with genetic instrument variable regression for B. and C. The sample was restricted to individuals 

of European ancestry.  

https://docs.google.com/document/d/1iCk0mMWv3Ec_oeuyhbiL5lihFQqGGhMMcN-R90cmSQg/edit#figur_pgi
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Fig. 4. Genetic and environmental components in the association between SES and GMV of 

voxel clusters  

Associations in partial R2 between the two PC for SES and GMV in voxel clusters attributable to PGISES 

and BMI. The numbers in the bars report the percent share in the SES-GMV association statistically 

attributable to PGISES or BMI partialled out of PGISES. The clusters were formed from the VBM results 

plotted in Fig. 3A.a. See Table S9 for more information about the clusters. Measurement error in PGISES 

was adjusted for with genetic instrument variable regression. The sample was restricted to individuals 

of European ancestry.

https://docs.google.com/document/d/1iCk0mMWv3Ec_oeuyhbiL5lihFQqGGhMMcN-R90cmSQg/edit#figur_cluster_bmi
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1. Introduction 

Differences in wealth and income are not only robust predictors of subjective well-

being (Sacks et al., 2012; Stevenson and Wolfers, 2013), but low socioeconomic status 

(SES, i.e. the combination of education, occupation, and income) is also a major risk 

factor for mental and physical diseases as well as lower life expectancy (Wilkinson 

and Marmot, 2003; Chetty et al., 2016; Stringhini et al., 2017). Low SES is a proxy for 

material hardship that manifests itself in various forms (Nelson, 2011), all of which 

affect quality of life and have negative health implications. 

Paying attention to these robust health-related consequences of SES is 

particularly important and timely now as the income and wealth gap between the 

richest and the poorest has been steadily rising in the past few decades in the US 

and many other countries (Acemoglu, 2002; Piketty, 2014). Thus, understanding the 

structural causes of inequality, social mobility, and their links with health is of 

fundamental importance both as a matter of science and for interventions aiming to 

improve health outcomes, well-being, and longevity. 

 It has long been recognized that parental SES is a major determinant of a 

child’s expected trajectory in terms of cognitive and non-cognitive skill 

development, behaviors (Heckman and Mosso, 2014), educational attainment 

(Haveman and Smeeding, 2006), career prospects, and adult income (Acemoglu, 

2002). In other words, differences in SES are partially transmitted across 

generations. At the same time, education, income, personality, cognitive abilities, 

and occupational choices are all heritable to some extent as parents pass on both 

their environments and their genes to their offspring (Polderman et al., 2015; Knopik 

et al., 2017).  

 In efforts to shed light on the genetic factors linked to SES, there have been a 

series of genome-wide association studies (GWAS) on components of SES, which 

include educational attainment (EA) and household income (Rietveld et al., 2013; 

Okbay et al., 2016; Hill et al., 2016; Lee et al., 2018; Hill et al., 2019; Demange et al., 

2021). Numerous loci have robustly been shown to associate with EA and 

household income among individuals of European ancestries and the predictive 

accuracy of a resulting polygenic index has now exceeded incremental R2 = 10% for 

EA. In follow-up studies, these results have proven to be useful in scrutinizing both 

physical and mental health with various research designs (Barcellos et al., 2018; 

Sanderson et al., 2019; Wendt et al., 2021; Marees et al., 2021).   

 Contributing to this strand of research efforts, here we present a GWAS 

meta-analysis of income based on approximately 756,000 individuals of European 

ancestry from 31 cohorts. With the aim to measure individual earning potential, we 
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used four measures of income: individual, occupational, household, and parental 

income. We then conducted a multivariate GWAS to combine these different 

measures and identified 206 approximately independent loci at a genome-wide 

significance.     

In light of the substantial genetic correlation of income with EA (rg = 0.90 ~ 

0.94) (Hill et al., 2019, 2016; Kweon et al., 2020), we performed extensive 

comparisons of income and EA in their genetic architecture. The loci associated with 

income are estimated to be completely nested in the loci with EA while having the 

perfect genetic correlation within the shared loci. To further explore this finding, we 

then estimated the genetic mediation model of  

income with EA as a mediator. This approach allowed us to classify single-

nucleotide polymorphisms (SNP) into two sets on the basis of the sign concordance 

between direct and indirect paths from SNPs to income. The sign discordance here 

implies that genetic associations of EA may not be well-translated into genetic 

associations of income. In a series of analyses, we show that concordant and 

discordant SNPs have marked differences in the way that they contribute to the 

genetic architecture of various phenotypes, in particular behavioral and psychiatric 

traits.       

2. Results 

2.1. Multivariate GWAS of income 

At each cohort level, sex-stratified association analyses were carried out on each of 

available income measures in samples restricted to individuals of European 

ancestry who completed education or who were above the age of 30. The natural 

log transformation was applied to the income measures. We centrally applied 

standardized quality control procedures to each of the cohort-level results. For each 

sex and for each income measure, we performed a sample-size-weighted meta-

analysis with METAL (Willer et al., 2010). We then meta-analyzed the male and 

female results of each income measure by using the meta-analysis version of MTAG 

(Turley et al., 2018), which helps account for the unadjusted relatedness between 

the male and female samples. Finally, we performed a meta-analysis of each income 

measure result by using MTAG under the perfect genetic correlation assumption. 

This approach allows for a meta-analysis of results from different measures that 

may have different heritability or measurement error while accounting for the 

sample overlap. Since MTAG already applies a bias-correction with the intercept of 

linkage disequilibrium (LD) score regression (LDSC) (B. K. Bulik-Sullivan et al., 2015), 

https://www.zotero.org/google-docs/?9qP2BJ
https://www.zotero.org/google-docs/?ZmdPX1
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we did not apply further bias adjustments for cryptic relatedness and population 

stratification. 

Across the four GWAS of each income measure, we identified a total of 120 

approximately independent SNPs (lead SNP hereafter, pairwise r2 < 0.1) that 

reached genome-wide significance at P < 5 × 10−8 (Table 1). Occupational and 

household income attained the most genetic associations (70 and 50 loci, 

respectively) as well as the highest SNP-based heritability estimated by LDSC (h2 = 

0.07 (s.e. = 0.00) and 0.06 (s.e. = 0.00), respectively). The pairwise genetic correlation 

(rg) estimates of each income measure demonstrate substantial shared genetic 

variance among these measures with rg at least 0.8 (Fig. 1a).   

The meta-analysis GWAS of these income measures was estimated to have 

an effective sample size of 668,288 based on the heritability of occupational wage. 

The meta-analysis led to a substantial increase in power, which allowed us to 

identify 206 lead SNPs (Fig. 1b). All of them had effect sizes (R2) smaller than 

0.025%. The median per-allele effect among these SNPs corresponds to an increase 

in income by 0.43% on the basis of the standard deviation estimate of log hourly 

occupational income from the UK Biobank (s.d. = 0.35).   

 As opposed to the substantial gender wage gap typically observed, we did 

not find compelling evidence for between-sex heterogeneity in the genetic 

associations of income (Fig. S1). While we did find that the between-sex genetic 

correlation is statistically different from one, the estimated rg was still larger than 

0.9, except for the parental income where the income of mother and father were 

used as phenotypes.  

Table 1. Summary of GWAS of four income measures  

Measure N % Female # SNP Mean 𝜒2 # Loci SNP h2 (s.e.) 

Individual 72,601 0.54 5,986,804 1.06 0 0.04 (0.01) 

Occupational 443,064 0.57 11,500,419 1.36 70 0.07 (0.00) 

Household 497,413 0.55 11,500,222 1.31 50 0.06 (0.00) 

Parental 128,724 0.50 6,144,179 1.08 1 0.05 (0.01) 

Some individuals contributed multiple times to different income measures. The SNP heritability (h2) was 

estimated with LD score regression. # Loci reports the number of lead SNPs. One lead SNP is overlapping in 

occupational and household income.  
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2.2. Polygenic overlap with educational attainment 

Consistent with the previous reports (Hill et al., 2019, 2016; Kweon et al., 2020), we 

found a substantial genetic correlation between income and EA based on LDSC (rg 

= 0.92; s.e. = 0.01). Among the input income measures, the genetic correlation with 

EA was highest for occupational income (rg = 0.95; s.e. = 0.01) while lowest for 

individual and household income (rg = 0.81 and 0.82; s.e. = 0.07 and 0.01 

respectively). 165 out of 206 loci tagged by lead SNPs (each loci defined as SNPs in 

a 1000-kb window having LD r2 > 0.6 with the lead SNP) for income were genome-

wide significant for EA. Conversely, 151 out of 1,492 loci tagged by lead SNPs for 

EA were also genome-wide significant for income. 

 As further investigations, we quantified the number of variants associated 

with income and EA as well as their polygenic overlap on the basis of a bivariate 

mixture model by employing MiXeR (Frei et al., 2019). The estimated model 

suggests that all of the loci associated with income are entirely nested within the 

EA-associated loci, with approximately 83.2% of the EA loci estimated to have 

shared association with income (Fig. 2a). While the estimated global genetic 

correlation is 0.91 (s.e. = 0.01), the correlation within the shared loci was estimated 

to amount to unity precisely (s.e. = 0.002).      

Such patterns of the polygenic overlap between income and EA provide 

important implications. First, the genetic associations of income appear to be mainly 

driven by the fact that income is a downstream outcome of EA, given the 

encompassed income-associated loci, whose associations were perfectly aligned 

with the genetic associations of EA. Second, some of the genetic associations of EA 

are not well-translated into genetic associations of income, which drives down the 

global genetic correlation. 

2.3. Genetic mediation model of income via educational attainment 

To fully explore these implications, we considered a genetic mediation model of 

income with EA as a mediator (Fig. 2b). In this model, the genetic association of 

income for SNP j (𝛽𝑗
𝐼𝑁𝐶) consists of 1) the indirect mediated path that captures the 

genetic association of EA (𝛽𝑗
𝐸𝐴) scaled down by the correlation between income and 

EA (𝛼) and 2) the direct path that contains the genetic association independent of 

EA (𝛿 j). Then, in the absence of 𝛿 j, 𝛽𝑗
𝐼𝑁𝐶 will be proportionate to 𝛽𝑗

𝐸𝐴, which may 

explain the perfect genetic correlation within the shared loci. If 𝛿 j takes a concordant 

sign to 𝛽𝑗
𝐸𝐴,  𝛽𝑗

𝐼𝑁𝐶 will capture additional association in the same direction of 𝛽𝑗
𝐸𝐴 

given that 𝛼 is expected to be positive. On the other hand, 𝛽𝑗
𝐼𝑁𝐶 will be suppressed 

with a discordant value of 𝛿 j and the genetic association for EA may not be 

https://www.zotero.org/google-docs/?P3zNte
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transferred to the genetic association for income. Therefore, this mediation model 

offers consistent explanations for the MiXeR results above and their implications. 

Henceforth, we refer to the SNPs as discordant or concordant based on the sign 

concordance of 𝛽𝑗
𝐸𝐴 and 𝛿 j estimates. We estimated the model with Genomic SEM 

framework (Grotzinger et al., 2019), which involved estimating 𝛼 and 𝛿 j (see Section 

4.2.3 for details).  

We identified one lead SNP (rs34177108) for the GWAS of direct income (𝛿 j), 

which had a discordant sign with its estimate of 𝛽𝑗
𝐸𝐴. Direct income tended to have 

stronger associations with the discordant SNPs, with mean 𝜒2 = 1.21 for discordant 

SNPs while 1.00 for concordant SNPs. This result suggests that direct income is 

likely to have suppressing rather than enhancing effects on the genetic associations 

of EA. The Miami plots separately presenting the discordant and concordant SNPs 

demonstrate the larger association strength with income for the concordant SNPs 

than for the discordant SNPs, while the associations with the concordant SNPs are 

not particularly stronger for EA compared to the discordant ones (Fig. 2c). Out of 

1,492 lead SNPs for EA, 927 were discordant SNPs, only 17 of which achieved 

genome-wide significance for income by themselves or SNPs in LD. On the 

contrary, 565 of the EA lead SNPs had a concordant sign with direct income, 134 of 

which attained genome-wide significance for income.   

2.4. Income-related heterogeneity in the genetic architecture of educational 

attainment 

Seeking to understand why the discordant SNPs may have strong associations with 

EA that do not translate well into associations with income, we then investigated 

whether these discordant genetic associations of EA have different genetic 

implications for other traits in comparison to the concordant ones. Specifically, by 

leveraging GNOVA tool(Lu et al., 2017), we estimated genetic correlations of EA 

stratified for the discordant and concordant SNPs (denoted as rgd and rgc, 

respectively) with a wide set of phenotypes. If the classification of the discordant 

and concordant SNPs were to be merely an outcome of chance or the difference in 

the statistical power between the GWAS of income and EA, we would expect to 

observe no interpretable and significant difference between the two sets of SNPs.    

The discordant and concordant SNPs showed different patterns of genetic 

correlation of EA with various types of traits (Fig. 3). Overall, the concordant SNPs 

had stronger or weaker genetic correlations in the direction typically expected for 

EA as an indicator of SES. The Townsend deprivation index(Hill et al., 2016), a 

neighborhood-based SES index, essentially had a perfect genetic correlation with 

https://www.zotero.org/google-docs/?qDgErv
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EA for the concordant SNPs, while non-significant correlation with the discordant 

SNPs (rgd = 0.17 (s.e. = 0.10), rgc = -1.14 (s.e. = 0.06), Pdiff_fdr < 0.001). Subjective well-

being did not have a particularly strong global genetic correlation with EA, which 

was due to the negative correlation of discordant SNPs (rgd = -0.19 (s.e. = 0.05), rgc = 

0.44 (s.e. = 0.06), Pdiff_fdr < 0.001). Parental life span had a much stronger positive 

genetic correlation based on the concordant SNPs (rgd = 0.24 (s.e. = 0.03), rgc = 0.70 (s.e. 

= 0.04), Pdiff_fdr < 0.001). EA was also genetically correlated with cognitive skills much 

more strongly for the concordant SNPs (rgd = 0.48 (s.e. = 0.03), rgc = 0.90 (s.e. = 0.02), 

Pdiff_fdr < 0.001), while more weakly with non-cognitive skills—the residual genetic 

variation in EA after conditioning on cognitive skills (rgd = 0.84 (s.e. = 0.01), rgc = 0.53 

(s.e. = 0.04), Pdiff_fdr < 0.001). Nonetheless, the discordant SNPs still attained a sizable 

positive genetic correlation with cognitive skills, and so do the concordant SNPs 

with noncognitive skills.   

The difference was also found for health-related traits and risk behaviors. 

Concordant SNPs tended to have a stronger genetic correlation with the avoidance 

of risky smoking behaviors, albeit a relatively small difference. Alcohol 

consumption was positively correlated with EA for the concordant SNPs while 

negatively for discordant SNPs (rgd = -0.16 (s.e. = 0.04), rgc = 0.29 (s.e. = 0.05), Pdiff_fdr < 

0.001). Height had a positive and stronger genetic correlation with EA only based 

on the concordant SNPs (rgd = 0.01 (s.e. = 0.03), rgc = 0.28 (s.e. = 0.04), Pdiff_fdr < 0.001), 

suggesting that the positive genetic covariance between height and EA is entirely 

driven by the concordant SNPs. While BMI showed no difference in genetic 

correlations with concordant and discordant SNPs, waist-to-hip ratio captured 

more negative correlation with the concordant SNPs (rgd = -0.22 (s.e. = 0.03), rgc = -

0.43 (s.e. = 0.04), Pdiff_fdr < 0.001). For other physical disease traits, we did not find 

meaningful differences between concordant and discordant SNPs.     

 Psychiatric traits were found to have pronounced contrasts between the 

discordant and concordant genetic associations of EA. In particular, increased EA 

has been reported to have a genetic correlation with increased risk of schizophrenia 

(Okbay et al., 2016; Lam et al., 2019), as also the case here (rg = 0.05, s.e. = 0.02). The 

stratified results here suggest that this positive correlation was driven by the 

discordant genetic associations of EA (rgd = 0.21 (s.e. = 0.03), rgc = -0.18 (s.e. = 0.05), 

Pdiff_fdr < 0.001). We also found similar results for bipolar disorder, autism spectrum, 

and cross disorder. Furthermore, internalizing disorders (major depressive disorder 

and anxiety disorder) as well as neuroticism, a related personality trait, all showed 

a substantially stronger negative correlation for the concordant SNPs while zero 

correlation for the discordant SNPs (rgd = 0.03 (s.e. = 0.04), rgc = -0.52 (s.e. = 0.04), Pdiff_fdr 

< 0.001 for major depressive disorder, for example). These results also suggest that 

https://www.zotero.org/google-docs/?ed3TT6
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the negative genetic covariance of EA with these traits are entirely due to the 

concordant SNPs. Albeit to a smaller extent, stress-related disorder showed similar 

patterns.     

2.5. Polygenic validation 

We conducted a validation analysis based on polygenic prediction with individuals 

of European ancestry in the Swedish Twin Registry (STR), which was not included 

in our meta-analysis. We chose the STR as the main prediction cohort for its accurate 

income data collected from administrative data sources, which include individual, 

occupational, and household income. In addition, we also exploited the UKB 

siblings (UKB-sib) as a prediction cohort, for which occupational and household 

income measures are available. In both cohorts, we randomly selected only one 

individual from each family. 

We constructed a polygenic index (PGI), using LDpred2 (Privé et al., 2020) 

with the meta-analysis results of income excluding the prediction cohort, as well as 

a PGI based on the EA GWAS results in the same way. We measured the prediction 

accuracy on the basis of the incremental R2 from adding the PGI to a regression of 

the phenotype on the baseline covariates. Because income distributions contain 

substantial demographic variation, we pre-residualized the log of income for 

demographic covariates. Then, as baseline covariates for income, we only included 

top 20 genetic principal components and genotype batch indicators.  

In the STR (Fig. 4a, upper panel), the income PGI predicted ΔR2 = 1.3% (95% 

CI: 1.0-1.6) for individual income, 3.7% (95% CI: 3.1-4.2) for occupational income, 

and 1.0% (95% CI: 0.6-1.4) for household income. The EA PGI had predictive 

accuracy results in a similar range for individual and household income, except for 

occupational income, for which the accuracy was ΔR2 = 4.7% (95% CI: 4.0-5.4). In the 

UKB-sib (Fig. 4a, lower panel), the predictive accuracy of the income PGI was ΔR2 

= 4.7% (95% CI: 4.3-5.2) for occupational income and 3.9% (95% CI: 3.5-4.3) for 

household income. The EA PGI achieved a better predictive accuracy for 

occupational income (ΔR2 = 6.9%, 95% CI: 6.3-7.4), while only slightly higher for 

household income (ΔR2 = 4.4%, 95% CI: 3.9-4.8). 

2.6. Stratified polygenic analyses  

To see how the discordant and concordant SNPs contribute to polygenic prediction, 

we split the PGI into the discordant and concordant parts and tested their predictive 

power by including them separately in the regressions. Here the discordant and 

https://www.zotero.org/google-docs/?kScZoQ
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concordant SNPs were classified again after re-estimating the mediation model with 

the EA summary statistics excluding the prediction cohort.  

The results suggest that the higher accuracy of the EA PGI for predicting 

income compared to the income PGI was mainly due to the lack of genetic signals 

from the discordant SNPs for income, rather than due to the sample size difference. 

These results were consistent for both the cohorts. In the UKB-sib as an example, 

the concordant PGI of income predicted both occupational and household income 

(ΔR2 = 4.2% (95% CI: 3.7-4.6) and 3.6% (95% CI: 3.2-3.9), respectively) just as well as 

did the concordant PGI of EA (ΔR2 = 4.3% (95% CI: 3.9-4.8) and 3.4% (95% CI: 3.0-

3.7), respectively) (Fig. 4). The discordant PGI of EA still predicted a sizable 

variation in occupational income (ΔR2 = 4.4%, 95% CI: 3.9-4.8) presumably because 

this PGI can still predict EA, which in turn can help predict income. The discordant 

PGI of income predicted only 1.7% (95% CI: 1.4-2.0) for occupational income.       

Exploiting sibling differences, we also conducted within-family polygenic 

prediction analyses, which can reduce confounds due to indirect genetic effects such 

as genetic nurture and population stratification (Kong et al., 2018; Morris et al., 2020; 

Trejo and Domingue, 2018).  This was implemented by regressing the phenotype on 

the PGI while accounting for family-specific intercepts. In every case, the coefficient 

estimates from the within-family model were attenuated compared to the model 

without family-specific intercepts in similar magnitudes with the previous reports 

(Fig. S4). The attenuation was overall similar for the concordant and discordant 

parts of the PGI. This result was also consistent with the lack of genome-wide 

heterogeneity in attenuation reported in a recent study of within-sibling GWAS 

(Howe et al., 2022).      

2.7. Stratified neurobiological analysis  

We then investigated whether the concordant and discordant genetic associations 

of EA reflect different biological implications. Because the genetic associations of 

EA have been reported to have dominantly stronger expressions in the central 

nervous system (Lee et al., 2018), we focused on brain-related traits and functions 

and carried out stratified genetic correlation analysis with brain imaging 

phenotypes. 

We estimated stratified genetic correlations of EA with an extensive set of 

brain imaging phenotypes in multiple modals. Specifically, we used 124 structural 

cortical phenotypes (62 regions from Desikan-Killiany-Tourville atlas) (Klein and 

Tourville, 2012; Smith et al., 2021), 191 functional network traits from resting-state 

functional imaging (75 node amplitudes and 116 connectivities) (Zhao et al., 2022), 

https://www.zotero.org/google-docs/?rLvu1j
https://www.zotero.org/google-docs/?rLvu1j
https://www.zotero.org/google-docs/?Vw6K0P
https://www.zotero.org/google-docs/?fgqHwj
https://www.zotero.org/google-docs/?AzCZZk
https://www.zotero.org/google-docs/?AzCZZk
https://www.zotero.org/google-docs/?FRCGnm
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and 215 white matter traits derived from diffusion tensor imaging (110 tract-

averaged values and 105 tract-specific principal components for fractional 

anisotropy) (Zhao et al., 2021). 

EA was genetically correlated with a number of structural and functional 

brain features in moderate magnitudes. These correlations were often driven 

dominantly by either the concordant or discordant set of SNPs, while their 

estimated differences were only nominally significant at 1% level. In particular, the 

concordant SNPs generally had stronger positive genetic correlation between EA 

and cortical surface areas, with the largest correlation in the right caudal anterior 

cingulate cortex (rgc = 0.39, s.e. = 0.07). The correlations were overall smaller for 

cortical thickness and no marked differences were found. With functional network 

amplitudes, EA tended to have weak negative genetic correlations largely due to 

discordant SNPs, except for functional regions involving the cerebellum and central 

executive, attention, and default mode networks. Among the functional network 

connectivities, the most divergent results were observed in a connectivity involving 

central executive, salience, and default mode networks (rgd = -0.13 (s.e. = 0.06), rgc = 

0.30 (s.e. = 0.11), Pdiff = 0.005), where only the concordant SNPs had positive 

correlation. On the contrary, in two connectivities involving motor and cerebellar 

regions, we found negative correlation only with the concordant SNPs.  

Similar divergent patterns were also found for white matter tract traits. 

Overall, these results demonstrate that heterogenous implications of genetic 

associations of EA are reflected in structural and functional brain features.    

3. Discussion 

Our multivariate approach for meta-analysis that combined multiple income 

measures allowed us to identify 206 approximately independent loci, which is a 

marked improvement over the previous study on household income that found 30 

loci (Hill et al., 2019). As can be seen from its higher genetic correlation with EA, 

our GWAS result better reflects the genetic associations of individual earning 

capacity than the GWAS of household income, which is a family-level proxy of 

individual income. 

Studying income offers a unique opportunity to understand the genetic 

architecture of EA or socioeconomic factors in general since income is a downstream 

outcome of EA in one’s life course. Taking direct advantage of this fact, we 

established the genetic mediation model of income with EA as a mediator, which 

allowed us to classify the genetic association of EA into those well-transferred to 

income and those not, based on the sign concordance. Our well-powered GWAS of 

https://www.zotero.org/google-docs/?hwACZb
https://www.zotero.org/google-docs/?OjxZrX
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income was crucial in this regard, which helped determine the sign of estimates in 

higher confidence.      

We also report that income and EA have not only a substantial genetic 

correlation, but also extensive polygenic overlap, within which income and EA 

share perfect associations. This result implies that the primary contribution of the 

GWAS of income will not be the identification of genetic variants associated with 

income. Rather, our GWAS results of income will be more valuable for 

understanding the genetic architecture of EA. Our results here highlight a subset of 

the genetic associations of EA that are more consistent with the typically observed 

SES gradients with behavioral and health phenotypes. For instance, the stratified 

genetic correlation results imply that the genetic associations for educational 

success will also correlate with higher income only if they are correlated with better 

mental health. Moreover, such concordant genetic associations of EA are shown to 

drive the entire negative genetic covariance between EA and internalizing disorders 

(i.e., anxiety disorder and major depressive disorder). The previous GWAS of EA 

have been used in various areas of research. Researchers could use our results to 

develop a more effective research design that recognizes the heterogeneity across 

the genetic associations of EA reported here. 

 

4. Supplementary methods and materials 

4.1. GWAS, Quality control, and Meta-analysis 

We pre-registered our analysis plan for the main income GWAS meta-analysis on 

August 30 2018 (https://osf.io/rg8sh/). In total, we recruited 31 cohorts, which have 

one of the following income measures available: individual, occupational 

household, and parental income. Some of these cohorts contributed to multiple 

income measures.     

4.1.1. Phenotype definition and construction 

Individual income is the result of various factors including achieved qualifications 

(e.g. education, learnt occupation, experience), personal characteristics (e.g. 

leadership, cognitive skills, consciousness), the demand and supply for these 

qualifications and characteristics in the labor market, and personal choices about 

labor supply (e.g. due to personal preferences, decisions about division of labor 

among household members). In this paper, we aimed to study the genetic factor for 

such individual earning potential. For this purpose, it was ideal to use individual 
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income measures. However, individual income information was typically not 

collected in most of the genotyped samples. To circumvent such empirical 

challenges, we used four measures of income (individual, occupational, household, 

and parental income) and conducted a multivariate GWAS to combine these 

different measures.  

4.1.1.1. General definition 

For all income measures considered, we defined the main phenotype as the natural 

log of income before-tax. It is important to use the log transformation here because 

this allows us to correct for the typical skewness of the income distribution, which 

will return a better linear fit, as well as to model the percentage change in income, 

which is unit-free. Ideally, the phenotype included all “earned'' financial 

compensation (salaries, income from self-employment, profits from running one’s 

own business, bonuses, vacation benefits) but excluded non-earned monetary 

transfers such as rental income, capital gains, dividends, and transfers from the 

government, family, or former spouses. 

Many cohorts opted to use categorical responses to measure individual or 

household income. In these cases, we converted these categories to a semi-

continuous measure by taking the natural logarithm of the midpoint of the category. 

As the top and bottom category are often open-ended and do not have a midpoint, 

we converted the top category by taking the logarithm of 4/3 times the lower bound 

of that category and the bottom category by taking the logarithm of 3/4 times the 

upper bound of that category. 

When multiple observations of the income measure per individual were 

available (i.e. longitudinal data), we first regressed the income measure on all 

control variables including time-specific intercepts. Then, the mean of the residuals 

for each person were taken as the phenotype.  

Some of the older cohorts had a large share of retired individuals who may 

have been receiving pension. For these individuals, we used their last observed 

wage. If their last wage was not available, we derived occupational wage from their 

last occupation. In either case, they were treated as if they were observed while they 

had their last job. For instance, if a 65-year-old retired individual was surveyed in 

2009 and her past wage or occupational wage for the job that she had in 2006 was 

available, her age and year of observation was 62 and 2006, respectively, in the 

control variables. 
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Individuals who are unemployed or economically inactive at the time of 

survey were treated like pensioners if they had an income in the past. In other 

words, their last observed income or occupation was used.  

4.1.1.2. Individual income 

In ideal scenarios, official registry data (e.g. from tax records) are preferred to obtain 

high-accuracy measures of individual income. However, the linkage between 

genetic data and registry data was normally not feasible due to privacy concerns. 

Therefore, we mainly relied on self-reports of income, despite likely measurement 

error.   

4.1.1.3. Household income 

We considered household income as an alternative measure of individual income. 

Household income aggregates the individual incomes of all household members 

(e.g. spouses and possibly even children or other relatives). Therefore, household 

income captures not only factors that contribute towards individual income, but 

also other factors such as the ability and desire to attract a spouse and the 

characteristics of the spouse. Nonetheless, household income can still serve as a 

reliable proxy of individual income.  

4.1.1.4. Occupational income 

When detailed occupation information was available with standardized coding, we 

derived (log) occupational income based on the national statistics data. Occupation 

encompasses income potential and typically also reflects educational attainment, 

personal interests, social prestige and labor market opportunities. In comparison to 

individual income, occupational income only captures between-occupation 

variation in individual income. However, occupational income is less likely to suffer 

large measurement error because it is easier to recall occupation than income, while 

occupation-specific income is obtained from the national statistics. Occupational 

income measures were mainly used for relatively larger cohorts. Due to different 

data availability across different countries in which those cohorts are based, slightly 

different approaches were used for different cohorts, which are summarized below.    

UK Biobank and ALSPAC mothers 

The UK Biobank recorded the occupation of participants with the UK’s 

standardized occupational classification (SOC) 2000 version, which is coded in 4-

digit numbers representing a hierarchical structure. Similarly, ALSPAC also 
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provided occupational information in the same coding for the mother participants, 

while their income was not surveyed. For these British cohorts, we applied the 

approach that we developed in Kweon et al. (2020). This approach was originally 

developed to impute income based on occupation and demographic information, 

rather than to derive occupational wage. The income imputed this way can be 

interpreted as expected income per occupation adjusted for demographics, which 

therefore is not essentially different from occupational income. 

The details of the approach are available in the appendix of Kweon et al. 

(2020). Here we only provide the overall summary. From the Annual Survey of 

Hours and Earnings, we obtained the tax-registry-based estimates of sex-specific 

mean and median hourly wages for each occupational group defined by 4-digit 

level SOC. Using the Labour Force Survey (LFS), a large representative survey data 

of the UK population, we fit a regression model of log hourly wages using mean 

and median wages for each occupation along with demographic variables and 

interaction terms. The log occupational wages were then derived as the predicted 

outcomes from this regression. In the appendix of Kweon et al. (2020), it was shown 

that occupational wages constructed from this method yielded an out-of-sample R2 

= 0.50 with self-reported log hourly wages in British Household Panel Survey, 

another independent representative survey of the UK.   

Lifelines and Netherlands Twin Registry 

A similar approach was taken for two Dutch cohorts: Lifelines and Netherlands 

Twin Registry (NTR). We mirrored the approach for the British cohorts as closely 

as possible. Here we used data from the Dutch Labour Force Survey, ‘Enquête 

Beroepsbevolking’ (EBB). The EBB is a national representative survey of the Dutch 

labor force, conducted by Statistics Netherlands (CBS). We used a merged dataset 

containing 479,893 individuals in yearly waves from 2012 to 2017, where we 

excluded multiple observations per individual by taking the latest observation. The 

EBB used a Dutch version of standardized occupation codes, BRC,  developed by 

CBS based on the International Standardized Classification of Occupation (ISCO) 08 

standard.  

As the EBB was the only national representative survey containing 

standardized occupation codes, we fit a regression model and calculated the mean 

and median hourly wages per occupation group in the same sample. We 

standardized hourly wages to the year 2012 using the consumer price index 

calculated by CBS. We then calculated the mean and median wage for each 4-digit 

occupation code separately for each sex. If there are less than 10 people per 

occupation code, we calculated the mean and median using a pooled sample of both 

https://www.zotero.org/google-docs/?7CbNyh
https://www.zotero.org/google-docs/?sUo1Bd
https://www.zotero.org/google-docs/?sUo1Bd
https://www.zotero.org/google-docs/?sUo1Bd
https://www.zotero.org/google-docs/?sUo1Bd
https://www.zotero.org/google-docs/?z8CdyR
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sexes. If there are less than 10 people per occupation code in the pooled sample, we 

used the 3-digit occupation code instead. If the 3 digit occupation code still did not 

yield a sufficient sample size, we used the 2-digit occupation code. The same model 

specification as the UK model was used for the wage prediction model.    

Given the estimated model, we constructed the log hourly wages per 

occupation in the NTR and LifeLines. The accuracy of the model was tested by 

taking the 2017 EBB subset as a hold-out sample (N = 91,821) and re-estimating the 

regression model using the 2012 – 2016 subset excluding those present in the 2017 

(N = 388,072). Regressing the log hourly wage on the imputed log hourly wage in 

the 2017 EBB subset yielded an R2 of 0.47, which is similar to that for the UK case 

above.  

4.1.1.5. Estonian Genome Center  

For the Estonian Genome Center (EGCUT), we employed a simpler algorithm. We 

used the mean log wage of each occupation code, estimated for men and women 

separately, using the 2011 population census data from Statistics Estonia. EGCUT 

used 3-digit occupation codes based on the ISCO-88 standard while Statistics 

Estonia used occupation codes based on the ISCO-08 standard. The mean log wages 

for each ISCO-08 code were matched to the ISCO-88 codes based on the 

correspondence file published by the International Labour Organisation. When 

multiple ISCO-08 codes corresponded to a single ISCO-88 code, we took the average 

of the estimated means of the ISCO-08 codes. 

We tested the accuracy of the occupational wage estimates by examining 

their correlation with the self-reported log wages in the Structure of Earnings 

Survey (N=369,247 individuals aged 25 to 64). This resulted in R2 = 0.44, which is 

similar to the results of the Ducth and British cases.  

4.1.1.6. HUNT 

For the Norwegian cohort HUNT, we used a similar approach to that for EGCUT. 

Here, we used sex-specific mean wage statistics from 2015 to 2019 from the Statistics 

Norway (https://www.ssb.no/en/statbank/table/11418/). Similarly to the case of 

EGCUT, HUNT used 3-digit occupation codes based on the ISCO-88 standard while 

Statistics Norway used occupation codes based on the ISCO-08. The two are 

matched together in the same way as was done for EGCUT.  
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4.1.2. Parental income (iPSYCH) 

While the income information of the participants of iPSYCH was available, they 

were too young that their current income was unlikely to reflect their life-time 

earnings potential. Therefore, we opted to use the income of their parents instead, 

which was collected from the Danish registry data. Specifically, we used the average 

earnings of the age 30~55 for each parent. This approach can be thought of as using 

the offspring genotype as a proxy for the genotype of the parent. Alternatively, 

parental income can be considered as a proxy of the participant’s own income.  

4.1.3. Genotyping and imputation 

Supplementary Table S3 reports cohort-level information on the genotyping 

platform, quality-control filters for the genotype data and subjects prior to 

imputation, subject-level exclusion criteria, and the reference panel and software 

used for imputation. As the reference panel for imputation, either the 1000 Genomes 

Project (The 1000 Genomes Project Consortium, 2012) or Haplotype Reference 

Consortium (HRC) (McCarthy et al., 2016) was used except for a few cohorts that 

additionally used cohort-specific reference data.  

4.1.4. Association analyses 

Each cohort estimated the following linear regression model for each SNP. 

𝑦𝑖 = 𝛽0 + 𝛽1𝑆𝑁𝑃𝑖
𝑗 + 𝑍𝑖′𝛾 + 휀𝑖  

𝑦𝑖 is the log-transformed income phenotype for individual i, 𝑆𝑁𝑃𝑖
𝑗 the count of 

effect-coded allele of the SNP j, 𝑍𝑖 the vector that contains control variables with 

corresponding coefficients 𝛾, and 휀𝑖 the error component. Each cohort was asked to 

control for any sources of variation in income that do not reflect individual earning 

potential according to their data availability. This includes hours worked (with 

square and cubic terms), year of survey, indicators for employment status (retired, 

unemployed), self-employment, pension benefit, and etc (see Supplementary Table 

S4). Importantly, each cohort was asked to include at least top 15 genetic principal 

components (PC) to account for population stratification, as well as cohort-specific 

technical covariates related to genotyping (genotyping batches and platforms). For 

household income, the number of adult members was also controlled for if possible.   

 This model was estimated for male and female samples separately in light of 

the possible between-sex heterogeneity. Generally, the linear mixed model 

approach was preferred, which additionally models the error component with 

random genetic effects in order to account for the family structure and cryptic 

relatedness. The cohorts were advised to use BOLT-LMM (Loh et al., 2015) for 

https://www.zotero.org/google-docs/?Co7tEP
https://www.zotero.org/google-docs/?gVLrjY
https://www.zotero.org/google-docs/?NXPTyT
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implementation. For smaller family-based cohorts, for which BOLT-LMM’s 

approximation approach was not expected to work well, fastGWA (Jiang et al., 

2019) was used instead. Otherwise, the association analysis was performed without 

the random effect component. 

4.1.5. Quality control 

We  applied  a  stringent  quality-control (QC)  protocol to each set of GWAS results 

of each cohort based on the EasyQC software package (version 9.2) developed by 

the GIANT consortium (Winkler et al., 2014), as well as additional steps developed 

by the SSGAC (Lee et al., 2018; Okbay et al., 2016; Karlsson Linnér et al., 2019). As 

the reference panel, we used HRC v.1.1 (McCarthy et al., 2016). All issues raised 

during the QC protocol were resolved through iterations with cohort analysts, 

before the meta-analyses.  

The details of the QC protocols as well as the QC of the HRC reference panel 

is described in the supplementary materials of Karlsson Linnér et al. (2019). Here 

we only provide the overall summary. The main steps include removing SNPs with 

missing or incorrect numerical values (a p-value outside of [0,1], for instance); a 

minor allele frequency (MAF) below 0.1% or a minor-allele count (MAC) below 200; 

a low imputation accuracy (0.6 for MACH, 0.7 for IMPUTE, 0.8 for PLINK); the 

effect-coded allele or the other allele with values different from “A,” “C,” “G,” or 

“T.”; a Hardy-Weinberg Equilibrium p-value lower than 10-3 (N < 1000), 10-4 (1000 ≤ 

N <2000), or 10-5 (2000 ≤ N <10000) ; and an allele frequency different from the allele 

frequency in the reference panel by more than 0.2. We also removed duplicate SNPs 

or SNPs absent in the reference panel. 

After applying these steps, the resulting output was inspected to determine 

if an unusual number of SNPs were removed during one of the steps and when 

necessary errors were resolved together with the cohort analysts. 

4.1.6. Meta-analysis 

In order to obtain a single GWAS output that combines multiple GWAS results on 

different income measures collected from multiple cohorts, we performed the meta-

analysis in several steps, as follows.  

1. For each income measure and for each sex, we meta-analyzed the cohort-

level GWAS results with METAL using sample-size weighting, which 

resulted in 8 sets of GWAS summary statistics given the four income 

measures. 

https://www.zotero.org/google-docs/?8NlZ2L
https://www.zotero.org/google-docs/?8NlZ2L
https://www.zotero.org/google-docs/?lMorkC
https://www.zotero.org/google-docs/?FPkjo6
https://www.zotero.org/google-docs/?33tCDB
https://www.zotero.org/google-docs/?XgrfWh
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2. For each income measure, we meta-analyzed the male and female results by 

using the meta-analysis version of MTAG, which assumes the perfect genetic 

correlation and equal heritability among the input traits. This version of 

MTAG can be interpreted as a generalized inverse-variance-weighted meta-

analysis. In addition to the variance of the estimates, MTAG exploits 

additional information from the intercepts of LD score regressions to 

compute the weights and standard errors. This approach helped account for 

the unadjusted relatedness between the male and female samples. Prior to 

running MTAG, we dropped the SNPs with N = Nmale + Nfemale smaller than 

50% of the maximum N to make sure that there were no SNPs with an 

excessively smaller sample size.   

3. To combine the four GWAS results with different income measures, we again 

leveraged MTAG with the perfect genetic correlation assumption while 

allowing for different heritability among the input traits. This approach 

allowed us to meta-analyze results from different measures that may have 

different heritability or measurement error as well as to account for the 

sample overlap, which was important given that some individuals were 

included in multiple GWAS results with different income measures.  

As opposed to the meta-analysis with METAL, MTAG, a multivariate 

analysis tool, can only output the common set of SNPs among the input GWAS 

summary statistics. This led to a considerably low number of SNPs (4,885,528) after 

Step 3 due to the individual income and parental income GWAS results, which did 

not have any biobank-scale cohort and therefore had a smaller coverage over the 

genome.  

To circumvent this issue, we repeated Step 3 without 1) individual income, 

2) parental income, and 3) both individual and parental income. We first verified 

that all of the four sets of meta-analyzed results, including the one with all the 

measures, had pairwise genetic correlation estimates larger than 0.99 and their 

heritability estimates were almost identical from LDSC. For each available SNP, we 

took the result that gave the largest Z statistic among the four results. As a result, 

we obtained 4,885,528 SNPs from the MTAG result with the all four measures and 

6,599,628 SNPs from the MTAG result which only includes occupational and 

household income. We dropped 2,353,649 SNPs whose effective sample size (see 

below) fell below 70% of the maximum effective sample size (=692,936). In total, 

9,131,507 SNPs were included in the final output.    

We computed the effective sample size exploiting the fact that the 

standardized beta estimates can be approximated as 𝑍/√𝑁 for large N. Using the 
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MTAG-produced standardized estimates 𝛽𝑠𝑡𝑑, we computed the effective sample 

size per SNP as follows: 

𝑁𝑒𝑓𝑓 = (
𝑍

𝛽𝑠𝑡𝑑
)2 

In the downstream analyses, we used these per-SNP effective sample sizes since 

typical GWAS softwares re-compute the standardized estimates from the MAF, N, 

and Z statistic based on the same approximation. To evaluate the overall sample 

size, we took the average of these per-SNP effective sample sizes using the SNPs 

with 0.1 < MAF < 0.4 since these SNPs tend to be less noisy. As a result, we estimated 

that the overall sample size of our meta-analyzed income GWAS is 668,288.   

Since MTAG already applies a bias-correction with the intercept of LD score 

regression, we did not apply further bias adjustments. Also, to measure the effect 

sizes, we used the (partial) coefficient of determination (R2), which is the square of 

the standardized beta estimates.  

We applied the clumping approach to identify approximately independent 

loci, which we refer to as lead SNPs. We identified 206 lead SNPs, using a 

chromosome-wide window (10,000 mb), requiring lead SNPs to be at least genome-

wide significant and have LD (r2) below 0.1 with each other, and including SNPs 

with p-value < 1×10-4 in each clump. Only one lead SNP had a MAF smaller than 1% 

and 8 lead SNPs had a MAF between 1% and 5%. The remaining 197 lead SNPs had 

a MAF > 5%.       

4.2. Genetic mediation model of income via educational attainment 

4.2.1. Comparison to educational attainment GWAS 

We carried out a comparison of GWAS of educational attainment (EA, measured as 

years of education) and income in several approaches by examining 1) overlap in 

the identified genetic loci, 2) genetic correlation with LDSC, and 3) polygenic 

overlap with MiXeR (Frei et al., 2019). 

Here, we used a version of EA summary statistics that is slightly different 

from those publicly available. The latest EA GWAS study (Okbay et al., 2022) 

revised the coding of the years of schooling in the UKB, which better reflects the 

educational qualification of the participants. We conducted a GWAS of EA in the 

UKB based on the new coding. Then, by using MTAG with the meta-analysis 

option, we meta-analyzed the UKB result with the pervious version of EA summary 

statistics (Lee et al., 2018) that did not include the UKB. This increased the mean  

from 2.53 to 2.94. We found 1,492 lead SNPs, applying the clumping algorithm with 

the same parameters.  

https://www.zotero.org/google-docs/?ni8zKx
https://www.zotero.org/google-docs/?kZJSV8
https://www.zotero.org/google-docs/?NUQfHL


Chapter 3 

120 

4.2.1.1. Comparison of GWAS estimates   

As a starting point, we first examined the extent of overlap in the genetic loci found 

to be significantly associated with income or EA. We used the lead SNPs selected 

from the aforementioned clumping algorithm both for EA and income. When 

examining the overlap, we also included the SNPs in high LD with the lead SNPs 

(r2 > 0.6, within a window of 1,000 base pairs) and determined that there is overlap 

if SNPs in LD are statistically significant for both traits even when the lead SNP 

itself is not statistically significant for the other trait.   

4.2.1.2. LDSC and MiXeR   

Using LDSC (B. Bulik-Sullivan et al., 2015), we estimated that the genetic correlation 

between income and EA is 0.92 (s.e. = 0.01). This result was consistent with the 

previous reports, which ranged from 0.90 to 0.94 (Hill et al., 2019, 2016; Kweon et 

al., 2020). Though providing a useful summary of the shared genetic basis, the 

global genetic correlation only estimates the average correlation of genetic 

associations and does not capture mixtures of effect directions. To gain further 

insights, we used MiXeR tool to estimate the degree of polygenic overlap between 

income and EA. MiXeR exploits a bivariate causal mixture model to estimate: 1) the 

count of causal variants specific to each trait, 2) the proportion of the shared causal 

variants, and 3) the genetic correlation within the shared loci as well as the sign 

concordance.    

4.2.2. Genetic mediation model 

To fully explore the heterogeneity in the genetic architecture of income and EA, we 

set up a genetic mediation model of income with EA as an mediator. This model 

recognizes the fact that income is a downstream outcome of EA in one’s lifetime. 

Under this model, the genetic association of income for SNP j (𝛽𝑗
𝐼𝑁𝐶) can be written 

as 𝛽𝑗
𝐼𝑁𝐶 = 𝛼 × 𝛽𝑗

𝐸𝐴 + 𝛿𝑗, where each component is defined as: 

- indirect mediated path that captures the genetic association of EA (𝛽𝑗
𝐸𝐴) 

scaled by the correlation between income and EA (𝛼)  

- direct path representing the genetic association independent of EA (𝛿𝑗).  

This mediation model offers consistent explanations for the MiXeR results above 

and their implications. In the absence of 𝛿𝑗, 𝛽𝑗
𝐼𝑁𝐶 will be proportionate to 𝛽𝑗

𝐸𝐴, 

which may explain the perfect genetic correlation within the shared loci. If 𝛿𝑗 takes 

a concordant sign to 𝛽𝑗
𝐸𝐴, 𝛽𝑗

𝐼𝑁𝐶will capture additional association in the same 

https://www.zotero.org/google-docs/?ArdKDW
https://www.zotero.org/google-docs/?8OmYfg
https://www.zotero.org/google-docs/?8OmYfg
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direction of 𝛽𝑗
𝐸𝐴 given that 𝛼 is expected to be positive. On the other hand, 𝛽𝑗

𝐼𝑁𝐶 

will be suppressed with a discordant value of 𝛿𝑗 and the genetic association for EA 

may not be well-transferred to the genetic association for income. 

We estimated this model by using Genomic SEM, which essentially involves 

estimating the genetic association of the direct income (𝛿𝑗) and the correlation 

between EA to income (𝛼). Instead of the default European reference panel from 

phase 3 of the 1000 Genomes Project (The 1000 Genomes Project Consortium, 2012) 

provided by Genomic SEM as the default, we used the HRC European reference 

panel to increase the SNP coverage. Genomic SEM uses a reference panel to align 

SNPs and obtain MAF estimates, which in turn are used to compute the per-allele 

effect sizes standardized with respect to the phenotype.  

4.2.3. Concordant and discordant sets 

As described above, the translation of the genetic association of EA into the genetic 

association of income hinges on the sign concordance of 𝛿𝑗 and . We therefore 

classified the SNPs as concordant or discordant on the basis of the sign concordance 

of 𝛿𝑗 and �̂�𝑗
𝐸𝐴

 estimates. Instead of using the output of Genomic SEM, we applied 

the following procedures to reflect statistical uncertainty in estimating 𝛼 and 

determining the sign concordance. This was important because the sign of 𝛿𝑗 was 

directly dependent on the magnitude of estimated 𝛼 for given point estimates of 

�̂�𝑗
𝐼𝑁𝐶

 and �̂�𝑗
𝐸𝐴

.  

To achieve this goal, we exploited the same block jackknife approach as 

Genomic SEM. 𝛼 can analytically be estimated as the genetic covariance between 

income and EA,  Cov(INC, EA), divided by the heritability of EA, h2(EA), after 

partialling out the effect of a given SNP on income and EA. We ignored the latter 

individual SNP effect since the individual SNP effect has a very negligible effect, 

and hence we simply estimated 𝛼 as: 

�̂� =
𝐶𝑜𝑣(𝐼𝑁𝐶, 𝐸𝐴)

ℎ2(𝐸𝐴)
 

In each block jackknife iteration, we estimated the genetic covariance between 

income and EA, the heritability of EA, and, in turn, 𝛼. Then, for each SNP, we 

estimated 𝛿𝑗 = �̂�𝑗
𝐼𝑁𝐶

− �̂� �̂�𝑗
𝐸𝐴

 and determined the sign concordance of 𝛿𝑗 and �̂�𝑗
𝐸𝐴

 

estimates. With 200 blocks of jackknife, we obtained 200 sign concordance results 

for each SNP and determined the sign concordance of each SNP based on the 

majority vote.  

As a result, we classified 3,531,029 SNPs as concordant and 4,475,214 SNPs 

as discordant. 90% of SNPs had 90% agreement in the 200 jacknife-produced 

https://www.zotero.org/google-docs/?RpGWo0
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outcomes. Hence, for the majority of SNPs, the sign concordance was not extremely 

sensitive to the statistical uncertainty in the estimation of 𝛼.  

Next, since the classification procedure above was only possible for the SNPs 

commonly included in the income and EA summary statistics, we added SNPs in 

high LD (r2 > 0.6, 1,000 bp window) to increase the number of SNPs available in each 

set. We used the HRC reference panel and added previously non-included SNP in 

one of the concordant or discordant sets only if they were not tagged by both 

discordant and concordant SNPs. When tagging additional SNPs, we only used 

discordant or concordant SNPs that had at least 80% agreement in the jackknife 

procedure. In total, we yielded 3,533,256 SNPs in the concordant set and 4,478,461 

in the discordant set for the SNPs covered in the EA GWAS.    

4.3. Stratified analyses of educational attainment GWAS 

4.3.1. Stratified genetic correlation 

We conducted stratified genetic correlation analyses to investigate the potential 

heterogeneity between concordant and discordant genetic associations of EA. To 

estimate stratified genetic correlations, we used GNOVA tool that allows for 

partitioning genetic correlations by SNP annotation. We estimated genetic 

correlations of EA stratified for the discordant and concordant SNPs (denoted as rgd 

and rgc, respectively) with a wide set of phenotypes, including socioeconomic, 

behavioral, and physical and mental health traits. If the classification of the 

discordant and concordant SNPs were to be merely an outcome of chance or the 

difference in the statistical power between the GWAS of income and EA, we would 

expect to observe no interpretable and significant difference between the two sets 

of SNPs. 

We only used HapMap3 SNPs (The International HapMap 3 Consortium, 

2010) and estimated LD scores with the European reference panel from phase 3 of 

the 1000 Genomes Project (downloaded from 

https://alkesgroup.broadinstitute.org/LDSCORE/). The annotation files indicating 

concordant or discordant for each SNP were created and provided to GNOVA as 

inputs. The standard errors were computed from the covariance matrix constructed 

from 200 block-jackknifes. By retrieving the block-jackknife output, we also 

computed the standard error for the estimated difference in rgd and rgc as: 

√𝑉𝑎�̂�(𝑟�̂�
𝑐) + 𝑉𝑎�̂�(𝑟�̂�

𝑑) − 2𝐶𝑜�̂�(𝑟�̂�
𝑐, 𝑟�̂�

𝑑)   

https://www.zotero.org/google-docs/?BIK4Ir
https://www.zotero.org/google-docs/?BIK4Ir
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4.3.2. Stratified heritability 

We also applied stratified LDSC (Finucane et al., 2015) to estimate SNP heritability 

of traits stratified for the concordant and discordant sets. Originally, stratified LDSC 

is used to examine whether heritability of a trait is enriched for certain sets of SNPs 

reflecting different biological functions by comparing the proportion of heritability 

with the expected proportion of heritability (the proportion of SNPs). Here we used 

stratified LDSC to see whether concordant or discordant SNPs contribute 

disproportionately to SNP heritability of various phenotypes. Specifically, we tested 

the difference in enrichment by examining the difference in per-SNP heritability 

between concordant and discordant sets. We computed the standard error for the 

difference by using the jackknife-based covariance matrix of the regression 

coefficients. We used the same set of phenotypes analyzed in the GNOVA analysis.  

4.4. Polygenic score analyses 

4.4.1. Baseline polygenic prediction 

We conducted a validation analysis based on polygenic prediction with individuals 

of European ancestry in the Swedish Twin Registry (STR), which was not included 

in our meta-analysis. We chose the STR as the main prediction cohort for its accurate 

income data collected from administrative data sources, which include individual, 

occupational, and household income. In addition, we also exploited the UKB 

siblings as a prediction cohort, for which occupational and household income 

measures are available.  

We constructed polygenic indexes (PGI), using the meta-analysis results of 

income excluding the prediction cohort, as well as a PGI based on the EA GWAS 

summary statistics in the same way for comparison. PGIs were created only with 

HapMap3 SNPs (The International HapMap 3 Consortium, 2010) as these SNPs are 

known to have good imputation quality and provide good coverage in the 

European ancestry population. We used the reference panel from the HRC. The 

details of QC for this panel can be found in the Supplementary Information of 

Okbay et al. (2022).  

We derived PGIs based on a Bayesian approach implemented in the software 

LDpred2 (Privé et al., 2020). LDpred2 is an extension of LDpred (Vilhjálmsson et al., 

2015), which adjusts for LD and computes individual SNP weights by using 

posterior means of LD-independent effect-size distributions. LDpred2 improves 

LDpred approach by 1) using a LD window based on genetic distances, which can 

better accommodate long LD regions and 2) allowing for Bayesian updating of p 

https://www.zotero.org/google-docs/?clNrCe
https://www.zotero.org/google-docs/?wCQg3F
https://www.zotero.org/google-docs/?FCVDtx
https://www.zotero.org/google-docs/?7kNe5n
https://www.zotero.org/google-docs/?GMSz9e
https://www.zotero.org/google-docs/?GMSz9e
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(the proportion of causal SNPs) and h2 (SNP heritability) parameters (called 

LDpred2-auto). As priors, we set 0.2 for p and LDSC h2 estimates for h2 parameters. 

While the authors of LDpred2 recommend running LDpred2 genome-wide, we ran 

Ldpred2 per chromosome for its computation efficiency given that prediction 

results are barely different for a well-powered GWAS.  

Since the STR sample was genotyped with three different platforms, which 

gave too few common HapMap3 SNPs after quality-control filters, we applied 

LDpred2 for the SNPs available in each batch and created PGIs for each batch. We 

then included indicators for these different batches in the prediction analyses.  

In order to create PGIs for the UKB siblings, we re-conducted the GWAS of 

income and EA excluding the sibling sample as well as their close relatives (up to 

the third degree of relatedness). We then performed the meta analyses again.     

For both the STR and the UKB siblings, we randomly chose one sibling from 

each family to avoid complications due to having relatives in the sample. We 

measured the prediction accuracy on the basis of the incremental R2, which is the 

difference between the R2 from a regression of the phenotype on the PGI and the 

baseline covariates and the R2 from a regression on the baseline covariates only. We 

constructed confidence intervals for the incremental R2 by bootstrapping the sample 

1,000 times. 

Because income typically contains substantial demographic variation, we 

pre-residualized the log of income for demographic covariates. Then, as baseline 

covariates, we only included top 20 genetic PCs and genotype batch indicators. 

Because STR’s income data was available for multiple years, we residualized the log 

of income for age, age2, age3, sex, and interactions between sex and the age terms 

within each year and obtained the mean of residuals for each individual. For the 

UKB siblings, which only had cross-sectional data, we residualized the log of 

income for age, age2, age3, sex, dummies for survey year, and interactions between 

sex and the rest. For EA measure (years of education), we applied the same 

procedure for consistency while using dummies of birth year in place of the age 

terms.  

4.4.2. Stratified polygenic prediction 

To see whether the discordant and concordant SNPs contribute differently to 

polygenic prediction, we split the PGI into the discordant and concordant parts and 

tested their predictive power by including them separately in the regressions. Here 

the discordant and concordant SNPs were classified again after re-estimating the 

mediation model with the EA summary statistics excluding the prediction sample.  



Chapter 3 

125 

Note that it is possible that some concordant and discordant SNPs are in the 

same LD region. While in principle, the LD between each of the included SNPs 

should be accounted for by LDpred2 procedure, there may still be remaining 

correlation between the concordant and discordant parts of the PGI due to the SNPs 

in the same LD region or due to assortative mating. Nonetheless, as long as the 

concordant and discordant PGIs are together included in the regression, each PGI 

will only capture its unique contribution. Therefore, the results are likely to be more 

conservative than when all the SNPs in the same LD region were perfectly classified 

as concordant or discordant.       

4.4.3. Within-family polygenic prediction 

Genetic associations of SES traits are known to particularly suffer confounds due to 

indirect genetic effects such as genetic nurture and population stratification (Kong 

et al., 2018; Morris et al., 2020; Trejo and Domingue, 2018). To reduce such 

confounds, we exploited the sibling differences to estimate the associations between 

the PGI and the phenotypes in the STR and UKB siblings. This was implemented by 

regressing the phenotype on the PGI while accounting for family-specific intercepts. 

Including family-specific intercepts (also called family fixed effects) accounts for 

between-family variation in the variables, which allows the model to reflect 

relationships due to within-family variation. We standardized both the phenotype 

and the PGI so that they have zero mean and unit variance. The standard errors 

were clustered by family. As opposed to the baseline prediction analyses, here all 

available individuals for each family were included while we dropped individuals 

that did not have any siblings. 

Our quantity of interest here was the relative degree of attenuation measured 

as: 1 − �̂�𝑊𝐹 / �̂�, where �̂� is the coefficient estimate of the regression without family-

specific intercepts and �̂�𝑊𝐹 the coefficient estimate with family-specific intercepts.    

4.4.4. Stratified polygenic prediction of behavioral traits  

Our results from the stratified genetic correlation analyses found marked 

differences between the concordant and discordant SNPs in their genetic correlation 

of EA with behavioral and psychiatric traits. We validated these results in 

independent samples by examining whether a stratified PGI captures additional 

variation in the phenotype with a similar set of traits. We used a sample of unrelated 

adolescents of European ancestry in the US from the Adolescent Brain Cognitive 

Development (ABCD) study. This sample was not included both in the income and 

EA GWAS meta-analysis.  

https://www.zotero.org/google-docs/?hZB8ZM
https://www.zotero.org/google-docs/?hZB8ZM


Chapter 3 

126 

We used a wide set of traits that measure cognitive abilities, personality, and 

mental health. Due to the longitudinal design of the ABCD study, multiple 

observations were available for each trait (up to four). Therefore, prior to running 

the main analyses, we regressed the phenotype on demographic covariates (sex, age 

in months, age2, and interactions between sex and two age terms) within each wave 

and obtained the mean of the residuals across the waves for each individiual. Then, 

in the main analyses we only controlled for indicators for genotyping batches and 

20 genetic PCs. The sample size varied from 4,149 to 4,577.  

For each trait, we estimated three sets of regression as follows: 

𝑦𝑖 = 𝛼1 + 𝛽1𝑃𝐺𝐼𝑖 + 𝑍𝑖′𝛾1 + 휀1𝑖 

𝑦𝑖 = 𝛼2 + 𝛽2
𝑐𝑃𝐺𝐼𝑖

𝑐 + 𝛽2
𝑑𝑃𝐺𝐼𝑖

𝑑 + 𝑍𝑖′𝛾2 + 휀2𝑖 

𝑦𝑖 = 𝛼3 + 𝛽3𝑃𝐺𝐼𝑖 + 𝛿𝑃𝐺𝐼𝑖
𝑐 + 𝑍𝑖′𝛾3 + 휀3𝑖 

where 𝑦𝑖 is the phenotype, 𝑃𝐺𝐼𝑖 the EA PGI constructed with all the available SNPs, 

𝑃𝐺𝐼𝑖
𝑐 the EA PGI with the concordant SNPs, and 𝑃𝐺𝐼𝑖

𝑑 the EA PGI with discordant 

SNPs. 𝑍𝑖 is a vector of the covariates. The first regression represents the standard 

polygenic prediction model, whereas in the second regression, we separately 

included the concordant and discordant parts of the PGI.  

Here one could test the equality of the coefficients 𝛽2
𝑐 and 𝛽2

𝑑 to test the 

difference between the concordant and discordant PGIs. However, these 

coefficients reflect not only the genetic correlation between EA and the given trait, 

but also the stratified heritability and the number of effective variants in the 

concordant and discordant SNP sets. In other words, the scales of the two 

coefficients are not directly comparable. Therefore, this test does not give the same 

interpretation as testing the difference in the stratified genetic correlations as done 

in Section 4.3.1.       

 For this reason, we instead estimated the third regression, where we included 

the concordant PGI in addition to the original PGI. Testing whether 𝛿 is different 

from zero allows us to examine whether the stratification of the concordant and 

discordant parts in the EA PGI leads to capturing additional information in the 

phenotype without concerning the scales of the PGIs. The concordant sign of 𝛿 with 

𝛽1 implies that the concordant PGI has more importance than the discordant PGI, 

whereas the discordant sign 𝛿 with 𝛽1 implies less importance of the concordant 

PGI. Note that including the discordant PGI instead in the third regression only flips 

the sign of 𝛿 and the interpretation changes accordingly. 

4.4.4.1. Results 

Overall, the estimated association patterns of EA PGI with behavioral traits in 

ABCD cohorts were consistent with the results from the stratified genetic 



Chapter 3 

127 

correlation analysis (Fig. S5). At the 5% nominal significance level, the stratification 

of concordant and discordant SNPs was estimated to capture additional variation 

(evaluated by 𝛿) in behavioral traits related to attention problems, internalizing 

behaviors, lack of perseverance, sensation seeking, and oppositional defiant 

behavior. Among the cognitive measures, only a dimensional change card sort test 

was statistically significant at 5% level. After correcting the multiple comparison, 

only sluggish cognitive tempo was significant at the false discovery rate (FDR) of 

5% (𝑃𝛿 < 0.001). For all of these traits with nominal statistical significance, the 

concordant PGI contributed more than did the discordant PGI. While not 

statistically significant, the discordant PGI contributed more only for crystallized 

cognitive measures (picture vocabulary test, oral reading recognition test, and 

composite crystallized intelligence score).   

The concordant part of EA PGI was particularly important for the association 

between EA PGI and internalizing behaviors. This was well aligned with the 

stratified genetic correlation between EA and internalizing-behavior traits (major 

depressive disorder, anxiety disorder, neuroticism), which was almost entirely 

driven by the concordant SNPs (Fig. 3). Albeit to a lesser extent, this pattern of 

associations was also similar for traits related to externalizing behavior, while 

nominal statistical significance was attained only for oppositional defiant problems 

(𝑃𝛿=0.02). The associations with attention-related traits, such as sluggish cognitive 

tempo and attention problem score, as well as a subset of impulsive behaviors 

(negative urgency and sensation seeking) were also shown to be driven mainly by 

the concordant PGI. 

In sum, these results suggest that the heterogeneous correlations of genetic 

associations of EA with behavioral traits shown in the stratified genetic correlation 

analysis can generally be replicated in an independent sample by using stratified 

parts of EA PGI.      

4.4.5. Phenome-wide association study 

In order to see whether the concordant and discordant genetic associations of EA 

have different implications for medical outcomes, we applied the same analysis of 

Section 4.4.4 on the disease diagnoses from the electronic health records of the UKB 

siblings of European ancestry. We derived case-control status according to the 

phecode scheme by mapping the UKB’s ICD-9/10 records to phecodes 

(https://phewascatalog.org/phecodes, version 1.2) (Wei et al., 2017; Wu et al., 2019). 

These ICD-9/10 records were collected from hospitalization, cancer, and death 

registries (as of May 2021). We only analyzed diseases whose sex-specific sample 

https://phewascatalog.org/phecodes
https://www.zotero.org/google-docs/?WP9jNK
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prevalence was at least 1% for both men and women, which included 165 diseases 

covering 15 categories.  

Given the binary outcomes, we estimated logistic regressions instead, while 

the model specifications were the same as Section 4.4.4. Because within-family 

correlation invalidates the model specification for logistic regression with sibling 

data, we estimated a logistic regression with family-specific random-effect 

intercepts to account for within-family correlation. As covariates, we used year of 

birth, its square term, and their interactions with sex, genotype batch dummies, and 

20 genetic PCs.    

4.4.5.1. Results 

We found that EA PGI were associated with 106 out of 165 disease phenotypes at 

the FDR of 5%, covering a wide range of disease categories (Fig. S6). A lower value 

of EA PGI was associated with higher incidents of these diseases, in particular, 

essential hypertension, obesity, tobacco use disorder, and gastroesophageal reflux 

disease (GERD). 64 and 73 diseases were associated independently with concordant 

and discordant EA PGIs, respectively, at the FDR of 5%. 16 of these associations 

were suggested to reflect the difference between the concordant and discordant 

SNPs (as measured by 𝛿; see Section 4.4.4) at the nominal significance level of 5%. 

However, none of these remained significant after the multiple comparison 

correction based on the FDR. The concordant PGI had a larger association with these 

diseases than the discordant PGI, except for only “abdominal pain”, “cholecystitis 

without cholelithiasis”, and “other disorders of bladder”.  

While the different contribution by discordant and concordant SNPs was 

found in a number of disease categories, the most differences were found in mental 

disorders, which included anxiety disorder, depression, altered mental status, and 

tobacco use disorder. The concordant PGI was found to have more importance for 

these disorders, albeit only with nominal significance, which was consistent with 

the results from the ABCD study as well as the stratified genetic correlation analysis.  

The concordant SNPs were also disproportionately more important for the 

association between EA PGI and some of the respiratory conditions, such as 

pulmonary collapse, pleurisy, shortness of breath, and asthma. On the contrary, the 

protective association of a higher value of EA PGI against abdominal pain was 

suggested to be almost entirely due to the discordant SNPs.     



Chapter 3 

129 

a. 

       
b. 

 

Fig. 1. Multivariate genome-wide association study of income 

a. LD score regression (LDSC) estimates of pairwise genetic correlations between the four input income 

measures, the meta-analyzed income, and educational attainment. The diagonal elements report SNP 

heritabilities from LDSC. The standard errors are reported in the parentheses. Some of the results were not 

reported due to out-of-bound estimates.    

b. Manhattan plot presenting the result of MTAG meta-analysis of four income measures. P values are plotted 

on -log10 scale. The red crosses indicate the 206 lead SNPs found from clumping (r2 < 0.1, chromosome-wide 

window). 

https://docs.google.com/document/d/1hiLzh4R9kFngnZ7hnupoacXdeaD9kYAQ67MuR_VNJgI/edit#figur_gwas
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Fig. 5. Stratified neurobiological annotation of EA GWAS 

a. surface area and cortical thickness (62 regions from Desikan-Killiany-Tourville atlas) and b. functional 

network traits from resting-state functional imaging  (75 node amplitudes and 116 connectivities).  The results 

were estimated by GNOVA. The statistical significance of genetic correlation at the FDR of 5% are indicated 

by the green dots (a.) and the asterisks (b.). For functional network traits (b.), only the results with at least one 

significant result were presented. 

a. 

b. 
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1. Introduction 

Almost all human traits are partly heritable, including health outcomes, personality, 

and behavioral tendencies (Goldberger, 1979; Ssgac, 2018). All  properties that make 

us unique as individuals are  to some degree affected by random genetic variation 

within and between families. Moreover, genetic and environmental causes of 

individual differences are interrelated. For example, environmental conditions can 

affect how genetic differences between individuals translate into differences in 

socio-economic and health outcomes (Barcellos et al., 2018; Kong et al., 2018; Young 

et al., 2019). Also, genetic differences among people manifest in trait differences 

partly via environmental channels, for example via genetically influenced personal 

interests that lead to a self-selection into specific environments and reinforcement 

mechanisms consisting, for instance, of behaviors of parents, teachers, peers, or 

colleagues.(Jencks, 1980; Kweon et al., 2020) Importantly, the fact that genetic 

differences are linked to differences in behavior and health does not imply 

simplistic biological determinism and puts no upper bound on the relevance of the 

environment or the possibilities for intervention (Goldberger, 1979; Ssgac, 2018). 

The heritabilities of behavioral, psychological, and economic phenotypes 

(e.g. educational attainment, personality, risk attitudes) and health outcomes (e.g. 

cardiovascular disease, dementia) are typically between 30% and 70%, with an 

average heritability of 49% across all traits (Polderman et al., 2015)/ Thus, a 

substantial amount of variation in outcomes that epidemiologists and behavioral 

scientists study can be statistically linked to  genetic differences among people. 

Ignoring genetics would imply that a substantial source of individual differences 

would remain unobserved, potentially leading to biased estimations that could 

prompt wrong and possibly counterproductive conclusions (Diprete et al., 2018).  

Twin studies also suggest that environmental factors are important not only for 

social scientific outcomes, but also for a broad variety of diseases (Polderman et al., 

2015). Thus, detailed information about living conditions, attitudes, and behavior 

could inform health-related research questions. However, most medical research 

datasets only contain basic information about these factors, limiting possibilities to 

fully understand their importance for health outcomes (Brulle and Pellow, 2006). 

While genetically informed study designs are already common in medical 

research and have yielded numerous important insights into disease mechanisms 

(Davey Smith and Hemani, 2014; Visscher et al., 2017), the use of genetic data in the 

social sciences is still relatively rare (Harden and Koellinger, 2020). Nevertheless, 

integrating genetic data into social-scientific research (e.g., economics, psychology, 

sociology, political science) opens up new possibilities to (i) control for genetic 
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confounders that are otherwise unobservable and that may lead to biased empirical 

results, (ii) increase the statistical power of empirical analyses by absorbing residual 

variance in multiple regression analyses, yielding smaller standard errors of the 

estimated parameters, (iii) study the interactions of genetic factors and 

environmental exposures, (iv) use random genetic differences among individuals 

to identify causal pathways, and (v) better understand how social (dis)advantages 

are transmitted across generations and how parents, peers, teachers, and policy 

makers can potentially alleviate or amplify such (dis)advantages (Benjamin et al., 

2012; Harden and Koellinger, 2020). Thus, integrating genetic data into the social 

sciences offers researchers new tools to study questions they are interested in and 

to reach more robust inference on the basis of their empirical analyses. 

The genetic underpinnings of behavior, socio-economic outcomes, and 

health are often overlapping. For example, educational attainment has substantial 

genetic correlations with smoking (-0.3), lung cancer (-0.4), obesity (-0.2), 

Alzheimer’s disease (-0.3), and longevity (+0.6) (Harden and Koellinger, 2020; Lee 

et al., 2018), illustrating the complex relationships between components of genetic 

variation, human behavior, environmental conditions, and health outcomes.  

These considerations motivated us to collect genetic data in the Innovation 

Sample of the German Socio-Economic Panel Study (SOEP-IS), with the goal of 

contributing additional value to an already existing and widely known 

interdisciplinary and longitudinal data set that is accessible and frequently used by 

the global scientific community.(Richter and Schupp, 2015) The addition of genetic 

data to this sample opens up many new research opportunities for both the medical 

and the social-science research community. 

SOEP-IS was started in 2011 as an addition to the SOEP-Core sample, which 

provides representative annual data of private households in Germany since 1984 

(Goebel et al., 2019). Similar to the SOEP-Core sample, SOEP-IS is a valuable data 

resource for researchers who want to explore long-time societal changes; 

relationships between early life events and later life outcomes; interdependencies 

between the individual and the family or household; mechanisms of 

intergenerational mobility and transmission; accumulation processes of resources; 

short- and long-term effects of institutional change and policy reforms; and 

migration dynamics (Goebel et al., 2019). Besides containing a set of basic questions 

that are identical to the SOEP-Core, the SOEP-IS longitudinal panel survey 

incorporates innovative content that is purely user-designed, including 

measurements that go beyond the scope of standardized questionnaire formats.  

As a household study, the SOEP-IS typically contains data about all 

household members, including a large number of mother-father-child trios, parent-

https://paperpile.com/c/YBB4q2/CVbJa+bITBF
https://paperpile.com/c/YBB4q2/CVbJa+bITBF
https://paperpile.com/c/YBB4q2/tp45e+CVbJa
https://paperpile.com/c/YBB4q2/tp45e+CVbJa
https://paperpile.com/c/YBB4q2/o3qBm
https://paperpile.com/c/YBB4q2/qKaI5
https://paperpile.com/c/YBB4q2/qKaI5
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offspring duos, childhood development, parenting practices, and family dynamics. 

Furthermore, due to the sampling method and longitudinal nature of the data, the 

available phenotypes in the SOEP-IS span all stages of life -- from the (pre-)natal 

stage, early childhood, adolescence, adulthood, all the way to retirement and the 

end of life (see Figure 1).  We refer to the genotyped part of the SOEP-IS as the Gene-

SOEP sample.  

Already existing genotyped cohorts in Germany (e.g. BASE-II (Bertram et al., 

2014), DHS (Pfaffenrath et al., 2009), HNRS (Mahabadi et al., 2011), KORA 

(Wichmann et al., 2005), SHIP (Völzke et al., 2011)) focus on specific health outcomes 

or are limited in scope to specific regions or age groups. Thus, as of now, Gene-

SOEP is the only genotyped sample that is representative of the entire German 

population and that contains family data as well as a rich array of longitudinal 

information about health, personality, family dynamics, living conditions, attitudes, 

and socio-economic behaviors and outcomes. This makes the sample particularly 

valuable to study long-term developments and the intergenerational transmission 

of inequalities in health and well-being.  Furthermore, the sample is ideally suited 

to study the impact of environmental conditions that are unique to Germany, such 

as specific public policies and changes therein or the potential consequences of 

German reunification. Figure 2 shows the geographic distribution of genotyped 

households in the Gene-SOEP sample, illustrating the sample’s coverage of all 

German states and metropolitan areas (e.g. Berlin, Hamburg, Munich, Ruhrgebiet).  

To enable the collection of genetic data in the SOEP-IS, we established a 

research consortium of scientists from Germany (Max-Planck Institute for Human 

Development, German Institute of Economic Research), the Netherlands (Vrije 

Universiteit Amsterdam), Switzerland (University of Zurich, University of Basel), 

and the USA (University of Texas at Austin, Columbia University). The consortium 

was spearheaded by Philipp Koellinger (Vrije Universiteit Amsterdam) and Ralph 

Hertwig (Max-Planck Institute for Human Development). Koellinger’s team in 

Amsterdam developed and guided the data collection procedures, processed the 

collected genetic data, and generated polygenic indices for public use.  

2. Who is in the cohort? 

The sampling and interviewing methods, as well as baseline characteristics of the 

sample, were previously described in detail (Goebel et al., 2019; Richter and Schupp, 

2015). In short, SOEP-IS is based on a random sample of German households. 

Annual computer-assisted personal interviews are conducted face-to-face and 

information is collected on the household- and individual-levels (e.g. individual 

https://paperpile.com/c/YBB4q2/xEqzB
https://paperpile.com/c/YBB4q2/xEqzB
https://paperpile.com/c/YBB4q2/e0zbk
https://paperpile.com/c/YBB4q2/6jIYE
https://paperpile.com/c/YBB4q2/HrOtp
https://paperpile.com/c/YBB4q2/2hoFm
https://paperpile.com/c/YBB4q2/qKaI5+o3qBm
https://paperpile.com/c/YBB4q2/qKaI5+o3qBm
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and household incomes). The central survey instruments are a household 

questionnaire. It is being answered by the household head. In addition, there is an 

individual questionnaire that each household member age 17 and older is supposed 

to answer. The surveyed information usually covers the current situation (e.g., 

family composition or satisfaction with life), but in some contexts it includes the 

past (e.g., job changes and employment biographies) and the future (e.g., expected 

life satisfaction in 5 years, and chance of re-employment).  

The main caretaker (usually the mother) is asked about their children who 

are younger than 17 years. If members of an originally sampled household leave the 

household, (e.g. because of a divorce or children forming their own household), 

both the original as well as the split household are interviewed. The comprehensive 

tracing rules, which cover all individuals who (even temporarily) lived in SOEP 

households, represents a comparative advantage of SOEP compared to other 

household panel surveys. They allow users to track various forms of household 

dynamics and their implications at the household and individual level. To maintain 

a reasonable sample size and to address panel attrition, refreshment samples of the 

residential population of Germany were integrated in 2012, 2013, 2014, and 2016.  

The precondition for participation in the Gene-SOEP - as part of SOEP-IS 

2019 - was that the person or child lives in a participating household. 6,576 people 

were originally invited to participate in SOEP-IS 2019, 1,074 of whom were children. 

Not everyone takes part every year and there are always people who move away, 

die, or do not want to take part in the survey anymore. Therefore, of the original 

sample, 4,283 persons who were at least 17 years old (i.e., persons of survey age) as 

well as 875 children and youths (<17 years of age) lived in a participating household 

in 2019. 2,598 individuals provided a valid genetic sample, including 215 children 

and teenagers. A requirement for an offspring of at most 17 years of age to 

participate in the collection of genetic data was that both guardians agreed. The 

valid genetic samples were sent from the survey company Kantar Public to the 

Human Genomics Facility (HuGe-F) at the Erasmus Medical Center in Rotterdam 

for analysis. 

Compared with census data (www.destatis.de), the Gene-SOEP sample is 

very similar to the German population in terms of age (Meancensus = 52 years vs. 

MeanGene-SOEP = 55 years), sex (51% Femalecensus vs. 54% FemaleGene-SOEP), and living 

region (20% East Germanycensus vs. 19% East GermanyGene-SOEP). However, residents 

without German citizenship are under-represented in the Gene-SOEP sample (12% 

census vs. 4% Gene-SOEP).  
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Participants who agreed to donate DNA are very similar to the overall SOEP-

IS sample in terms of socio-demographics, subjective health ratings, and life 

satisfaction (see Table 1). 

Table 1 - Descriptive statistics of the Gene-SOEP adult sample (≥ 17 years old) 

  Total  Interview  Consent Genotyped Polygenic Indices 

Created 

  Mean SD Mean SD Mean SD Mean SD Mean SD 

Age 54 19 55 18 55 19 55 19 55 19 

Sex (% female) 53 50 53 50 54 50 54 50 54 50 

East Germany (% yes) 20 40 20 40 19 40 19 40 20 40 

German (% yes) 95 22 96 20 96 19 96 19 98 16 

Partnered (% yes)   41 49 40 49 40 49 41 49 

School degree: low  

(% yes) 

  38 49 40 49 40 49 38 48 

School degree: high 

 (% yes) 

  31 46 29 45 29 45 30 46 

Employment (% yes)   53 50 51 50 51 50 51 50 

Mean Net Income  

(EUR) 

  1,959 1,304 1,922 1,300 1,915 1,258 1,924 1,263 

Subjective Health (1-5)   3.33 0.97 3.34 0.96 3.34 0.96 3.33 0.96 

Life Satisfaction (0-10)   7.54 1.69 7.57 1.68 7.59 1.66 7.58 1.66 

Observations 5,502 4,283 2,496 2,372 2,063 

 

Parents were somewhat hesitant to enroll their offspring (<17 years of age) 

for the collection of genetic data. Compared to an overall consent rate of 58% (2,496 

out of 4,282 valid interviews), only 26% of the eligible offspring participated in the 

collection of genetic data (228 out of 875). However, offspring for whom genetic 

data was collected closely resemble the overall sample of offspring in the sample in 

terms of age, sex, geographic location, and citizenship (see Table 2).  
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Table 2 - Descriptive statistics of children and adolescents (<17 years old) in the Gene-

SOEP sample 

  Total Consent Genotyped Sample Polygenic Indices 

Created 

  Mean SD Mean SD Mean SD Mean SD 

Age 8 5 9 5 9 5 9 5 

Sex (% female) 49 50 50 50 50 50 50 50 

East Germany (% yes) 18 39 19 40 18 39 20 40 

German (% yes) 96 20 96 18 96 19 99 8 

Observations 1,074 228 215 173 

 

3. What has been measured? 

Phenotypes 

The SOEP-IS (Goebel et al., 2021a; Richter and Schupp, 2015) contains a set of core 

questions that are identical to about 44% of the questions asked in the SOEP-Core 

survey (Goebel et al., 2019), including variables such as age, gender, height, weight, 

education, employment status, income, life satisfaction, personality, living 

conditions, attitudes, preferences, and occupational classifications following the 

International Standard Classification of Occupations (ISCO). In addition, the SOEP-

IS contains a broad range of short-term experiments and longer-term surveys that 

were not deemed to be suitable to the SOEP-Core survey (yet) because they pose a 

higher risk of refusal and panel attrition or because they deal with very specific 

research issues. Every year, researchers can propose new survey modules or 

experiments for inclusion in the SOEP-IS. The SOEP management team and the 

SOEP survey committee then select which modules will be included in the next 

survey wave (Richter and Schupp, 2015). The SOEP-IS innovation modules also act 

as a test bed for how respondents react and some particularly important and 

successful modules (e.g. risk attitudes) can later be integrated into the much larger 

SOEP-Core survey, which collects data from ~15,000 households comprising 

~26,000 individuals per year, including ~3,000 children and youths. 

Health outcomes in the SOEP-IS are primarily measured based on self-

reports of doctor diagnoses for a range of diseases, subjective evaluations of health 

and well-being, doctor visits, and the need for care. Furthermore, dried blood 

samples were tested for SARS-CoV-2 antibodies and oral-nasal swabs for viral RNA 

in a part of the SOEP-IS sample between Oct 2020 and Feb 2021, providing 

https://paperpile.com/c/YBB4q2/o3qBm+bz27f
https://paperpile.com/c/YBB4q2/qKaI5
https://paperpile.com/c/YBB4q2/o3qBm
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opportunities to study factors influencing infections with SARS-CoV-2 and long-

term consequences (Hoebel et al., 2021).  

Furthermore, the SOEP-IS allows users to add anonymized spatial 

information (e.g. federal states, spatial planning regions, counties, municipalities, 

and postal codes as well as GPS coordinates) and can be linked to administrative 

records from the German Pension Insurance and the Employer-Employee Study 

(Goebel et al., 2019; Weinhardt et al., 2017).  

An overview of the SOEP-IS survey content and examples of modules is provided 

in Box 1. The complete questionnaire of the 2019 survey wave, the 2019 SOEP 

annual report, and a description of all SOEP-IS modules from 2011-2018 are 

available online (Goebel et al., 2021b, 2020; Kara et al., 2021). An online companion 

for the entire data collection is available (http://companion-is.soep.de/).  

 

Box 1. Summary of SOEP-IS survey content by topics and examples of modules 

 

1. Demography and Population  

Country of origin, birth history 

 

2. Work and Employment 

Change of job, contractual working hours, employment status, evening and weekend work, financial 

compensation for overtime, industry sector and occupational classification, job search, leaving a job, 

maternity / parental leave, registered unemployed, self-employment reasons, side jobs, supervisory 

position, use of professional skills, vacation entitlement, work from home, work time regulations, 

workload 

 

3. Income, Taxes, and Social Security 

Asset balance, benefits and bonuses from employer, financial support received, individual gross / net 

income, inheritances, pension plans, social security, wage tax classification, alimony, household 

income and expenses, investments, repayments of loans 

 

4. Family and Social Networks 

Circle of friends, family changes, family network, marital / partnership status, attitude toward 

parental role, breastfeeding, childcare, language use, leisure and activities, parenting goals, parenting 

style, pregnancy, relationship to other parent or child 

 

5. Health and Care 

Alcohol consumption, health insurance, illness (self-reports of doctor diagnoses for sleep disorder, 

thyroid disorder, diabetes, asthma, cardiac disease, cancer, apoplectic stroke, migraine, high blood 

pressure, depression, dementia, joint disorder, chronic back problems, burnout, 

hypercholesterolemia, or other illness), reduced ability to work, sickness notifications to employer, 

smoking, state of health, stress and exhaustion, visits to the doctor, satisfaction with availability of 

care, health of child, physical and mental health of mother, nutrition, physical activity 

 

6. Home, Amenities, and Contributions of Private Households 

Childcare hours, leisure activities and costs, school attendance by child, change in residential 

situation, consumption, costs of housing, home ownership / rental, loans and mortgages, birth of 

children, number of books in the household, persons in household in need of care, pets, residential 

https://paperpile.com/c/YBB4q2/XiWsd
https://paperpile.com/c/YBB4q2/qKaI5+MvYoC
https://paperpile.com/c/YBB4q2/dP1fE+1mKVB+gLzuP
http://companion-is.soep.de/
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area, size and condition of home 

 

7. Education and Qualification 

Completed education and training, vocational training, educational aspirations for children, school 

enrollment of children 

 

8. Attitudes, Values, and Personality 

Affective well-being, Big Five personality traits, depressive traits, goals in life, impulsivity and 

patience, income justice, life satisfaction, lottery question, optimism/pessimism, political tendency 

and orientation, reciprocity, religious affiliation, risk aversion in different domains, satisfaction with 

various aspects, social responsibility, trust and fairness, wage justice, well-being aspects, worries, 

temperament of child 

 

9. Time Use and Environmental Behavior 

Time use for different activities, trip to work, use of transportation for different purposes 

 

10. Integration, Migration, Transnationalization 

Applying for German citizenship, disadvantage / discrimination based on ethnic origins, integration 

indicators, language skills, native language, regional attachment, sense of home 

 

11. Innovative Modules 

Anxiety and depression, assessment of contextualized emotions, risk attitudes, confusion, control 

strivings, dementia worry, determinants of ambiguity aversion, emotion regulation, expected 

financial market earnings, future life events, grit and entrepreneurship, happiness analyzer, impostor 

phenomenon, inattentional blindness, inequality attitudes, job preferences, job tasks, justice 

sensitivity, lottery play, multilingualism, narcissistic admiration and rivalry, ostracism, pension 

claims, perceived discrimination, physical attractivenes, self-control, self-evaluation and 

overconfidence in different life domains, sleep characteristics, smartphone usage, socio-economic 

effects of physical activity, status confidence and anxiety, subjective social status, work time 

preferences 

Genetics 

DNA was extracted from saliva samples that were collected using Isohelix IS SK-1S 

buccal swabs with Dri-Capsules. Genotyping was carried out using Illumina 

Infinium Global Screening Array-24 v3.0 BeadChips, yielding raw data for 2,598 

individuals and 725,831 variants, of which 688,618 were autosomal.  

Call rates were smaller than 95% in 484 genotyped individuals. Further 

analyses revealed that the low call rates for these individuals were largely driven 

by interviewer effects, possibly due to not following the sample collection protocol 

accurately, including an incorrect use of (or entirely missing) DriCapsules that slow 

down the decay of DNA, low saliva and DNA yield, or polluted samples (see SI 

sections 2 and 3).  

Since we expect that the vast majority of analyses in the genotyped SOEP-IS 

data will rely on polygenic indices (PGIs) (Becker et al., 2021) rather than single 

genetic variant analyses, we implemented two different quality control (QC) 

pipelines, mild-QC and strict-QC, that are described in detail in the Supplementary 

https://paperpile.com/c/YBB4q2/HKxTM
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Information. The mild-QC pipeline yields a higher sample size and both QC 

protocols yield approximately equally predictive PGIs (see below and 

Supplementary Information section 7). Depending on the research question 

investigators will want to address, either the mild-QC or the strict-QC data can be 

used to maximize the statistical power of the analyses. 

In short, both pipelines filtered out 14 individuals with sex mismatch. The 

strict-QC pipeline excluded 260 individuals whose genotype missingness rate was 

more than 20% within any chromosome and 59 individuals with excess 

heterozygosity/homozygosity. The mild-QC pipeline excluded only 36 individuals 

based on a per-chromosome missingness of more than 50% and 22 

heterozygosity/homozygosity outliers. Using the mild-QC data, we identified 44 

individuals of non-European ancestries, 25 of whom were available in the strict-QC 

sample. These individuals were also excluded from the mild- and strict-QC samples 

prior to imputation. 

We used the Haplotype Reference Consortium reference panel (r1.1) for 

imputation (McCarthy et al., 2016). Imputation was completed for 2,497 individuals 

and 23,185,386 SNPs with imputation accuracy (R2) greater than 0.1 in the mild-QC 

data, and 2,299 individuals and 22,201,548 SNPs with R2>0.1 in the strict-QC data. 

Approximately 66% of the imputed SNPs are rare with minor allele frequencies 

(MAF) smaller than 0.01 and ~24% SNPs are common (MAF≥0.05; 5,463,110 in mild-

QC, 5,463,110 in strict-QC). The average imputation accuracy in the mild-QC data 

is 0.664 and 0.695 in the strict-QC data. However, common SNPs (MAF≥0.05) are 

much more reliably imputed than rare SNPs, with an average imputation accuracy 

of 0.92 and 0.93 in the mild- and strict-QC data, respectively.  

Using the imputed SNPs, we identified an additional 37 (2) individuals of non-

European ancestries in the strict (mild) QC data on top of the 44 (25) individuals of 

non-European ancestries excluded prior to imputation, respectively. Thus, ~98% of 

the genotyped SOEP-IS sample is of European ancestries (see Supplementary 

Information section 4). 

We constructed the first 20 principal components (PCs) of the genetic data 

for individuals with European ancestries based on ~160,000 approximately 

independent SNPs with imputation accuracy ≥70% and MAF≥0.01. We recommend 

using these genetic PCs in analyses as control variables for population stratification 

(Price et al., 2006).  

  

https://paperpile.com/c/YBB4q2/r4Mhf
https://paperpile.com/c/YBB4q2/9vv5L


Chapter 4 

151 

Family relationship among genotyped participants 

With the exemption of parent-offspring pairs, family relationships among the 

participants are only surveyed via their relationship to the household head. For the 

genotyped participants in the SOEP-IS across the available waves from 1998 to 2019, 

there are 877 reported relationships for the 602 household heads. The majority (515) 

of these relationships are with their spouse or partner, while 346 relationships are 

with their child (324 biological, 11 adopted or biological, and 11 stepchild). The 

remaining relationships of household heads are with grandchildren (5), parents (4), 

a parent-in-law (1), a niece/nephew (3), a son/daughter-in-law (1), and a half sibling 

(1). 

By using the reported relationships to the household head as well as directly 

reported parent-child relationships, we inferred or found 609 parent-offspring, 142 

full-sibling, and 17 second-degree relative pairs in the Gene-SOEP sample. In Table 

S1, we compared these reported relationships to genetically inferred relationships 

obtained from KING (Manichaikul et al., 2010). We found that 19% of the pairs have 

inconsistencies between the reported and genetically inferred relationships. The 

deviations were mainly due to low genotyping quality of some individuals. When 

considering only the individuals whose genotyping call rate was greater than 90% 

using directly genotyped SNPs, 92% of the pairs in the Gene-SOEP have consistent 

self-reported and genetic family relationships (see section 3 and 6 of the 

Supplementary Information for details). We found that most of the remaining 

inconsistencies are due to self-reported full-siblings who are likely to be only half 

siblings (13 out of 97 pairs). We also found 28 self-reported parent-child pairs that 

appear to be non-biological from 437 pairs in total.  

Furthermore, restricting to the individuals with the genotype call rate greater 

than 90%, we identified 88 pairs whose family relationship information was not 

available in the survey data. These pairs consist of 7 parent-offspring, 19 full-

siblings, 33 second-degree relatives, and 29 third or fourth degree relative pairs.  

Overall, out of 2,497 individuals, we genetically identified 703 individuals 

with at least one first-degree relatives (parent-child or full sibling) and 728 

individuals that have at least one relative with at least third-degree of relatedness 

(first cousins or great grandparent-child). 1,769 individuals do not have close 

relatives on the basis of the genetic data. Note that the related pairs reported here 

are not mutually exclusive and some individuals can be related to multiple people. 

Polygenic indices 

https://paperpile.com/c/YBB4q2/ZXsew
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The effect sizes of individual single nucleotide polymorphisms (SNPs) on 

behavioral traits and complex diseases are usually tiny (R2 < 0.05%). Polygenic 

indices (PGI) aggregate the effects of observed SNPs, weighting them by their 

estimated effect sizes from an independent genome-wide association study (GWAS) 

sample (Becker et al., 2021). The predictive accuracy of a PGI depends on the GWAS 

sample size (+), the heritability of the trait (+), the number of causal genetic variants 

that influence the trait (-), and the extent to which the genetic architecture of the 

trait is similar across various environments and datasets (+) (Daetwyler et al., 2008; 

de Vlaming et al., 2017). Thanks to rapidly growing GWAS sample sizes in the past 

few years, the accuracy of PGIs has increased greatly, especially for individuals of 

European ancestries (Harden and Koellinger, 2020; Mills and Rahal, 2019). PGIs are 

now beginning to capture a substantial part of the heritability of many traits, 

making them valuable for research in many scientific disciplines. For example, PGIs 

from the latest generation of GWAS analyses capture ~12% of the variation in years 

of schooling (Lee et al., 2018), ~10% of general cognitive ability (Lee et al., 2018), and 

up to 2% of various personality characteristics such as risk tolerance (Karlsson 

Linnér et al., 2019). 

This makes these PGIs useful for follow-up analyses in samples that are 

much smaller than the original GWAS (Harden and Koellinger, 2020). For example, 

a sample of N = 1,000 yields >90% statistical power to detect an association between 

a PGI and an outcome of interest if the PGI captures at least 1% of the phenotypic 

variation (two-sided t-test with α=0.05). An association between an outcome and a 

PGI with R2 = 10% can even be detected in a sample of only N = 110 individuals with 

90% power. 

We followed the methods used by Becker et al. (2021) to create a repository 

of single- and multi-trait polygenic indices for 66 social-scientific and health traits 

for individuals of European ancestries in the Gene-SOEP sample. We used the 

largest currently available GWAS samples to create these PGIs, including publicly 

available GWAS summary statistics as well as non-publicly available GWAS results 

from 23andMe. We extended the list of 36 single-trait and 35 multi-trait PGIs in 

Becker at al. 2021 by including single-trait PGIs for 19 medical outcomes with well-

powered GWAS summary statistics. The single-trait PGIs were based on univariate 

GWAS summary statistics (Table 3), whereas the multi-trait PGI were based on 

multivariate MTAG analyses that exploit genetic correlations between several traits 

to improve predictive accuracy (SI Table 3) (Turley et al., 2018).  

Some of the PGIs that we created have corresponding phenotypes in the 

Gene-SOEP sample (e.g. educational attainment, height, BMI, risk tolerance), while 

others capture genetic predispositions for phenotypes that are not observable or 

https://paperpile.com/c/YBB4q2/HKxTM
https://paperpile.com/c/YBB4q2/dFooL+sgRMk
https://paperpile.com/c/YBB4q2/dFooL+sgRMk
https://paperpile.com/c/YBB4q2/XGKO9+CVbJa
https://paperpile.com/c/YBB4q2/tp45e
https://paperpile.com/c/YBB4q2/tp45e
https://paperpile.com/c/YBB4q2/T0zyW
https://paperpile.com/c/YBB4q2/T0zyW
https://paperpile.com/c/YBB4q2/CVbJa
https://paperpile.com/c/YBB4q2/HKxTM/?noauthor=1
https://paperpile.com/c/YBB4q2/QrpOE
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incompletely measured (e.g. longevity, HDL cholesterol, blood pressure, and a 

variety of diseases including Alzheimer’s, schizophrenia, stroke, atrial fibrillation 

and breast cancer). These PGIs are useful proxies for unobserved traits and 

outcomes. For example, they can be used as control variables in studies that focus 

on environmental processes such as socio-economic factors that influence 

health(Benjamin et al., 2012), to detect gene-environment interactions (e.g. 

heterogeneous responses to policy interventions) (Barcellos et al., 2018; Harden and 

Koellinger, 2020), or as exogenously given proxies that do not change over the 

lifecourse (e.g. to study genetic predisposition for health on labor market outcomes). 

Finally, the availability of genetic data and PGIs from parents and their children 

offers exciting, new ways to disentangle genetic and environmental channels of 

intergenerational transmission of health, behavior, and socio-economic outcomes 

(Koellinger and Harden, 2018; Kong et al., 2018).  

Table 3 - Polygenic indices in the Gene-SOEP sample from single trait GWAS results 

Phenotype # SNPs GWAS N 

Adventurousness(Becker et al., 2021; Karlsson Linnér et al., 2019) 1,147,160 557,923 

Age First Birth(Barban et al., 2016; Becker et al., 2021) 996,620 169,901 

Age First Menses (Women)(Becker et al., 2021; Day et al., 2015) 1,142,133 309,043 

Alcohol Misuse(Becker et al., 2021; Sanchez-Roige et al., 2019) 1,145,324 120,684 

Alzheimer's*(Linner and Koellinger, 2020) 1,115,709 455,258 

Any Ischemic Stroke*(Linner and Koellinger, 2020) 850,822 446,696 

Any Stroke*(Linner and Koellinger, 2020) 844,962 446,696 

Atrial Fibrillation*(Linner and Koellinger, 2020) 850,822 1,030,836 

Asthma(Becker et al., 2021) 1,159,334 418,164 

Asthma/Eczema/Rhinitis(Becker et al., 2021; Ferreira et al., 2017) 1,137,288 513,889 

Attention Deficit Hyperactivity Disorder (ADHD)(Becker et al., 

2021; Demontis et al., 2019) 

1,083,048 57,386 

Body Mass Index (BMI)(Becker et al., 2021; Locke et al., 2015) 1,023,282 582,457 

Breast Cancer*(Linner and Koellinger, 2020) 809,475 228,951 

Cannabis Use(Becker et al., 2021; Pasman et al., 2018; Stringer et 

al., 2016) 

1,087,000 156,756 

Cardioembolic Stroke*(Linner and Koellinger, 2020) 844,996 446,696 

Childhood Reading(Becker et al., 2021) 1,147,169 172,502 

Chronic Kidney Disease*(Linner and Koellinger, 2020) 845,145 444,971 

Cigarettes per Day(Becker et al., 2021; Liu et al., 2019) 1,150,910 250,057 

https://paperpile.com/c/YBB4q2/bITBF
https://paperpile.com/c/YBB4q2/CInBm+CVbJa
https://paperpile.com/c/YBB4q2/CInBm+CVbJa
https://paperpile.com/c/YBB4q2/E6gcE+mB9PZ
https://paperpile.com/c/YBB4q2/HKxTM+T0zyW
https://paperpile.com/c/YBB4q2/HKxTM+oeDOm
https://paperpile.com/c/YBB4q2/HKxTM+yW00Y
https://paperpile.com/c/YBB4q2/HKxTM+DUrdQ
https://paperpile.com/c/YBB4q2/LcTT0
https://paperpile.com/c/YBB4q2/LcTT0
https://paperpile.com/c/YBB4q2/LcTT0
https://paperpile.com/c/YBB4q2/LcTT0
https://paperpile.com/c/YBB4q2/HKxTM
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https://paperpile.com/c/YBB4q2/HKxTM+lU8S7
https://paperpile.com/c/YBB4q2/LcTT0
https://paperpile.com/c/YBB4q2/HKxTM+FNofP+oo5nS
https://paperpile.com/c/YBB4q2/HKxTM+FNofP+oo5nS
https://paperpile.com/c/YBB4q2/LcTT0
https://paperpile.com/c/YBB4q2/HKxTM
https://paperpile.com/c/YBB4q2/LcTT0
https://paperpile.com/c/YBB4q2/HKxTM+EXI6w
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Cognitive Performance(Becker et al., 2021; Trampush et al., 2017) 1,148,362 222,914 

Depression*(Linner and Koellinger, 2020) 835,515 500,199 

Depressive Symptoms(Becker et al., 2021; Wray et al., 2018) 1,138,362 619,272 

Diastolic Blood Pressure* (Linner and Koellinger, 2020) 843,500 757,601 

Drinks per Week(Becker et al., 2021; Liu et al., 2019) 1,150,775 723,487 

Educational Attainment(Becker et al., 2021; Lee et al., 2018) 1,147,926 1,047,538 

Ever Smoker(Becker et al., 2021; Liu et al., 2019) 1,143,561 1,129,163 

Externalizing*(Linner and Koellinger, 2020) 1,020,283 1,492,085 

Extraversion(Becker et al., 2021; Lo et al., 2017; van den Berg et 

al., 2016) 

1,113,746 73,906 

Hay Fever(Becker et al., 2021) 1,159,334 403,179 

HDL Cholesterol*(Linner and Koellinger, 2020) 847,159 187,167 

Height(Becker et al., 2021; Wood et al., 2014) 1,022,784 448,198 

Highest Math(Becker et al., 2021; Lee et al., 2018) 1,147,159 430,439 

Insomnia* (Linner and Koellinger, 2020) 824,863 386,533 

Large Artery Stroke*(Linner and Koellinger, 2020) 1,159,551 446,696 

Left Out of Social Activity(Becker et al., 2021) 1,147,159 507,803 

Life Satisfaction: Family(Becker et al., 2021) 1,159,202 141,864 

Life Satisfaction: Friends(Becker et al., 2021) 1,159,184 138,807 

Longevity*(Linner and Koellinger, 2020) 832,850 640,189 

Migraine(Becker et al., 2021; Pickrell et al., 2016) 1,146,834 421,013 

Morning Person(Becker et al., 2021; Hu et al., 2016) 1,123,260 362,840 

Narcissism(Becker et al., 2021) 1,147,153 452,535 

Nearsightedness(Becker et al., 2021; Pickrell et al., 2016) 1,146,729 301,938 

Neuroticism(Becker et al., 2021; Genetics of Personality 

Consortium et al., 2015; Lo et al., 2017) 

1,029,577 389,237 

Number Ever Born (Women)(Barban et al., 2016; Becker et al., 

2021) 

1,034,474 207,393 

Openness(Becker et al., 2021; De Moor et al., 2012; Lo et al., 

2017) 

987,746 72,308 

Physical Activity(Becker et al., 2021; Doherty et al., 2018) 1,108,549 140,190 

Religious Attendance(Becker et al., 2021) 1,159,336 383,466 

Risk Tolerance(Becker et al., 2021; Karlsson Linnér et al., 2019) 1,076,002 1,070,480 

Schizophrenia*(Linner and Koellinger, 2020) 829,801 105,318 

Self-Rated Health(Becker et al., 2021) 1,144,515 911,102 

https://paperpile.com/c/YBB4q2/HKxTM+Nodbs
https://paperpile.com/c/YBB4q2/LcTT0
https://paperpile.com/c/YBB4q2/HKxTM+K5RnX
https://paperpile.com/c/YBB4q2/LcTT0
https://paperpile.com/c/YBB4q2/HKxTM+EXI6w
https://paperpile.com/c/YBB4q2/HKxTM+tp45e
https://paperpile.com/c/YBB4q2/HKxTM+EXI6w
https://paperpile.com/c/YBB4q2/LcTT0
https://paperpile.com/c/YBB4q2/HKxTM+g3pMY+4ZJRk
https://paperpile.com/c/YBB4q2/HKxTM+g3pMY+4ZJRk
https://paperpile.com/c/YBB4q2/HKxTM
https://paperpile.com/c/YBB4q2/LcTT0
https://paperpile.com/c/YBB4q2/HKxTM+YbsuO
https://paperpile.com/c/YBB4q2/HKxTM+tp45e
https://paperpile.com/c/YBB4q2/LcTT0
https://paperpile.com/c/YBB4q2/LcTT0
https://paperpile.com/c/YBB4q2/HKxTM
https://paperpile.com/c/YBB4q2/HKxTM
https://paperpile.com/c/YBB4q2/HKxTM
https://paperpile.com/c/YBB4q2/LcTT0
https://paperpile.com/c/YBB4q2/HKxTM+hq44S
https://paperpile.com/c/YBB4q2/HKxTM+tV8N6
https://paperpile.com/c/YBB4q2/HKxTM
https://paperpile.com/c/YBB4q2/HKxTM+hq44S
https://paperpile.com/c/YBB4q2/HKxTM+g3pMY+vMu6D
https://paperpile.com/c/YBB4q2/HKxTM+g3pMY+vMu6D
https://paperpile.com/c/YBB4q2/HKxTM+oeDOm
https://paperpile.com/c/YBB4q2/HKxTM+oeDOm
https://paperpile.com/c/YBB4q2/HKxTM+g3pMY+TF8w7
https://paperpile.com/c/YBB4q2/HKxTM+g3pMY+TF8w7
https://paperpile.com/c/YBB4q2/HKxTM+3VFVQ
https://paperpile.com/c/YBB4q2/HKxTM
https://paperpile.com/c/YBB4q2/HKxTM+T0zyW
https://paperpile.com/c/YBB4q2/LcTT0
https://paperpile.com/c/YBB4q2/HKxTM
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Self-Rated Math Ability(Becker et al., 2021; Lee et al., 2018) 1,147,159 564,692 

Small Vessel Stroke*(Linner and Koellinger, 2020) 1,159,163 446,696 

Subjective Well-Being(Becker et al., 2021; Okbay et al., 2016a) 906,574 502,976 

Systolic Blood Pressure*(Linner and Koellinger, 2020) 842,552 745,820 

Triglycerides*(Linner and Koellinger, 2020) 847,159 177,861 

Type 2 Diabetes*(Linner and Koellinger, 2020) 851,227 231,426 

Notes: "# SNPs" is the number of SNPs that were used to construct the PGI.  

“*” indicates PGIs for medical outcomes that were not originally included in Becker et al. 2021. 

All 55 PGIs are constructed only for individuals of European ancestry (N = 2,495). 

 

4. Results - What has been found? 

The SOEP sample is currently used by more than 9,000 registered users from 54 

countries (Goebel et al., 2020). About 300-400 publications annually are based on 

SOEP data, including OECD reports on the international development of inequality. 

Roughly 25% of these publications are in journals listed in the (social) science 

citation index and more than 100 publications are based on SOEP-IS data. The SOEP 

is also an integral database for official government reports in Germany. Major 

research areas that include SOEP-based publications include life course 

development, inequality, mobility, psychological outcomes and attitudes, 

migration, transition to a unified Germany, and health. Thus, the SOEP data is 

widely used and provides an indispensable empirical foundation to describe 

longitudinal developments and relationships, and a better  understanding of 

socioeconomic processes and behavior. It is a highly valuable resource to study 

relationships between behavior, socioeconomic status, and health (Goebel et al., 

2019).  

The genetic data that we collected in the SOEP-IS sample (Gene-SOEP) is a 

new addition to this valuable resource. We describe first findings using the genetic 

data below.  

Predictive accuracy of polygenic indices for height, BMI, and educational attainment 

Figure 3 shows the predictive accuracy of the PGIs for height and BMI in unrelated 

individuals from the Gene-SOEP sample, both for the mild and the strict version of 

the QC of the genetic data that we carried out. We measure the predictive accuracy 

of the PGIs as the difference in the explained variance (R2) before and after adding 

the PGI to a baseline regression that controls for a second-degree polynomial in year 

of birth, sex and their interactions, genotype batch indicators, and the top 20 genetic 

PCs. Since height and BMI were surveyed multiple times across waves, we first 

https://paperpile.com/c/YBB4q2/HKxTM+tp45e
https://paperpile.com/c/YBB4q2/LcTT0
https://paperpile.com/c/YBB4q2/HKxTM+v00Gn
https://paperpile.com/c/YBB4q2/LcTT0
https://paperpile.com/c/YBB4q2/LcTT0
https://paperpile.com/c/YBB4q2/LcTT0
https://paperpile.com/c/YBB4q2/1mKVB
https://paperpile.com/c/YBB4q2/qKaI5
https://paperpile.com/c/YBB4q2/qKaI5
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residualized height and BMI for age, age2, sex and their interactions within each 

wave and took the mean for each individual; then, as covariates, we used only 

genotype batch indicators and the top 20 genetic PCs. We obtained 95% confidence 

intervals by bootstrapping the sample 2,000 times. 

Using this approach, the PGIs explain 22~24% of the variance in height, 

12~13% of the variance in BMI, and 9% of the variance in educational attainment. 

Furthermore, the predictive accuracy was very similar for different levels of QC, 

which implies that the low genotyping quality in a part of the sample does not 

substantially reduce the predictive accuracy of the PGIs. Thus, researchers may 

choose to use the mild-QC version of the data for analyses using PGIs to take 

advantage of its ~10% larger sample size and the corresponding gains in statistical 

power.    

Genetic and environmental correlations with height and BMI 

We demonstrate the advantages of combining a representative population sample 

with genetic data by analyzing birth year cohort trends in body height and BMI over 

time. Specifically, we split the Gene-SOEP sample into PGI values below and above 

the median for height and BMI and plotted the average residualized phenotypic 

values after adjusting for sex in both groups for adults >=20 years of age, binned 

into ten-year birth cohorts (Figures 4 and 5). Phenotypic values are residualized by 

regressing each observed phenotypic value on sex dummies using OLS. Each 

observation is assigned a residualized value which represents the remaining 

variation in the phenotype which cannot be predicted by sex. Residualized values 

are then averaged by individual across survey waves. The average residualized 

values for each bin are reported by the solid lines corresponding to the left axis.  

In the non-residualized data, individuals with high PGI values for height are 

on average 5.2 cm taller than those with low PGI height values (95% CI: 3.4 - 7.1cm). 

Figure 4 shows that this difference in average height by genetic predisposition is 

robust across birth year cohorts, reflecting a stable influence of the height PGI. 

Interestingly, Figure 4 also demonstrates that younger birth cohorts are on average 

substantially taller than older birth cohorts. For example, individuals born in the 

1923-1939 birth year cohort (~84 years old on average in the 2019 survey wave) are 

on average 6.6 cm shorter than those born in 1980-1999 birth year cohort (~31 years 

old on average in the 2019 survey wave). This gain in average height of younger 

birth cohorts cannot be explained by observed genetic changes in the population. 

As Figure 4 shows through the dashed lines which correspond with the right y-axis, 

the average values of the (high and low) height PGI did not increase over time. 
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Instead, the younger birth cohorts exhibit a slightly smaller PGI value than the older 

birth cohorts, possibly due to sample selection and mortality effects among older 

participants (Domingue et al., 2017). In order to disentangle potential age effects 

from birth cohort effects, SI Table 5 presents estimates from height regressed on the 

standardized height PGI, birth cohort dummies, including five year age bin 

dummies. The results confirm a birth cohort effect on height that is separate from 

the genetic influences on height as well as aging effects.  This implies that the 

substantial gains in average body height in the German population over time are 

partially due to improved environmental conditions, such as better nutrition and 

health care (Perkins et al., 2016; Silventoinen, 2003). 

A similar analysis for BMI (Figure 5) shows that individuals with an above-

median PGI have on average also higher BMI (1.6 points higher for the High-PGI 

group in the non-residualized results, 95% CI 1.04 - 2.17). Both the heritability and 

the predictive accuracy of the PGI are lower for BMI than for height (Becker et al., 

2021; Polderman et al., 2015). Correspondingly, the average differences in BMI 

between the low and the high PGI group are not statistically significant for all birth 

year cohorts. Yet, similar to the analyses on height, we also observe birth cohort 

effects on BMI that cannot be explained by observed genetic variation in the BMI 

PGI. Individuals born in the youngest birth cohort (1980-1999, ~31 years old) have 

an average BMI that is 2.3 points lower than those in the oldest birth cohort (1923-

1939, ~84 years old). The higher BMI in the older birth cohorts is not due to observed 

genetic changes in the population over time. In fact, the average PGI is slightly 

lower in the older birth cohorts than in the younger ones, again possibly due to 

sample selection and mortality effects among older participants (Domingue et al., 

2017). SI Table 6 presents regression results from a robustness check that also 

included 5-year age bins as control variables, again confirming birth cohort effects 

that cannot be explained alone by aging or observed genetic variation. Thus, the 

higher BMI in the older birth-cohorts is likely to be caused by a combination of 

environmental effects such as differences in living conditions, socio-economic 

effects (Cardoso and Caninas, 2010), or nutrition (Meddens et al., 2020).  

The broad set of PGIs we created are a valuable resource for research on 

inequalities in socio-economic and health outcomes. Previous research has 

demonstrated that the genetic architectures of socio-economic, behavioral and 

health outcomes are often substantially overlapping (Bulik-Sullivan et al., 2015; 

Harden and Koellinger, 2020; Okbay et al., 2016b). This implies that PGIs for socio-

economic or behavioral traits can also be proxies for health outcomes.  

This is demonstrated in Figure 6, which presents the effect size from 

regressions of self-rated health on 28 single-trait PGIs (out of 55 tested single-trait 

https://paperpile.com/c/YBB4q2/qrumv
https://paperpile.com/c/YBB4q2/vWNxP+0OhIj
https://paperpile.com/c/YBB4q2/HKxTM+Dth3
https://paperpile.com/c/YBB4q2/HKxTM+Dth3
https://paperpile.com/c/YBB4q2/qrumv
https://paperpile.com/c/YBB4q2/qrumv
https://paperpile.com/c/YBB4q2/lpiN5
https://paperpile.com/c/YBB4q2/9St3n
https://paperpile.com/c/YBB4q2/IL8e3+avnHC+CVbJa
https://paperpile.com/c/YBB4q2/IL8e3+avnHC+CVbJa
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PGIs overall) whose estimated standardized coefficients are greater than |±0.1| All 

regressions controlled for five year age bins, sex, and their interactions, and the first 

20 genetic principal components. 18 PGIs are statistically distinguishable from zero 

after a Bonferonni correction for 55 tested hypotheses (marked with *). 

We find positive associations between self-rated health and PGIs for self-

rated health, age at first birth, educational attainment, subjective well-being, highest 

math class taken, religious attendance, longevity, cognitive performance, physical 

activity, self-rated math ability, and age at first menses. Furthermore, we find 

negative health correlations of the PGIs for externalizing, depression, ADHD, 

number of children ever born, insomnia, neuroticism, smoking, and being left out 

of social activities - all of which are PGIs for behavioral, social, or cognitive 

phenotypes. Moreover, the PGIs for BMI, high blood pressure, type 2 diabetes, large 

artery stroke, triglycerides and asthma all have the expected negative correlations 

with self-rated health. 

5. Discussion - What are the main strengths and weaknesses? 

Major strengths of the Gene-SOEP data include:  

(i) the sample selection, which yields the only currently genotyped sample that is 

representative of the entire German population; 

(ii) the longitudinal nature of the data with annual observations since 2011 (for a 

subset of individuals and phenotypes, annual observations even go back to 1998);  

(iii) the rich questionnaire content, including self-reported health outcomes and 

detailed information on socio-economic status, living conditions, family dynamics, 

personality, preferences and attitudes is another major strength of the data;  

(iv) the possibility to use detailed geo-coding, standardized occupation codes, and 

links to external databases such as the German Pension Insurance and the 

Employer-Employee Study;  

(v) the broad set of state-of-the-art polygenic indices that we created, which lower 

the entry barriers for researchers to use genetically informed study designs;  

(vi) the continuing annual collection of data that also allows researchers to integrate 

new survey modules, biomarkers, and experiments in the future by following the 

application procedures of the SOEP-IS management team (Richter and Schupp, 

2015);  

(vii) the household sampling procedure that collects data on all family members. 

The Gene-SOEP sample contains 501 parent-offspring pairs, 152 parent-offspring 

trios, 107 full-siblings, and 12 second degree relatives (including half-siblings) with 

matching self-reported and genetically-inferred relationships. This data structure 

https://paperpile.com/c/YBB4q2/o3qBm
https://paperpile.com/c/YBB4q2/o3qBm
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enables genetically informed studies on a wide range of research topics, including 

the intergenerational transmission of inequalities in health and well-being as well 

as studies that identify how environmental factors such as parenting style influence 

the developmental trajectory of children and youths;  

(viii) the availability of epigenetic data, which will be added for a substantial part 

of the Gene-SOEP sample in the near future, further increasing research 

opportunities on the relationships between social environment and physical health; 

(ix) the possibility to extend the collection of genetic data to all SOEP surveys, which 

would substantially increase the available sample size for genetically informed 

analyses. 

Compared to other datasets that were included in the Polygenic Index (PGI) 

Repository of the SSGAC (Becker et al., 2021), the Gene-SOEP is the only German 

sample and it has the broadest coverage of social scientific outcomes, many of which 

have been repeatedly collected over time. Although the sample size of the Gene-

SOEP is larger than several other studies included in the PGI Repository (e.g. 

Dunedin, E-Risk, Texas Twins), we still caution that researchers using the data 

should pay attention to statistical power in their analyses. In particular, the sample 

size may be too limited for analyses of single genetic variants or sub-parts of the 

sample (e.g. specific age groups or geographic areas). A further limitation is that a 

part of the sample (19%) did not pass the strict quality control thresholds of genetic 

data that are usually employed in genetic epidemiology (call rates > 95%). However, 

our mild-QC pipeline still enables the use of well-performing PGIs in 2,495 

individuals (96% of the successfully genotyped sample).  

Another possible limitation is that the currently available health outcomes 

are limited in detail and based on self-reports rather than detailed digital health 

records. Future expansions of the collected health data would further increase the 

utility of the SOEP samples for epidemiological research.   

https://paperpile.com/c/YBB4q2/HKxTM
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Figure 1. Life course perspective of the SOEP-IS sample 

Figure 2. Geographic distribution of genotyped households in the Gene-SOEP sample  
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Figure 3. Polygenic prediction in the SOEP-IS sample 

The bars report the prediction accuracy of polygenic indices among unrelated individuals of European 

ancestries measured as incremental R2.  The sample size of the strict (mild) QC sample is 1,904 (2,094), 1,897 

(2,086), and 1,857 (2,036) for height, BMI, and educational attainment, respectively. The error bars indicate 

95% bootstrapped confidence intervals with 2,000 replications.  

Figure 4. Body height by birth cohorts and PGI values 

Using the single-trait polygenic index (PGI) for body height, we split the sample of adults (older than 20 years) 

into two parts at the median PGI value (High PGI N=1,085; Low PGI: N=1,079). Self-reported height is 

residualized on sex and survey year before being averaged across survey waves. Each individual is assigned to 

a decadal cohort. Individuals born before between 1923 and 1939 are all in the 1930s cohort, while individuals 

born after 1980 are all in the 1980 group. Individuals born between 1940-1949, 1950-1959, 1960-1969, and 

1970-1979 are respectively labeled as 1940s, 1950s, 1960s, and 1970s. We plotted the average observed 

residual height for each decadal cohort by PGI bin, along with 95% confidence intervals.  
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Figure 5. Body mass index (BMI) by birth cohort and PGI values 
Using the single-trait polygenic index (PGI) for BMI, we split the sample of adults (older than 20 years) into two parts at 

the median PGI value (High PGI: N=683; Low PGI: N=775). Self-reported BMI is residualized for sex and survey year 

before being averaged across survey waves. Each individual is assigned to a decadal cohort.  Individuals born before 

between 1923 and 1939 are all in the 1930s cohort, while individuals born after 1980 are all in the 1980 group. Individuals 

born between 1940-1949, 1950-1959, 1960-1969, and 1970-1979 are respectively labeled as 1940s, 1950s, 1960s, and 

1970s. We plotted the average observed residual BMI for each decadal cohort by PGI bin, along with 95% confidence 

intervals.  

Figure 6. Associations between polygenic indices and self-rated health 

Analyses in the Gene-SOEP sample, N = 2,060. Self-rated health is measured by a 5-point Likert scale where a 1 indicates 

poor health and a 5 indicates very good health. Each self-rated health observation is regressed on five year age-bin dummies, 

sex dummies, and the interaction of sex and age bin dummies with clustered standard errors by individual. We take the 

estimated residual from the previous regression, compute the average residual value for each individual, and regress each 

PGI along with 20 genetic principal components on these residuals where each individual has one observation. The 

estimated standardized betas from each PGI are reported in the figure. The figure represents 28 single-trait PGIs with an 

effect size of greater than |±0.1|, out of 55 single-trait PGIs overall. PGIs marked with an * are statistically distinguishable 

from zero after a Bonferonni correction. Error bars represent a 95% confidence interval around the estimated beta for each 

PGI..  
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Conclusion 
 

 

This thesis has presented four chapters that studied biological implications of 

socioeconomic inequality via genetic and neuroimaging data. Chapter 1 

demonstrated that siblings endowed with genetically better earning potential tend 

to be better-off throughout the lifetime in terms of educational achievements, 

income, and health. Therefore, the genetic differences do contribute to inequalities 

in socioeconomic outcomes and health. However, the genetic effects were also 

shown to work via environmental and behavioral pathways that can be intervened 

upon, with college education used as an example. Chapter 2 highlighted another 

aspect of biological mechanisms by showing that brain anatomy and socioeconomic 

status are linked through regionally different degrees of genetic and environmental 

influences. These results emphasize a complex interplay of biological and social 

factors and that policy interventions should take both factors into account. Chapter 

3 investigated genetic factors for income and presented that genetic associations of 

income reflect a part of the genetic architecture of educational attainment via 

phenotypically mediated effects of educational attainment on income. In particular, 

genetic associations of educational achievement were shown to matter for higher 

income only if they are also associated with better mental health. Finally, Chapter 4 

introduced a new genetic data resource, which can potentially be used to study the 

genetic basis of socioeconomic inequality.  

In sum, this thesis is a demonstration that biology matters for inequality both 

in terms of socioeconomic positions and health. While the biological aspects of 

inequality have been underlined throughout this thesis, the overall pieces of 

evidence, including those accumulated in the literature, are still premature to 

inform specific policies. This is partly because most of the findings are based on 

correlational studies, rather than causal effects of specific biological mechanisms. 

Also, due to the data availability, the findings are often limited to individuals of 

European genetic ancestry and cannot be directly generalized to other genetic 

population groups. Nonetheless, the studies in this thesis were presented as a step 

towards a better understanding of biological causes and consequences of 

socioeconomic inequality, which could ultimately inform policies.      
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