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op vrijdag 9 december 2022 om 9.45 uur
in een bijeenkomst van de universiteit,

De Boelelaan 1105

door

Arno Titus Lorenz Förster

geboren te Hanau, Duitsland



promotor: prof.dr. L. Visscher

copromotor: dr. K. Giesbertz

promotiecommisie: prof.dr. P. Gori Giorgi
prof.dr. W. Klopper
prof.dr. K. Schoutens
dr. L. Leppert
dr. B. Baumeier
prof.dr. P. Rinke





iv



Contents

1 Introduction 1

2 Many-Body Perturbation Theory 3
2.1 Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Second Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Pictures and Picture Transformations . . . . . . . . . . . . . . . . . . . . 10
2.1.3 Non-interacting Correlators . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.4 Interacting Correlators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Resummation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.1 The 2-point Vertex function . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.2 The Bethe-Salpeter equation for the 4-point Vertex function . . . . . . . . 32
2.2.3 Connecting the single- and two-particle Green’s Functions . . . . . . . . . 35

2.3 Green’s Functions and Quasiparticles . . . . . . . . . . . . . . . . . . . . . . . . 43
2.3.1 The Single-Particle Green’s function . . . . . . . . . . . . . . . . . . . . . 43
2.3.2 The two-particle Green’s function . . . . . . . . . . . . . . . . . . . . . . . 53
2.3.3 One-Body expectation Values and Electron Interaction Energies . . . . . 57

2.4 Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.4.1 The Hartree-Fock approximation . . . . . . . . . . . . . . . . . . . . . . . 58
2.4.2 The GW approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.4.3 Kohn–Sham Density Functional Theory . . . . . . . . . . . . . . . . . . . 65
2.4.4 Approximations to GW . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.4.5 Vertex corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3 Numerical Implementation 93
3.1 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.1.1 Basis Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.1.2 Slater Type Orbital Basis Sets . . . . . . . . . . . . . . . . . . . . . . . . 97
3.1.3 Auxiliary Basis Sets and Basis Transformations . . . . . . . . . . . . . . . 100
3.1.4 Imaginary time and Frequency discretization . . . . . . . . . . . . . . . . 107

3.2 Working Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

v



vi CONTENTS

3.2.1 The GW Equations in the Atomic Orbital Basis . . . . . . . . . . . . . . 115
3.2.2 GW with pair atomic density fitting . . . . . . . . . . . . . . . . . . . . . 116
3.2.3 Vertex Corrections to the Self-Energy . . . . . . . . . . . . . . . . . . . . 128
3.2.4 Correlation Energies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
3.2.5 The Bethe-Salpeter Equation as an effective 2-particle Problem . . . . . . 137

4 Technical Validation 147
4.1 Quasiparticle energies - G0W0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

4.1.1 Computational Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
4.1.2 Convergence with respect to Imaginary Time and Frequency Grids . . . . 149
4.1.3 Basis Set Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
4.1.4 Comparison to GTO-Type Basis Sets . . . . . . . . . . . . . . . . . . . . 153
4.1.5 Comparison to Other Codes . . . . . . . . . . . . . . . . . . . . . . . . . . 155

4.2 Quasiparticle Energies - qsGW . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
4.2.1 Computational Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
4.2.2 Comparison of exchange-correlation potentials in qsGW . . . . . . . . . . 166
4.2.3 SCF Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
4.2.4 Comparison of Ionization Potentials for the GW100 Database . . . . . . . 168
4.2.5 Basis set limit extrapolated Quasiparticle Energies . . . . . . . . . . . . . 169

4.3 QP Energies for Large Molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
4.3.1 Computational Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
4.3.2 Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
4.3.3 Accuracy with smaller basis sets . . . . . . . . . . . . . . . . . . . . . . . 173
4.3.4 Accuracy with converged basis sets . . . . . . . . . . . . . . . . . . . . . . 175

4.4 Total Energies - Benchmark Results for Atoms . . . . . . . . . . . . . . . . . . . 175
4.4.1 Computational Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

5 Accuracy 179
5.1 Computational Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

5.1.1 Quasiparticle Energies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
5.1.2 Relative Energies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

5.2 Quasiparticle Energies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
5.2.1 Organic Acceptor Molecules . . . . . . . . . . . . . . . . . . . . . . . . . . 181
5.2.2 Ionization Potentials of Small Molecules . . . . . . . . . . . . . . . . . . . 186

5.3 Relative energies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
5.3.1 Dissociation Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
5.3.2 Dissociation of charged Dimers . . . . . . . . . . . . . . . . . . . . . . . . 188
5.3.3 Thermochemistry and Kinetics . . . . . . . . . . . . . . . . . . . . . . . . 189
5.3.4 Non-covalent Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . 193



CONTENTS vii

6 Applications 203
6.1 DNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

6.1.1 Computational Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
6.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

6.2 Chlorophylls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
6.2.1 Computational Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
6.3.1 Starting-point dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
6.3.2 Basis Set Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
6.3.3 Comparison to Experiment and different ab-initio Calculations . . . . . . 212
6.3.4 Six-chromophore model of the PSII RC . . . . . . . . . . . . . . . . . . . 216

7 Conclusions 219

A Appendix 223
A.1 Zeroth-Order Regular Approximation to the Dirac Equation . . . . . . . . . . . . 223
A.2 Polarizable Continuum Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
A.3 Starting-point Dependence of GW Calculations . . . . . . . . . . . . . . . . . . . 225
A.4 Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

A.4.1 Asymptotic Scaling of G0W0 . . . . . . . . . . . . . . . . . . . . . . . . . 227
A.4.2 CPU Times for BSE@GW . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
A.4.3 Diagonalization of the BSE Hamiltonian . . . . . . . . . . . . . . . . . . . 229

A.5 Table of Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

Summary 265

Sammenvatting 267

Acknowledgements 269

List of Publications 271



viii CONTENTS



Chapter 1

Introduction

Quantum chemistry is concerned with calculating measurable physical properties of molecules.
This becomes challenging for molecules containing hundreds or even thousands of electrons.
Relevant examples of such systems include DNA oligomers,1 chromophores in the reaction centers
of photosystems,2,3 large organic acceptor molecules which can be used in photovoltaic devices,4

metal-organic frameworks5 and many more (see ref. [6] and references therein). In such cases,
finding a good compromise between the computational effort required to calculate a certain
observable and the necessary accuracy becomes a balancing act.

Molecules consist of electrons and positively charged nuclei which interact by exchanging
photons. The physics of such systems is described by quantum electrodynamics (QED). The
resulting equations are complicated and impossible to solve numerically, let alone analytically,
for more than a few particles.7 In non-relativistic electronic structure theory on instead focuses
on solving a time-independent, non-relativistic electronic Schrödinger equation describing N
electrons subject to an external potential. Physical properties of molecules, called observables,
are then given as expectation values of operators with respect to these N−electron states. The
number of degrees of freedom of the resulting equations grows exponentially with system size
and therefore their solution by exact diagonalization techniques8–11 is only possible for systems
with a few electrons.

While the dimensionality of the N -electron states grows exponentially, the amount of in-
formation they contain might not,12,13 allowing for the compression of the N -electron states
and ultimately the solution of the many-body problem in polynomial time. Some examples of
compression techniques include Quantum Monte Carlo methods,14,15 the density matrix renor-
malization group,16,17 matrix product states18,19 and tensor networks,20,21 dynamical mean field
theory,22–24 selected configuration interaction25,26 or artificial neural networks.27–29

The possibly most radical compression method is many-body perturbation theory (MBPT) -
which can also be combined with non-perturbative approaches.30–33 This thesis exclusively deals
with MBPT. Building on insights from quantum field theory, the techniques of MBPT have
been formalized mostly in the 1950s and 1960s. They are based on the assumption that the

1



2 CHAPTER 1. INTRODUCTION

many-electron system can be described, at least qualitatively, as a system of non-interacting
renormalized electrons, or quasielectrons. The resulting equations are complicated and the for-
malism frequently breaks down in case the picture of non-interacting renormalized electrons is not
valid.34 However, in contrast to the non-perturbative approaches MBPT can potentially be ap-
plied to much larger systems with often sufficient accuracy. In this thesis, we describe the design
and implementation of MBPT based algorithms which are capable to calculate electron-electron
interaction energies, ionization energies, electron attachment energies and photoabsorption en-
ergies for systems with thousands of electrons.

The remainder of this thesis consists of five chapters: Chapter 2 consists of three sections
in which we introduce the theoretical foundations on which this thesis is based. We introduce
the basic equations of MBPT in section 2.1. These equations are not immediately useful and in
section 2.2 we will show how they can be turned into more useful expressions using resummation
techniques. In section 2.3 we will then highlight the physical content of these equations and
introduce and discuss common approximations to these equations in section. 2.4

Chapter 3, is based on refs. [35–39]. It contains the main results of this thesis: We will
introduce numerical approximations with which equations of MBPT can be implemented in
an efficient way and with low scaling with system size, so that also large systems with up to
thousands of electrons are computationally tractable. Chapter 4 is based on refs. [37, 38, 40]. In
this chapter, we will then compare the results obtained using these approximations to ones from
other codes implementing the same equations with different numerical approximations. Section 5
is based on ref. [40] and ref. [41] and is concerned with the assessment of the accuracy of these
approximations for the calculation of single-particle excitations and electron-electron correlation
energies. Chapter 6 is based on ref. [38] and ref. [39]. In this chapter, we will present some
applications to the photoionization of DNA oligomers, as well as to the calculation of optical
spectra in the reaction center of photosystem II. Finally, chapter 7 summarizes and concludes
this work.



Chapter 2

Many-Body Perturbation Theory

Many-body perturbation theory is a set of techniques connecting expectation values with respect
to the true N -electron ground state to expectation values with respect to the ground state of a
fictitious system of N non-interacting electrons. Under certain assumptions,42 this connection is
exact and allows for the evaluation of expectation values without knowledge of the interacting
ground-state.

Typically, we are interested in the expectation values of time-ordered products of operators.
We call such expectation values correlators. Non-interacting correlators are correlators with
respect to the ground state of the fictitious system of N non-interacting electrons. We call this
state the non-interacting ground state. Interacting correlators are correlators evaluated with
respect to the N−electron ground state. In this thesis, three correlators play a central role:
The electron-electron interaction part of the N−electron Hamiltonian, the one-particle Green’s
function and the two-particle Green’s function.

Based on earlier developments in quantum field theory,43–47 the foundations of MBPT for
many-electron systems have been laid in the 1950s. These consist of three theorems: 1) The
Gell-Mann–Low theorem42 expresses time-ordered products of Heisenberg operators in terms
of non-interacting correlators in the interaction picture, divided by the expectation value of
the S−matrix.44 2) Wick’s theorem148,49 is then used to bring these correlators into normal
order. 3) Finally, the linked-cluster theorem50–54 states that the unlinked terms arising from the
application of Wick’s theorem equal the expectation value of the S−matrix and therefore do not
contribute to the interacting correlators. These theorems are the subject of section 2.1.

Together, these theorems allow to expand the interacting correlators as a series in the electron-
electron interaction which can be evaluated term by term. This is neither feasible nor desirable.55

In section 2.2 we will show how these series can be resummed to give more useful expressions.
These resummations have been introduced in the early 1960s by Luttinger and Ward56, Klein57,
Baym and Kadanoff,58 and Baym59. The crucial points here are the renormalization of the
single-particle Green’s function56 via Dyson’s equation45 and of the 2-particle vertex function

1Which has apparently not been discovered by Wick but by Houriet and Kind,48 at least according to Wick49

3



4 CHAPTER 2. MANY-BODY PERTURBATION THEORY

via a Bethe-Salpeter equation (BSE)60. Systematic ways to evaluate the vertex are the parquet
formalism due to De Dominicis and Martin,61 the Coupled cluster (CC)62–66 method and the
GWΓ approach by Hedin,67 typically referred to as Hedin’s equations. In Hedin’s formalism the
screening of the electron-electron interaction52,68, conceptually related to photon renormalization,
plays a decisive role as well.

All three formalisms are closely related and are based on the Dyson equation for single-
particle Green’s function. They mainly differ in the expression for the vertex. The aim of
section 2.2 is derivation of Hedin’s equations. Starke and Kresse69 have formulated a hierarchy
of equations completely equivalent to the Hedin ones using a a 4-point vertex. Even though they
are apparently better known in their formulation by Hedin, in the form by Starke and Kresse they
are valid in any orthonormal basis of the one-particle Hilbert space.69 Therefore they are more
suitable for numerical implementations. They also allow for a unified treatment of one-particle
and two-particle Green’s functions. We will derive here a set of equations which are equivalent
to the ones by Hedin and Starke and Kresse but assume a different form. We believe that this
form of the equations is most suitable for numerical implementations and for the derivation of
the approximations to them we will introduce later on.

In section 2.3, we will relate this theoretical framework to the concept of quasiparticles
(QP). Non-interacting QPs are one of the most important concepts in chemistry: They provide
a theoretical justification of the concept of the chemical bond and the simple picture of Lewis
structures70 and also the excited states of molecules can often be interpreted in terms of individual
QPs. QPs have first been introduced by Landau71–73 who argued that there is a one-to-one
correspondence between the elementary excitations of a gas of non-interacting electrons (Fermi
gas) and a gas of interacting electrons (Fermi liquid). Landau realized that the Fermi liquid
can be described in terms of non-interacting QPs, which are obtained from the non-interacting
particles by renormalization. In fact, this is the physical picture behind MBPT as shown first by
Abrikosov and Khalatnikov74 and Abrikosov, Gorkov and Dzyaloshinskii75 and also by Nozières
and Luttinger.76 The concept of QPs is closely linked to the properties of Green’s functions which
we will discuss thoroughly as well.

In the last section of this chapter, section 2.4, we will discuss common approximations to
the equations above which can be implemented in practice. Kohn-Sham (KS) density functional
theory (DFT) by Hohenberg and Kohn77 and Kohn and Sham,78 as well as Hartree-Fock (HF)
theory, already developed in the 1930s by Hartree,79 Slater80,81 and Fock82 are both examples
of QP theories and are introduced as special cases of the formalism which will be developed in
the next sections. For the present work, they are mostly used to simplify the implementation of
more advanced approximations to MBPT, the GW and also the GW + G3W2 approximations
which we will introduced as well. Section 2.4 therefore sets the stage for chapter 3 where we will
focus on the (efficient) implementation of these equations.
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2.1 Foundations

2.1.1 Second Quantization

A system of non-relativistic interacting electrons subject to an external potential can be described
by the following Hamiltonian,

Ĥ = Ĥ0 + V̂ , (2.1)

with

Ĥ0 =
N∑
i

ĥ1(ri) , (2.2)

and

V̂ =
1

2

N∑
i ̸=j

v(ri, rj) . (2.3)

ĥ1(r) = −1

2
∇2 + vext(r) , (2.4)

describes a single electron with kinetic energy t̂ = −1
2∇

2 in the presence of an external potential
vext. r denotes a set of spatial coordinates and v is the electron electron interaction,

v(r, r′) =
1

|r − r′|
. (2.5)

We can find the eigenstates of this Hamiltonian by a suitable discretization (see chapter 3) and
subsequent diagonalization. This becomes quickly intractable for more than a few electrons.
However, for non-interacting electrons, i.e. when Ĥ = Ĥ0, the diagonalization of Ĥ reduces to
the problem of diagonalizing ĥ1. Since electrons are indistinguishable all ĥ1(ri) are equivalent.

In addition to their spatial degrees of freedom, electrons have an additional degree of freedom,
called spin. The spin-degree of freedom can be probed by the spin-operator

ŝ =
1

2
(σ̂x , σ̂x , σ̂z)

σ̂x =

(
0 1
1 0

)
, σ̂y =

(
0 −i
i 0

)
, σ̂z =

(
1 0
0 −1

)
.

(2.6)

The eigenvalues of σ̂z are then conveniently chosen to quantize the spin-degree of freedom,
σ = ±1

2 . To denote the spin-dependence of the electrons, we now define the composite index
x = (r, σ). In non-relativistic quantum mechanics, the spin-dependence of the electron needs
to be introduced in an ad hoc fashion. The simplest way to do so is to introduce spin-orbitals.
They can be constructed by solving the spin-less single-particle problem

ĥ1 |φk(r)⟩ = ϵk |φk(r)⟩ , (2.7)
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where the φi are called spatial orbitals. The spin-orbitals are then obtained by combing the
spatial orbitals with the eigenfunctions of σ̂z, which we denote by

s(α) =

(
1
0

)
s(β) =

(
0
1

)
, (2.8)

and which are orthonormal to each other,

s(σ)s∗(σ′) = δσ,σ′ (2.9)

We have then

|ϕk(x)⟩ = |ϕk(r, σ)⟩ =

{
|φk(r)⟩ s(α) σ = α

|φk(r)⟩ s(β) σ = β .
(2.10)

In this equation, k labels a spatial orbital. It is however convenient to define k as a composite
index which also includes the spin-variable σ. Therefore, we will often write ϕk(r) instead of
ϕk(x).

The eigenstates of the single-particle Hamiltonian ĥ1 can now be used to construct eigenstates
of Ĥ0. As a first step, one might introduce a simple product state of the form

∣∣∣Φ(N)
0

〉
=

N⊗
i=1

|ϕ(xk)⟩k , (2.11)

where |ϕk⟩k′ is the eigenstate with quantum number k of the k′th particle. However, a physical

eigenstate of Ĥ0 can not be written in the form of (2.11). This is due to the fact that a Fermionic
wave function needs to change sign when two particles are exchanged, i.e, the wave function needs
to fulfill

Ψ(x1, . . . , xk, . . . , xk′ , . . . )
!

= −Ψ(x1, . . . , xk′ , . . . , xk, . . . ) , (2.12)

or, for the product of two single-particle states,

ϕk(xk)ϕk′(xk′) = −ϕk(xk′)ϕk′(xk) . (2.13)

Therefore, we have to take into account all possible ways to distribute N electrons in N eigen-
states of ĥ1, considering (2.12). This leads to

∣∣∣Φ(N) [{x1, . . . , xN}]
〉

=
1√
N !

∑
π∈SN

(−1)π
N⊗
i=1

|ϕ⟩π(i)

=
1√
N !

∑
π∈SN

(−1)π |ϕ⟩π(1) ⊗ |ϕ⟩π(2) ⊗ · · · ⊗ |ϕ⟩π(N) ,

(2.14)
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where π runs over all possible permutations and SN is the symmetric group of order N . A state
of the form (2.14) is called Slater determinant.2 The states which can be constructed in this way
from N eigenstates of ĥ1 form a Hilbert space,

N∧
H = span

{∣∣∣ Φ(N) [{x1, . . . , xN}]
〉}

, (2.15)

i.e. the Fermionic N -particle Hilbert space is the antisymmetrized Tensor product
∧

of N
single-particle Hilbert spaces. The direct sum of all N−particle Hilbert spaces is called Fock
space86,

F =
∞⊕

N=0

N∧
H . (2.16)

It consist of all possible Slater determinants with all possible numbers of particles and fulfills the
completeness relation

1 =

∞∑
n=0

∣∣∣Ψ(N)
n

〉〈
Ψ(N)

n

∣∣∣ . (2.17)

Fock space is useful for our purpose, since it provides a convenient framework to describe processes
in which the number of particles in a system change. We can now introduce so-called ladder
operators which allow to climb up and down from different sectors of Fock space. Lowering
operators map from the N−electron Hilbert space to the N − 1−electron Hilbert space

ĉk :
N∧

H 7→
N−1∧

H , (2.18)

and raising operators map from the N −1-electron Hilbert space to the N -electron Hilbert space

ĉ†k :

N−1∧
H 7→

N∧
H . (2.19)

The null element of Fock space, |0⟩, is called bare vacuum and it is the state containing 0 particles.
Lowering operators anihilate the bare vacuum,

ĉk |0⟩ = 0 . (2.20)

Physically, the operator ĉ†k creates an electron with quantum number k, while ĉk annihilates an
electron with quantum number k. This is equivalent to saying that ĉk creates a hole with quantum
numbers k. All states in Fock space can be represented as linear combinations of strings of raising
and lowering operators acting on the bare vacuum. ĉk and ĉ†k′ obey the anticommutation relation[

ĉk ĉ
†
k′ + ĉ†k′ ĉk

] ∣∣∣Ψ(N)
〉

= δkk′
∣∣∣Ψ(N)

〉
, (2.21)

2While the Slater determinant is named after John C. Slater who introduced this form of the wave function in
192983, it has apparently appeared first in articles by Dirac and Heisenberg a few years earlier.84,85
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for an arbitrary state |Ψ⟩. Furthermore, the application of multiple ladder operators needs to
preserve the Fermionic structure of Fock space. When two particles with quantum numbers k,
k′ are created (anihilated), interchanging the order of operations needs to change the sign of the
resulting wave-function,

ĉk ĉk′
∣∣∣Ψ(N)

〉
= −ĉk′ ĉk

∣∣∣Ψ(N)
〉
, (2.22)

and
ĉ†k ĉ

†
k′

∣∣∣Ψ(N)
〉

= −ĉ†k′ ĉ
†
k

∣∣∣Ψ(N)
〉
. (2.23)

It is rather cumbersome to create all states from the bare vacuum. Therefore, it is convenient to
redefine the vacuum as the N -particle state which is constructed from the N lowest eigenstates

of ĥ1. This is the ground state of Ĥ0,
∣∣∣Φ(N)

0

〉
and we call this state the Fermi vacuum. Let us

introduce the sequence of real numbers

ϵ1 ≤ ϵ2 · · · ≤ ϵN < µ < ϵN+1 ≤ ϵN+2 · · · ∈ R , (2.24)

where ϵi is the eigenvalue corresponding to the single-particle state ϕi,

ĥ1ϕi(x) = ϵϕi(x).

Since ĥ1 is bounded below and self-adjoint, the sequence (2.24) exists.3 Furthermore, since we
are dealing with finite systems, there is a gap between ϵN and ϵN+1. This gap will be called the
fundamental gap. The number µ is called chemical potential. Its precise value is not important,
as long as it has the property (2.24). We can now introduce a new set of operators, defined by

b̂k |Φ
(N)
0 ⟩ = 0 . (2.25)

There is no electron in any single-particle state corresponding to eigenvalues higher than the
chemical potential, and there are no holes in single-particle states corresponding to eigenvalues
below the chemical potential. Therefore,

ĉk

∣∣∣Φ(N)
0

〉
=0 if ϵk > µ

ĉ†k

∣∣∣Φ(N)
0

〉
=0 if ϵk < µ〈

Φ
(N)
0

∣∣∣ĉk =0 if ϵk < µ〈
Φ
(N)
0

∣∣∣ĉ†k =0 if ϵk > µ ,

(2.26)

3Additionally, it is required that the potential v(x) in (2.1) vanishes at infinity. For periodic potentials the
situation is quite different. For instance, the highest occupied and the lowest unoccupied bands may overlap. For
a more general discussion see ref. [87].
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and the operators defined in (2.25) can be written as

b̂k =Θ(ϵk − µ)ĉk + Θ(µ− ϵk)ĉ†k

b̂†k =Θ(ϵk − µ)ĉ†k + Θ(µ− ϵk)ĉk ,
(2.27)

In (2.27), the Heaviside step-function

Θ(t) =

{
1 if t > 0

0 if t < 0
(2.28)

appears. It is important to note, that Θ(0) is not defined.4

Finally, we introduce a real space representation of ladder operators which we call field
operators,

ψ̂(x) =
∑
k

ϕk(x)b̂k

ψ̂†(x) =
∑
k

ϕ∗k(x)b̂†k ,
(2.29)

where the expansion coefficients

ϕk(x) =
〈
x
∣∣∣ϕk〉

are the projections of the eigenstates of the single-particle Hamiltonian on spin and real space.
The field operator inherits the properties of b̂k, i.e. ψ̂(x) has a zero Fermi vacuum expectation
value but its vacuum expectation value is generally different from zero. Using (2.27), we can
write

ψ̂(x) =ψ̂>(x) + ψ̂†
<(x)

=
∑
k

ϕk(x)Θ(ϵk − µ)ĉk +
∑
k

ϕk(x)Θ(µ− ϵk)ĉ†k ,
(2.30)

and
ψ̂†(x) =ψ̂†

>(x) + ψ̂<(x)

=
∑
k

ϕ∗k(x)Θ(ϵk − µ)ĉ†k +
∑
k

ϕ∗k(x)Θ(µ− ϵk)ĉk .
(2.31)

The two components of the field operators represent the following physical processes:

ψ̂>(x) : anihilates electron at position x with energy greater than µ

ψ̂<(x) : anihilates hole at position x with energy lesser than µ

ψ̂†
>(x) : creates electron at position x with energy greater than µ

ψ̂†
<(x) : creates hole at position x with energy lesser than µ .

(2.32)

4Later in this chapter, to derive the COHSEX approximation, we will need to cheat a little bit and redefine
Θ(0) = 1

2
for a short moment.
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Therefore, the field components with the superscript > are called greater components and the
ones with the superscript < are called lesser components. The important relations

ψ̂>(x) |Φ(N)
0 ⟩ =0

ψ̂<(x) |Φ(N)
0 ⟩ =0〈

Φ
(N)
0

∣∣∣ψ̂†
>(x) =0〈

Φ
(N)
0

∣∣∣ψ̂†
<(x) =0

(2.33)

follow directly from (2.26).
Field operators allow us to express the process of particle addition or removal as expectation

values of correlators over a suitable N -particle state. It is convenient to introduce transformations
which makes these operators time-dependent since this allows to discuss time-dependent particle
addition and removal processes. Such transformations are called picture transformations. In the
Heisenberg representation operators are time-dependent and states are time-independent while in
the Schrödinger representation operators are time-independent and states are time-dependent. In
the interaction picture which is very useful for perturbation theory, both states and operators are
time-dependent. In the following discussion, we will use the subscripts S,H and I to distinguish
between these pictures whenever necessary.

2.1.2 Pictures and Picture Transformations

The time evolution of a state of a system with Hamiltonian (2.1) is described by the time-
dependent Schrödinger equation,

i
∂

∂t

∣∣∣Ψ(N)(t)
〉
S

= ĤS

∣∣∣Ψ(N)(t)
〉
S
. (2.34)

Since 〈
Ψ(t)

∣∣∣Ψ(t)
〉

!
= 1 ,

the time-evolution of a state is given by a unitary transformation∣∣∣Ψ(N)(t)
〉
S

= U(t, t′)
∣∣∣Ψ(N)(t′)

〉
S
. (2.35)

From (2.34), the equation-of-motion (EOM) for U follows,

i
∂

∂t
U(t, t′) = ĤSU(t, t′) , (2.36)

and we can also write down its adjoint form, using U(t, t′)† = U(t′, t),

− i
∂

∂t
U(t′, t) = U(t′, t)ĤS . (2.37)
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Since ĤS is time-independent and using the boundary condition U(t, t) = 1, the solution of
(2.36) is

US(t, t′) = e−iĤS(t−t′) . (2.38)

Setting t′ = 0, we can then define∣∣∣Ψ(N)
〉
S

= U †
S(t, 0)

∣∣∣Ψ(N)(t)
〉
S

= US(0, t)
∣∣∣Ψ(N)(t)

〉
S

=
∣∣∣Ψ(N)(0)

〉
S
. (2.39)

The Hamiltonian in the Schrödinger picture is time-independent. The same is true for all other
operators. Using the just defined transformation, we obtain the time-dependent operators in the
Heisenberg picture,

ÂH(t) = U †
S(t, 0)ÂSUS(t, 0) . (2.40)

Introducing the abbreviation U(t) = U(t, 0), the field operators assume the form

U †
S(t1)ψ̂S(x1)US(t1) =ψ̂H(x1, t1) ≡ ψ̂H(1)

U †
S(t1)ψ̂

†
S(x1)US(t1) =ψ̂†

H(x1, t1) ≡ ψ̂†
H(1) .

(2.41)

In the development of the MBPT formalism below, we will use the time-dependent form of the
field operators. To simplify the notation, we have introduced the notation 1 = (x1, t1). From
now on, we will drop the subscripts S and H from the field operators, with the understanding
that the ones with a time argument always denote Heisenberg operators. We can then use (2.36)
and (2.37) and calculate the time-derivative of the Heisenberg-operator (2.40). This gives the
Heisenberg EOM,

i
∂

∂t
ÂH(t) =

[
ÂH(t), ĤS

]
. (2.42)

Now, we introduce the interaction picture. The interaction picture is very useful when the
Hamiltonian (2.1) cannot be solved exactly and, starting from Ĥ0, one wishes to obtain a solution
in terms of an expansion in V̂ . We define the state∣∣∣Ψ(N)(t)

〉
I

= eiH0t
∣∣∣Ψ(N)(t)

〉
S
, (2.43)

and insert it into the time-dependent Schrödinger equation. This gives

Ĥ0e
−iĤ0t

∣∣∣Ψ(N)(t)
〉
I

+ e−iĤ0ti
∂

∂t

∣∣∣Ψ(N)(t)
〉
I

=
[
Ĥ0 + V̂

] ∣∣∣Ψ(N)(t)
〉
I
, (2.44)

which reduces to

i
∂

∂t

∣∣∣Ψ(N)(t)
〉
I

= V̂I

∣∣∣Ψ(N)(t)
〉
I
, (2.45)

where we have defined
ÂI(t) = eiĤ0tÂS(t)e−iĤ0t , (2.46)
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for some time-dependent Schrödinger operator Â(t). This operator is of the same form as the
Heisenberg operators for the non-interacting system, while the states satisfy a Schrödinger equa-
tion (2.45), with the full Hamiltonian replaced by the interaction part of the Hamiltonian. Equa-
tions (2.43) and (2.46) define states and operators in the interaction picture. We can also write
down the EOM for the time-evolution operator by inserting the definition (similar to eq. (2.46))

UI(t, t′) = eiĤ0tUS(t, t′)e−iĤ0t (2.47)

into (2.36). Through (2.46) this gives

i
∂

∂t
UI(t, t′) = eiH0tV̂Se

−iH0t′UI(t, t′) = V̂IUI(t, t′) , (2.48)

the Tomonaga-Schwinger equation88. Its integrated form,

UI(t, t′) = 1 − i

∫ t

t0

dt1V̂I(t1)UI(t1, t
′) (2.49)

is a Fredholm equation of the second kind89,90 whose solution can be written as an infinite series,
the Liouville-Neumann series,15,91

UI(t, t′) =1 − i

∫ t

t′
V̂I(t1)dt1 −

∫ t

t′
dt1

∫ t1

t′
dt2V̂I(t1)V̂I(t2) + . . .

+ (−i)n
∫ t

t′
dt1

∫ t1

t′
dt2· · ·

∫ tn−1

t′
dtnV̂I(t1)V̂I(t2) . . . V̂I(tn) .

(2.50)

We would like to rewrite this series so that all integrals have equal limits. To do so, we first
introduce the time-ordering operator T , defined by

T
[
Â(t1)Â(t2)

]
=

{
Â(t1)Â(t2) t1 > t2

−Â(t2)Â(t1) t1 < t2
,

for Fermions and by

T
[
Â(t1)Â(t2)

]
=

{
Â(t1)Â(t2) t1 > t2

Â(t2)Â(t1) t1 < t2
,

for Bosons. T arranges a string of operators in a way that the ones acting on a state at earlier
times are always on the right of the ones acting on the state at later times. This can also be
written15 as

T
[
Â1(t)Â2(t

′)
]

= Θ(t− t′)Â1(t)Â2(t
′) − Θ(t′ − t)Â2(t

′)Â1(t) (2.51)

for Fermions and as

T
[
Â1(t)Â2(t

′)
]

= Θ(t− t′)Â1(t)Â2(t
′) + Θ(t′ − t)Â2(t

′)Â1(t) (2.52)



2.1. FOUNDATIONS 13

for Bosons. Since
t > t1 > t2 > · · · > tn > t′ , (2.53)

the products in each term of (2.50) are time-ordered and the nth term can trivially be written
as

U
(n)
I (t, t′) = (−i)n

∫ t

t′
dt1

∫ t1

t′
dt2· · ·

∫ tn−1

t′
dtnT

[
V̂I(t1)V̂I(t2) . . . V̂I(tn)

]
. (2.54)

Now the integrand in each term is symmetric with respect to the exchange of two time variables
and in the nth term there are n! possibilities to permute the time arguments. Each of the possible
permutations of time arguments is a sub-region of the integral

K
(n)
I (t, t′) = (−i)n

∫ t

t′
dt1

∫ t

t′
dt2· · ·

∫ t

t′
dtnT

[
V̂I(t1)V̂I(t2) . . . V̂I(tn)

]
, (2.55)

which is obtained from (2.54) by changing the upper limits of all integrals to t. The nth term of
(2.50) can thus be written as92

U
(n)
I (t, t′) = (−i)n 1

n!

∫ t

t′
dt1dt2 . . . dtnT

[
V̂I(t1), V̂I(t2) . . . V̂I(tn)

]
, (2.56)

and the full series eq. (2.50) becomes

UI(t, t′) = 1 +

∞∑
n=1

1

n!
(−i)n

∫ t

t′
dt1

∫ t

t′
dt2· · ·

∫ t

t′
dtnT

[
V̂I(t1)V̂I(t2) . . . V̂I(tn)

]
, (2.57)

which is known as Dyson series44,45.

2.1.3 Non-interacting Correlators

We will now discuss properties of correlators in the non-interacting ground state using the Heisen-
berg representation. The most important correlators of this type are the N -particle Green’s
functions. These are expectation values of strings of 2n field operators where n operators are
daggered and n are not. First, we introduce a few definitions: The expectation value of an
operator Â with respect to state |Ψ⟩ is〈

Â(t)
〉

=
〈

Ψ
∣∣∣Â(t)

∣∣∣Ψ〉 . (2.58)

The form on the l.h.s. is used when the state with respect to which the expectation value is
evaluated is not important. Otherwise, the r.h.s. is used. A correlator is the expectation value
of a product of operators

CÂ1Â2...ÂN
(1, 2, . . . , N) =

〈
Â1(1)Â2(2) . . . ÂN (N)

〉
. (2.59)

In case the correlator is time-dependent, it is called dynamic, otherwise it is called static.
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Often, it is useful to arrange a product of operators in a way that all anihilation operators are
on the right of all creation operators. Such a product is called normal-ordered and its expectation
value is zero when evaluated with respect to the vacuum. In terms of fields, this means that
all ψ̂≶ should be on the right of all ψ̂†

≶. Let N denote the operator which brings a string of
operators into normal order. We can then define the difference between the time-ordered and
the normal-ordered product as

ÂB̂ = T
[
ÂB̂
]
−N

[
ÂB̂
]
. (2.60)

This is called a contraction. Generalized Wick’s theorem states,49 that the time-ordered products
of a system of N operators is equal to the normal-ordered product of operators plus all normal-
ordered products with all possible contractions,93–95

T

[
N∏
k

Âk

]
= N

[
N∏
k

Âk

]
+
∑
i<j

(−1)i+j−1ÂiÂj N

 N∏
k ̸=i ̸=j

Âk


+

1

2!

∑
i<j<k<l

(−1)i+j+k+l−1ÂiÂjÂ
′
iÂ

′
j N

 N∏
k ̸=i ̸=j ̸=i′ ̸=j′

Âk

+ . . . .

(2.61)

In particular, this means, that all operators which are non-contracted are in normal order, i.e.
only the terms in which all operators are contracted contribute to vacuum expectation values.

To proof this statement, consider a time-ordered product of N+1 operators and let us assume
(2.61) is true for N operators. We already know that it is true for N = 2 and N = 1. Following
our assumption, we can use (2.61) to write

T

[
N+1∏
k

Âk

]
=
(
Â1> + Â†

1<

){
N

[
N∏
k

Âk

]
+
∑
i<j

(−1)i+j−1ÂiÂj N

 N∏
k ̸=i ̸=j

Âk


+

1

2!

∑
i<j<k<l

(−1)i+j+k+l−1ÂiÂjÂi′Âj′ N

 N∏
k ̸=i ̸=j ̸=i′ ̸=j′

Âk

+ . . .

}
.

(2.62)

We would now like to transform this expression so that Â1> is on the right. We do not need to

care about Â†
1<

since all contractions involving it will be zero (The other operators in the term
are already normal-ordered). Therefore, these contractions can be trivially added to the sum.
However, Â1> only needs to be pulled to the right of all uncontracted fields, since the contracted
fields are just complex numbers which will commute with everything. Let us work this out for a
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term with m− 1 uncontracted fields by repeatedly applying (2.60), and (2.22). We obtain

Â1>N
[
Â2 . . . Âm

]
=N

[
Â1>Â2 . . . Âm

]
+ Â1Â2N

[
Â3 . . . Âm

]
=Â1Â2N

[
Â3 . . . Âm

]
− Â†

2<
Â1>Â3N

[
Â4 . . . Âm

]
=Â1Â2N

[
Â3 . . . Âm

]
− Â1Â3N

[
Â2Â4 . . . Âm

]
+ Â†

2<
Â†

3<
Â1>Â4N

[
Â5 . . . Âm

]
=Â1Â2N

[
Â3 . . . Âm

]
− Â1Â3N

[
Â2Â4 . . . Âm

]
+ Â1Â4N

[
Â2Â3Â5 . . . Âm

]
. . .

=
∑
k=2

(−1)kÂ1ÂkN
[
Â2 . . . Âk−1Âk+1 . . . Âm

]
.

(2.63)

This shows, that all contractions of Â1 with the N other fields are generated. The result does
not change if we replace Â1 by Â†

1 since in this case we would only need to replace Â1> by Â†
1>

.
Since all possible contractions between the N other operators are present by the assumption
before, (2.61) holds, and since the statement is true for N = 1, (2.61) is proven by induction.

We now use Wick’s theorem to prove a corollary about particle conserving expectation values
of products of 2n fields of the form

G(0)
n (1, . . . , n, 1′, . . . , n′) = (−i)n

〈
Φ
(N)
0

∣∣∣T [ψ̂(1) . . . ψ̂(n)ψ̂†(1′) . . . ψ̂†(n′)
] ∣∣∣Φ(N)

0

〉
. (2.64)

We call these quantities non-interacting n-particle Green’s functions. The corollary we are about
to proof allows us to express these expectation values (with respect to the non-interacting ground
state) as a linear combination of n! products of terms of the form

G(0)(1, 1′) ≡ G(0)(1, 1′) = −i
〈

Φ
(N)
0

∣∣∣T [ψ̂(1)ψ̂†(1′)
] ∣∣∣Φ(N)

0

〉
, (2.65)

which is identified as the n = 1 case of (2.64). This quantity is called non-interacting single-
particle Green’s functions, or non-interacting electron propagator.43,46,47 We will discuss its prop-
erties in some detail in section 2.3. At this point, it is only important to note that G(0) can be
expressed in terms of the eigendecomposition of ĥ1. Following ref. [95] we will prove that

〈
Φ
(N)
0

∣∣∣T [ n∏
k

{
ψ̂(k)ψ̂†(k′)

}] ∣∣∣Φ(N)
0

〉
= det


G(0)(1, 1′) G(0)(1, 2′) . . . G(0)(1, n′)

G(0)(2, 1′) G(0)(2, 2′) . . . G(0)(2, n′)
...

...
. . .

...

G(0)(n, 1′) G(0)(n, 2′) . . . G(0)(n, n′)

 (2.66)
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for Fermionic fields. We assume (2.66) to be true for some n. For n+ 1, we can write

G
(0)
n+1 =

〈
Φ
(N)
0

∣∣∣T [n+1∏
k

{
ψ̂(k)ψ̂†(k′)

}] ∣∣∣Φ(N)
0

〉

= det


G(0)(1, 1′) G(0)(1, 2′) . . . G(0)(1, (n+ 1)′)

G(0)(2, 1′) G(0)(2, 2′) . . . G(0)(2, (n+ 1)′)
...

...
. . .

...

G(0)((n+ 1), 1′) G(0)((n+ 1), 2′) . . . G(0)((n+ 1), (n+ 1)′)


(2.67)

The determinant developed after the (N + 1)th column is

G
(0)
n+1 =G(0)(1, (n+ 1)′) det

 G(0)(2, 1′) G(0)(2, 2′) . . . G(0)(2, n′)
...

...
. . .

...

G(0)((n+ 1), 1′) G(0)((n+ 1), 2′) . . . G(0)((n+ 1), n′)



−G(0)(2, (n+ 1)′) det


G(0)(1, 1′) G(0)(1, 2′) . . . G(0)(1, n′)

G(0)(3, 1′) G(0)(3, 2′) . . . G(0)(3, n′)
...

...
. . .

...

G(0)((n+ 1), 1′) G(0)((n+ 1), 2′) . . . G(0)((n+ 1), n′)


+ . . .

+G(0)(n+ 1, (n+ 1)′) det


G(0)(1, 1′) G(0)(1, 2′) . . . G(0)(1, n′)

G(0)(2, 1′) G(0)(2, 2′) . . . G(0)(2, n′)
...

...
. . .

...

G(0)(n, 1′) G(0)(n, 2′) . . . G(0)(n, n′)

 ,

(2.68)
Since electrons are indistinguishable we can rename the indices inside the determinants. From
Wick’s theorem, we also have〈

Φ
(N)
0

∣∣∣T [n+1∏
k

{
ψ̂(k)ψ̂†(k′)

}] ∣∣∣Φ(N)
0

〉
=

n+1∑
i

G(0)(i, (n+ 1)′)

×

〈
Φ
(N)
0

∣∣∣T [ n∏
k

{
ψ̂(k)ψ̂†(k′)

}] ∣∣∣Φ(N)
0

〉
,

(2.69)

i.e.

G
(0)
n+1 = G(0)

n

n+1∑
i

G(0)(i, (n+ 1)′) (2.70)

Following our assumption, the latter factor can be written in the form (2.66), so (2.66) is true
for N + 1. Since for N = 1 (2.66)it is true by definition, this proves (2.66) by induction. In
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particular, the order of operators in (2.66) is irrelevant: According to (2.51), permutation of 2
operators simply leads to a sign-change. However, this just corresponds to interchanging two
columns in the determinant which changes the sign of the determinant as well.

2.1.4 Interacting Correlators

After having discussed non-interacting correlators, we will discuss interacting correlators. For
this purpose, it is useful for work in the Heisenberg picture. In second quantized form, the
one-body part of is (2.1) given by the expression

Ĥ0 =

∫
d1ψ̂†(x)h(x)ψ̂(x) =

∫ [
1

2
∇ψ̂†(x)∇ψ̂(x) + v̂ext(r)ψ̂†(x)ψ̂(x)

]
(2.71)

and the two-body part is given by

V̂S =
1

2

∑
σ,σ′

∫
drdr′ψ̂†(x)ψ̂†(x′)vc(x, x

′)ψ̂(x′)ψ̂(x) (2.72)

in the Schrödinger picture. Through (2.29) this can also be written as

V̂S =
1

2

∑
klmn

b̂†k b̂
†
l vknlmb̂mb̂n (2.73)

where k, l,m, n are composite indices labeling spin-orbitals and, in Mulliken notation,

vknlm =

∫
drdr′ϕ∗k(r)ϕn(r)vc(r, r

′)ϕ∗l (r
′)ϕm(r′) . (2.74)

In the Heisenberg picture, the electron-electron interaction reads

V̂H(t) =
1

2

∑
σσ′

∫
drdr′ψ̂†(x, t)ψ̂†(x′, t)vc(r, r

′)ψ̂(x′, t)ψ̂(x, t)

=
1

2

∫
d1d2ψ̂†(1)ψ̂†(2)W (0)(1, 2)ψ̂(2)ψ̂(1) ,

(2.75)

where we have defined

W (0)(1, 2) = lim
η→0+

vc(1, 2)δ(t1 − t2 + η)δσ,σ′ . (2.76)

Later on, it will also become useful to define a four-point interaction

W (0)(1, 2, 3, 4) = W (0)(1, 3)δ(1 − 2)δ(3 − 4) (2.77)

with which we can write

V̂H(t) =
1

2

∫
d1d2d3d4ψ̂†(1)ψ̂†(4)W (0)(1, 2, 3, 4)ψ̂(3)ψ̂(2) . (2.78)
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We now wish to calculate these correlators without explicitly constructing the interacting
N−electron ground state. We will use perturbation theory instead. The key properties of
the interacting correlators which allows us to do so is their adiabatic connection to their non-
interacting counterparts.

We are primarily interested in the following correlators:

• The electron-electron correlation energies are given by the expectation value of the operator
defined in (2.75), or equivalently (2.78), with respect to the interacting ground state,〈

Ψ
(N)
0

∣∣∣V̂H(t)
∣∣∣Ψ(N)

0

〉
. (2.79)

• The relevant correlator to obtain electron addition and removal energies (also called single-
particle excitations) is the one-particle Green’s function

G(1, 1′) ≡ G1(1, 1
′) = −i

〈
Ψ

(N)
0

∣∣∣T [ψ̂(1)ψ̂†(1′)
] ∣∣∣Ψ(N)

0

〉
. (2.80)

• For the calculation of optical, or neutral excitations (excitonic states) we additionally need
the two-particle Green’s function

G2(1, 2, 1
′, 2′) = −

〈
Ψ

(N)
0

∣∣∣T [ψ̂(1)ψ̂(2)ψ̂†(2′)ψ̂†(1′)
] ∣∣∣Ψ(N)

0

〉
. (2.81)

Other interesting quantities as for instance density-density response functions or one-particle re-
duced density matrices can easily be obtained from these correlators. Equations (2.80) and (2.81)
are identified as special cases of the interacting counterpart of the n-particle Green’s function
defined in eqs. 2.64,

Gn(1, . . . n, 1′ . . . n′) = (−i)n
〈

Ψ
(N)
0

∣∣∣T [ψ̂(1) . . . ψ̂(n)ψ̂†(1′) . . . ψ̂†(n′)
] ∣∣∣Ψ(N)

0

〉
. (2.82)

The adiabatic connection between an interacting and a non-interacting correlators is formalized
by the Gell-Mann–Low theorem.42 Suppose we have a Hamiltonian of the form (2.1), where we
vary the charge of the electron as a function of time,

V̂ = gV̂η(t) , (2.83)

with g being a coupling constant and

vη(t) = lim
η→0+

W (0)e−η|t| , (2.84)

i.e. for t = ±∞, this potential vanishes, and for t = 0, the true Coulomb potential is recovered.
Further suppose that for η → 0+ the limit

|Ψ(±)
η ⟩ =

Uη,I(0,±∞) |ϕ(N)
0 ⟩〈

ϕ
(N)
0

∣∣∣Uη,I(0,±∞)
∣∣∣ϕ(N)

0

〉 (2.85)
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exists. Then the Gell-Mann–Low theorem states96 that the |Ψ(±)
η ⟩ are eigenstates of Ĥη and

fulfill
Ĥ(±)

η |Ψ(±)
η ⟩ = E(±)

η |Ψ(±)
η ⟩ , (2.86)

where
E(±)

η =
〈

Φ
(N)
0

∣∣∣Ĥ(±)
η

∣∣∣Ψ(±)
η

〉
. (2.87)

In particular, this implies that in the limit η → 0+

lim
η→0±

(
|Ψ(±)

η ⟩ , E(±)
η

)
= (|Ψ⟩ , E) . (2.88)

The Gell-Mann–Low theorem does not imply that the non-interacting ground state is transformed
into the interacting ground state. (|Ψ⟩ , E) is an arbitrary eigenpair of Ĥ. Following ref. [96],
the Gell-Mann–Low theorem can be proven by considering the Hamiltonian (2.83) with g = eηθ,

Ĥη = Ĥ0 +W (0)eη(θ−|t|) , (2.89)

and
Ĥ± = Ĥ0 +W (0)e±η|t| , (2.90)

with corresponding time-evolution operators U (±) In analogy to (2.49), we can then write for the
time-evolution operators

Uη(t, t′) =1 − i

∫ t

t′
ds
(
Ĥ0 +W (0)eη(θ−|s|)

)
U(s, t′)

=1 − i

∫ t+θ

t′+θ
dτ
(
Ĥ0 +W (0)eη|τ |

)
U(t1 − θ, t′)

=U (±)(t± θ, t′ ± θ)

(2.91)

where we have used θ = τ − s in the second equation and we have

Uη(t, t′) =

{
U (+)(t+ θ, t′ + θ) t < t′

U (−)(t− θ, t′ − θ) t > t′ .
(2.92)

We then obtain
∂

∂θ
Uη(t, t′) = ± ∂

∂t
Uη(t, t′) ± ∂

∂t′
Uη(t, t′) . (2.93)

We can then add (for the + case) or subtract (for the − case) (2.36) and (2.37) which gives for
Schrödinger and interaction picture

iηg
∂

∂g
US/Iη(t, t′) =

{
ĤS/IηUS/Iη(t, t′) − US/Iη(t′, t)ĤS/Iη t < t′

US/Iη(t′, t)ĤS/Iη − ĤS/IηUS/Iη(t, t′) t > t′ .
(2.94)
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We then obtain (Ĥη = ĤSη(t = 0))[
Ĥη − E0

]
UIη(0,±∞)

∣∣∣Φ(N)
0

〉
= ∓iηg ∂

∂g
UIη(0,±∞)

∣∣∣Φ(N)
0

〉
. (2.95)

We now need to prove that this implies[
Ĥη − E(±)

η

] ∣∣∣Ψ(±)
η

〉
= ∓iηg ∂

∂g
UIη(0,±∞)

∣∣∣Ψ(±)
η

〉
, (2.96)

since then we can take the limit η → 0± which gives then (2.86). Since |Φ(N)
0 ⟩ does not depend

on g, we can write〈
Φ
(N)
0

∣∣∣ ∂
∂g
UIη(0,±∞)

∣∣∣Φ(N)
0

〉
=

∂

∂g

〈
Φ
(N)
0

∣∣∣UIη(0,±∞)
∣∣∣Φ(N)

0

〉
, (2.97)

and therefore, using (2.95) and (2.85) ,

∂

∂g

∣∣∣Ψ(±)
η

〉
=
∂

∂g

 Uη,I(0,±∞)
∣∣∣ϕ(N)

0 ⟩〈
ϕ
(N)
0

∣∣∣Uη,I(0,±∞)
∣∣∣ϕ(N)

0

〉


=
1〈

ϕ
(N)
0

∣∣∣Uη,I(0,±∞)
∣∣∣ϕ(N)

0

〉 ∂

∂g

{
Uη,I(0,±∞)

∣∣∣ϕ(N)
0

〉}

+
∂

∂g

 1〈
ϕ
(N)
0

∣∣∣Uη,I(0,±∞)
∣∣∣ϕ(N)

0

〉
Uη,I(0,±∞)

∣∣∣ϕ(N)
0 ⟩

=
1〈

Φ
(N)
0

∣∣∣Uη,I(0,±∞)Φ
(N)
0

〉 [Ĥη − E0

]
Uη,I(0,±∞)

∣∣∣Φ(N)
0

〉

−


〈

Φ
(N)
0

∣∣∣Ĥη − E0

∣∣∣Uη,I(0,±∞)Φ
(N)
0

〉
〈

Φ
(N)
0

∣∣∣Uη,I(0,±∞)
∣∣∣Φ(N)

0

〉2
Uη,I(0,±∞)

∣∣∣Φ(N)
0

〉
=
[
Ĥη − E0

] ∣∣∣Ψ(±)
η

〉
−
∣∣∣Ψ(±)

η

〉〈
Φ
(N)
0

∣∣∣ [Ĥη − E0

] ∣∣∣Ψ(±)
η

〉
=
[
Ĥη − E(±)

η

] ∣∣∣Ψ(±)
η

〉
.

(2.98)

This gives directly (2.96) and taking the limit ϵ→ 0± completes the proof.
Together with Wick’s theorem, we now have a tool at hand to express any time-ordered

product of operators with respect to the non-interacting ground state as a linear combination
of products of non-interacting single-particle Green’s functions. Before we proceed with writing
down explicit expressions for interacting correlators, we comment on the assumptions entering
the Gell-Man–Low theorem and its implications.
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First, the Gell-Mann and Low formula is not applicable in the case of Hamiltonians with a
degenerate ground state.97 (See ref. [98, 99] for generalizations of the Gell-Man–Low theorem
to degenerate ground states.) As a rule of thumb, perturbation theory is not applicable when
the perturbation V is too large compared to the non-interacting reference Hamiltonian. It
is then not possible to single out a non-interacting reference system whose ground state is a
single Slater determinant and perturbation theory needs to be applied to a many-determinant
ground state. Systems for which such problems occur are called multi-reference problems and are
frequently encountered in chemistry, for instance in coupled spins in open-shell transition metal
complexes or bond-breaking processes (a prime example being the dissociation of the Hydrogen
molecule).13,100,101

Second, when applying the Gell-Man–Low theorem, we will always need to assume that the
ground-state of the non-interacting system is connected to the one of the interacting system.
Third, we also need to assume that it is possible to switch on the interaction adiabatically. The
second and third requirement have been verified for simple model Hamiltonians,97 but it is in no
way guaranteed that they hold for realistic systems.

In this work, we assume throughout the validity of the single QP picture. In the same way as
the Gell-Mann–Low theorem assumes continuity between the non-interacting and the interacting
system, Fermi liquid theory assumes that the ground state of a Fermi gas, upon switching on
the interaction between the particles, is adiabatically transformed into the ground state of the
interacting system. Thus, the Gell-Man–Low theorem indeed provides the theoretical framework
to transform free particles into QPs.

Explicit expression for expectation values

Using (2.85) we can write down an explicit expression for correlators with respect to the inter-
acting ground-state,〈

Ψ
(N)
0

∣∣∣ÂH(t)
∣∣∣Ψ(N)

0

〉
= lim

η→0

〈
Ψ(+)

η

∣∣∣ÂH

∣∣∣Ψ(−)
η

〉
= lim

η→0

〈
Φ
(N)
0

∣∣∣Uη,I(∞, t)ÂH(t)Uη,I(t′,−∞
∣∣∣Φ(N)

0

〉
〈

Φ
(N)
0

∣∣∣Uη,I(∞,−∞)
∣∣∣Φ(N)

0

〉 ,
(2.99)

where ÂH can be any time-ordered product of operators. We have chosen to follow the time
contour from −∞ to ∞. This is a convenient choice since it simplifies working with time-ordered
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operators15. Using the definition of the time-evolution operator (2.57) we can then write

lim
η→0

〈
Ψ(+)

η

∣∣∣ψ̂(x, t)ψ̂†(x′, t′)
∣∣∣Ψ(−)

η

〉
= lim

η→0

{
1 +

∞∑
n=1

(−1)n
1

n!

∫
dt1 . . . dtne

η(|t1|+...|tn)

×

〈
Φ
(N)
0

∣∣∣T [V̂I(t1) . . . V̂I(tn)ÂI(t)
] ∣∣∣Φ(N)

0

〉
〈

Ψ
(+)
η

∣∣∣Uη,I(∞,−∞)
∣∣∣Ψ(−)

η

〉


(2.100)

and taking the limit η → 0 and with the definition of the S-matrix44,

Ŝ = lim
η→∞

Uη,I(∞,−∞) , (2.101)

we obtain

〈
Ψ

(N)
0

∣∣∣ÂH(t)
∣∣∣Ψ(N)

0

〉
=

〈
Φ
(N)
0

∣∣∣T [ÂI(t)Ŝ
] ∣∣∣Φ(N)

0

〉
〈

Φ
(N)
0

∣∣∣Ŝ∣∣∣Φ(N)
0

〉

=

∞∑
n=0

1

n!
(−i)n

∫
dt1 . . . dtn

〈
Φ
(N)
0

∣∣∣T [V̂ (t1) . . . V̂ (tn)Â(t)
] ∣∣∣Φ(N)

0

〉
∞∑
n=0

1

n!
(−i)n

∫
dt1 . . . dtn

〈
Φ
(N)
0

∣∣∣T [V̂ (t1) . . . V̂ (tn)
] ∣∣∣Φ(N)

0

〉 .

(2.102)
For the special case of the single-particle Green’s function, (2.102) is

G(1, 1′) = − i
〈

Ψ
(N)
0

∣∣∣ψ̂(x, t)ψ̂†(x′, t′)
∣∣∣Ψ(N)

0

〉
= − i

〈
Φ
(N)
0

∣∣∣T [ψ̂(x, t)ψ̂†(x′, t′)Ŝ
] ∣∣∣Φ(N)

0

〉
〈

Φ
(N)
0

∣∣∣Ŝ∣∣∣Φ(N)
0

〉 .
(2.103)

Let us look at the first few terms in the nominator,〈
Φ
(N)
0

∣∣∣T [ψ̂(1)ψ̂†(1′)Ŝ
] ∣∣∣Φ(N)

0

〉
= C(0)(1, 1′)) + C(1)(1, 1′) + . . . + C(n)(1, 1′) . . . ,

(2.104)

where the zeroth-order term is clearly the non-interacting propagator

C(0)(1, 1′) = G(0)(1, 1′) = −i
〈

Φ
(N)
0

∣∣∣T [ψ̂(1)ψ̂†(1′)
] ∣∣∣Φ(N)

0

〉
. (2.105)
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To evaluate higher-order terms, we use Wick’s theorem (2.66) together with the definition of the
electron-electron interaction eq. (2.75) to obtain to first order in C (recall that the 3-particle
Green’s function contains a prefactor of (−i)3)5,

C(1)(1, 1′) = − i

∫
dt1

〈
Φ
(N)
0

∣∣∣T [V̂ (t1)ψ̂(1)ψ̂†(1′)
] ∣∣∣Φ(N)

0

〉
=
i

2

∫
d2d2′W (0)(2, 2′)G3(1, 2, 2

′, 1′, 2+, 2′+)

=
i

2

∫
d2d2′W (0)(2, 2′) det

G(0)(1, 1′) G(0)(1, 2) G(0)(1, 2′)

G(0)(2, 1′) G(0)(2, 2+) G(0)(2, 2′)

G(0)(2, 1′) G(0)(2′, 2) G(0)(2′, 2′+)

 .

(2.107)

The single-particle Green’s function in the upper left corner and the interaction term W (0) do
not share a coordinate. Therefore, we can factor out this contribution to C(1),

C(1)(1, 1′) =
i

2

∫
d2d2′W (0)(2, 2′) det

 0 G(0)(1, 2) G(0)(1, 2′)

G(0)(2, 1′) G(0)(2, 2+) G(0)(2, 2′)

G(0)(2, 1′) G(0)(2′, 2) G(0)(2′, 2′+)


+

∫
dt1

〈
Φ
(N)
0

∣∣∣T [V̂ (t1)
] ∣∣∣Φ(N)

0

〉〈
Φ
(N)
0

∣∣∣T [ψ̂(1)ψ̂†(1′)
] ∣∣∣Φ(N)

0

〉
.

(2.108)

To second order in V̂ , we have

C(2)(1, 1′) = − 1

2

∫
dt2dt3

〈
Φ
(N)
0

∣∣∣T [V̂ (t2)V̂ (t3)ψ̂(1)ψ̂†(1′)
] ∣∣∣Φ(N)

0

〉
= − 1

8

∫
d2d2′d3d3′W (0)(2, 2′)W (0)(3, 3′)

× det


G(0)(1, 1′) G(0)(2, 1′) G(0)(2′, 1′) G(0)(3, 1′) G(0)(3′, 1′)

G(0)(1, 2) G(0)(2, 2+) G(0)(2′, 2) G(0)(3, 2) G(0)(3′, 2)

G(0)(1, 2′) G(0)(2, 2′+) G(0)(2′, 2′) G(0)(3, 2′) G(0)(3′, 2′)

G(0)(1, 3) G(0)(2, 3) G(0)(2′, 3) G(0)(3, 3+) G(0)(3′, 3)

G(0)(1, 3′) G(0)(2, 3′) G(0)(2′, 3′) G(0)(3, 3′) G(0)(3′, 3′+)

 ,

(2.109)

5Generally, we have
(−i)n+m = (−i)2n+m ∗ in (2.106)

since
(−i)2n+m ∗ in = (−1)m(−i)2n ∗ in+m = (−1)m ∗ (−1)n ∗ in+m = (−i)n+m ,
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which can also be written as

ˆC(2) = − 1

8

∫
d2d2′d3d3′W (0)(2, 2′)W (0)(3, 3′)

× det


0 G(0)(1, 1′) G(0)(1′, 1′) G(0)(3, 1′) G(0)(3′, 1′)

G(0)(1, 2) 0 0 G(0)(3, 2) G(0)(3′, 2)

G(0)(1, 2′) 0 0 G(0)(3, 2′) G(0)(3′, 2′)

G(0)(1, 3) G(0)(2, 3) G(0)(2′, 3) 0 0

G(0)(1, 3′) G(0)(2, 3′) G(0)(2′, 3′) 0 0


− 1

2

∫
dt2

∫
dt3

〈
Φ
(N)
0

∣∣∣T [V̂ (t2)V̂ (t3)
] ∣∣∣Φ(N)

0

〉〈
Φ
(N)
0

∣∣∣T [ψ̂(1)ψ̂†(1′)
] ∣∣∣Φ(N)

0

〉
− 1

2

∫
dt2

〈
Φ
(N)
0

∣∣∣T [V̂ (t2)
] ∣∣∣Φ(N)

0

〉∫
dt3

〈
Φ
(N)
0

∣∣∣T [V̂ (t3)ψ̂(1)ψ̂†(1′)
] ∣∣∣Φ(N)

0

〉
− 1

2

∫
dt3

〈
Φ
(N)
0

∣∣∣T [V̂ (t3)
] ∣∣∣Φ(N)

0

〉∫
dt2

〈
Φ
(N)
0

∣∣∣T [V̂ (t2)ψ̂(1)ψ̂†(1′)
] ∣∣∣Φ(N)

0

〉
.

(2.110)

In both contributions, we have written the terms separately which can be factorized as the
product of more than one time-ordered product of expectation values. If we were to represent
these terms as diagrams in which G(0)(n, n′) is depicted as a line connecting points n and n′,
these are all terms which give diagrams in which not all points 2, 2′ . . . n, n′ are connected to the
external points 1, 1′ by a line. Therefore, we call these terms disconnected. All the other terms
are called connected. Note, that the last two terms on the r.h.s. of the last equation in (2.110)
are just the first-order terms (2.107) multiplied with a single V̂ expectation value. In general,
the term in (2.104) of the order m+ 1 will always give m terms of the form∫

dtk

〈
Φ
(N)
0

∣∣∣T [V̂ (tk)
] ∣∣∣Φ(N)

0

〉
×
∫
dt1 . . . dtk−1dtk+1 . . . dtm

〈
Φ
(N)
0

∣∣∣T [V̂ (t1)V̂ (tk−1)V̂ (tk+1)V̂ (tm)ψ̂(x, t)ψ̂†(x′, t′)
] ∣∣∣Φ(N)

0

〉
(2.111)

because there are m different V̂ which can be pulled out, and the term of order m+ 2 will give
(m+ 1)m/2 terms with two V̂ pulled out, and the term m+ k will give

(m+ k − 1)(m+ k − 2)(m+ k − 3) . . .

k!
=

(m+ k − 1)!

m!k!
(2.112)

terms with k V̂ pulled out. Let us define the quantity D(m) as the sum of all the contributions
to the nominator of (2.102) which contain at least one connected diagram of order m. These
are all connected diagram from the mth term in (2.104) times any connected factors of order m
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coming from all m+ kth order terms in (2.104) with m+ k > m,

D(m) =
1

m!
(−1)m

∫
dt1 . . . dtm

〈
Φ
(N)
0

∣∣∣T [V̂ (t1) . . . V̂ (tm)ψ̂(x, t)ψ̂†(x′, t′)
] ∣∣∣Φ(N)

0

〉
con

× 1

m!
(−i)m

{
1 +

∫
dtm+1

〈
Φ
(N)
0

∣∣∣T [V̂ (tm+1)
] ∣∣∣Φ(N)

0

〉
+

∫
dtm+1

∫
dtm+2

〈
Φ
(N)
0

∣∣∣T [V̂ (tm+1)V̂ (tm+2)
] ∣∣∣Φ(N)

0

〉
. . .

}
.

(2.113)

Since the index runs to infinity, we can simply shift the index, so that the term in curly paren-
theses becomes

1 + i

∫
dt1

〈
Φ
(N)
0

∣∣∣T [V̂ (t1)
] ∣∣∣Φ(N)

0

〉
− 1

2

∫
dt1

∫
dt2

〈
Φ
(N)
0

∣∣∣T [V̂ (t1)V̂ (t2)
] ∣∣∣Φ(N)

0

〉
+ . . .

=1 +

∞∑
n=1

in

n!

∫
dt1 . . . dtn

〈
Φ
(N)
0

∣∣∣T [V̂ (t1)V̂ . . . (tn)
] ∣∣∣Φ(N)

0

〉
,

(2.114)
which is just the expectation value of the S-matrix, the denominator in (2.102). Eq. (2.113) is
of course valid for all terms with m = n = 0 . . .∞. Therefore, we just proved the linked-diagram
theorem: In (2.102), the disconnected terms in the nominator cancel exactly with the expectation
value of the S-matrix. Using eqs. (2.66), (2.75), (2.102) and (2.106) and the definition

Gcon = G− all unlinked terms , (2.115)

we arrive arrive at the expression

G(c, c′) = − i
〈

Φ
(N)
0

∣∣∣T [ψ̂(1)ψ̂†(1′)Ŝ
] ∣∣∣Φ(N)

0

〉
con

=G(0)(c, c′) +
∞∑
n=1

(
i

2

)n 1

n!

∫
d1d1′ . . . dndn′W (0)(1, 1′) . . .W (0)(n, n′)

×G
(0),con
2n+1 (c, 1, 1′, . . . , n, n′; c′, 1+, 1′+ . . . , n+, n′+)

(2.116)

for the single-particle Green’s function.
Furthermore, we see that all terms which can be generated from each other by permuting the

internal indices contribute identically to the correlator. For each order n there are 2nn! possible
permutations. The factor of 2 comes here from the fact that the Coulomb potential is symmetric,
W (0)(1, 1′) = W (0)(1′, 1) and therefore integration over n and n′ contribute equivalently to each
term. Therefore, we can express the single-particle Green’s function as

G(c, c′) =G(0)(c, c′) +
∞∑
n=1

in
∫
d1d1′ . . . dndn′W (0)(1, 1′) . . .W (0)(n, n′)

×G
(0),cd
2n+1 (c, 1, 1′, . . . , n, n′; c′, 1+, 1′+ . . . , n+, n′+)

(2.117)
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Note, that we have never resorted explicitly to the form of the expectation value. Therefore, this
result is valid in general and also applied to the two-particle Green’s function, for which we then
obtain

G2(c, d, c
′, d′) =G(0)(c, c′)G(0)(d, d′) −G(0)(c, d′)G(0)(d, c′)

+
∞∑
n=1

in
∫
d1d1′ . . . dndn′W (0)(1, 1′) . . .W (0)(n, n′)

×G
(0),cd
2n+2 (c, d, 1, 1′, . . . , n, n′; c′, d′, 1+, 1′+ . . . , n+, n′+) ,

(2.118)

where we have already used (2.66) for the non-interacting 2-particle Green’s function. The third
expectation value which is important for this work is the one for the electron-electron interaction.
Written as in eq. 2.78 it is

Eee =

∞∑
n=1

in
∫
d1d1′ . . . dndn′W (0)(1, 1′) . . .W (0)(n, n′)

×G
(0),cd
2n (1, 1′, . . . , n, n′; 1, 1′ . . . , n, n′) .

(2.119)

The electron-electron interaction energy is therefore often referred to as the 0-particle propagator.
Notice, that the expectation value of the electron-electron interaction with respect to the non-
interacting ground state is zero. i.e. unlike the expansions eqs. (2.117) and (2.118) (2.119) does
not contain a zeroth-order term with is independent of the Coulomb potential. The ground state
energy of the interacting system is then

Etot = E0 + Eee , (2.120)

where E0 is the sum of the energies of the non-interacting particles. For reasons explained below,
the electron-electron interaction energy is often referred to as Hartree (H)-exchange-correlation
(xc) energy.

2.2 Resummation

2.2.1 The 2-point Vertex function

The 2-Point Vertex Σ
[
G(0),W (0)

]
It is useful to introduce a graphical representation of the terms appearing in eqs. (2.117) and (2.118)
in terms of diagrams, originally introduced by Feynman.43 The diagrams we use here are due to
Goldstone.51 For each term appearing in eqs. (2.117)–(2.119), we introduce the following rules:

1. For each nth-order term, draw n horizontal wiggly interaction (photon propagator) lines.

2. Each end point of an interaction line is a vertex.
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Figure 2.1: a) Diagrammatic representation of the perturbation series for the single-particle
Green’s function up to second order in W (0). b) Diagrammatic representation of the 2-point
vertex containing three distinct classes of diagrams. c) The irreducible part of the self-energy up
to second order in W (0).
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3. At each vertex, momentum needs to be conserved.

4. Each vertex connects two propagators. These can either be electron or photon propagators.

5. A interacting propagator is represented by a double line.

6. A non-interacting propagator is represented by a single line.

These rules here are very loosely formulated since we only use them for illustrative purposes.
They do not allow to convert diagrams into programmable expressions. For stricter rules which
allow the direct translation of diagrams into equations, see for instance ref. [102].

Using these rules, to second order in W (0) (2.117) can be represented as depicted in fig-
ure 2.1a). From figure 2.1 a) it can be seen that each term in (2.117) (except for the non-
interacting propagator) contains two external propagator lines. If we remove these lines as
indicated in the first first-order term on the r.h.s. of the equation in figure 2.1a), we arrive
at the so-called one-particle reducible (1PR) 2-point vertex function Σ∗

r . Generally, a reducible
diagram be decomposed into equivalent building blocks by removing certain propagator lines.
Depending on what type of lines are to be removed to decompose the diagram into smaller parts
one distinguishes different channels. In case of 1PR diagrams there are only two possibilities:
A diagram can be reducible in the particle or in the hole channel. However, these channels are
related by symmetry. Σ∗

r is shown in figure 2.1b). Using this quantity, (2.117) can be written as

G(1, 1′) = G
(0)
1 (1, 1′) = G

(0)
1 (1, 2)Σ∗

r(2, 2
′)G

(0)
1 (2′, 1′) . (2.121)

In this and also in the following equations repeated variables are integrated, unless they appear
on both sides of the equation. In figure 2.1 b) it is also indicated that the 2-particle vertex can
be decomposed as

Σ∗
r = Σ + Σ1PR + ΣR . (2.122)

The first of these terms, the skeleton part of Σ∗
r , is the most important contribution and is

usually called irreducible self-energy and abbreviated by Σ. It contains the building blocks of
all other diagrams in the series expansion of Σ∗

r . This is most easily seen from the expansion
of the single-particle Green’s function in figure 2.1a). There are only two first-order diagrams
but there are ten second-order diagrams. The first two of the second-order diagrams translate
into the skeleton diagrams c.3 and c.4 in figure 2.1c). All other diagrams can be generated from
the first-order diagrams by inserting them into themselves. For example, the third second-order
diagram in figure 2.1a) is obtained by replacing one of the upwards pointing lines in the first
first-order diagram (the one with the scissor) by itself. There are four possibilities to replace
one of the upwards pointing lines in each of the first-order diagrams by themselves. However,
figure 2.1a) only contains four of them, because replacing the upper or the lower line does not
generate topologically distinct diagrams. It is not shown here, that the first-order diagrams can
then again be inserted into the second-order diagrams, resulting in third-order diagrams, until
diagrams to infinite order in W (0) are generated. When the external lines are amputated, one
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ends up with the Σ1PR class of diagrams in fig. 2.1b). These diagrams can be decomposed into
two diagrams by removing a single propagator line. This process is indicated by the scissor in
the first diagram of Σ1PR. With these considerations, we can rewrite (2.117) again. If we restrict
Σ∗
r in (2.121) to the skeleton and 1PR part only, we see that

G(1, 1′) =G
(0)
1 (1, 1′) +G

(0)
1 (1, 2)

{
Σ
[
G

(0)
1

]
+ Σ1PR

[
G

(0)
1

]}
(2, 2′)G

(0)
1 (2′, 1′)

=G
(0)
1 (1, 2)Σ

[
G

(0)
1

]
(2, 2′)G

(0)
1 (2′, 1′)

+G
(0)
1 (1, 2)Σ

[
G

(0)
1

]
(2, 2′)G

(0)
1 (2′, 3)Σ

[
G

(0)
1

]
(3, 3′)G

(0)
1 (3′, 1′) + . . .

=G
(0)
1 (1, 2)

∞∑
n=0

[
Σ
[
G

(0)
1

]
×G

(0)
1

]n
(2, 1′) .

(2.123)

Since 1/(1 − x) =
∑∞

n=0 x
n, the last equation can be written as103

G(1, 1′) =G
(0)
1 (1, 2)[1 − Σ

[
G

(0)
1

]
G

(0)
1 ]−1(2, 1′)

=

{[
G(0)

]−1
− Σ

[
G

(0)
1

]}−1

.
(2.124)

We can write this symbolically as

G(1, 1′) = G
(0)
1 (1, 1′) +G

(0)
1 (1, 2)Σ

[
G

(0)
1

]
(2, 2′)G(2′, 1′) . (2.125)

This shows that we only need the skeleton part of Σ∗
r to generate all of its 1PR diagrams as well.

This relation can also be expressed as

Σ̃(1, 2) = Σ(1, 2) + Σ(1, 3)G(0)(3, 4)Σ̃(4, 2) , (2.126)

where we have introduced the 1PR self-energy Σ̃. This is a general result. Whenever we have a
Dyson equation

X = X(0) +X(0)KX , (2.127)

connecting a non-interacting quantity X(0) to an interacting quantity X, there is always a corre-
sponding Dyson equation which connects the interaction kernel K to it’s reducible counterpart
K̃,

K̃ = K +KX(0)K̃ . (2.128)

The reducible kernel can then used to rewrite the Dyson equation as

X = X(0) +X(0)K̃X(0) . (2.129)

Comparison of (2.129) and (2.128) implies that

K̃X(0) = KX . (2.130)

We will encounter these relations more often in the course of this section. Also note, that we have
assumed here that the interacting single-particle Green’s function can be inverted. However, it
is not clear whether this is always true.
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The 2-Point Vertex Σ
[
G,W (0)

]
The last class of diagrams belonging to the 2-particle vertex is denoted by ΣR. These diagrams
are obtained from the last four diagrams in fig. 2.1. They can not be decomposed into two
parts by removing one propagator lines and therefore they are not generated from eq. (2.125).
However, these diagrams can be obtained by replacing the non-interacting propagator lines in
the first-order contributions to Σ∗

r by one of the first-order contributions to G. This result is
valid also for higher-order contributions: In eq. (2.125), Σ is a functional of the non-interacting
propagator. If Σ in (2.125) is made a functional of the interacting propagator instead of the
non-interacting one, all terms of (2.117) (or equivalently (2.121)) are obtained. This has first
been realized by Luttinger and Ward56 in 1960 and leads to the famous Dyson equation for the
single-particle Green’s function,

G(1, 1′) = G(0)(1, 1′) +G(0)(1, 2)Σ [G] (2, 2′)G(2′, 1′) , (2.131)

depicted schematically in figure 2.2 a). All the complexity of the perturbative expansion of the
interacting single-particle Green’s function (2.117) is now hidden in the skeleton expansion of
the self-energy, a frequency- and momentum-dependent self-consistent field experienced by the
particles encoding their mutual interaction. The price we had to pay is that we have transformed
a linear equation (2.117) to a non-linear one (2.131). We can rewrite (2.131) as

G−1(1, 1′) =
[
G(0)

]−1
(1, 1′) − Σ(1, 1′) , (2.132)

which essentially shows that we do not longer expand the Green’s function but rather the inverse
of the Green’s function in powers of the interaction. The inverse of a n-particle Green’s function
is closely related to a n-particle Hamiltonian. In particular, we have[

G(0)
]−1

(r, r′, z) = z − ĥ1(r)δ(r − r′) . (2.133)

Therefore, (2.132) describes rather the expansion of an effective single-particle Hamiltonian than
of a Green’s function, where the zeroth-order term is simply the non-interacting Hamiltonian. It
should be noted that in some MBPT based approaches the Green’s function is expanded directly,
for instance in the CC Green’s function method.104–106

Formally, we can write the self-energy as a sum of distinct contributions

Σ(1, 2) =
∞∑
n=1

Σ(n)(1, 2) , (2.134)

where n can correspond to a certain order of Σ in W (0), but this is not necessary. The de-
composition is completely arbitrary. We now assume6 that the order in which we dress the

6It should be noted that any resummation of the series expansion assumes that the series expansion (2.117)
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non-interacting Green’s function line with self-energy diagrams is not important. We can for ex-
ample decide, to first dress G(0) with the first-order terms of Σ (the first 2 diagrams in figure 2.1
c)) only and then to generate all reducible self-energy diagrams using (2.131). We then obtain

G
(1)
1 (1, 1′) = G

(0)
1 (1, 1′) +G

(0)
1 (1, 2)Σ(1)(2, 2′)G

(1)
1 (2′, 1′) , (2.136)

where G(1) contains all 1PR contributions which can be generated from the first two-terms in
the irreducible self-energy only. In a next step, we could then include all diagrams which can be
obtained from the second-order terms of the irreducible self-energy. Continuing this process, we
can obtain an infinite hierarchy of Dyson equations,

G
(1)
1 (1, 1′) =G

(0)
1 (1, 1′) +G

(0)
1 (1, 2)Σ(1)(2, 2′)G

(1)
1 (2′, 1′)

G
(2)
1 (1, 1′) =G

(1)
1 (1, 1′) +G

(1)
1 (1, 2)Σ(2)(2, 2′)G

(1)
1 (2′, 1′)

. . .

G
(n)
1 (1, 1′) =G

(n−1)
1 (1, 1′) +G

(n−1)
1 (1, 2)Σ(n)(2, 2′)G

(n)
1 (2′, 1′) ,

(2.137)

until we finally obtain

G(1, 1′) = lim
n→∞

G
(n)
1 (1, 1′) .

This property of the Dyson equation is of utmost importance in practice and we will use it
extensively in the following chapters. In quantum chemistry, one typically first solves a Dyson
equation with Σ in the HF approximation and then includes additional diagrams, either per-
turbatively or self-consistently. Each step in (2.137) can be seen as a redefinition of the Fermi
vacuum.

As in (2.123), we can also expand the Dyson equation in powers of Σ,

G(1, 1′) = G(0)(1, 1′) +G(0)(1, 2)Σ(2, 2′)G(0)(2′, 1′) + O
(
Σ2
)
. (2.138)

Retaining only the first order term in this expansion, the linearized Dyson equation is obtained.
As can be seen from figure 2.1, the linearized Dyson equation does not give the contributions to
G which are obtained from ΣR and therefore replacing (2.131) by (2.138) leads to an incomplete
expansion of G. Nevertheless, it is important in practice as it is much simpler to solve than
(2.131) and it is therefore often used as a starting point for approximations.110

(and equivalently for all other series expansions based on the Gell-Man–Low theorem) is absolutely convergent.
Otherwise, according to the Riemann series theorem, the terms of the series can be arranged so that the new series
converges to an arbitrary real number or even diverges. A given expression for the self-energy can be interpreted
as a mapping of the form

Σ : G(0) 7→ G . (2.135)

Therefore, it might be possible that resummation of Σ will map the same G(0) to different G (or the other way
around). The possibility of this to happen has already been demonstrated for Hubbard like systems.107–109 The
resummation of the series expansion of the single-particle Green’s function (2.117) to the form (2.131) seems to
be a very successful one; the resulting G aligns very well with experimental observations. It is not clear at all why
this is the case.
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The skeleton expansion of the self-energy can be made more robust. In fact, in many inter-
esting situations, this expansion will fail, as for example for a uniform gas of electrons111,112 or
metals,113 or at least show an erratic behavior. For finite systems this failure is best known for
the electron-electron interaction energy (See ref. [114] for a review). When solving (2.131), the
self-energy is dressed by the interacting propagator lines. The skeleton series Σ [G] can then be
interpreted as the sum of all possible ways in which the electron in the interacting systems (the
renormalized electrons) interact with each other via W (0). It can be argued that W (0) is not the
most suitable quantity to describe the interactions between the renormalized particles.

Why is this the case? The renormalized electrons also contain the effect of their interactions
with all other electrons via the self-energy which results in their charge being screened. Therefore,
the Coulomb interactions between them are weaker than in the case of non-interacting particles.
Interestingly, even prior to the work of Luttinger and Ward, Hubbard suggested that a weaker,
or screened, Coulomb interaction might therefore be a more suitable expansion parameter to
describe the electron-electron interactions.52 This idea has been formalized later on by Hedin.67

In fact, it can then be shown that an expansion of the irreducible self-energy in terms of the
renormalized Green’s function and a renormalized (screened) electron-electron interaction, makes
(2.131) even more robust112 than the replacement

Σ
[
G(0),W (0)

]
→ Σ

[
G,W (0)

]
we have just introduced. This new expansion is just another resummation. Symbolically, we can
introduce this expansion by the replacement

Σ
[
G,W (0)

]
→ Σ [G,W ] .

In the following, we will formally introduce this form of the self-energy, which leads to a set
of equations which are not identical, but equivalent to the ones of Hedin.67 The success of this
resummation scheme in practical applications is the subject of chapter 5 and chapter 6. It will
turn out, that for a quantitative description of the screening of the electron-electron interaction
the two-particle Green’s function is needed.

2.2.2 The Bethe-Salpeter equation for the 4-point Vertex function

Σ G2 iF
1 2

2′ 1′ 

1 1′ = = + ++

a) b)

Figure 2.2: a) Dyson equation (2.131) for the single-particle Green’s function. b) Definition of
the 2-particle Green’s function (2.140) via the reducible 4-point vertex iF
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Using (2.66) for (2.118) one can see that we can always factor out 4 propagator lines in each
term of the expansion, leading to

G2(1, 2, 1
′, 2′) =G(0)(1, 1′)G(0)(2, 2′) −G(0)(1, 2′)G(0)(1′, 2)

+ iG(0)(1, 3)G(0)(2, 4)F [G(0)](3, 4, 5, 6)G(0)(5, 1′)G(0)(6, 2′) .
(2.139)

The first two terms on the r.h.s of (2.139) are the contributions to G
(0)
2 and third term describes

all possible scattering processes between two in-going and two out-going free electrons. The
quantity F is called the 4-point vertex (sometimes it is also called scattering amplitude).115 This
expression is also valid when all non-interacting propagators are replaced by interacting ones.
In (2.139), F contains not only the interactions between the renormalized particles but also
renormalizes the non-interacting particles. Following the same arguments leading to the Dyson
equation for the single-particle Green’s function (2.131), it is more convenient to replace the bare
particles in (2.139) by renormalized ones,

G2(1, 2, 1
′, 2′) =G(1, 1′)G(2, 2′) −G(1, 2′)G(1′, 2)

+ iG(1, 3)G(2, 4)F [G](3, 4, 5, 6)G(5, 1′)G(6, 2′) .
(2.140)

Now, the redefined 4-point vertex F only contains the scattering processes between two incoming
and two out-going renormalized electrons. It is shown diagrammatically in figure 2.2b. F can
further be decomposed as115,116

F = Λ + Γph + Γph + Γpp . (2.141)

In this decomposition Λ contains all 2-particle irreducible (2PI) diagrams and the three terms Γ
contains all diagrams which are 2-particle reducible (2PR). There are four possibilities to reduce
a 2PR diagram out which 2 are topologically equivalent: One can remove (i) two particle lines
(equivalent to removing two hole lines) in a way that one of the two resulting diagrams contains
two hole lines and the other one two particles lines. In our definition of the two-particle Green’s
function (compare to (2.82)) this corresponds to separating lines 1 and 2 from lines 1’ and 2’.
Diagrams of this type are said to be reducible in the particle-particle (pp) channel (sometimes
referred to as the parallel channel). Next, there are two possibilities to remove two lines so
that the remaining fragments both have one hole and one particle line: (ii) One can remove the
lines in a way that lines 1 and 1’ are separated from 2 and 2’. These diagrams are reducible in
the(longitudinal) particle-hole (ph) channel (sometimes referred to as the transverse channel).
(iii) One can remove the lines in a way that lines 1 and 2’ are separated from 2 and 1’. These
are reducible in the transverse particle-hole (ph) channel.116 This decomposition is known as
Parquet decomposition115,116 and shown diagrammatically in figure 2.3.7 It should be noted
that this decomposition is not unique and alternative partitionings of the full vertex have been
suggested.126

7The fully irreducible and dressed vertex functions Λ and F are directly related to the self-energy via the
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iF

Λ Γpp Γph ΓphiF = +++

1′ 

2′ 

1

2

1′ 

2′ 

1

2

1′ 

2′ 

1

2

1′ 

2′ 

1

2

1′ 

2′ 

1

2

Figure 2.3: Parquet decomposition of the 4-point vertex function F . One of the lowest order
diagrams of each class is shown. The black lines in each diagram belong to the 4-point vertex
while he blue propagator lines are not part of the vertex but of the 2-particle Green’s function.

Γph
i Γ(0)

i × GG × Γ(0)
i=

1′ 

2′ 

1

2

1′ 

2

1

2′ 

3

4

5

6
×

Figure 2.4: The ph-diagram shown in figure 2.3 is generated from two irreducible diagrams by
inserting a propagator and a hole line.

Alternatively, one can write the Parquet decomposition as

F = Γ(0) + Γl l = ph, ph, pp , (2.142)

where F is partitioned into diagrams which are irreducible (Γ
(0)
l ) or reducible (Fr,l) in channel

l, for instance, when the ph-channel is chosen, comparison with (2.141) shows that

F =Γ(0) + Γph

Γ(0) =Λ + Γph + Γpp .
(2.143)

Schwinger-Dyson equation,44,46,47

Σ(1, 1′) = −Λ(1, 2, 1′, 2′)G(2′, 2)− 1

2
Λ(1, 2, 3, 4)G(2′, 2)G(4, 4′)G(3, 3′)F (4′, 3′1′, 2′) .

The decomposition (2.141) allows then to represent Σ as the sum of the four contributions from each term in
(2.141), the parquet decomposition of the self-energy.115 To the best of our knowledge, applications have so far
been limited to Hubbard models116–120 and Anderson impurity models121,122 but also to the Pariser–Parr-Pople
model123,124 of a Benzene molecule.125 The main issue currently preventing its application to realistic systems
seems to be the numerical complexity of the calculations.
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The reducible diagrams can then be generated from the irreducible ones for a given channel by
inserting the corresponding propagators.69 To see this, we first define a contraction of 4-point
functions,69

C(1, 2, 3, 4) = A(1, 5, 3, 6)B(6, 2, 5, 4) . (2.144)

For example, it is clear that the particle-hole diagram in figure 2.3 can be generated from the
Λ diagram by inserting a particle and a hole line with the appropriate connectivity as shown in
figure 2.4. In this way, we can then generate the vertex F in the particle-hole channel (here GG
needs to be understood as the 4-point object G(1, 4)G(2, 3) = G(1, 2, 3, 4))

F (1, 2, 1′, 2′) =Γ(0)(1, 2, 1′, 2′) + iΓ(0)(1, 3, 1′, 4)G(4, 6)G(5, 3)Γ(0)(6, 2, 5, 2′)

+ i2Γ(0)(1, 3, 1′, 4)G(4, 6)G(5, 3)Γ(0)(6, 5′, 5, 6′)

×G(6′, 7)G(5′, 8)Γ(0)(8, 2, 7, 2′) + . . . .

(2.145)

Using the same arguments leading to (2.124), we obtain the Bethe-Salpeter equation (BSE)60,69

F (1, 2, 1′, 2′) =Γ(0)(1, 2, 1′, 2′) + Γph(1, 2, 1′, 2′)

=Γ(0)(1, 2, 1′, 2′) + iΓ(0)(1, 3, 1′, 4)G(4, 6)G(5, 3)F (6, 2, 5, 2′) ,
(2.146)

for the reducible vertex in the particle-hole channel which relates the particle-hole reducible to
the irreducible 4-point vertex function. Note the close similarity to the corresponding equation
(2.126) for the 2-point vertex function. For the two other channels, different BSEs are obtained
since the irreducible contributions to the vertex need to be connected in different ways. These
other BSEs are irrelevant for this work. For the explicit expressions and their derivations, see
for instance ref. [115].

2.2.3 Connecting the single- and two-particle Green’s Functions

So far, the equations for the single- and two-particle Green’s functions have been treated sep-
arately. Comparison of the 2-point vertex in figure 2.1 and of the 4-point vertex diagrams in
figure 2.2 already suggests that there should be a close connection, since the 4-point vertex can
apparently be obtained from the 2-point one by amputating a single propagator line. It will
turn out that this can be done in three different ways, corresponding to the three channels in
which contributions to the 4-point vertex can be irreducible. Again, we will focus only on the
ph-channel.

To derive an expression for Γ(0), we consider an external source u which couples linearly to
the single-particle Green’s function. We therefore consider the time-dependent Hamiltonian,

Ĥ(t) = Ĥ0 + V̂ + Ĥext(t) , (2.147)

with ground state
∣∣∣Ψ(N)′

0

〉
where

Ĥext(t) =

∫
d1d2ψ̂(1)u(1, 2)ψ̂†(2) . (2.148)
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We now want to calculate the response of the single-particle Green’s function to the source. We
assume that the external source is adiabatically switched on at some distant time in the past,
u(t,−∞) = 0. As in section 2.1.4 we can then relate the Green’s function at time t to the one
at time t′ = −∞ using the Gell-Mann–Low theorem. At time t′ = −∞, the Green’s function is
simply the Green’s function of the interacting system. In analogy to (2.57), the corresponding
S−matrix is

Ŝ =

∞∑
n=0

1

n!
(−i)n

∫ t

∞
dt1dt2 . . . dtnT

[
Ĥext(t1)Ĥext(t2) . . . Ĥext(tn)

]
, (2.149)

and we can write for the associated single-particle Green’s function at time t

G(u)(1, 2) = − i
〈

Ψ
(N)′

0 (t)
∣∣∣T [ψ̂(1)ψ̂†(2)

] ∣∣∣Ψ(N)′

0 (t)
〉

= − i

〈
Ψ

(N)
0 (−∞)

∣∣∣T [ψ̂(1)ψ̂†(2)Ŝ
] ∣∣∣Ψ(N)

0 (−∞)
〉

〈
Ψ

(N)
0 (−∞)

∣∣∣Ŝ∣∣∣Ψ(N)
0 (−∞)

〉 .
(2.150)

We now look at the linear response of the Green’s function with respect to the external source.
The derivative of the S−matrix with respect to the source is simply

δŜ

δu(2′, 2)
= iT

[
Ŝψ̂(2)ψ̂†(2′)

]
, (2.151)

and the derivatives of the fields are zero. With (2.150) and using (2.103) for the 2-particle Green’s
function (2.118) we therefore find for the linear response of the single-particle Green’s function
to an external perturbation

− i
δG(u)(1, 1′)

δu(2′, 2)
= iG2(1, 2, 1

′, 2′) − iG(1′1′)G(2′, 2) ≡ χ(1, 2, 1′, 2′) . (2.152)

The quantity χ is called the generalized susceptibility. Since it describes the response of the inter-
acting single-particle Green’s function with respect to an external field it is sometimes also called
4-point linear response function. χ obeys a BSE. Defining the non-interacting susceptibility,

χ(0)(1, 2, 1′, 2′) = −iG(1, 2′)G(2, 1′) (2.153)

and inserting (2.153) and (2.152) into (2.140), we obtain

χ(1, 2, 1′, 2′) = χ(0)(1, 2, 1′2′) + χ(0)(1, 4, 1′, 3)F (3, 5, 4, 6)χ(0)(6, 2, 5, 2′) , (2.154)

and into (2.146), we obtain

F (1, 2, 1′, 2′) = Γ(0)(1, 2, 1′, 2′) + Γ(0)(1, 3, 1′, 4)χ(0)(4, 5, 3, 6)F (6, 2, 5, 2′) . (2.155)
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Inserting (2.155) we obtain the BSE for the generalized susceptibility in the particle-hole chan-
nel58,127,128 through (2.154),

χ(1, 2, 1′, 2′) = χ(0)(1, 2, 1′, 2′) + χ(0)(1, 3, 1′, 4)Γ(0)(4, 5, 3, 6)χ(6, 2, 5, 2′) , (2.156)

or

χ−1(1, 2, 1′, 2′) =
[
χ(0)

]−1
(1, 2, 1′, 2′) − Γ(0)(1, 2, 1′, 2′) . (2.157)

Notice that the pair of equations eqs. (2.155) and (2.156) is another instance of the pair eqs. (2.127)
and (2.128) of two interrelated Dyson equations for the response function and the kernel.

In principle, it is clear how to solve (2.131). We restrict the self-energy to a subset of skeleton
diagrams, for example the set shown in figure 2.1c). We then diagonalize the single-particle

Hamiltonian to obtain G
(0)
1 and evaluate Σ

[
G

(0)
1

]
. We then calculate G using (2.131). This

yields already an infinite amount of the 1PR terms in (2.117). Then we use this G to evaluate
Σ [G]. This gives us a fraction of the subset of terms belonging to ΣR which can be obtained
from the chosen subset of skeleton diagrams. If we repeat this procedure, we generate more of
the terms in ΣR. We can then do this a few times until we do not observe any changes in G any
more.

We can use the G obtained in this way to construct χ(0) and solve (2.156). We then need
to make assumptions on the kernel Γ(0). We could again chose a subset of terms which are 2PI
in the ph channel. The choice of terms is then not necessarily in agreement with the diagrams
in Σ. However, there is a connection between I and Σ, which has been found by Baym and
Kadanoff.58 We augment the Dyson equation for G with the non-local source u,

G(1, 2) = G(0)(1, 2) +G(0)(1, 3) [Σ(3, 4) + u(3, 4)]G(4, 2) , (2.158)

or equivalently

[G]−1 (1, 2) =
[
G

(0)
1

]−1
− Σ(1, 2) − u(1, 2) . (2.159)

We can now invert the generalized susceptibility

δu(1, 1′)

δG(2′, 2)
= − iχ−1(1, 2, 1′, 2′)

=
δ

δG(2′, 2)

{[
G

(0)
1

]−1
(1, 1′) − [G]−1 (1, 1′) − Σ(1, 1′)

}
.

(2.160)

The first term on the r.h.s. vanishes since G(0) does not depend on G. Using∫
d4 [G]−1 (1, 4)G(4, 2) = δ(1, 2) (2.161)

for the second term, differentiation with respect to G gives the identity

− δ [G]−1 (1, 2)

δG(4, 3)
= − [G]−1 (1, 4) [G]−1 (3, 2) = −i

[
χ(0)

]−1
(1, 3, 2, 4) . (2.162)
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We therefore obtain for (2.160)

χ−1(1, 3, 2, 4) =
[
χ(0)

]−1
(1, 3, 2, 4) − i

δΣ(1, 2)

δG(4, 3)
. (2.163)

This is the same Dyson equation as (2.156), with the derivative of the self-energy with respect
to the single-particle Green’s function as its kernel. Comparison to (2.157) implies the identity

Γ(0)(1, 2, 1′, 2′) = i
δΣ(1, 1′)

δG(2′, 2)
(2.164)

for the kernel of eq. (2.156).8 There is now a fundamental difference between (2.131) and (2.156).
The kernel of (2.156) as defined by (2.164) does not depend on its solution. After solving the
Dyson equation for G as outlined above, we can then simply calculate the kernel (2.164) and
solve (2.156). This already gives the generalized susceptibility within a single calculation.

Symmetries of the 4-Point Vertex

From the definition of the 2-particle Green’s function (2.82) and the fact that the field operator
anti-commutes with itself, it follows that

G2(1, 2, 1
′, 2′) = −G2(1

′, 2, 1, 2′) = −G2(1, 2
′, 1′, 2) = G2(1

′, 2′, 1, 2) , (2.167)

known as crossing symmetry.129 The crossing symmetry implies important symmetry relation
for the different irreducible vertices. Let us first define the generalized susceptibility in the
ph-channel,

χ
(0)

ph
(1, 2, 1′, 2′) = iG(1, 1′)G(2, 2′) . (2.168)

8Eq. (2.156) is often (for instance in ref.15) formulated in terms of the quantity

L(1, 2, 3, 4) = −G2(1, 2, 3, 4) +G(1, 3)G(2, 4) ,

which is connected to the generalized susceptibility by

L(1, 2, 3, 4) = iχ(1, 2, 3, 4) L(0)(1, 2, 3, 4) = G(1, 4)G(2, 3) = iχ(0)(1, 2, 3, 4) .

Multiplying (2.156) with a factor of i

iχ = iχ(0) + iχ(0)i
δΣ

δG
χ (2.165)

shows that the BSE for L is

L = L(0) + L(0) δΣ

δG
L , (2.166)

where now the kernel Γ(0) differs to the one in (2.156) by a imaginary unit. Sometimes (for instance in ref128

(2.156) is used but χ is called L. In ref. [69] the BSE is also formulated in terms of L, but L is defined with
opposite sign.)
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It is obtained from the non-interacting generalized susceptibility in the ph-channel by exchanging
either the two in-going or the two out-going propagators. We then have the symmetry9

χ
(0)

ph
(1, 2, 1′, 2′) = −χ(0)

ph (1, 2, 2′, 1′) , (2.169)

and the same for the interacting susceptibilities,

χph(1, 2, 1′, 2′) = −χph(1, 2, 2′, 1′) . (2.170)

χ
(0)

ph
and χph are related by a BSE equivalent to (2.200). Therefore, (2.169) and (2.170) imply

the crossing symmetry for the reducible vertex,

F (1, 2, 1′, 2′) = F (2, 1, 2′, 1′) , (2.171)

and for the reducible vertex functions

Γ
(0)

ph
(1, 2, 1′, 2′) = −Γ

(0)
ph (1, 2, 2′, 1′) . (2.172)

The irreducible vertex in the pp-channel fulfills a crossing symmetry on its own.130 Eq. (2.172)
is equivalent to15

δΣ(1, 1′)

δG(2′, 2)
=
δΣ(2, 2′)

δG(1′, 1)
, (2.173)

which is an important constraint when approximating the 4-point vertex.

The 2-point vertex Σ [W,G]

To turn (2.156) and (2.131) into a closed set of equations, we need to establish a dependence of
the self-energy on χ. For this, we need the EOM for the single-particle Green’s function. We
start from (2.42) and use (2.1) to obtain the EOM for the field operator,[

i
∂

∂t
− ĥ1(x)

]
ψ̂(1) =

∫
d2ψ̂†(2)ψ̂(2)W (0)(2, 1)ψ̂(1) . (2.174)

9Recall that we have here defined

χ(0)(1, 2, 1′, 2′) ≡ χ
(0)
ph (1, 2, 1

′, 2′) .
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We can now calculate the time-derivative of the single-particle Green’s function (2.80),

i
∂

∂t1
G(1, 2) =

∂

∂t1
Θ(t1 − t2)

〈
Ψ

(N)
0

∣∣∣ψ̂(1)ψ̂†(2)
∣∣∣Ψ(N)

0

〉
+ Θ(t1 − t2)

〈
Ψ

(N)
0

∣∣∣∂ψ̂(1)

∂t1
ψ̂†(2)

∣∣∣Ψ(N)
0

〉

− ∂

∂t1
Θ(t2 − t1)

〈
Ψ

(N)
0

∣∣∣ψ̂†(2)ψ̂(1)
∣∣∣Ψ(N)

0

〉
− Θ(t2 − t1)

〈
Ψ

(N)
0

∣∣∣ψ̂†(2)
∂ψ̂(1)

∂t1

∣∣∣Ψ(N)
0

〉
,

(2.175)

and use
∂

∂t1
Θ(t1 − t2) = δ(t1 − t2) = − ∂

∂t1
Θ(t2 − t1) (2.176)

together with (2.174) to obtain the identity

G(1, 1′) = G(0)(1, 1′) − iG(0)(1, 2)W (0)(2, 3)G2(2, 3
+, 1′, 3++) (2.177)

for the single-particle Green’s function. Using (2.152) we can factor out an additional term,

G(1, 1′) =G(0)(1, 1′) − iG(0)(1, 2)W (0)(2, 3)G(2, 1′)G(3, 3+)

−G(0)(1, 2)W (0)(2, 3)χ(2, 3+, 1′, 3++) .
(2.178)

the second term on the r.h.s is the first term in the series expansion of G in figure 2.1a) The
corresponding contribution to the self-energy is the first term in figure 2.1b). This is the Hartree
term,

ΣH(1, 2) = δ(1, 2)vH(1) = −iδ(1, 2)

∫
d3W (0)(1, 3)G(3, 3+) . (2.179)

Eq. (2.178) becomes

G(1, 1′) =G(0)(1, 1′) +G(0)(1, 2)ΣH(2, 3)G(3, 1′)

−G(0)(1, 2)W (0)(2, 3)χ(2, 3+, 1′, 3++) .
(2.180)

We now consider again the single-particle Green’s function in the presence of the time-dependent
source term,

Gu(1, 1′) =G(0)(1, 1′) +G(0)(1, 2) [u(2, 3) + ΣH(2, 3)]Gu(2, 1′)

+ iG(0)(1, 2)W (0)(2, 3)
δGu(2, 1′)

δu(3+, 3)
.

(2.181)

Following ref. [15], this is equivalent to

G−1
u (1, 1′) =

[
G(0)

]−1
(1, 1′) −

[
u(1, 1′) + ΣH(1, 1′)

]
− iW (0)(2, 3)

δGu(1, 2)

δu(3+, 3)
G−1

u (2, 1′) ,
(2.182)
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and by comparison to the Dyson equation of the unperturbed interacting system, the self-energy
is

Σ(1, 1′) = ΣH(1, 1′) − iW (0)(1, 3)G(1, 2)
δG−1(2, 1′)

δu(3+, 3)
, (2.183)

where the last factor in the last term becomes (using (2.159) in the first equation and (2.152) as
well as (2.146) in the last equation)

G−1(2, 1′)

δu(3+, 3)
=

[
G(0)

]−1
(2, 1′)

δu(3+, 3)
− u(2, 1′)

δu(3+, 3)
− Σ(2, 1′)

δu(3+, 3)

= − δ(2, 1′)δ(2, 3) − δΣ(2, 1′)

δu(3+, 3)

= − δ(2, 1′)δ(2, 3) − δΣ(2, 1′)

δG(4, 4′)

δG(4, 4′)

δu(3+, 3)

= − δ(2, 1′)δ(2, 3) − Γ(0)(2, 4′, 1′, 4)χ(4, 3, 4′, 3+) .

(2.184)

Inserting the last equation into (2.183) the first term becomes

Σx(1, 1′) ≡ iW (0)(1, 3)G(1, 2)δ(2, 1′)δ(2, 3) = iW (0)(1, 1′)G(1, 1′) , (2.185)

which is the second term in the series expansion in figure 2.1c), the so-called Fock term. The
remainder is called correlation term,

Σc(1, 1
′) ≡ +iW (0)(1, 3)G(1, 2)Γ(0)(2, 4′, 1′, 4)χ(4, 3, 4′, 3+) , (2.186)

Σ(1, 1′) = ΣH(1, 1′) + Σx(1, 1′) + Σc(1, 1
′) . (2.187)

This does not seem to be useful since both Σ and its functional derivative with respect to G
appear in the last expression. However, together with (2.131) and (2.156), (2.187) forms a closed
hierarchy of equations. For example, after having solved for G0, one could set, in a first step
Γ0 = 0 so that one has

Σ = ΣH + Σx ,

with which (2.131) is solved. Afterwards, one can take the functional derivative with respect
to the resulting Green’s function, solve (2.156) and insert the resulting χ (together with Σ0)
into (2.187) which results in a more complicated expression for Σ. Repeating this procedure an
infinite amount of times, the complete skeleton series for Σ will eventually be created and the
exact G could be evaluated.

In practice, one typically takes one additional step. Decomposing the 4-point vertex

Γ(0)(1, 2, 1′, 2′) = Γ
(0)
H (1, 2, 1′, 2′) + Γ(0)

xc (1, 2, 1′, 2′)

= i
ΣH(1, 1′)

δG(2′, 2)
+ i

Σxc(1, 1
′)

δG(2′, 2)

(2.188)
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substituting it into (2.187) and using (2.185), we obtain

Σ(1, 1′) =ΣH(1, 1′) + iW 0(1, 1′)G(1, 1′)

+ iG(1, 1′)W (0)(1, 2)χ(4′, 3, 4, 3+)δ(2, 4′)δ(2, 4)W (0)(2, 1′)

+ iG(1, 1′)W (0)(1, 3)χ(4′, 3, 4, 3+)Γ(0)
xc (2, 4, 1′, 4′) .

(2.189)

This expression for Σ is equivalent to the expression given by Maggio and Kresse in ref. [131].
We can then factor out an additional term,

W (1, 1′) ≡W 0(1, 1′) +W (0)(1, 2)χ(4′, 3, 4, 3+)δ(2, 4′)δ(2, 4)W (0)(2, 1′)

=W (0)(1, 2) +W (0)(1, 2)χ(0)(4′, 3, 4, 3+)δ(2, 4′)δ(2, 4)W (2, 1′) ,
(2.190)

which takes the form of a Dyson equation. Writing out the kernel of the equation

χ(6, 4, 5, 4+)δ(3, 6)δ(3, 5) = iG2(3, 4, 3
+, 4+) − iG(0)(3, 3+)G(0)(4, 4+) , (2.191)

using (2.64) and identifying the density operator

n̂(1) = lim
t2→t+1

∫
d2ψ̂(1)δ(r1 − r2)δσσ′ψ̂†(2) , (2.192)

we see that

P (3, 4) =χ(6, 4, 5, 4+)δ(3, 6)δ(3, 5)

= −
〈

Φ
(N)
0

∣∣∣n̂(3)n̂(4)
∣∣∣Φ(N)

0

〉
−
〈

Φ
(N)
0

∣∣∣n̂(3)
∣∣∣Φ(N)

0

〉〈
Φ
(N)
0

∣∣∣n̂(4)
∣∣∣Φ(N)

0

〉 (2.193)

describes how the charge density of the N -electron system is modified by an external perturba-
tion. This quantity is also called density-density response, or polarizability. We can also define
its irreducible counterpart,

P (0)(1, 2) = −iG(1, 2)G(2, 1+) , (2.194)

which follows directly from the definition of the non-interacting generalized susceptibility (2.153).
Both quantities fulfill

P (0)(1, 2) = P (0)(2, 1) (2.195)

and
P (1, 2) = P (2, 1) . (2.196)

We can then rewrite (2.190) in the compact form

W (1, 2) =W (0)(1, 2) +W (0)(1, 3)P (3, 4)W (0)(3, 2) (2.197)

W (1, 2) =W (0)(1, 2) +W (0)(1, 3)P (0)(3, 4)W (3, 2) . (2.198)
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The self-energy (2.187) can then be rewritten using this quantity and together with (2.156),
(2.131), (2.197) (2.164) and (2.201), forms a closed set of equations. This set is the final result
of this section and is summarized below:

G(1, 2) =G0(1, 2) +G(0)(1, 3)Σ(0)(3, 4)G(4, 2) (2.199)

χ(1, 2, 1′, 2′) =χ(0)(1, 2, 1′, 2′) + χ(0)(1, 4, 1′, 3)Γ(0)(3, 5, 4, 6)χ(6, 2, 5, 2′) (2.200)

P (1, 2) =χ(3, 2, 4, 2+)δ(3, 1)δ(4, 1) (2.201)

W (1, 2) =W (0)(1, 2) +W (0)(1, 3)P (3, 4)W (0)(3, 2) (2.202)

Σ(1, 2) =ΣH(1, 2) + iG(1, 2)W (1, 2) + iG(1, 3)W (0)(1, 4)χ(6, 4, 5, 4+)Γ(0)
xc (3, 5, 2, 6)

(2.203)

This set of equations is equivalent to the four equations by Starke and Kresse, eqs. 32-34 and
eq. 44 in ref. [69], and to Hedin’s equations67, as has been shown by Starke and Kresse69.

2.3 Green’s Functions and Quasiparticles

Before introducing some common approximations to the equations above, we discuss some prop-
erties of single- and two-particle Green’s functions.

2.3.1 The Single-Particle Green’s function

Using eqs. (2.32) and (2.51) and the identities (2.33), the single-particle Green’s function defined
in (2.117) can be written as

G(1, 2) = Θ(t1 − t2)G>(1, 2) − Θ(t2 − t1)G<(2, 1) , (2.204)

with

G>(1, 2) = − i
〈

Ψ
(N)
0

∣∣∣ψ̂>(1)ψ̂†
>(2)

∣∣∣Ψ(N)
0

〉
(2.205)

G<(1, 2) = − i
〈

Ψ
(N)
0

∣∣∣ψ̂<(1)ψ̂†
<(2)

∣∣∣Ψ(N)
0

〉
. (2.206)

G> and G< are respectively called greater and lesser Green’s function. The greater component
is the probability amplitude that an electron with energy higher than the chemical potential
is created at space-time point 2 and destroyed at space-time point 1. The lesser component is
the probability amplitude that a hole with energy lower than the chemical potential is created
at space-time point 1 destroyed at space-time point 2. Note, that per definition t1 > t2. A
hole going backwards in time is equivalent to an electron moving forward in time. Since the
single-particle Green’s function describes the propagation of an electron, it is also called electron
propagator.



44 CHAPTER 2. MANY-BODY PERTURBATION THEORY

The single-particle propagator is zero for σ1 ̸= σ2 due to conservation of spin. Therefore,
we ignore spin in the following discussion. Using (2.205), (2.58), and (2.46), we obtain for the
greater (2.205) and the lesser components (2.206)

G>(1, 2) = − i
〈

Ψ
(N)
0

∣∣∣eiĤt1ψ̂>(x1)e
−iĤt1e−iĤt2ψ̂†

>(x2)e
iĤt2

∣∣∣Ψ(N)
0

〉
G<(1, 2) = − i

〈
Ψ

(N)
0

∣∣∣eiĤt1ψ̂<(x1)e
−iĤt1e−iĤt2ψ̂†

<(x2)e
iĤt2

∣∣∣Ψ(N)
0

〉 (2.207)

We can now insert the completeness relation of the Slater determinants (2.17) to obtain the
Lehmann representations of both components

G>(1, 2) = − i
∞∑
n

〈
Ψ

(N)
0

∣∣∣eiĤt1ψ̂>(x1)e
−iĤt1

∣∣∣Ψ(N ′)
n

〉〈
Ψ(N ′)

n

∣∣∣e−iĤt2ψ̂†
>(x2)e

iĤt2
∣∣∣Ψ(N)

0

〉
G<(1, 2) = − i

∞∑
n

〈
Ψ

(N)
0

∣∣∣eiĤt1ψ̂<(x1)e
−iĤt1

∣∣∣Ψ(N ′)
n

〉〈
Ψ(N ′)

n

∣∣∣e−iĤt2ψ̂†
<(x2)e

iĤt2
∣∣∣Ψ(N)

0

〉
.

(2.208)

|Ψ(N)
n ⟩ is an eigenstate of Ĥ with eigenvalue E

(N)
n and from the series representation of the

exponential it follows that

G>(1, 2) = − i

∞∑
n

e
−i

(
E

(N)
0 −E

(N′)
n

)
(t1−t2)

〈
Ψ

(N)
0

∣∣∣ψ̂>(x1)
∣∣∣Ψ(N ′)

n

〉〈
Ψ(N ′)

n

∣∣∣ψ̂†
>(x2)

∣∣∣Ψ(N)
0

〉
G<(1, 2) = − i

∞∑
n

e
−i

(
E

(N)
0 −E

(N′)
n

)
(t1−t2)

〈
Ψ

(N)
0

∣∣∣ψ̂<(x1)
∣∣∣Ψ(N ′)

n

〉〈
Ψ(N ′)

n

∣∣∣ψ̂†
<(x2)

∣∣∣Ψ(N)
0

〉
.

(2.209)

This implies that the single particle Green’ function only depends on the time-difference,

G(1, 2) = G(x1, x2, t1 − t2) . (2.210)

Explicit expressions for the non-interacting Green’s Function

Let us now evaluate the expectation values of the field operators. Inserting their definitions
(2.30) and (2.31), and considering (2.18) and (2.19) we obtain in the non-interacting case for
N ′ = N ± 1 〈

Φ(N+1)
n

∣∣∣ψ̂†
>(x)

∣∣∣Φ(N)
0

〉
=
∑
k

ϕ∗k(x)Θ(ϵk − µ)δnk〈
Φ
(N)
0

∣∣∣ψ̂>(x)
∣∣∣Φ(N+1)

n

〉
=
∑
k

ϕk(x)Θ(ϵk − µ)δnk〈
Φ(N−1)
n

∣∣∣ψ̂†
<(x)

∣∣∣Φ(N)
0

〉
=
∑
k

ϕk(x)Θ(µ− ϵk)δnk〈
Φ
(N)
0

∣∣∣ψ̂<(x)
∣∣∣Φ(N−1)

n

〉
=
∑
k

ϕ∗k(x)Θ(µ− ϵk)δnk .

(2.211)
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Since the overlap of Slater determinants corresponding to different N -particle sectors of Fock
space is zero, all matrix elements in (2.209) with N ′ ̸= N ± 1 are zero. Finally, we can rewrite
the exponential. We notice, that

E
(N)
0 =

∑
n

ϵn, ϵn < µ , (2.212)

due to the Pauli exclusion principle. The N + 1 particle system has one electron more, so the
energy difference in the exponential is simply

E
(N)
0 − E

(N+1)
k = −(ϵk − µ) < 0 . (2.213)

The lesser component of the Green’s function is obtained analogously. Putting everything to-
gether, we obtain in the non-interacting case

G
(0)
> (1, 2) = −i

∑
k

Θ(ϵk − µ)ϕk(x1)ϕ
∗
k(x2)e

−i(ϵk−µ)(t1−t2)

G
(0)
< (1, 2) = −i

∑
k

Θ(µ− ϵk)ϕ∗k(x1)ϕk(x2)e
−i(ϵk−µ)(t1−t2)

(2.214)

and therefore the final form of the non-interacting time-ordered propagator is

G(0)(x1, x2, t1 − t2) = − iΘ(t1 − t2)
∑
k

Θ(ϵk − µ)e−i(ϵk−µ)(t1−t2)ϕk(x1)ϕ
∗
k(x2)

+ iΘ(t2 − t1)
∑
k

Θ(µ− ϵk)e−i(ϵk−µ)(t1−t2)ϕk(x1)ϕ
∗
k(x2) .

(2.215)

Let us now look at the single-particle Green’s function in frequency space. The Fourier transform
of (2.204) with respect to time is formally given as

G(0)(x1, x2, ω) =

∫
d(t1 − t2)e

iω(t1−t2)G(0)(x1, x2, t1 − t2) . (2.216)

This expression is ill-defined, since the Fourier transform of the Heaviside step function is not a
function, but a distribution. However, we can write the Fourier transform in terms of a two-sided
Laplace transforms L,

L [f ] (s) =

∫
e−stf(t)dt , (2.217)

where we define
s = lim

η→0+
iω ± η . (2.218)

In particular, the Laplace transform of the Heaviside step function is well defined and is given
as ∫

θ(±t)eiωt∓ηt =
±i

ω ± iη
. (2.219)
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We can now write∫
dteωt [Θ(t) − Θ(−t)] e−ixt

= lim
η→0+

∫ ∞

0
d(−t)Θ(t)e(iω−ix+η)t + lim

η→0+

∫ ∞

0
dtΘ(−t)e(iω−ix+η)t .

(2.220)

Using (2.219), and (2.220), we obtain

L
{

[Θ(t) − Θ(−t)] e−ixt
}

(s) =
i

ω − x+ iη
− i

ω − x− iη
, (2.221)

which implies

lim
η→0+

[
i

ω − x+ iη
− i

ω − x− iη

]
= 2πδ(ω − x) . (2.222)

With the substitution x = ϵk − µ and with (2.214) we therefore obtain for non-interacting
electrons

G(0)(x1, x2, ω) = lim
η→0+

∑
k

ϕk(x1)ϕ
∗
k(x2)Θ(ϵk − µ)

1

ω − (ϵk − µ) + iη

+ lim
η→0+

∑
k

ϕk(x1)ϕ
∗
k(x2)Θ(µ− ϵk)

ω − (ϵk − µ) − iη
.

(2.223)

Imaginary time and Imaginary Frequency Representations

The real time and real frequency representations of the Green’s function are useful since they give
it a clear physical meaning. Mathematically, working on the real axes is cumbersome. On the
real frequency axis, the Green’s function has poles. On the real time axis, the Green’s function is
oscillating. Informally, one can introduce an imaginary-time representation of the single-particle
Green’s function (2.209) by the replacement t→ −iτ . Eq. (2.209) becomes

G>(x1, x2, iτ) = − i
∞∑
n

e
−
(
E

(N)
0 −E

(N′)
n

)
τ〈

Ψ
(N)
0

∣∣∣ψ̂>(x1)
∣∣∣Ψ(N ′)

n

〉〈
Ψ(N ′)

n

∣∣∣ψ̂†
>(x2)

∣∣∣Ψ(N)
0

〉
G<(x1, x2, iτ) = − i

∞∑
n

e
−
(
E

(N)
0 −E

(N′)
n

)
τ〈

Ψ
(N)
0

∣∣∣ψ̂<(x1)
∣∣∣Ψ(N ′)

n

〉〈
Ψ(N ′)

n

∣∣∣ψ̂†
<(x2)

∣∣∣Ψ(N)
0

〉
.

(2.224)

Unlike in the non-interacting case, we can not obtain a simple analytical expression for the

action of the field operators on
∣∣∣Ψ(N)

0

〉
since

∣∣∣Ψ(N)
0

〉
is not a single Slater-determinant. How-

ever, recalling the definition of the field operators eqs. (2.30)–(2.32) we know that for instance

ψ̂†
<(x2)

∣∣∣Ψ(N)
0

〉
is an interacting N − 1-particle state since ψ̂†

< creates a hole below the chemical

potential. Therefore, we know that in the lesser propagator only the terms with N ′ = N − 1 and
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in the greater propagator only the terms with N ′ = N + 1 remain. We now define the Lehmann
amplitudes

ψ−,k(x) =
〈

Φ
(N)
0

∣∣∣ψ̂(x)<

∣∣∣Φ(N−1)
k

〉
ψ+,k(x) =

〈
Φ
(N)
0

∣∣∣ψ̂(x)>

∣∣∣Φ(N+1)
k

〉 (2.225)

and the energy differences

E
(+)
k =E

(N)
0 − E

(N+1)
k

E
(−)
k =E

(N)
0 − E

(N−1)
k ,

(2.226)

with which, together with eq. (2.224), we can write (2.204) as

G(x1, x2, iτ) = −iΘ(τ)
∑
k

e−E
(+)
k τψ+,k(x1)ψ

∗
+,k(x2) + iΘ(−τ)

∑
k

e−E
(−)
k τψ−,k(x1)ψ

∗
−,k(x2) .

(2.227)
In the non-interacting case, eqs. (2.214) and (2.215) become

G
(0)
> (x1, x2, iτ) = −i

∑
k

Θ(ϵk − µ)ϕk(x1)ϕ
∗
k(x2)e

−(ϵk−µ)τ

G
(0)
< (x1, x2, iτ) = −i

∑
k

Θ(µ− ϵk)ϕ∗k(x1)ϕk(x2)e
−(ϵk−µ)τ

(2.228)

and
G(0)(x1, x2, iτ) = − iΘ(τ)

∑
k

Θ(ϵk − µ)e−(ϵk−µ)τϕk(x1)ϕ
∗
k(x2)

+ iΘ(−τ)
∑
k

Θ(µ− ϵk)e−(ϵk−µ)τϕk(x1)ϕ
∗
k(x2) .

(2.229)

These expression are useful since the Green’s functions are exponentially decaying function of
imaginary time. We can then transfer these expressions to the imaginary frequency axis using
Laplace transforms followed by analytic continuation to the imaginary axis (for convenience we
will refer to them often as Fourier transforms even though strictly speaking they are not).132 For
a general meromorphic function they can be written as

F (iτ) =
i

2π

∫
dωF (iω)e−iωτ (2.230)

and

F (iω) = −i
∫
dτF (iτ)eiωτ . (2.231)

In particular, we can write (2.231) as

F (iω) = −i
∫ ∞

0
dτF (iτ)eiωτ − i

∫ ∞

0
dτF (−iτ)e−iωτ , (2.232)
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which is useful for functions involving step functions.
The expressions eqs. (2.230) and (2.231) are not uniquely defined and different conventions

can be found in the literature for the signs of the arguments of the exponential. Also in our
work, we have typically used these equations with opposite signs.36,37,40 Both choices are fine
in principle, but they need to yield the correct definition of the Green’s function on the real
frequency axis (see below). This means, they need to be compatible with the definition of the
time-ordered Green’s function in imaginary time eqs. (2.227) and (2.229). The correct defini-
tions of eqs. (2.230) and (2.231) are of particular importance in implementations of MBPT using
the space-time method132,133 on which our implementation is based. In the space-time litera-
ture, conventions differ: For instance, Godby and coworkers132 and also Wilhelm et al.6 define
eqs. (2.230) and (2.231) with opposite signs in the exponentials, but our notation agrees with
Kresse and coworkers134 (and also standard textbooks135,136). Importantly, in our first paper
detailing the implementatinon of GW 36 we have defined the time-ordered propagators and the
Fourier transforms in accordance with Godby and coworkers.132 There are good reasons to adjust
this choice here since the present definition of the time-ordered propagator follows naturally from
MBPT. In contrast, it is not clear how the expression for the propagator given in132 (eq. 3.3)
can be derived. The time-ordered propagator in there is the anti-time-ordered Green’s func-
tion137 (which are exponentially increasing in imaginary time) but with opposite signs in the
exponentials to make same exponentially decaying in imaginary time.

Using (2.232) we obtain the imaginary frequency representation of (2.227) as

G(x1, x2, iω) =
∑
k

ψ+,k(x1)ψ
∗
+,k(x2)

iω − E
(+)
k

+
∑
k

ψ−,k(x1)ψ
∗
−,k(x2)

iω − E
(−)
k

. (2.233)

In the non-interacting case, we obtain

G(0)(x1, x2, iω) =
∑
k

Θ(ϵk − µ)
ϕk(x1)ϕ

∗
k(x2)

iω − (ϵk − µ)
+
∑
k

Θ(µ− ϵk)
ϕk(x1)ϕ

∗
k(x2)

iω − (ϵk − µ)
, (2.234)

which simplifies to

G(0)(x1, x2, iω) =
∑
k

ϕk(x1)ϕ
∗
k(x2)

iω − (ϵk − µ)
(2.235)

since Θ(ϵk −µ) + Θ(µ− ϵk) = 1 for all k. By giving up the restriction to either real or imaginary
frequency axis and analytical continuation of G to the complex plane,15 we can also express
(2.233) in an alternative spectral form,138

G(x1, x2, z) =
∑
k

ψk(x1, z)ψ
∗
k(x2, z)

z − ϵQP
k

, (2.236)

which is more general than (2.233).
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Spectral Functions

The non-interacting Green’s function as defined in (2.223) becomes diagonal in the basis of
single-particle states. By combination of (2.223) and the Dyson equation (2.131), we therefore
obtain another important representation of the interacting single-particle Green’s function,

Gkk′(ω) = lim
η→0+

[ω − iη − ϵk − Σkk′ ]
−1 . (2.237)

The spectral function A is defined by15

Akk′(ω) = − 1

π
lim

η→0+
Im Gkk′(ω + iη) . (2.238)

or alternatively through the analytical continuation of the single-particle Green’s function to the
complex plane15

G(z) =

∫
dω

A(ω)

z − ω
. (2.239)

Using (2.237) and splitting the self-energy into real and imaginary parts, we obtain for the
diagonal elements of A,

Akk(ω) = − 1

π

Im Σkk(ω)∣∣ω − ϵk − Re Σkk(ω)
∣∣2 +

∣∣Im Σkk(ω)
∣∣2 . (2.240)

We have already mentioned that QPs with energy ϵQP can be identified with poles in the single-
particle Green’s function. This motivates the definition of the QP dispersion relation

ϵQP
K = ϵk + Re Σkk(ϵQP

K ) . (2.241)

In a Fermi liquid one then defines139 the Fermi surface as

ϵkF
+ Re Σ(0,kF ) = 0 , (2.242)

and therefore, by definition
ϵQP (kF ) = 0 . (2.243)

We now need to assume that this behavior carries over to a finite system close to the chemical
potential. Fermi liquid theory assumes that the self-energy is approximately linear around the
Fermi level.34 For finite systems, we assume that this implies that the self-energy is is approxi-
mately linear around the chemical potential. We can then also expand the frequency dependence
of Σ around ϵk,

Σk(ϵQP
k ) = Re Σk(ϵk) +

∂Re Σk(ω)

∂ω

∣∣∣∣∣
ω=ϵk

(
ϵQP
k − ϵk

)
+ . . . , (2.244)
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and truncate after the first derivative. One then typically defines a renormalization factor Z as

Zk(ω) =

(
1 − ∂Re Σkk(ω)

∂ω
|
ω=EQP

k

)−1

. (2.245)

We can then write the QP dispersion relation in the vicinity of the chemical potential as

ϵQP
k = ϵk + Zk(ϵk)Re Σkk(ϵk) , ϵQP

K ≈ µ . (2.246)

We now also assume that a similar relation holds for the imaginary part of the self-energy close
to the chemical potential, for which we write

− Im Σkk(ϵQP
K ) = γk ×

(
ϵQP
K

)2
+ O

((
ϵQP
K

)4)
, ϵQP

K ≈ µ . (2.247)

Using this expansion as well as (2.246), we obtain through eq. (2.240),

Akk(ω) =
1

π

γkZk(ϵQP
K )

(
ϵQP
K

)2
[
ϵk − ϵQP

K

]2
+ Z2

k

(
ϵQP
k

)
γ2k

(
ϵQP
K

)4 , (2.248)

which reduces to
Akk(ω) = Zk(ϵQP

K )δ(ϵk − ϵQP
K ) , ϵQP

K ≈ µ . (2.249)

Therefore, the spectral function can be written as140

Akk(ω) = Zk(ϵQP
K )δ(ϵk − ϵQP

K ) +Ainc
kk (ω) , (2.250)

where Ainc describes the incoherent part of the spectral function beyond the linear terms in
eqs. (2.246) and (2.247). Through (2.239), we finally obtain (defining Zk = Zk(ϵQP

K ))

Gkk(iω) = ZkG
(0)
kk +Ginc

kk (iω) , (2.251)

where Ginc is defined by (2.239) and denotes the incoherent part of the interacting single-particle
propagator, i.e. the part which does not have QP character.140–142

Dyson’s Equation as effective single-particle Equation

Eq. (2.236) allows us to rewrite Dyson’s equation (2.199) as an effective single-particle equation.
We first note that

i
∂

∂t1
G(0)(x1, x2, t1 − t2) = δ(t1 − t2)δ(x1 − x2) + h1(x1)G

(0)(x1, x2, t1 − t2) , (2.252)
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i.e. G(0) is the inverse of the time-dependent single-particle Schrödinger equation. This follows
from the definition of the time-ordered G(0) together with

∂Θ(t− t′)

∂t
= δ(t− t′) .

Upon rotation to the complex plane and subsequent Fourier transformation, eq. (2.252) be-
comes143

[z − h1(r1)]G
(0)(x1, x2, z) = 1 . (2.253)

Using this identity and multiplying by
[
G(0)

]−1
from the left we obtain

[z − h1(r1)]G(1, 1′) − Σ(1, 3)G(3, 1′) = δ(1, 1′) (2.254)

through (2.199). With eqs. (2.129) and (2.130) we can also rewrite (2.199) in the form

G = G(0) +GΣG(0) (2.255)

and therefore we can also obtain the relation

G(1′, 1) [z − h1(r1)] −G(1′3)Σ(3, 1) = δ(1, 1′) . (2.256)

Inserting the spectral decomposition of G eq. (2.236) into (2.254) and using the analytical con-
tinuation of G(0) to the complex plane, we get∑

p

ψ∗
p(r2)

z − ϵQP
p

{
[z − h1(r1)]ϕp(r1) −

∫
dr3Σ(r1, r3, z)ϕp(r3)

}
= δ(r − r′) . (2.257)

With slight abuse of notation we have used the fact that Σ is diagonal in spin. In case p denotes
a spatial orbital amd not a spin-orbital, the above relation holds for σ = α and σ = β separately.
Multiplying with z − ϵQP

p from the left and taking the limit z → ϵQP
p , we get

lim
z→ϵQP

p

(
z − ϵQP

p

)∑
p

ψ∗
p(r2)

z − ϵQP
p

{
[z − h1(r1)]ϕp(r1) −

∫
dr3Σ(r1, r3, z)ϕp(r3)

}
= lim

z→ϵQP
p

(
z − ϵQP

p

)
δ(r − r′) .

(2.258)

The r.h.s. of this expression is clearly zero everywhere. However, the l.h.s. can only be zero if
the term in curly brackets vanishes since ψ∗

p(r2) is never zero for all r2. An analogous derivation
starting from (2.256) leads to the same relation for the conjugated Dyson amplitudes. We
therefore obtain the QP equations144

h1(r1)ψp(r1) +

∫
dr3Σ(r1, r3, ϵ

QP
p )ψp(r3) =ϵQP

p ψp(r1)

ψ∗
p(r1)h1(r1) +

∫
dr3ψ

∗
p(r3)Σ(r3, r1, ϵ

QP
p ) =ψ∗

p(r1)ϵ
QP
p

(2.259)
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Physical interpretation of (2.259)

Superficially, eq. (2.259) resembles the independent-particle Schrödinger equation (2.7), with h1
replaced by h1+Σ. However, the presence of the non-hermitian self-energy introduces important
differences. First, the operator on the l.h.s. of (2.259) is diagonalized by a set of non-orthogonal
eigenvectors. The ψ∗

k are the dual basis to ψk and therefore by definition138 they satisfy an
orthogonality condition. Additionally, we can require the ψk to be normalized which then results
in the orthonormality condition ∫

dx ψ∗
k(x, z)ψ′

k(x, z) = δkk′ . (2.260)

Galitskii and Migdal145 have shown that the energies and lifetimes of QPs are given by the poles
of the single-particle propagator defined in (2.117). Using (2.259) this has for instance been
discussed by Layzer146 and Sham and Kohn.144 Good discussion can also be found in ref. [138]
and ref. [127]. If the equation

z − Ek(z) = 0 (2.261)

has a solution, (2.236) has a pole in the complex plane. This signifies a true eigenstate of the
N + 1 or N −1 particle system, where the real part of z (or equivalently Ek(z)) can be identified
with the energy of the QP while the imaginary part is proportional to the lifetime of the QP.
In case the imaginary part of Ek(z) is zero, the lifetime of the QP is infinite. It is also possible
that (2.261) does not have a solution. In that case, one can search for the z which minimizes the
residual of (2.259)

min (z − Ek(z)) , (2.262)

which then signify approximate eigenstates of the N ± 1 particle system.
The many-body eigenstates of an interacting system are not Slater determinants and therefore

the eigenstates of (2.259) can not be interpreted as single-particle orbitals. However, the basic
idea of perturbation theory was to transform the non-interacting particles into approximately
non-interacting QPs. Therefore, we can think of the eigenstates of (2.259) as approximate single
QP orbitals. The quality of this approximation can be quantified by calculating the norm of the

QP orbital: We can ask to what extend the state Ψ
(N+1)
k can be regarded as a single-particle

excitation from the ground state. That is, we need to choose a (normalized) non-interacting
single particle state ϕi in a way that the overlap〈

Ψ
(N+1)
k

∣∣∣ĉ†ϕ∣∣∣Ψ(N)
k

〉
is maximized, with the definition

ĉ†ϕ =

∫
dxϕ∗(x)Ψ̂†(x) .

This translates into the condition

∥ψk∥ = max
ϕ

{〈
Ψ

(N+1)
k

∣∣∣ĉ†ϕ∣∣∣Ψ(N)
k

〉
, ∥ϕ∥ = 1

}
. (2.263)
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The QP orbital corresponding to an excitation creating the N + 1 (N − 1) single-particle state
is therefore the ψk which is created by injecting an electron into (removing an electron from)
the orbital ϕ which maximizes its norm. Strictly speaking, the validity of the single QP picture
implies the existence of a ϕ such that ∥ψk∥ = 1, since by construction there is a one-to-one corre-
spondence between the QP states and the excited many-body states of the N ± 1 particle states.
This is equivalent to saying that the N ± 1 can be represented by a single Slater determinant
made of QP orbitals. For weakly correlated systems, we expect the single QP picture to be valid
to a very good approximation and therefore we expect that here is one QP orbital with norm
almost equal to 1.34,138 In case the imaginary part of the self-energy is zero, the dual basis and
the basis of QP states become equal since Σ becomes Hermitian and therefore (2.260) implies
the existence of a QP state with norm exactly equal to 1. This observation is important for the
approximations to Σ we will introduce below. Before we do so, we discuss the properties of the
2-particle Green’s function.

2.3.2 The two-particle Green’s function

The non-interacting 2-particle Green’s function has been defined in (2.118) and is repeated here
for completeness

G2(1, 2, 1
′, 2′) = −

〈
Φ
(N)
0

∣∣∣T [ψ̂(1)ψ̂(2)ψ̂†(2′)ψ̂†(1′)
] ∣∣∣Φ(N)

0

〉
. (2.264)

We are here only interested in the description of the process in which a hole below the chemical
potential and an electron above the chemical potential are simultaneously created at t = t1′ = t+1
which are then both destroyed at t = t2′ = t+2 . We can then define the electron-hole propagators,

G>
eh(1, 2, 1′, 2′) =

〈
Φ
(N)
0

∣∣∣T [ψ̂†(1′)ψ̂(1)ψ̂†(2′)ψ̂(2)
] ∣∣∣Φ(N)

0

〉 ∣∣∣t1′=t+1
t2′=t+2

(2.265)

and
G<

eh(1, 2, 1′, 2′) =
〈

Φ
(N)
0

∣∣∣T [ψ̂†(2′)ψ̂(2)ψ̂†(1′)ψ̂(1)
] ∣∣∣Φ(N)

0

〉 ∣∣∣t1′=t+1
t2′=t+2

, (2.266)

which are the building blocks of the time-ordered electron-hole Green’s function. In particular,
we have

G>
eh(1, 2, 1′, 2′) = G<

eh(1′, 2′, 1, 2) . (2.267)

This object is similar to the single-particle Green’s function with the only difference that electron-
hole pairs are Bosons. Therefore, using (2.52) the time-ordered electron-hole Green’s function is
defined by

Geh(1, 2, 1′, 2′) =Θ(t1 − t2)G
>
eh(x1, x1′ ;x2, x2′ , t1 − t2)

+ Θ(t2 − t1)G
<
eh(x1, x1′ ;x2, x2′ , t1 − t2) .

(2.268)
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Using the same arguments leading to (2.209), we can now use (2.46) to obtain the Lehmann
representation of (2.268). For instance, for the greater contribution we have

G>
eh(1, 1′, 2, 2′) = −

∞∑
S

〈
Ψ

(N)
0

∣∣∣e−iĤt1ψ̂†(x1′)ψ̂(x1)e
iĤt1

∣∣∣Ψ(N ′)
S

〉
×
〈

Ψ
(N ′)
S

∣∣∣e−iĤt2ψ̂†(x2′)ψ̂(x2)e
iĤt2

∣∣∣Ψ(N)
0

〉
= −

∑
S

e
−i(t1−t2)

(
E

(N)
S −E

(N)
0

) 〈
Ψ

(N)
0

∣∣∣ψ̂†(x1′)ψ̂(x1)
∣∣∣Ψ(N)

S

〉
×
〈

Ψ
(N)
S

∣∣∣ψ̂(x2′)ψ̂
†(x2)

∣∣∣Ψ(N)
0

〉
,

(2.269)

where we have used for the last equation that the 2-particle Green’s function only contain pairs of
creation and anihilation operators in each factor so that only N -particle states remain. Therefore,
the exponential in the last equation only contains the energy differences of the system in its
ground and excited states. From now on, we abbreviate the 2-particle Lehman-amplitudes as

χS(x1, x1′) =
〈

Ψ
(N)
0

∣∣∣ψ̂†(x1′)ψ̂(x1)
∣∣∣Ψ(N)

S

〉
. (2.270)

In practice, we will be interested in the time-ordered generalized susceptibilities, defined by
(2.152). The time-ordered electron-hole generalized susceptibility becomes

χeh(1, 2, 1′, 2′) =iGeh(1, 2, 1′, 2′) − i lim
t1′→t+1

G(1, 1′) lim
t2′→t+2

G(2, 2′) . (2.271)

Due to the equal-time limits in the single-particle Green’s function, they reduce to 1-particle
density matrices,

n(x1, x1′) =
〈

Ψ
(N)
0

∣∣∣ψ̂(x1)ψ̂
†(x1′)

∣∣∣Ψ(N)
0

〉
.

Inserting this result together with (2.269) into (2.271) and using (2.270) and (2.267), we obtain

χeh(1, 2, 1′, 2′) =iΘ(t1 − t2)G
>
eh(1, 2, 1′, 2′) + iΘ(t2 − t1)G

<
eh(1, 2, 1′, 2′)

− i lim
t1′→t+1

G(1, 1′) lim
t2′→t+2

G(2, 2′)

=iΘ(t1 − t2)G
>
eh(1, 2, 1′, 2′) + iΘ(t2 − t1)G

>
eh(1′, 2′, 1, 2)

− i lim
t1′→t+1

G(1, 1′) lim
t2′→t+2

G(2, 2′)

= − iΘ(t1 − t2)
∑
S ̸=0

e
−i(t1−t2)

(
E

(N)
S −E

(N)
0

)
χS(x1, x1′)χ

∗
S(x2′ , x2)

− iΘ(t2 − t1)
∑
S ̸=0

e
−i(t2−t1)

(
E

(N)
S −E

(N)
0

)
χ∗
S(x2, x2′)χS(x1′ , x1) ,

(2.272)
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i.e. the contribution from E
(N)
0 −E(N)

0 drops out due to the static contribution in χ. Introducing
the abbreviations

ΩS = E(N)
n − E

(N)
0 ,

and going to imaginary time (it1 − it2 = τ) we can rewrite the last expression more compactly
as

χeh(1, 2, 1′, 2′) = − iΘ(τ)
∑
S ̸=0

e−ΩSτχS(x1, x1′)χ
∗
S(x2′ , x2)

− iΘ(−τ)
∑
S ̸=0

e−ΩSτχ∗
S(x2, x2′)χS(x1′ , x1) .

(2.273)

The imaginary frequency representation is obtained from (2.231), where we use again (2.232),

χeh(x1, x2, x1′ , x2′ , iω) = −i
∫
dτ χeh(x1, x2, x1′ , x2′ , iτ)eiωτ

= − i

∫ ∞

0
dτ χeh(x1, x2, x1′ , x2′ , iτ)eiωτ − i

∫ ∞

0
dτ χeh(x1, x2, x1′ , x2′ ,−iτ)e−iωτ .

(2.274)

We thus obtain

χeh(x1, x2, x1′ , x2′ , iω) = −
∫ ∞

0
dτ
∑
S ̸=0

χS(x1, x1′)χ
∗
S(x2′ , x2)e

−(ΩS−iω)τ

−
∫ ∞

0
dτ
∑
S ̸=0

χS(x2, x2′)χ
∗
S(x1′ , x1)e

−(iω−ΩS)τ

=
∑
S ̸=0

χS(x1, x1′)χ
∗
S(x2′ , x2)

iω − ΩS
−
∑
S ̸=0

χS(x2, x2′)χ
∗
S(x1′ , x1)

iω + ΩS
.

(2.275)

We also need a corresponding expression for the non-interacting generalized susceptibility (2.153).

χ
(0)
eh (1, 2, 1′, 2′) = lim

t1′→t+1

lim
t2′→t+2

χ(0)(1, 2, 1′, 2′) = −i lim
t1′→t+1

lim
t2′→t+2

G(1, 2′)G(2, 1′) .
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Here, the Lehmann amplitudes can be expressed analytically using the imaginary time represen-
tation of the single-particle Green’s function (2.227),

χ
(0)
eh (x1, x2, x1′ , x2′ , iτ) = − iG(1, 2′)G(2, 1′)

= − i [Θ(τ)G>(x1, x2′ , τ) − Θ(−τ)G<(x2′ , x1, τ)]

× [Θ(−τ)G>(x2, x1′ ,−τ) − Θ(τ)G<(x1′ , x2,−τ)]

= iΘ(τ)G>(x1, x2′ , τ)G<(x1′ , x2,−τ)

+ iΘ(−τ)G<(x2′ , x1, τ)G>(x2, x1′ ,−τ)

= − iΘ(τ)
∑
kk′

e−(E
(+)
k −E

(−)

k′ )τψ+,k(x1)ψ
∗
+,k(x2′)ψ

∗
−,k′(x1′)ψ−,k′(x2)

− iΘ(−τ)
∑
kk′

e−(E
(−)
k −E

(+)

k′ )τψ∗
−,k(x2′)ψ−,k(x1)ψ+,k′(x2)ψ

∗
+,k′(x1′) .

(2.276)
The corresponding imaginary frequency representation can then again be obtained using (2.232).
We will postpone this discussion to the next chapter where we will recast the BSE for the
generalized susceptibility as an effective 2-particle Problem. Repeating the derivation (2.276)
and using (2.229), we obtain

χ
(0)
eh (x1, x2, x1′ , x2′ , iτ) = −iG(0)(1, 2′)G(0)(2, 1′)

= iΘ(τ)G
(0)
> (x1, x2′ , τ)G

(0)
< (x1′ , x2,−τ) + iΘ(−τ)G

(0)
< (x2′ , x1, τ)G

(0)
> (x2, x1′ ,−τ)

= − iΘ(τ)
∑
kk′

Θ(ϵk − µ)Θ(µ− ϵk′)e
−(ϵk−ϵk′ )τϕk(x1)ϕ

∗
k(x2′)ϕ

∗
k′(x1′)ϕk′(x2)

− iΘ(−τ)
∑
kk′

Θ(ϵk′ − µ)Θ(µ− ϵk)e−(ϵk′−ϵk)τϕ∗k′(x2′)ϕk′(x1)ϕk(x2)ϕ
∗
k(x1′) ,

(2.277)

for the imaginary time representation of χ(0). Using the definition of the polarizability

P (0)(x1, x2, iτ) = χ
(0)
eh (x1, x2, x1′ , x2′ , iτ)δ(x1, x1′)δ(x2, x2′) , (2.278)

we obtain

P (0)(x1, x2, iτ) = − iΘ(τ)
∑
kk′

Θ(ϵk − µ)Θ(µ− ϵk′)e
−(ϵk−ϵk′ )τϕk(x1)ϕ

∗
k(x2)ϕ

∗
k′(x1)ϕk′(x2)

− iΘ(−τ)
∑
kk′

Θ(ϵk′ − µ)Θ(µ− ϵk)e−(ϵk′−ϵk)τϕ∗k′(x2)ϕk′(x1)ϕk(x2)ϕ
∗
k(x1) .

(2.279)
For the numerical evaluation of the polarizability for closed-shell systems it is useful to integrate
out spin from the beginning. Also for some of the following derivations it is convenient to work
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with P (0)(r, r′, iτ) instead of P (0)(x, x′, iτ). Using eqs. (2.9) and (2.10) we obtain

P (0)(r1, r2, iτ) = − iΘ(τ)
∑
kk′

∑
σ=α,β

∑
σ′=α,β

Θ(ϵk − µ)Θ(µ− ϵk′)e
−(ϵk−ϵk′ )τ

× ϕk(r1)ϕ
∗
k(r2)ϕ

∗
k′(r1)ϕk′(r2) sk(σ1)s

∗
k(σ2)︸ ︷︷ ︸

δσ,σ′

s∗k′(σ1)sk′(σ2)︸ ︷︷ ︸
δσ,σ′

− iΘ(−τ)
∑
kk′

∑
σ=α,β

∑
σ′=α,β

Θ(ϵk′ − µ)Θ(µ− ϵk)e−(ϵk′−ϵk)τ

× ϕ∗k′(r2)ϕk′(r1)ϕk(r2)ϕ
∗
k(r1) s

∗
k′(σ2)sk′(σ1)︸ ︷︷ ︸

δσ,σ′

sk(σ2)s
∗
k(σ1)︸ ︷︷ ︸

δσ,σ′

,

(2.280)

which shows that the polarizability is diagonal in spin

P (0)(r1, r2, iτ) =
∑
kk′

−iΘ(τ)
∑

σ=α,β

Θ(ϵk − µ)Θ(µ− ϵk′)e
−(ϵk−ϵk′ )τ

× ϕk(r1, σ)ϕ∗k(r2, σ)ϕ∗k′(r1, σ)ϕk′(r2, σ)

− iΘ(−τ)
∑
kk′

∑
σ=α,β

Θ(ϵk′ − µ)Θ(µ− ϵk)e−(ϵk′−ϵk)τ

× ϕ∗k′(r2, σ)ϕk′(r1, σ)ϕk(r2, σ)ϕ∗k(r1, σ) .

(2.281)

We will therefore often use the expression

P (0)(r1, r2, iτ) =
∑

σ=α,β

P (0)(r1, r2, σ, iτ) (2.282)

2.3.3 One-Body expectation Values and Electron Interaction Energies

As seen before, one-body operators can be written as

Â =

∫
dx1dx2ψ̂

†(x1)O(x1, x2)ψ̂(x2) , (2.283)

where O trivially commutes with the fields. We can therefore write〈
Ψ

(N)
0

∣∣∣Â∣∣∣Ψ(N)
0

〉
= − i

∫
dxO(x1, x2) lim

t1→t+2

G(x1, x2, t1 − t2)

= − i

∫
dxO(x1, x2)G<(x1, x2, 0) .

(2.284)

For the density matrix, ρ(x1, x2) = ψ̂†(x1)ψ̂(x2), we therefore obtain

ρ(x1, x2) = −iG<(x1, x2, 0) . (2.285)
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Given a certain approximation to the self-energy, an expression for the electron-electron inter-
action energy (which we will often call the Hartree-exchange-correlation energy) follows from
(2.174) and multiplication from the left with ψ̂†(x, t),

EHxc[G] =
〈

Ψ
(N)
0

∣∣∣V̂ ∣∣∣Ψ(N)
0

〉
=

1

2

∫
dx′ lim

x→x′,t→t′

[
∂

∂t
+ ih(x)

]
G(x, x, t− t′) . (2.286)

The total electronic ground state energy

E = E0 +
〈

Ψ
(N)
0

∣∣∣V̂ ∣∣∣Ψ(N)
0

〉
is then given by the Galitskii-Migal formula,145

E =
1

2

∫
dx′ lim

x→x′,t→t′

[
∂

∂t
− ih(x)

]
G(x, x′, t− t′) . (2.287)

2.4 Approximations

Solving eqs. (2.199)–(2.203) exactly is not desirable since this would correspond to an exact
solution of the many-body problem which can be obtained much easier by diagonalization of
(2.1). Equations (2.199)–(2.203) are useful in situations were they can be truncated at low order
in W . The decisive quantity in these equations is the self-energy since it connects the single- and
two-particle Green’s functions. Approximations are therefore defined by the approximation made
for (2.203), i.e. by certain ways to truncate its skeleton expansion. Such approximations are
typically referred to as diagrammatic approximations. It turns out that already the evaluation
of just a few terms of the skeleton expansion of the self-energy is computationally demanding.

In contrast, non-diagrammatic approximations can not be represented graphically in terms
of diagrams. Non-diagrammatic approximations are often derived as certain approximations to
diagrammatic approximations, as for instance common approximations to the GW equations
which are central to this thesis. These approximations typically consist in combining the GW
approximation (or diagrammatic approximations beyond) with KS-DFT, which we will introduce
below.

2.4.1 The Hartree-Fock approximation

The HF approximation is one of the oldest approximations in quantum chemistry and its in-
vention predates the outlined formalism by far.79–82 It consists in approximating the self-energy
by

Σ(1, 1′) ≈ ΣHF (1, 1′) = ΣH(1, 1′) + Σx(1, 1′) . (2.288)

This approximation to Σ depends neither on the 4-point vertex nor on the 2-particle Green’s
function. Therefore, it amounts to solving (2.199),

GHF (1, 1′) = G(0)(1, 1′) +G(0)(1, 2)Σ
(0)
Hx(2, 3)GHF (3, 1′) . (2.289)
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The solution of this equation gives access to single-particle excitations and electron-electron
interaction energies. Optical absorption spectra are then obtained using the time-dependent
(TD) HF approximation with

Γ
(0)
Hx(1, 2, 1′, 2′) = i

δΣHx(1, 1′)

δG(2′, 2)
. (2.290)

The functional derivatives of (2.179) and (2.185) are respectively

i
δΣH(1, 1′)

δG(2′, 2)
= δ(1, 1′)δ(2′, 2)W (0)(1, 2) (2.291)

and

i
δΣx(1, 1′)

δG(2′, 2)
= δ(1, 1′)δ(1′, 2)W (0)(1, 1′) = −δ(1, 1′)δ(1′, 2)W (0)(1, 2) , (2.292)

leading to
χ(1, 2, 1′2′) =χ(0)(1, 2, 1′2′) + χ(0)(1, 4, 1′, 3)W (0)(3, 5)

× [δ(3, 4)δ(5, 6) − δ(3, 6)δ(4, 5)]χ(6, 2, 5, 2′)
(2.293)

for (2.200). It can be easily verified that the kernel of this equation fulfills the crossing symmetry
(2.172),

Γ
(0)
Hx(3, 5, 4, 6) =W (0)(3, 5) [δ(3, 4)δ(5, 6) − δ(3, 6)δ(4, 5)]

=W (0)(3, 5) [δ(3, 6)δ(5, 4) − δ(3, 4)δ(5, 6)]

= − Γ
(0)
Hx(3, 5, 6, 4) .

(2.294)

This property is important and we will come back to it in section. 2.4.5.
The HF approximation is not very useful by its own since the approximation (2.289) is rather

crude. It is typically used as starting point for further approximations using (2.137). The HF
self-energy is special since it contains all diagrams of the skeleton series figure 2.1c) which do not
depend explicitly on time. In fact, it is also fully determined by the 1-particle reduced density
matrix as the following calculation shows,

ΣHx(1, 1′) = − iδ(1, 1′)W (0)(1, 3)G(3, 3+) + iW (0)(1, 1′)G(1, 1′)

= − iδ(1, 1′)v(0)c (r1, r3)δ(t1 − t+3 )G(3, 3+) + ivc(r1, r1′)δ(t1 − t+1′)G(1, 1′) ⇒

ΣHx(r1, r1′) = − iδ(r1, r1′)

∫
dr3v

(0)
c (r1, r3)n(r3) − vc(r1, r1′)n(r1, r1′) .

(2.295)
This calculation also shows that ΣHx only depends on occupied single-particle states due to the
time-ordering in the δ-functions involving t (specified by the plus).

It can be shown that any self-energy approximation which does not depend on time is Her-
mitian: To see this one first decomposes the self-energy into it skew-Hermtian and Hermitian
parts and realizes that the skew-Hermitian part of Σ(ω) changes sign when ω = µ (for the rather
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complicated details of the proof see ref. [146]). The skew-Hermitian part therefore vanishes for
the HF self-energy which has important consequences. In the HF approximation both equa-
tions in (2.259) are equivalent (since the self-energy is Hermitian) and the amplitudes become
frequency-independent. Therefore, the HF approximation can be formulated as

h1(r1)ϕk(r1) +

∫
dr2Σ(x1, x2)ϕk(r2) = ϵkϕk(r1) , (2.296)

which is a single-particle problem with exactly the same properties as (2.7) and the associated
single-particle Green’s function has the same structure as G(0). In fact, the HF approximation is
the most complete diagrammatic expansion of the self-energy which retains the picture of non-
interacting electrons. This is seen from the most common derivation of the HF equations: the
HF equations are often derived by imposing that the many-body wave function can be written
as a single Slater determinant and by minimizing the expectation value of the Hamiltonian with
respect to the single-particle states under the constraint that they remain orthonormal.

Instead of non-interacting particles, however, the HF equations describes non-interacting QPs
whose external potential already contains the most important aspects of electron-electron inter-
action: The interaction of the electron with the average charge density produced by the other
electrons (described by the Hartree term) as well as the exchange interaction which accounts for
the antisymmetry of the Fermionic wave function. Therefore, the HF Green’s function is a suit-
able starting point for (2.137). As already indicated in (2.187), the electron-electron interactions
which are not described in the HF approximation are typically referred to as electron correlation
effects.

Similarly, the part of the electron-electron interaction energy beyond the energy resulting
from the HF self-energy is typically referred to as correlation energy. This distinction is somehow
arbitrary but makes sense if one uses perturbation theory based on the HF wavefunction. On the
other hand, in the self-consistent solution of Dyson’s equation beyond the HF approximation to
the self-energy, inclusion the higher-order terms will alter the HF density matrix and therefore the
Hartree-exchange contribution to the total electron-electron interaction energy will be different
than in the HF approximation.

It is instructive to also consider the Hartree-approximation. In this case, (2.296) becomes[
h1(r) + ΣH [n(r)]

]
ψk(r) = ϵHk ψk(r) , . (2.297)

The Hartree self-energy only depends on the elecron density and therefore (2.297) is even easier
to solve than (2.296).

2.4.2 The GW approximation

The GW approximation (GWA) extends the HF approximations by replacing the bare electron-
electron interaction vc by the dynamically screened interaction W . In the GWA, one first calcu-
lates the Hartree Green’s function

GH(1, 2) = G(1,2) +G(0)(1, 3)Σ
(0)
H (3, 4)GH(4, 2) , (2.298)
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One then obtains Γ
(0)
xc = 0 and Γ(0) = W (0). Using these expressions for Γ in eqs. (2.199)–(2.203)

one obtains the reduced set of equations

G(1, 2) =GH(1, 2) +GH(1, 3)Σ(0)(3, 4)G(4, 2) (2.299)

χ(1, 2, 1′, 2′) =χ(0)(1, 2, 1′, 2′) + χ(0)(1, 4, 1′, 3)Γ
(0)
H (3, 5, 4, 6)χ(6, 2, 5, 2′) (2.300)

W (1, 2) =W (0)(1, 2) +W (0)(1, 3)P (3, 4)W (0)(3, 2) (2.301)

Σ(1, 2) =ΣH(1, 2) + iG(1, 2)W (1+, 2) , (2.302)

which is typically referred to as the GW approximations since the series expansion of the self-
energy in terms of the screened electron-electron interaction52,67,68 beyond the Hartree terms
is truncated after first order in W . From a different point of view, the hierarchy of equations
eqs. (2.299)–(2.302) actually comprises two distinct approximations: the truncation of the 4-point
vertex in the self-energy (leading to the GW approximation) and of the 4-point vertex in the BSE
for χ. The approximation to χ (2.300) is known under several names depending on the context:
It is often referred to as time-dependent Hartree approximation since Γ(0) is approximated by the
functional derivative of the Hartee kernel. It is also termed bubble approximation (Due to the
diagrammatic form of the particle-hole bubble in figure 2.5a) which looks like a bubble) or random
phase approximation (RPA). The latter approximation is the most common name, even though
it is actually a misnomer (see discussion on page 252 of ref. [15]). A common approximation
to the correlation energy is also called RPA. To avoid confusion with the expression for the
screened electron-electron interaction, we will therefore sometimes refer to the latter one as
bubble approximation.

Figure 2.5a) shows how the screened interaction within the RPA is obtained from (2.200) as
an expansion in terms of the bare electron-electron interaction,

W = vc + vcχ
(0)vc + vcχ

(0)vcχ
(0)vc + . . . . (2.303)

Physically, (2.202) describes the screening of the electron-electron interaction due to the presence
of other electrons. The kernel P , which relates the bare to the screened interaction in (2.202) is
completely determined by the generalized susceptibility which describes all scattering processes
which can take place between 2 particles. The RPA transforms eq. (2.200) into eq. (2.300) which
describes non-interacting particle-hole pairs, interacting though the bare Coulomb interaction.

The self-energy in the GW approximation is shown diagrammatically in figure 2.5. Inserting
eq. (2.303) into the expression for the GW self-energy (2.302), one sees that it contains an infinite
amount of terms,

ΣGW = iGW = iGvc + iGvcχ
(0)vc + iGvcχ

(0)vcχ
(0)vc , (2.304)

with the first term in this expansion being the HF approximation to the self-energy. From
the perspective of quantum electrodynamics the HF self-energy describes a QP emitting a bare
photon and absorbing it again. In contrast, the GW self-energy describes a QP emitting a
renormalized photon and absorbing it again.
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W vc vc χ(0)vc vc χ(0)vc χ(0)vc

= + + +…
= + + +…

ΣHF = ΣGW =
vc W

G G

a)

b) c)

d)
δΣc

δG
= +

Figure 2.5: a) Diagrammatic representation of the screened electron-electron interaction in the
RPA. b) and c): Diagrammatic representations of different approximations to the self-energy
beyond the Hartree term. Black parts denote the self-energy contributions which, combined
with the blue parts give the single-particle Green’s function. b) HF self-energy, c) GW self-
energy. The HF self-energy is the first term in the expansion of the GW self-energy in terms
of the bare Coulomb interaction d) functional derivative of the self-energy with respect to G,
leading to one term in the particle-hole channel and another one in the particle-particle channel.

Generally speaking, already in the static limit, screening dampens the electron-electron in-
teractions at at large distances. We follow Mattuck112 and show this analytically by considering
the homogeneous electron gas. On the reciprocal lattice, the RPA gives the Lindhard formula
for the polarizability

P (q, ω) =
2i

(4π)2

∫
dkdω′ 1

(ω + ω′ − ϵk+q + iδk+q)(ω′ − ϵk + iδk)
. (2.305)

In the static limit (ω → 0) and for large electron-electron separation (r → ∞, i.e. q → 0), one
obtains

P (q → 0, ω = 0) =
λ2

4π
, (2.306)

with

λ2 =
6πn

ϵF
,
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with ϵF being the Fermi energy and n being the (homogeneous) electron density. Rewriting the
Dyson equation for the screened interaction in the RPA (2.202),

W (q, ω) = vc(q)
[
1 + vc(q)P (0)(q, ω)

]−1
,

and using the explicit form of the Coulomb interaction in reciprocal space,

vc(q) =
4π

q2
,

we obtain

W (q → 0, ω = 0) =
4π

q2 + λ2
. (2.307)

Assuming that (2.307) holds for all q, Fourier transformation to real space yields the Yukawa
potential (we note again that the potential is isotropic due to the symmetry of the HEG),

W (r → ∞, ω = 0) =
1

r
e−λr , (2.308)

which is a shielded Coulomb interaction. We have hereby recovered the theory of screening due
to Thomas and Fermi, which is indeed the limiting case of the Lindhard screening for large r.147

We see, that the strength of the screening is proportional to the width of the band gap. The
Fermi level can be considered to be a hypothetical energy level, such that at equilibrium this
energy level would be occupied at any given time with 50 % probability. When the band gap is
large, ϵF will be large as well and λ will be small, i.e. the screening is weak. On the other hand,
when the band gap is small, ϵF will be small as well and λ will be large. In that case, screening
of the electron-electron interaction will be strong.

The GW Kernel in the BSE

Solving Dyson’s equation within the GW approximation alone does not give access to excitonic
states, since these require the solution of the BSE. In a canonical approach denoted as GW -BSE
or BSE@GW , the GW equations with RPA screening eqs. (2.299)–(2.302) are solved and only af-
terwards one solves the BSE for the generalized susceptibility. As pointed out by Hanke, Strinati
and coworkers148, ”No criterion, however, has been supplied to justify this specific decoupling of
the set of equations”.

Interestingly, the BSE methods for the description of excitonic effects has been pioneered
by Hanke and Sham149–152 (the general prcedure has already been outlined by Sham and Rice
in 1966153) and a few years later by Strinati and coworkers148,154–156 prior to the first GW
calculations by Hybertsen and Louie. Hanke, Sham and Strinati did not use GW QP energies
as input for their BSE calculations but rather used empirical parameters or a simplified HF
scheme.148 The first BSE@GW calculations in which GW QP were used were only carried out
much later by Onida et. al. for the sodium tetramer157 and by Rohlfing and Louie for silicon
clusters.158
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The 4-point vertex function within the GW approximation is given as

Γ
(0)GW

Hxc (1, 2, 1′, 2′) = i
δΣGW (1, 1′)

δG(2′, 2)
. (2.309)

The first term in this kernel describes the particle-hole exchange and the second-one the Coulom-
bic particle-hole attraction. Thus, in contrast to the TD-HF approximation, the GW kernel con-
tains the information that the attraction between electrons and holes is screened and therefore
weaker than without screening. Fore this reason, the excitonic binding energies calculated within
BSE@GW will be lower than within TD-HF. Working out the functional derivative, we obtain

Γ
(0)GW

Hxc (1, 2, 1′, 2′) =i
δΣGW (1, 1′)

δG(2′, 2)
= i

δ [iG(1, 1′)W (1+, 1′)]

δG(2′, 2)

= − δG(1, 1′)

δG(2′, 2)
W (1+, 1′) −G(1, 1′)

δW (1+, 1′)

δG(2′, 2)

(2.310)

Using
δG(1, 1′)

δG(2′, 2)
= δ(1, 2′)δ(1′, 2) , (2.311)

the first term is

− δG(1, 1′)

δG(2′, 2)
W (1+, 1′) = −δ(1, 2′)δ(1′, 2)W (1, 1′) (2.312)

For the second term, we use the definition of W (2.198) with W calculated in the RPA and
obtain

δW (1, 1′)

δG(2′, 2)
=W (0)(1, 3)

δP (3, 3′)

δG(2′, 2)
W (3′, 1′) +W (0)(1, 3)P (3, 3′)

δW (3′, 1′)

δG(2′, 2)

=W (0)(1, 3)
δP (3, 3′)

δG(2′, 2)
W (3′, 1′)

+W (0)(1, 3)P (3, 3′)W (0)(3′, 4)
δP (4, 4′)

δG(2′, 2)
W (4′, 1′)

+W (0)(1, 3)P (3, 3′)W (0)(3′, 4)P (4, 4′)
δW (4′, 1′)

δG(2′, 2)

=
[
W (0)(1, 3) +W (0)(1, 3)P (3, 3′)W (0)(3′, 4) . . .

]
×
[
δP (4, 4′)

δG(2′, 2)
W (4′, 1′) + P (4, 4′)

δW (4′, 1′)

δG(2′, 2)

]
=W (1, 3)

δP (3, 3′)

δG(2′, 2)
W (3′, 1′)

= − iδ(3, 2′)δ(3′, 2)W (1, 3)G(3′, 3)W (3′, 1′)

− iδ(3′, 2′)δ(3, 2)W (1, 3)G(3, 3′)W (3′, 1′) .

(2.313)
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Using this result as well as (2.312), we obtain the GW kernel of the form

Γ
(0)GW

Hxc (1, 2, 1′, 2′) =δ(1, 1′)δ(2, 2′)W (0)(1, 2) − δ(1, 2′)δ(1′, 2)W (1, 1′)

+iδ(3, 2′)δ(3′, 2)G(1, 1′)W (1, 3)G(3′, 3)W (3′, 1′)

+iδ(3′, 2′)δ(3, 2)G(1, 1′)W (1, 3)G(3, 3′)W (3′, 1′) .

(2.314)

This shows that the variation of the screened interaction with respect to the single-particle
Green’s function generated two diagrams of second order in W , one in the particle-particle and
the other in the particle-hole channel as can be seen from their diagrammatic representation
in figure 2.5d). In applications of the BSE@GW method to optical excitations they are always
neglected. We will come back to these terms in section 2.4.5.

To first order in the screened Coulomb interaction, the 4-point vertex assumes the same form
as in the time-dependent HF equations (2.293). If we only keep the first-order term in (2.314),
we obtain an expression similar to (2.293),

χ(1, 2, 1′2′) =χ(0)(1, 2, 1′2′) + χ(0)(1, 4, 1′, 3)

×
[
W (0)(3, 5)δ(3, 4)δ(5, 6) −W (3, 5)δ(3, 6)δ(4, 5)

]
χ(6, 2, 5, 2′) .

(2.315)

This vertex does not fulfill (2.172), however, inserting (2.303) into (2.315) one sees that (2.172)
is fulfilled to first order in W (0). To first order in W (0), the first-order GW vertex is of course
the HF vertex. When only the static limit of W is considered, (2.315) is considerably simplified
and becomes technically equivalent to (2.293),

χ(1, 2, 1′2′) =χ(0)(1, 2, 1′2′) + χ(0)(1, 4, 1′, 3)

×
[
W (0)(3, 5)δ(3, 4)δ(5, 6) −W (3, 5)δ(3, 6)δ(4, 5)δ(t3 − t5)

]
× χ(6, 2, 5, 2′) .

(2.316)

Practical applications are almost exclusively based on eq. (2.316) and for real materials or
molecules, only few calculations beyond the static approximation have been performed.159–161

Typically, these dynamical effects have then been included perturbatively.162,163 The few studies
which scrutinized the role of the dynamical contributions on optical excitation energies128,164,165

revealed that retaining the dynamical screening effects creates poles in the generalized suscep-
tibility beyond the ones obtained from (2.316) which describe for instance excited states with
multiple-excitation character128 or QP damping.164

2.4.3 Kohn–Sham Density Functional Theory

KS-DFT allows to formally replace the exact self-energy (2.203) by a local, Hermitian and time-
dependent potential which only depends on the electron density alone,

Σ(1, 1′) → vHxc(r) [n(r)] .
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The foundations of KS-DFT are due to Kohn and coworkers.77,78,136 Hohenberg and Kohn could
prove, that the ground state of the interacting N -electron system is uniquely determined by
the density n(r). In a next step, they showed that the density of the interacting system can
be obtained by solving a non-interacting single-particle problem. The decisive quantity is vHxc

which takes the role of the self-energy and maps the density of the non-interacting system (the
one described by h1) to the one of the KS-system,

vHxc : n0(r) 7→ n(r) , (2.317)

in the same way as the self-energy maps the non-interacting single-particle Green’s function to
the interacting one,

Σ(r, r′, ω) : G0(r, r
′, ω) 7→ G(r, r′, ω) . (2.318)

Using the representation of the density in terms of the single-particle states,

n(r) =
∑
k

Θ(µ− ϵk)ϕk(r)ϕ∗k(r) ,

one can easily see that the KS equations can be written as a Dyson-type equations of the form
(2.297) since the potential is local.

The KS potential can be found formally by taking the limits r1 → r2 and t → 0 in (2.199)
and summing over spin. The resulting equations are the Sham-Schlüter equations (SSE).110,166

In frequency space,

n(r) − n0(r) =2

∫
dr3dr4

∫
dωG(0)(r, r3, ω)Σ(r3, r4, ω)G(r4, r, ω)

!
=2

∫
dr3dr4

∫
dωG(0)(r, r3, ω)vHxc(r3)δ(r3 − r4)G(r4, r, ω)

=2

∫
dr

∫
dωG(0)(r, r′, ω)vHxc(r

′)G(r′, r, ω) .

(2.319)

n(r) − n0(r) is the difference in the electron density of the interacting and the non-interacting
system. In principle, we can therefore find the exact vHxc by inversion. When Σ is replaced by
vHxc, the Dyson equation (2.131) assumes the same form as (2.297).

The linearised Dyson-equation (2.138) leads to the linearized SSE (LSSE)110,

n(r) − n0(r) ≈
∫
dr

∫
dωG(0)(r, r′, ω)vHxc(r

′)G(0)(r′, r, ω)

= 2i

∫
dr′
∫
dωP (0)(r, r′, ω)vHxc(r

′) ,

(2.320)

which is often used to construct approximations to vHxc
167–169. Whenever the l.h.s. of (2.320) is

known, the corresponding vHxc can be obtained by inversion of the non-interacting polarizability
P (0) (this is not straightforward in practice since strictly speaking the inverse of density-density
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response is ill-defined, see ref. [170] for details). Furthermore, in case of a static approximation
to the self-energy, the frequency integral can be solved analytically. When the HF approximation
to the self-energy is used, one obtains a potential which is typically referred to as the optimized
effective potential (OEP).136,170,171 Sometimes, the resulting local potential is referred to as
exact exchange (exx), but this needs to be carefully distinguished from the non-local Hartree-
Fock self-energy which is also sometimes referred to as exx. We also briefly note that within a
static approximation to the GW self-energy, (2.320) leads to the so-called RPA-OEP method.
This approach has been pioneered by Casida172 and is closely related (see for instance ref. [173]
or ref. [168]) to the quasi-particle self-consistent GW (qsGW ) method142,174–177 which we will
introduce in section 2.4.4.

KS-DFT gives access to all properties which directly depend on the density. However, it does
not allow to obtain an interacting Green’s function (There is no vHxc which maps G0 to G) and
therefore it does not allow for the description of single-particle excitations. However, there is one
important exception: The negative of the highest occupied molecular orbital energy (HOMO) of
a finite system equals its ionization potential.178,179

Furthermore, there exists an extension of DFT to time-dependent densities, the so-called
time-dependent (TD) DFT.180 In frequency-space, TD-DFT allows to formulate a Dyson equa-
tion for the density-density response,136 and the poles of the interacting density-density response
can be identified with the excitonic states of the N−electron system, in exactly the same way
as the poles of (2.275). In contrast to the 4-point vertex in the BSE, the kernel of this Dyson
equation fHxc is local and is obtained by variation of vHxc with respect to the density,

fHxc(1, 2) =
δvHxc(1)

δn(2)
,

which is split in Hartree, exchange, and correlation contributions fHxc = fH + fx + fc. In
practice, DFT comes with the major shortcoming that the construction of vHxc via (2.319) is
very demanding and also not always useful in practice since it requires knowledge of Σ. Therefore,
one is forced to use approximate potentials. The search for an appropriate mappings Σ 7→ vHxc

is a very active field of research and countless approximations have been developed in the last
decades181 Despite the many available approximations, they can be put on certain rungs of
increasing complexity according to their basic ingredients. We give a brief overview in the
following.

Local density approximation Possibly the oldest approximation to vxc is the family of local
density approximations (LDA)78 in which the xc potential only depends on the value of the
electron density at each point in space.136 While the exchange-component of the LDA is known
exactly,136 different approximate expressions are available for the correlation part. The most
popular ones have been developed by Vosko, Wilk, and Nusair.182

(Meta-)Generalized Gradient Approximation Another popular approximation is the so-
called generalized gradient approximations which have already been developed in the 1960s
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shortly after the work of Kohn and Sham.183,184 The approximations used today have mostly
been developed by Becke185–187 and Perdew and coworkers.188–190 The functionals developed by
Perdew in 1986 (P86) and by Perdew, Burke and Ernzerhof (PBE)189,190 are also used in this
thesis. The resulting equations are equivalent to (2.297). Additionally, such functionals can de-
pend on the Laplacian of the density. These functionals are then called meta-GGAs, a popular
example being the functional developed by Tao, Perdew, Staroverov and Scuseria (TPSS).191

Hybrid functionals One often mixes such a vHxc with a portion of Σx. Such functionals are
typically referred to as hybrid functionals,

vhybHxc(r, r
′) = ΣH(r)δ(r − r′) + αΣx(r, r′) + (1 − α)vx(r)δ(r − r′) + vc(r)δ(r − r′) (2.321)

The resulting equations are equivalent to (2.296). For many purposes the resulting Green’s
function, typically called Kohn–Sham Green’s function serves as a better starting point in (2.137)
than the HF one. For instance, the combination of the PBE functional with exact exchange
is called PBE0, which is used in this work as well.192,193 Another popular example denoted
as M06-2X has been developed by Truhlar and coworkers.194 Hybrid functionals can also be
constructed starting from meta-GGAs. For example, combining TPSS with exact exchange
leads to TPSSh.195 Such hybrid functionals are typically referred to as meta-hybrids.

In the extension of such functionals to TD-DFT, one then uses an xc contribution to the
4-point vertex of the form

Γh
xc(1, 2, 1

′, 2′) =
[
(1 − α)fx(1, 1′) + fc(1, 1

′)
]
δ(1, 2)δ(1′, 2′)

+ αΣx(1, 2, 1′, 2′) ,

so that one needs to solve the BSE for the generalized susceptibility instead of the Dyson equation
for the density-density response in case of a (meta-)GGA calculation.

range-separated hybrid functionals For many purposes, for instance for the purpose of
calculating single-particle excitation energies, it is useful to combine the GGA and the hybrid
concept into a single functional through the concept of range-separation.196,197 One uses the
identity

1

r
=

1 − f(µr)

r
+
f(µr)

r
, (2.322)

to decompose the Coulomb interaction into a short-range (first term) and a long-range part
(second term). Any function f which satisfies the boundary conditions

f(0) = 0 lim
|r|→∞

f(r) = 1 (2.323)

can be used in principle. The error function (erf) is typically used for range-separated hybrid
functionals (RSHs). One then typically uses the HF self-energy for the latter but a GGA po-
tential for the former term in (2.322). Examples for range-separated hybrid functionals which
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are also used in this thesis are CAM(Y)-B3LYP198 (in the CAMY variant a Yukawa function
is used for range-separation instead of the error function. Also the parameter α in (2.322) is
chosen differently), ω-B97-X199 or LRC-ωPBEh200. In addition to the parameter α, RSHs also
require the determination of the parameter µ. Systematic procedures to find this parameter have
been suggested,201–205 but these are rather cumbersome since they require to perform multiple
exploratory calculations for each system at hand. Furthermore, in a heterogeneous system dif-
ferent moieties may require different range-separation parameters which makes such a procedure
even more difficult to implement.206

rungs ingredients examples

LDA n(r) VWN5182

GGA n(r), ∇n(r) PBE189,190

meta-GGA n(r), ∇n(r), ∇2n(r) TPSS191

hybrid n(r), ∇n(r), {ϕi}i∈occ
PBE0192

M06-2X194

meta-hybrid
n(r), ∇n(r), ∇2n(r), {ϕi}i∈occ

TPSSh195

hybrid + D n(r), ∇n(r), {ϕi}i∈occ PBE0 + D3(BJ)192,207

RSH n(r), ∇n(r), Σx

ω-B97-X199

LRC-ωPBEh200

CAMY-B3LYP198

OEP n(r), ∇n(r), {ϕi}i∈occ OEP171

DH + D n(r), ∇n(r), {ϕk}k∈all, ED DSD-PBE-P86-D3(BJ)208

Table 2.1: Overview of different approximations to the Hxc potential vHxc used in this work. The
second column lists all parameters on which a functional of a ceratin rung depends. D stands
for dispersion and ED for the energy contribtution due to empirical dispersion corrections.

Empirical dispersion corrections One of the major short-comings of the common approxi-
mations to vHxc is their inability to accurately describe van-der-Waals (vdW) interactions,209 the
main component of the long-range contribution to the electron-electron correlation energy. In the
following, we outline the main ideas behind empirical approaches to describe these interactions
within a DFT framework. For more detailed derivations see for instance ref. [210] or ref. [209].
Most empirical dispersion corrections can be derived from the Casimir-Polder integral211

E(2)
corr = −1

2

∑
AB

3

π

∫ ∞

0
dωαAαBTr

[
T
(lr)
AB T

(lr)
BA .

]
(2.324)

Here, α denotes the isotropic polarizability tensor209 and T is the dipole-coupling tensor

T (r, r′) = ∇r ⊗∇r′vc(r, r
′) , T (lr)(r, r′) = f(|r − r′|)T (r, r′) , (2.325)
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where f is the range-separation function defined in (2.322). The sum runs over all polarizability
centers A and B. Noting that

Tr
[
T
(lr)
AB T

(lr)
BA

]
=

6

|RA −RB|6
(2.326)

and TAA = 0 (RA denotes the position of center A), one obtains

E(2)
corr = − 1

2

∑
A ̸=B

3

π

∫ ∞

0
dωαAαB

[f(|RA −RB|)]2∣∣RA −RB

∣∣6
= − 1

2

∑
A ̸=B

C6,AB
fdamp(|RA −RB|)∣∣RA −RB

∣∣6 ,

(2.327)

the formula for the vdW interaction between two bodies within the dipole approximation. Em-
pirical dispersion correction schemes differ by the choice of the damping function fdamp and the
parametrization of the C6 coefficients. A and B are typically chosen as atomic centers so that
αA and αB are the atomic polarizability tensors. The form of empirical correction we use in this
work is due to Grimme and coworkers207,212,213 and is referred to as D3(BJ), where BJ denotes
the damping function due to Becke and Johnson.214,215

Double Hybrid Functionals For the purpose of calculating total energies one often combines
hybrid functionals with a fraction of the MP2 or RPA correlation energy and also empirical dis-
persion corrections. The first modern functional of this kind has been proposed by Grimme.216

A plethora of such functionals have been suggested over the last years (for an overview and
benchmarks see for instance208,217,218). They can also be implemented with range-separated
electron-electron interaction where (2.322) is either only used in the hybrid part of the func-
tional,199,219,220 or also for the calculation of the MP2/RPA part221–223 In this thesis they are
only used to put the results of total energy calculations of more rigorous MBPT based energy
expressions into context.

Table 2.1 summarizes the functionals introduced in this section. The examples given are all
used in this work.

2.4.4 Approximations to GW

Static approximations

The HF approximation can be regarded as a first-order approximation to the GW self-energy.
As an alternative approximation, one introduces the statically screened exchange (SEX)

W (r, r′, 0) = lim
η→0

W (r, r′, t− t′)δ(t− t′ + η) ,
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where η is an infinitesimal shift. Inserting this into (2.302) gives

ΣSEX(r, r′) =i lim
η→0+

G(r, r′, t− t′ + η)W (r, r′, 0)δ(t− t′)

= −W (r, r′, ω = 0)n(r, r′) ,
(2.328)

where the parameter η selects only the lesser component of the Green’s function. As in the HF
approximation, the Green’s function in the resulting expression for the self-energy reduces to the
1-particle reduced density matrix. This shows that the dynamical screening effects distinguish
the GW approximation qualitatively from the HF approximation. For solids, it has been shown
that static screening already improves the band gaps compared to HF.15 This is dues to the fact
that the statically screened interaction already contains the information that the many-electron
system relaxes in response to the addition of an additional hole or electron while in the HF
approximation the many-body states remain ’frozen’.

One might improve over SEX by placing the δ function symmetrically and assuming Θ(0) = 1
2 ,

after some manipulations224 one obtains a self-energy of the form

ΣCOHSEX
xc = − n(r, r′)W (r, r′, ω = 0)

+
1

2
δ(r − r′)

[
W (r, r′, ω = 0) −W (0)(r, r′)

]
.

(2.329)

The second term on the r.h.s. of (2.329) is called Coulomb hole (COH) and the first term is
the SEX term (2.328). This form of the self-energy is typically referred to as Coulomb hole
+ screened exchange (COHSEX) approximation and is already been introduced by Hedin.67 In
contrast to SEX, the evaluation of the COHSEX approximation requires a summation over all
unoccupied states.167

G0W0

The calculation of the band structure of a few selected metals and insulators by Hybertsen
and Louie in 1986225 is typically considered as the first application of the GW method to a
real material. To make these calculations feasible, Hybertsen and Louie introduced a large
number of approximations. Besides numerical approximations like an approximate treatment
of the frequency dependence of the Green’s function with a generalized plasmon-pole model,225

(for a comparison of the accuracy of different plasmon-pole models see ref. [226]) they also
introduced a perturbative approach to the GW approximations where the self-consistent solution
of eqs. (2.299)–(2.302) is bypassed. This so-called G0W0 approximation has the advantage that it
only requires a single evaluation of the GW self-energy, i.e. is non-iterative. Another advantage
is, that only the diagonal element of the GW self-energy need to be evaluated while for the
off-diagonal elements only a (hybrid) KS potential is needed which is much cheaper to obtain.
The fact that the solutions of (2.334) or (2.335) heavily depend on the choice of vHxc is a major
downside of G0W0. Furthermore, properties beyond single-particle excitations which depend on
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the Green’s function like densities, density matrices or electron-electron interaction energies can
not be obtained in this way.

The G0W0 approach is derived by using the identity

ΣGW = ΣGW + vHxc − vHxc (2.330)

and uses (2.137) to rewrite the GW approximation as a coupled set of Dyson equations,

G(s)(1, 1′) =G(0)(1, 1′) +G(0)(1, 2)vHxc(2)G(s)(2, 1′)

GGW (1, 1′) =G(s)(1, 1′) +G(s)(1, 2)
[
ΣGW (2, 3) − vHxc(2)δ(2, 3)

]
GGW (3, 1′) .

(2.331)

Following the arguments leading to (2.296) we can then rewrite this as[
h(r1) + vHxc(r1) − ϵGW

k

]
ϕGW
k (r1, ϵ

GW
k )

+

∫
dx2

[
Σ(x1, x2, ϵ

GW
k ) − vHxc(r1)δ(r1 − r2)

]
ϕGW
k (r2, ϵ

GW
k ) = 0 ,

(2.332)

and the same for the associated equation for the ϕGW ∗
k . Not we can express the Hamiltonian in

this equation in the basis in which the KS Hamiltonian h+ vHxc is diagonal,∑
r

[Σ(ω) − vHxc]kr ϕ
GW
r (r1, ω) =

(
ϵGW
k (ω) − ϵKS

k

)
ϕGW
k (r1, ω) , (2.333)

which is a eigenproblem whose solution gives the difference between the KS and the GW QP
energies. Now, we can make the approximation that all the off-diagonal elements of the operator
on the l.h.s. of (2.333) are zero. Using that we can write ϵGW

k (ω) = ω, this leads to the
approximation,

Σk(ω) − [vHxc]k + ϵKS
k = ω . (2.334)

For each k, the ω for which (2.334) has a solution can in principle be identified with a QP
energy, ϵGW

k (ω) = ω. Since the equations are non-linear, there might multiple solutions. One
then typically associates the solution for which the absolute value of the derivative of the real part
of the self-energy with respect to ω is largest with the QP solution. The G0W0 approximation
is still the most used approach to perform GW calculations in practice.

Solution of (2.334) requires the knowledge of the diagonal elements of the GW self-energy at
many frequency points (or at least that it can be calculated without much effort), depending on
the used solver. If the frequency dependence of Σ is unknown, one can use (2.244). To zeroth
order, one has

Σk(ϵKS
k ) − [vHxc]k + ϵKS

k = ϵGW
k , (2.335)

which is now linear. The self-energy is often treated to first order, which results in multiplication
with the renormalization factor Z, (2.245). This is typically referred to as linearized G0W0 (lin-
G0W0) and is commonly implemented in solid state codes which evaluate ω on the real frequency
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axis. Note, that it has been argued that the zeroth-order treatment is to be preferred on the
GW level.227

In practice, most GW calculations are performed using G0W0 or its self-consistent evGW
extension. In contrast, GW calculations are rarely performed fully self-consistently (scGW ). The
first (partially228) self-consistentGW calculations have been performed in the late 1990s and early
2000s for the homogeneous electron gas,229,230 jellium,231 and simple semiconductors (Silicon)
and metals (Potassium).232 While the total energies for the homogeneous electron gas were found
to be in excellent agreement with quantum monte carlo data10, it turned out that the calculated
band structures were worse than the ones from G0W0. Later results were more ambiguous: For
instance, for single atoms and diatomic molecules, Stan, Dahlen and van Leeuwen confirmed the
good quality of total energies found for the HEG and also found the self-consistently calculated
ionization potentials to be better than the ones from G0W0.

235,236 Also Ku and Eguiluz reported
improvements over the G0W0 band gaps for the semiconductor Germanium with scGW ,237 while
in a more recent study Koval et al. could not find clear improvements over G0W0 with scGW .238

All of these studies have in common that not much attention has been paid to the choice of
G(s). However, the proper choice of G(s) is crucial for accurate G0W0 calculations. Following
Hybertsen and Louie and in the tradition of most band structure calculations for the solid state, in
most of these studies LDA Green’s functions were used. Koval et al. also employed HF Green’s
functions which is a common choice for perturbation theory in quantum chemistry. By now,
systematic investigations of the starting point dependence of G0W0 calculations40,224,239–242 have
established that LDA is a terrible and HF at best a mediocre choice for G(s) for the calculation
of single-particle excitations.

Caruso et al. have presented a few years ago an implementation of scGW in the FHI-AIMS
code, which, in contrast to earlier implementations allowed applications to molecules with tens
of atoms.243,244 It turned out that G0W0 ionization potentials evaluated with a PBE0 Green’s
function (G0W0@PBE0 in short) where superior to scGW results for azabenzenes. On the
other hand, the accuracy of G0W0@PBE was comparable to scGW while G0W0@HF performed
worse.245 More recent comparisons of G0W0 for different starting points to scGW have clearly
shown thatG0W0 is superior to scGW for the calculation of ionization potentials and also electron
affinities for a set of organic acceptor molecules246 if a good starting point is chosen.242,247

Selection of the starting point for G0W0

The choice of the starting point is crucial for a successful outcome of a G0W0 calculation. There-
fore, especially for molecular systems,40,240–242,245,248 but also for solids,224,239 many researchers
have investigated the influence of the choice on G(s) on the single-particle excitation energies.
The outcome of these investigations can be summarized as follows: If the eigenvalues of the KS
Hamiltonian are too bad of an approximation to the true QP energies, the G0W0 approach will

10The performance of scGW for electron-electron interaction energies of small molecules was also investigated.
In contrast to the HEG, the results were generally found to be of pour quality.233,234
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fail.241 Therefore, it is mandatory to calculate the G0W0 correction starting from G(s) which is
already close to the GW Green’s function.167,249

The following paragraphs summarize the different strategies which can be pursued and the
accuracies which can be achieved for molecules. It should be emphasized that many investiga-
tions on the starting point dependence carried out for solids are not necessarily transferable to
molecular systems. This is due to the fact the screening of the electron-electron interaction in
the latter ones is typically much weaker141,250 (we also refer here to studies comparing screening
in 2D and 3D251–254 where qualitative differences are observed). We will come back to this point
later in this chapters. We mostly comment here on the accuracy of the different strategies for the
description of single-particle excitations. However, approaches which work well for single-particle
excitations typically also give good optical excitation energies, since the latter ones are mostly
determined by the differences in the QP energies.

General considerations G0W0 is a perturbation method. Generally, perturbation theory
works best when the reference Hamiltonian is as close to the full Hamiltonian as possible, i.e.
when the perturbation is small. There are many possible ways to measure’ closeness. The G0W0

QP energies will generally be very close to the scGW quasi-particle energies when the zeroth-
order Hamiltonian used to calculate G(s) is chosen in a way that it produces the same density
as scGW . A second possibility is to directly require that the QPs produced by the zeroth-order
Hamiltonian correspond as closely as possible to the true QP energies.

For instance, GGA or LDA calculations typically underestimate single-particle excitations
energies and fundamental gaps (the difference between HOMO and LUMO QP energies) by a
few eV.255 In the other hand, the HF approximation overestimates single-particle excitations and
fundamental gaps. Hybrid- and range-separated hybrid functionals can be regarded as attempts
to interpolate between a GGA/LDA potential and indeed the resulting eigenvalues are often
good approximations to the true QP energies. Therefore, G0W0 calculations based hybrid and
RSH functional give typically the best results. This can be rationalized by the close connection
of the HF and the GW self-energy expressions we have discussed in paragraph 2.4.4.

Hybrid and range-separated Hybrid Functionals While being much cheaper than a
scGW calculation, the self-consistent evaluation of SEX and COHSEX is still much more de-
manding than the evaluation of a HF or a hybrid Green’s function. It turns out, that the
COHSEX self-energy can be very well approximated by retaining the HF self-energy and to ac-
count for screening effects by scaling it down using a constant parameter α. If one adds a local
(GGA) correlation potential and a compensating fraction (1- α) of local (GGA) exchange, one
recovers exactly (2.321). Therefore in the context of GW calculations hybrid functionals can be
interpreted as computationally very efficient approximations to scGW which offers a qualitative
justification to base a G0W0 calculation on a hybrid Green’s function.167 Similar arguments can
be used to justify the use of range-separated hybrid functionals.



2.4. APPROXIMATIONS 75

Optimization of free parameters in hybrid functionals The downside of using hybrid
functionals is the appearance of the free parameter α. Since screening effects will be different from
system to system it is clear that the optimal α will vary for different systems as well. The same
considerations apply to the range-separation parameter in RSHs. Strategies to find the optimal
α in a system specific way has been suggested249,256 based on the observation that within (exact)
KS-DFT the negative of the HOMO of a finite system equals the ionization potential. One can
then find an optimal α∗ by minimizing the QP correction to the HOMO eigenvalue in (2.334),249

α∗ = arg min
α

∣∣ΣHOMO(ω) − [vHxc]HOMO

∣∣ . (2.336)

In practice, such a minimization can be achieved by performing a few G0W0 calculations for
different values of α and to find α∗ by interpolation. A similar strategy has been suggested in
ref. [256] where α∗ is obtained instead by linear regression over the full occupied spectrum. The
resulting values of α∗ turned out to lie typically in the range of 0.7-1.0 for a wide range of small
molecules. However, the results were worse than the ones for G0W0@PBE0 where α = 0.25.249

A related strategy, combining such approaches with the RPA-OEP method has recently been
introduced by Hellgren et al.167.

Other investigations have established that hybrid functionals with 40 to 50 % exact exchange
generally give the best QP energies,240,248 (a recent investigation of G0W0 IPs with more than
60 functionals confirmed this257) with mean absolute deviations (MAD) to more accurate ab
initio calculations of around 0.2 eV for organic molecules. The same accuracy can be achieved
with RSHs, independently of whether the range-separation parameter is empirically optimized
or not.40,242

Static approximations to the GW self-energy Both the SEX and the COHSEX approxi-
mations can be solved self-consistently. While both approximations by themselves are typically
not very accurate (albeit more accurate than the HF approximation), the resulting G(s) can be
also used as starting points for a G0W0 (or evGW ) calculations. G0W0@COHSEX has been
found to give good results for many materials.224

eigenvalue-only self-consistent GW

A computationally more involved alternative to G0W0 is eigenvalues-only self-consistent GW
(evGW ). In contrast to G0W0, evGW is a self-consistent perturbation method which aims to
optimize the starting point for a G0W0 calculation by optimizing the input QP energies. In
evGW , a series of G0W0 calculations is performed until self-consistency in the QP energies
is reached. Although the density remains unaltered with respect to the KS reference, evGW
largely overcomes the starting point dependence of G0W0. Even in the evGW0 variant, where
the screened interaction of the first G0W0 calculation is used, the starting point dependence is
reduced drastically.

Despite its higher computational cost, evGW is therefore a popular alternative toG0W0
258–269

and its improved accuracy compared to G0W0@LDA or G0W0@PBE have been highlighted.265
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On the other hand, when a good starting point is chosen, evGW does not give any improvements
over G0W0.

248 We will present additional data supporting this claim in appendix A.3.

Quasi-particle self-consistent GW

As evGW , the quasi-particle self-consistent GW (qsGW ) method is a self-consistent perturbation
method. However, qsGW goes beyond evGW and self-consistently determines the optimum
division of the GW Hamiltonian into the zeroth-order reference h1 and the perturbing part. To
derive the quasi-particle self-consistent form of Dyson’s equations, one starts from (2.259) and
writes the self-energy as

Σ(ω) =
1

2

[
Σ(ω) + Σ†(ω)

]
+

1

2

[
Σ(ω) − Σ†(ω)

]
, (2.337)

where the first term on the r.h.s. of this equation is Hermitian and the second one is skew-
Hermitian. The Hermitian part in (2.337) is related to the QP part of the single-particle Green’s
function while the skew-Hermitian part is responsible for the finite lifetime effects of the QPs and
together with the frequency dependence of the self-energy desrcibes satellites in the single-particle
spectrum. Retaining only the Hermitian part in (2.259) gives{

h1(r1) +
1

2

∫
dr2

[
Σ(r1, r2, ω) + Σ†(r1, r2, ω)

]}
ψk(r2, ω) = ϵQP

p ψk(r1, ω) , (2.338)

and in an orthonormal basis of single-particle states, (2.338) becomes∑
p

[
Σ(ω) + Σ†(ω)

]
pk
ψp(r1, ω) =

[
ϵQP
k (ω) − ϵk

]
ψk(r1, ω) . (2.339)

The real part of the full self-energy is a real quantity and so is the imaginary part. Therefore,
the real and the imaginary part of the self-energy are Hermitian by themselves, even though the
full self-energy is not. Therefore,

Re (Σ(ω)) =
1

2

[
Σ(ω) + Σ†(ω)

]
. (2.340)

Equations (2.338) and (2.339) are a series of Hermitian eigenproblems, one for each value of
ω. This form of Dyson’s equation is general and independent of any approximation to the self-
energy. If the GW approximation to the self-energy is made, (2.338) is the closest approximation
to fully self-consistent GW which only retains the QP features of the theory. In the quasi-particle
self-consistent GW approach142,174,175 introduced by Kotani, Faleev, and van Schilfgaarde the
frequency dependent self-energy in (2.339) is mapped to an effective static and Hermitian non-
local potential which is a functional of the non-interacting single-particle Green’s function. The
choice of this potential is not unique. Kotani, Faleev, and van Schilfgaarde suggested to use one
of the real symmetric definitions

vQP
pq (ϵp) =

1

2

[
Re

[
ΣGW
c

]
pq

(ϵp) + Re
[
ΣGW
c

]
pq

(ϵq)
]
, (2.341)
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or
vQP
pq (ϵp) = δpqRe

[
ΣGW
c

]
pq

(ϵp) + (1 − δpq)Re
[
ΣGW
c

]
pq

(ω = 0) . (2.342)

Inserting these definitions into (2.339)∑
p

vQP
kp (ϵp)ψp(r) =

[
ϵQP
k − ϵk

]
ψk(r) . (2.343)

Kotani, Faleev, and van Schilfgaarde used (2.341) since they found that this form corresponded to
experiment most systematically.142 There are also formal reasons why (2.341) should be preferred
over (2.342).270 Constructing the qsGW Hamiltonian via (2.341) minimizes the length of the
gradient of the Klein functional57 with respect to G0

270 On the other hand, (2.342) is to be
preferred from a computational perspective as we will discuss in the next chapter. We will also
see that the differences in the QP energies between both variants are negligible for practical
purposes. As in the lin-G0W0 method, both variants eqs. eqs. (2.341) and (2.342) can be seen as
Taylor expansion of the self-energy around the input QP energies where only the zeroth-order
term is retained (compare to (2.244)). Shishkin and Kresse suggested to also retain the first-order
term in (2.244)177 which has also been done by Kutepov et al.271,272

While such modifications of the potentials eqs. (2.341) and (2.342) are easily implemented,
a zeroth-order expansion is appropriate under the assumption that the input QP energies are
close to the final QP energies. At self-consistency, this requirement will be fulfilled by defini-
tion. Furthermore, in situations where the single QP picture is valid, the self-energy will be
varying slowly around the QP position273 and the effect of the first-order term in (2.244) will
vanish. It has also been suggested to perform a G0W0 calculation on top of a qsGW calculation
(G0W0@qsGW).274 One can use the same arguments to see that the effect of the G0W0 correction
will vanish when the single QP picture is valid.275 The definitions of the qsGW Hamiltonians by
Kutepov and coworkers and Kresse and coworkers might still be useful since they could accelerate
the convergence of the self-consistency scheme needed to solve the qsGW equations.

Using one of the definitions eqs. (2.341) and (2.342) turns (2.339) into an effective single-
particle problem, ∑

p

vQP
pk (ϵp)ϕp(r1) =

[
ϵQP
k − ϵk

]
ϕk(r1) . (2.344)

reminiscent of HF or KS-DFT. Diagonalization of the effective Hamiltonian in (2.344) yields
eigenvectors and eigenvalues from which a new non-interacting Green’s function is obtained.
However, the xc potential defined by eqs. (2.341) and (2.342) is not a functional of the 1-particle
reduced density matrix or the density but rather of the non-interacting single-particle Green’s
function itself.

qsGW calculations combine the advantages of G0W0 and scGW . It is at least as accurate
than G0W0 for molecules39,40,276,277 Moreover, it is strictly starting-point independent since in
contrast to evGW , not only the QP energies but also the density is updated in each iteration.
Therefore, at self-consistency the qsGW Green’s function is independent of the initial G(s). Issues
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with diagonal QP approximations arise when a re-ordering of the GW orbitals with respect to the
DFT orbitals occurs. This is an indication that DFT orbitals are a qualitatively wrong reference
for a G0W0 calculation. This has been found problematic in in the study of energy level-alignment
in photocatalytic interfaces.278–281 The discussion on this subject found in ref. [278] is especially
insightful.

Generally, compared to G0W0 based on a semi-local or hybrid starting point, self-consistency
weakens the screening of the electron-electron interaction which widens the band gap. For solids
this is problematic and vertex corrections are needed to restore agreement with experiment.282

The overestimation of the band gap is rather systematic and therefore another approach to
restore agreement with experiment is to combine 80 % of the qsGW with 20 % of the LDA self-
energy.283,284 For molecules, we will discuss qsGW fundamental gaps in section 5.2. When qsGW
QP energies are used in the BSE, weaker screening results in a stronger electron-hole interaction
which should localize the excitons. On the other hand, since the QP energy differences will be
larger than with G0W0, optical exciation energies will be higher as well.

In contrast to diagonal approximations, qsGW provides access to properties which directly
depend on the 1-particle reduced density matrix. Only recently, qsGW densities of molecular
systems have been investigated by Bruneval.285 The quality of these densities is a subject of
on-going research.

Further approximations

Approximation update of dependency approximation toΣ

ϵQP ϕQP on G(s) Diag. Hermitian static

lin-G0W0 no no strong yes yes Σ
G0W0 no no strong yes yes no
COHSEX yes yes non no yes W
evGW yes no weak yes yes no
qsGW yes yes non no yes Σ
scGW yes yes non no no no
qsGW (Hx) yes yes strong no yes Σ
scGW (Hx) yes yes strong no no no
evGW0 yes no strong yes yes no
qsGW0 yes yes strong no yes Σ
scGW0 yes yes strong no no no

Table 2.2: Overview of the common variants to perform GW calculations and the main features
of the approximations to Σ which are made.

Besides the commonly used strategies outlined above, there is a plethora of conceivable ways
to perform GW calculations (one could even say, that the possibilities are almost endless).
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van Leeuwen and coworkers suggested to perform fully self-consistent GW calculations but
to keep the dynamical part of the self-energy fixed in all iterations but the first one.236 We
have implemented the same strategy using qsGW instead of scGW . Since the calculation of the
dynamical self-energy part is computationally much more demanding than the calculation of the
static part, this strategy is efficient from a computational point of view. On the other hand, the
results are not starting-point independent anymore. A similar partially self-consistent scheme in
which only one full update of the full self-energy is performed has been suggested by Rubio and
coworkers.279,280 Also in the linearized density-matrix method by Bruneval and coworkers285–287

only a single scGW iteration is performed.
evGW calculations have also be performed starting from a self-consistent COHSEX calcula-

tion (evGW@COHSEX).263,288 evGW@COHSEX comes with the advantage that the results are
completely independent of the initial choice of G(s).

In all self-consistency schemes (evGW , qsGW , scGW ), it is always possible to keep the
screened interaction fixed, i.e. to only evaluate it on the G(s) level (evGW0, qsGW0, scGW0).
scGW0 have been performed by Holm and von Bart even before the first fully self-consistent GW
calculations228 for the homogeneous electron gas. While this approach was rather motivated by
the numerical difficulties to perform scGW calculations, it was noticed later on that evGW
and qsGW significantly overestimate band gaps in solids176,177,282 since in these approaches the
Coulomb interaction is underscreened.280 It was then suggested to replace the self-consistently
obtained W by a W (0) from a (semi-)local DFT calculation to fix the systematic underscreening,
which improved the investigated band gaps177 As we will discuss later on, screening effects are
much weaker in molecules than in solids and in fact qsGW does not overestimate fundamental
gaps (the equivalent to band gaps in molecules). Indeed, there is some indication from our own
work that qsGW0 does not necessarily seem to be a good method for molecular systems.248 Also
evGW0 has been shown to be mostly inadequate for many systems.265,266

All different ways to perform GW calculations we have just discussed are summarized in
table 2.2.

Ward Identity

The Ward identity expresses important constraints between the single- and two-particle Green’s
functions.289 Alternatively, these constraints can be formulated as identities involving the deriva-
tives of the 2-point and the 4-point vertices in the limit of large electron-electron separation and
small frequencies.127 In the context of MBPT, the most thorough discussion of these identities
is most likely the one given by Strinati in ref. [127]. In combination with (2.251), the Ward
identity has been used by Kotani, van Schilfgaarde and Faleev to explain the success of QP
approximations to GW .142

To introduce the Ward identity, we first define the 3-point vertex as the quantity which relates
the interacting and non-interacting generalized susceptibilities via127

χ(1, 3, 2, 3+) =

∫
d4d5χ(0)(1, 5, 2, 4)Ξ(4, 5, 3+) . (2.345)
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It can then be shown127, that close to the chemical potential the irreducible vertex goes as

Γ(0) → ∂Σ

∂ω
|ω→µ = Z−1 (2.346)

where we have used (2.245). It can then be shown that using the vertex Ξ, the xc-contribution
to the self-energy can be written as15,67,127

Σ(1, 2) = iG(1, 4)W (1+, 3)Ξ(4, 2, 3) , (2.347)

with W defined in the usual way and

P (1, 2) = χ(0)(1, 4, 1+, 3)Ξ(3, 4, 2) . (2.348)

This is the standard form of Hedin’s equations. Inserting (2.251) and using (2.346), we obtain

Σ(1, 2)
r→0,ω→0−−−−−−→= iG(0)(1, 2)W (1+, 2) + i

1

Z
Ginc(1, 2)W (1+, 2) . (2.349)

This only holds close to the chemical potential. If we now assume that the incoherent part of
the self-energy is unimportant for the description of QPs (which we assume to be the case close
to the chemical potential), we can then write

Σ(1, 2) = iG(0)(1, 2)W (1+, 2) . (2.350)

Equation (2.350) suggests that the best way to perform a GW calculation would be to use the
QP G(0) but to construct W from the interacting G. This result is physically intuitive. The
4-point vertex function couples the QPs. When the distance between the QPs becomes large,
their mutual interactions will vanish at small energy scales.

Correlation Energies from the GW Approximation

We now derive an expression for the electron correlation energy from the GW approximation.
In this work, we are not interested in evaluating this quantity with G and we focus on G(s). The
resulting expression for the correlation energy is known as RPA and has first been introduced
by Macke111 many years prior to Hedin’s work. Within MBPT, the electron-electron interaction
energy can be obtained as56

EHxc[G
s] =EHx[Gs] + Ec[G

s]

EHx[Gs] =
1

2

∫
d1d2Gs(1, 2)Σ(1)(2, 1)[Gs]

Ec[G
s] =

1

2

∑
n=2

1

n

∫
d1d2Gs(1, 2)Σ(n)(2, 1)[Gs]

(2.351)
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from a non-interacting Green’ function,290 where we use the decomposition of the self-energy in
orders in W (0) eq. (2.134). With the GW approximation for Σ and using eqs. (2.300) and (2.301)
the expression

ERPA
xc =i

1

2

∫
d1d2G(s)(1, 2)G(s)(2, 1)W (2, 1)

= − 1

2

∫
d1d2P (0)(1, 2)

{
W (0)(1, 2) +

1

2
W (0)(1, 3)P (0)(3, 4)W (0)(4, 2) + . . .

} (2.352)

for the xc-energy is obtained. Isolating the exchange contribution to the Hartree-exchange energy,

Ex =

∫
d1d2 δ(τ12)G(1, 2)W (0)(2, 1)G(s)(2, 1) , (2.353)

we obtain what is typically called RPA correlation energy

ERPA
c = − 1

2

∑
n

1

n

∫
d1d2δ(1, 2)

{[∫
d3P (0)(1, 3)W (0)(3, 2)

]n
+

∫
d3P (0)(1, 3)W (0)(3, 2)

}
=

1

2

∫
d1d2

{
ln

[
δ(1, 2) −

∫
d3P (0)(1, 3)W (0)(3, 2)

]
+

∫
d3P (0)(1, 3)W (0)(3, 2)

}
,

(2.354)
and using (2.230) as well as the symmetry of the polarizability on the imaginary frequency axis
(which cancels the prefactor of 1/2), its representation due to Langreth and Perdew[291] on the
imaginary axis is obtained,

ERPA
c =

1

2π

∫
dr1dr2δ(r1 − r2)

∫ ∞

0
dω

{
ln

[
δ(1, 2) −

∫
dr′P (0)(r1, r

′, iω)vc(r
′, r2)

]
+

∫
dr′P (0)(r1, r

′, iω)vc(r
′, r2)

}
.

(2.355)

Expanding the correlation energy as a series in vc, we obtain

ERPA
c = E(2)

c + E(3)
c + E(4)

c ,

where the first term is given as

E(2)
c = − 1

4π

∫
dr1 . . . r4

∫ ∞

0
P (0)(r1, r2, iω)vc(r2, r3)P

(0)(r3, r4, iω)vc(r4, r1) .

We will now show that this gives a first principle parametrization of the vdW interaction energy
we have written down in (2.327). Let us now consider two neutral fragments A and B which are
separated by a large enough distance

R = |R| = |RA −RB|
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so that their electron densities approximately do not overlap. The single-particle states from
which the P (0) are build are then localized on these fragments (in case of degeneracies, we can
always apply a unitary transformation which localizes the single-particle states). Under this
assumption, we can rewrite the previous expression210 as

E(2)
c = − 1

4π

∫
dr1 . . . r4

∫ ∞

0
P

(0)
A (r1, r2, iω)vc(r2, r3)P

(0)
B (r3, r4, iω)vc(r4, r1) ,

and choose the center of A as the origin of the r1 and r2 integration and B as the origin of the
r4 and r4 integration. We can then write vc(r2, r3) as

vc(r2, r3) =
1

|R + r2 − r3|

and Taylor expand it around R. We will then find that v2c goes as

v2c (R) =
1

R

[
α(R)

1

R
− β(R)

1

R3
+ γ(R)

1

R5
. . .

]
,

where the first two terms do not contribute due to charge conservation. We therefore obtain an
espression of the form

E(2)
c = −

∫ ∞

0
dω

1

4π

∫
dr1 . . . r4

γ(R)

R6
P

(0)
A (r1, r2, iω)P

(0)
B (r3, r4, iω) , (2.356)

which is of the same form as (2.327).

2.4.5 Vertex corrections

Shortcomings of the GW Approximation

It is commonly accepted that the GW term in the electronic self-energy is the major source of
of electron correlation and successfully describes weakly to moderately correlated systems where
the major source of electron interactions is the classical electrodynamic screening.292–294 This is
indeed the most important physics for the description of electron addition and removal energies
since it accounts for correlation effects stemming from the rearrangement of charge responding
to the addition or removal to a system.292,295,296 The Ward identity explains this from a different
perspective: in the static long-range limit, the errors introduced by the neglect of self-consistency
and the absence of vertex corrections in the self-energy cancel to a large extent.142

There are, however, major shortcomings in the GW formalism. First, the cancellation of
vertex corrections in the self-energy (i.e. higher order terms in the expansion of Σ in terms of
W ) and self-consistency only takes place in the static long-range limit. For systems in which
short-ranged interactions become important, the Fermi liquid hypothesis does not hold any more
and interactions between the QPs need to be taken into account.294,297 The contributions to the
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self-energy due to the vertex function indeed describes these coupling between the QPs. These
terms are fundamentally short-ranged and become less and less important for large electron-
electron distances.298,299 However, in the short-range limit they might even become the dominant
source of electron correlation.300

Second, the Ward identity only explains the cancellation of the vertex in the self-energy
but not in the polarizability which screens the interaction. The need to go beyond the RPA
is recognized immediately since the xc contribution to the 4-point vertex is completely absent
and the crossing symmetry eq. (2.172) is already violated to first order in the bare electron-
electron interaction. This gives rise to a problem which is sometimes referred to as self-screening
error,292,301 an effect which has been thoroughly studied for one-electron systems302,303 and simple
model systems:301 For a one-electron system, the screening of the electron-electron interaction
needs to vanish since an electron can not screen itself. Therefore, the density-density response
of any 1-electron system needs to be zero which is not the case within the RPA. This is a
fundamental flaw of this approximation and a direct consequence of the violation of the crossing
symmetry.292

The RPA describes screening by non-interacting (renormalized) electron-hole pairs and in
the same way as the vertex in the self-energy describes interactions between the QPs, the ver-
tex in the BSE describes the interactions between the electron-hole pairs. For many-electron
systems, ignoring these interactions underestimates the screening. The violation of the cross-
ing symmetry also results in overestimated correlation energies298,304 due to the appearence
of Pauli exclusion principle violating contributions terms.305 Notice, that theories like Møller–
Plesset (MP)perturbation theory306 or CC do no include such contributions since only properly
antisymmetrized terms are included in the equations. The same is also true for the Parquet
approximation.307,308

Overview over earlier Work

By now, there is a vast literature on vertex corrected GW calculations which is in our opinion
difficult to read and often confusing. We herein try to give a brief overview: A large number of
such calculations have been carried out early on for the homogeneous electron gas,309 Hubbard
clusters310–312 and other model systems141,313,314 as well as simple semiconductors like Silicon and
Diamond.315–318 One of the overarching conclusions was indeed that vertex corrections in the self-
energy often cancel to a large extent with the effect of self-consistency. This is the result which
we have introduced before and been rationalized later on in ref. [142]. Also, Bechstedt et al.318

could demonstrate the cancellation of the effect of self-consistency and the vertex corrections
in the polarizability. It has also been concluded that vertex corrections in the polarizability
alone do not improve310,311 the accuracy of charged excitations compared to GW and rather
recently it has been argued that such corrections might even deteriorate the description of single-
particle excitations in molecules.319 Consequently, it has indeed been argued, that the Vertex
should always be included at the same level in χ and Σ.67,317 Furthermore it has been shown
by Minnhagen, that the straightforward inclusion of vertex corrections beyond the GW level
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yields to the loss of the positive definiteness of the spectral funtion309, an issue which has been
rationalized and corrected by Stefanucci and coworkers.137

The results of these early studies are generally difficult to interpret due to the different approx-
imations involved (for instance, use of Plasmon-pole models to model the frequency dependence
of the self-energy320 or static approximations, LDA Green’s functions etc.) and the results are
often contradicting. Furthermore, these studies give little indication about the transferability of
these results to molecular systems.

Vertex Corrections in χ only

Over the last years, there has been a surge of articles exploring vertex corrections toGW including
studies dedicated to realistic molecules. Typically, these studies either aim at improving RPA
correlation energies or GW QP energies. Corrections to the RPA are often derived by including
vertex corrections in χ. 11 This strategy has also been pursued frequently for QP calculations
in the solid state, motivated by the observation that qsGW and scGW with RPA screening lead
to overestimated band gaps.

Via MBPT, the RPA can generally be improved upon inclusion of the 4-point vertex in
the electronic self-energy, either directly, or indirectly through the kernel of the Bethe-Salpeter
equation (BSE) for the generalized susceptibility. As opposed to the derivation from the GW
approximation within the bubble approximation to W , RPA correlation energies are often derived
from the adiabatic connection fluctuation dissipation (ACFD) theorem in which the correlation
energy is determined by the difference between the non-interacting and the interacting density-
density response functions,335

Ec =

∫ 1

0
dλ

∫ ∞

0
dω

∫
drdr′vc(r, r

′)
[
Pλ(r, r′, iω) − P (0)(r, r′, iω)

]
. (2.357)

In this expression, Pλ is calculated from a modified Dyson equation for the density-density
response,

Pλ(r, r′, iω) = P (0)(r, r′, iω) + P (0)(r, r2, iω) [λvc(r2, r3) + fxc(r2, r3)]Pλ(r3, r
′, iω) , (2.358)

which differs from the ordinary one only by the factor λ in front of the electron-electron inter-
action. Apart from this factor, this is the Dyson equation which is also solved in TD-DFT.336

The fxc kernel can then be derived from the 4-point vertex of the BSE or the BSE can be
solved directly and the resulting χ is contracted to obtain P . Modifications of the bare Coulomb
kernel include exact exchange (exx) (often denoted as exx-RPA)337–343 and higher order contri-
butions,344–346 or the statically screened GW kernel,347–349 but also empirically tuned functions
of the eigenvalues of the KS density-density response.350,351

11There have also been many attempts to correct the RPA correlation energy expression by adding additional
terms to improve the description of short-range correlation. This modifications are often not diagrammatic and
especially range-separation based approaches,[321–331] have been very popular but also the inclusion of excitations
to singles.[332–334]
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Vertex corrections in χ have frequently been explored in the solid state where scGW but also
qsGW underestimate the strength of the screening and consequently also band gaps of many ma-
terials. These include for instance the so-called nanoquanta kernel176,352–354 or the bootstrap ker-
nel355,356 (see ref. [356] for an overview) or long-range corrections of the form fxc = −(a+bω2)/q2

(q is a reciprocal lattice vector) where a and b need to be fitted to experimental data.357,358 For
reviews see ref. [292, 345]. Recently, an approach in which the fxc kernel is only included on
the short-range part has been proposed.282 Finally, we also mention that adiabatic LDA kernels
have been tested for molecules as well.359 The most common diagrammatic modification is to
solve the BSE with the static GW kernel (2.316),360–364 typically adopting the Tamm-Dancoff
approximation (TDA)365 and within the qsGW approximation to Dyson’s equation.361–364,366

The G3W2 Contribution to the Self-Energy

The most systematic investigations of vertex corrections toGW for realistic systems have possibly
been conducted by Kutepov in a series of articles367–372 and also very recently by Vlček and
coworkers for Hubbard systems.294 We have already given the explicit expression of the vertex
function which is obtained as the functional derivative of the GW self-energy in (2.314). It
consists of one first order term and two second-order terms. Inserting this vertex into the self-
energy results in a single term of second order in W and two terms of third order in W . As
shown by Hedin, the expansion of the self-energy in terms of the screened electron-electron
interaction contains six third-order terms. Including only 2 out of 6 terms is not a systematic
approximation, as has already pointed out by Hedin67 and we are not aware of any justification
as to why these two terms should be more important than the remaining four. We note, that
Vlcček and coworkers have recently investigated the role of all of the third-order contributions,
the remaining ones of which are obtained when the functional derivatives of the first-order and
second-order contributions Vertex with respect to the single-particle Green’s function are taken
as well. They found, that the third-order terms give a good description of multi-QP coupling294

and they concluded that their inclusion extends the applicability of MBPT based expressions to
the strongly correlated regime.

W vc vc χ(0)vc vc χ(0)vc χ(0)vc

= + + +…
= + + +…

ΣHF = ΣGW =
vc W

G G

ΣGW+G3W2 = +

a)

b) c)

d)

Figure 2.6: Diagrammatic representation of the GW +G3W2 contribution to the self-energy, the
complete self-energy up to second order in the screened electron-electron interaction. Again, the
black part of the diagrams are the contributions to the self-energy only which, combined with
the blue lines yield the corresponding single-particle propagator.

In this thesis, we are exclusively concerned with the properties of the second order term. To
obtain the second-order term one first calculates χ within the RPA. In this case, χ is related to its
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non-interacting counterpart χ(0) by a Dyson equation with the bare electron-electron interaction
as its kernel,

χ(1, 2, 3, 4) = χ(0)(1, 2, 3, 4)χ(0)(1, 5, 3, 6)W (0)(5, 7, 6, 8)δ(5, 6)δ(7, 8)χ(8, 2, 7, 4) . (2.359)

Then, one can see that

W (0)χ =W (0)
[
χ(0) + χ(0)W (0)χ(0) + χ(0)W (0)χ(0)W (0)χ(0) + . . .

]
=
[
W (0) +W (0)χ(0)W (0) +W (0)χ(0)W (0)χ(0)W (0) + . . .

]
χ(0)

=Wχ(0) .

(2.360)

Equation (2.203) can now be rewritten as

ΣRPA(1, 2) = ΣH(1, 2) + iG(1, 2)W (1, 2) + iG(1, 3)WRPA(1, 4)χ(0)(6, 4, 5, 4+)Γ(0)
xc (3, 5, 2, 6) ,

(2.361)
where the unscreened electron-electron interaction W (0) does not appear any more, and where
the superscript indicates that this expression is only valid when W has been calculated within
the RPA.

Now, one inserts the second first-order contribution to the vertex (2.314) into (2.361). We
see that the resulting self-energy contribution consists of three single-particle Green’s functions
which are connected by two screened electron-electron interaction lines,

ΣG3W2(1, 2) = −G(1, 3)W (1, 4)G(3, 4)G(4, 2)W (3, 2) . (2.362)

Therefore, following Kutepov272,367,368 we call this term the G3W2 term. The complete self-
energy up to third order in W is called GW +G3W2 self-energy,

ΣGW+G3W2(1, 2) = ΣH(1, 2) + iG(1, 2)W (1+, 2) −G(1, 3)W (1, 4)G(3, 4)G(4, 2)W (3, 2) (2.363)

and is shown diagrammatically in figure 2.6.
The structure of the G3W2 self-energy terms has been scrutinized by Stefanucci, Pavlyukh,

van Leeuwen and coworkers.137,293 We follow their work and use the framework of the Keldysh
formalism to discuss the G3W2 self-energy.137,373,374 In the Keldysh formalism, we work on the
contour C = C+ ∪ C−, with C+ being the backward branch and C− being the forward branch.
The time-ordered (anti-time-ordered) Green’s function G−− (G++) is built from field-operators
evolving on C− (C+) while lesser (G−+ = G<) and greater G+− = G> Green’s function involve
both branches and describe propagation of holes and particles, respectively. In the same way,
the dynamically screened interaction can either connect both different branches on the Keldysh
contour (W+− = W> and W−+ = W<) or not (W−− and W++). However, a static interaction
line can only connect points on the same branch of the Keldysh contour.374

As shown in figure 2.7a), greater and lesser component of the second-order contribution con-
sist of four terms each, since both intermediate vertices can connect both branches of the Keldysh
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ΣG3W2> = + + +

ΣG3W2< = +++

+ − + −+ − + −

− + − + − + − +

+ + + −− + − −

+ + + − − + − −

ΣG3Wvc> = +
−−+ + + −− −

ΣG3Wvc< = +
− ++ + − ++ −

ΣG3vc2> =

ΣG3vc2< =

−−+ +

− ++ −

vcW

a)

b) c)

Figure 2.7: Diagrammatic representation of the different contributions to the second order ex-
change (SOX) term on the Keldysh contour with different Coulomb interaction types. The terms
in the black boxes are the ones in which the vertices with pluses and minuses alternate. a) Greater
and lesser contributions to the full G3W2 the self-energy term. b) Greater and lesser components
of the SOX term in the SOSEX self-energy c) Greater and lesser components of the SOX term
of the MP2 self-energy. The static approximation to the G3W2 self-energy looks the same, with
the bare electron-electron interaction lines replaced by the statically screened ones. Again, the
black part of the diagrams are the contributions to the self-energy only which, combined with
the blue lines yield the corresponding single-particle propagator.

contour. Together, the four diagrams describe three distinct scattering processes.293,375 Among
others, they are responsible for spectral features which do not appear in fully self-consistent GW ,
like the excitation of two plasmons and two particle hole pairs. In this work, these terms should
be of minor relevance only since we are interested in improving QP energies and correlation
energies. The diagrams in the boxes in fig. 2.7a), however, only contribute to the 2h1p (1h2p)
space and describes the exchange of two final particles/holes.293 It ensures the antisymmetry
of the 4-point vertex to first order in the electron-electron interaction. This can be verified by
inspecting the kernel which is used to generate these diagrams and applying (2.294).

We have already shown that the inclusion of the first-order contribution to the vertex in
the BSE for χ (2.200) gives (2.315). Kutepov has solved Hedin’s equations in a fully self-
consistent fashion using (2.315) for χ and (2.363) for Σ without any static approximations.
He has applied the second-order self-energy variant (coined GW + G3W2) to a wide range
of metals, semiconductors, and insulators,367–372 and observed major improvements over fully
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self-consistent GW for spectral properties using the GW + G3W2 approximation to the self-
energy. According to his work, the vertex corrected calculations should be performed without
any constraining approximations. This means, Hedin’s equations should be solved fully self-
consistently and the frequency dependence of all quantities should be properly accounted for.
As many other authors,176,282,292,345,353–356,360–364,376–378 he also emphasized the importance of
vertex corrections in the BSE for χ to correctly describe the screening in periodic systems.

In a recent study, the GW + G3W2 self-energy has also been employed by Rinke, Ren and
coworkers379 to ionization potentials and electron affinities of molecules. Rinke, Ren and cowork-
ers used the dynamically (RPA) screened interaction and did not consider any self-consistency
in solving Dyson’s equation. Improvements over GW were found to be substantial, especially for
electron affinities and the dependence on the starting point was reduced.379

Static Approximations The evaluation of theG3W2 term with the full frequency dependence
is computationally already very involved. It is therefore tempting to reduce the computational
effort of this diagram by invoking statical approximations to W . This can either be done by
replacing W with W (0). It can be seen that this reduces the complexity of the calculations since
each electron-electron interaction line which is approximated as static reduces the number of
self-energy diagrams on the Keldysh contour by a factor of two. This can also be shown quite
easily by performing the integrals over time analytically but we postpone this discussion to the
next chapter.

The procedure is also illustrated in figure 2.7. With the replacement W →W (0) for one of the
electron-electron interaction lines in the complete G3W2 term, the G3Wvc self-energy is obtained
in which greater and lesser contributions to the self-energy only consist of two term each instead
of four. This self-energy approximation is commonly known as second-order screened exchange
(SOSEX),

ΣSOSEX(W,vc)(1, 2) = −
∫
d3d4G(1, 3)W (1, 4)G(3, 4)G(4, 2)W (0)(3, 2) . (2.364)

SOSEX has already been introduced in the context of CC theory by Freeman.380 By now, the
merits of the SOSEX self-energy for the calculation of single-particle excitations have been as-
sessed in many articles.242,381–383 The SOSEX self-energy is also obtained by taking the functional
derivative of the HF self-energy with respect to the single-particle Green’s function instead of
the GW one. Maggio and Kresse131 and Vlček and coworkers297 have also assessed the combi-
nation of the SOSEX self-energy with screening in the TD-HF approximation eq. (2.293). This
approach can be understood as a full iteration of Hedin’s equations beyond HF: The functional
derivative of the HF self-energy with respect to G results in the TD-HF approximation for χ
and the SOSX self-energy for Σ. However, in non of these studies the GW equations have been
solved self-consistently and the results did not show any improvements over G0W0 with a judi-
ciously chosen starting point. For correlation energies, SOSEX has been shown to give major
improvements over plain RPA.305,333,334,384–386
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MP2 If one also replaces the second dynamically screened electron-electron interaction line by
the bare electron-electron interaction, the G3vc2 self-energy shown in figure 2.7c) is obtained.
Since the electron-electron interaction in this term is completely unscreened, combination of this
self-energy contribution with the GW self-energy does not seem to be reasonable and has not
been pursued to the best of our knowledge. However, this term is identified as one of the two
second-order diagrams in the skeleton expansion of the irreducible self-energy in figure 2.1c). This
term is typically referred to as the second-order exchange (SOX) term. We have already seen that
the other second-order term in figure 2.1c) is contained in the GW self-energy (see figure 2.5a)
and figure 2.5b)) Combining these terms with the HF self-energy one has all contributions to the
self-energy up to second order in W (0).

The Green’s function resulting from the self-consistent solution of Dyson’s equation within
this approximation to Σ is sometimes called second-order Green’s function (GF2).387,388 If the
correlation energy within this approximation is evaluated perturbatively using a HF Green’s
function, this approximation is known as second-order MP perturbation theory.306 Screening
effects are entirely absent in MP perturbation theory and electron correlation is described by
HF QPs interacting via the bare Coulomb interaction instead, neglecting the fact that the in-
teractions between the HF QPs are generally much weaker than the ones between the undressed
electrons. This issue is also present in orbital optimized MP2 in which the HF QPs are replaced
by MP2 QPs.389–391 Therefore, MP2 is a suitable method only for (typically small) systems in
which screening effects are negligible. The divergence of MPPT for the uniform electron gas (see
for instance chapter 10 in ref. [112] for a thorough discussion) is known at least since early work
by Macke111 and has been demonstrated later on for metals392 and recently also for large, non-
covalently bound organic complexes.393 The divergence of the MP series for small-gap systems
is directly related to this issue since the magnitude of the screening is proportional to the width
of the fundamental gap.175,282 Due to its relatively low computational cost and its widespread
availability in quantum chemistry codes, here have been various approaches to regularize MP2
by an approximate treatment of screening effects, either using empirical394–404 or diagrammat-
ically motivated modifications405–408 or attacking the problem from a DFT perspective.409,410

Therefore, for the calculation of correlation energies MP2 is mostly relevant as ingredient in DH
density functionals,208,217,218,411–413 as a stepping stone in the implementation of more advanced
methods and it is a key ingredient in (local) CC codes.414–417 MP2 and its third-order extension
MP3 have also been investigated for the description of single-particle excitations in finite systems
for which is seems to be generally applicable383,387,418–421 but not necessarily accurate383

Statically screened G3W2 Instead of replacing W with W (0) in the G3W2 term, one can
also take the static limit by taking the static limit in both W (W → W (0)) which leads to the
statically screened second-order exchange contribution to the self-energy,

ΣSOSEX(W (0),W (0))(1, 2) = −
∫
d3d4G(1, 3)W (1, 4)G(3, 4)G(4, 2)W (3, 2)δ(τ32)δ(τ14) . (2.365)
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To distinguish this self-energy approximation from the SOSEX self-energy described before,
we will refer to the former one as SOSEX(W ,vc) and to the statically screened version as
SOSEX(W (0),W (0)). The computation of this version of SOSEX is computationally more effi-
cient than SOSEX(W ,vc) since no expensive numerical frequency integration is required.

Following Jansen et al.384 we will also use the term AC-SOSEX, where AC stands for adi-
abatic connection and should not be confused with analytical continuation, a numerical tech-
nique wich will be introduced in the following chapter and which we will abbreviate with AC
as well. One can derive an energy expression similar do SOSEX as a subset of the CCD equa-
tions by only taking into account ring diagrams but with antisymmetrized electron repulsion
integrals, (pq||rs) = vpqrs − vpsrq in the spin-orbital basis. This is typically termed ring-CCD
(rCCD)384,422,423 and has been introduced by Freeman.380 If one evaluates the rCCD equations
with non-antisymmetrized electron repulsion integrals only, one obtains direct rCCD (drCCD)
which is completely equivalent to the RPA correlation energy expression.422 The SOSEX corre-
lation energy which can be derived from (2.364) is formally not completely equivalent to the one
from rCCD384 even though the numerical differences are too small to be relevant in practice.334

To distinguish between both variants, Jansen et al. termed rCCD SOSEX and referred to the
energy expression derived from (2.364) as AC-SOSEX.

Equation (2.365) can be written as

ΣSOSEX(W (0),W (0))(1, 2) = ΣMP2-SOX(1, 2) + ΣδMP2-SOX(1, 2) , (2.366)

with the first term being the SOX term in MP2 and with the remainder accounting for the
screening of the electron-electron interaction. Defining

δW (1, 2) =

∫
d3d4W (0)(1, 3)P (3, 4)W (0)(4, 2) , (2.367)

it can be written as

ΣδMP2-SOX(1, 2) = −
∫
d3d4G(1, 3)δW (1, 4)δ(τ14)G(3, 4)G(4, 2)δW (3, 2)δ(τ32) . (2.368)

One can make a similar decomposition for SOSEX(W ,vc). The MP2 self-energy only contains all
skeleton diagrams to first and second order and therefore strictly fulfills the crossing symmetry.
Therefore, all of the corrections we have derived here from theG3W2 fulfill the crossing symmetry
to first order in W (0). Therefore, we can expect that all of these approximations compensate the
overestimation of the electron correlation energy in the RPA.

For QP energies in solids, the statically screened G3W2 correction to the self-energy has first
been introduced by Grüneis et al.360 who used this term to calculate perturbative corrections
to qsGW 142,175 QP energies. They also combined this method with a beyond RPA screening of
the Coulomb interaction using a static exchange-correlation kernel. As Kutepov, they reported
major improvements over the GW method for the band structures of solids. Comparing their
results to Kutepov’s, the logical conclusion would be, that the errors introduced by the static
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approximation, the use of a non-interacting Green’s function, and the perturbative treatment of
the G3W2 cancel to a large extent. A recent study by Kutepov has confirmed this conjecture.372

From a pragmatic point of view this is of course convenient, since all of these approximations
come with drastically reduced computational cost compared to the rigorous, self-consistent for-
malism424.

To a large part, chapter 5 will focus on assessing the accuracy of the SOSEX(W (0),W (0))
correction to GW for total correlation energies of atoms, interaction energies of non-covalently
bound complexes, as well as charged excitations of a wide range of molecular systems.
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Chapter 3

Numerical Implementation

In chapter 2 we have used MBPT to rewrite N -electron problem as the problem of calculating the
skeleton expansion of the electronic self-energy. Even in terms of the screened electron-electron
interaction, the skeleton series contains an infinite number of terms and in section 2.4 we have
introduced different approximations to it. In a next step, we have introduced QP and diagonal
approximations to the self-energy as well as static approximations to the screened interaction.
These approximations are of course motivated by numerical constraints but they are of physical
nature: we have selected certain patterns of electron-electron interactions which we believe (or
know) to dominate the physics of the problems we would like to solve.

In this chapter, we turn to the numerical implementation of these equations with low scaling
with system size and with a low prefactor. Achieving Low-order scaling implementations of the
GW approximation for periodic and finite systems has been a very active area of research over
the past decades6,36,134,269,272,425–439 and also efficient implementations of the BSE@GW approx-
imation39,440–444 and even vertex corrections382 have been achieved. In a series of articles36–39

we have also contributed to these efforts.
In section 3.1 we will introduce a real space discretization by transforming our equations to

the spin-orbital basis and by expanding the spatial orbitals in terms of localized atomic orbitals
(AO). The choice of this basis of AOs is crucial for the efficient implementation of the equations.
All 4-point correlation functions can be represented as 4-leg tensors in this basis even though
the polarizability P (0), the electron-electron interaction vc as well as their reducible counterparts
only depend on two spatial coordinates. We have already seen this for the Coulomb potential
eq. (2.74). For these quantities the AO-based representation is inefficient and we will introduce a
more suitable auxiliary basis in which the 4-point correlation functions transform as 2-leg tensors.
The efficient implementation of the transformation between both bases, known as density fitting
(DF),445–452 is thereby decisive. To calculate this transformation we will use the pair-atomic
density fitting (PADF) approximation,453–462 sometimes also referred to as concentric density
fitting or pair-atomic resolution of the identity (PARI) which allows for transformations from
the primary basis to the auxiliary basis and back with quadratic scaling with system size.

93
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Next, we will describe our strategy for the discretization of time or frequency. The poles of
the single-particle Green’s function correspond to single-particle excitation energies which can
be probed in (inverse) photoemission experiments and the poles of the generalized susceptibility
correspond to the energies of bound electron-hole pairs, so called excitons, which can be iden-
tified with the positions of the peaks in optical spectra. These poles are located on the real
frequency axis. For this reason, it is numerically inefficient to work in real frequency space since
often a rather large number of integration points will be required to obtain accurate results.463

Following Godby and coworkers132,133 we will work mostly on the imaginary time and imagi-
nary frequency axes instead. This necessitates efficient ways to discretize these domains and to
transform quantities from imaginary time to imaginary frequency and back. Finally, we need
to model the behavior of the self-energy in the whole complex plain using information from the
imaginary frequency dependence only. This so-called analytical continuation (AC) of the self-
energy is exact in principle if the self-energy is known at an infinite number of points including
the points at infinity,464,465 but extremely ill-conditioned from a numerical perspective.466,467

We have already mentioned that some of the methods introduced in section 2.4 need to be
solved self-consistently. This is always necessary when solving an equation of the type (2.131):
We wish to calculate G, but the kernel Σ which maps G(s) to G depends on G. We will outline
our strategy to solve such problems using iterative subspace algorithms.468,469 After introducing
these approximations, we can combine them with the results of section 2.4 and write down the
working equations we have implemented in ADF. The careful analysis of the errors which are
introduced by these approximations are the subject of chapter 4.

To keep the notation of this chapter light we give all single-particle energies with respect to
the chemical potential µ. Also, we will frequently use the abbreviations∑

i

=
∑
k

Θ(µ− ϵk)

and ∑
a

=
∑
k

Θ(ϵk − µ) ,

with the understanding that summations over i, j . . . (a, b, . . . ) run over occupied (unoccupied)
states only. The labels k, l,m . . . are reserved for general single-particle orbitals. µ, ν, κ, λ will
denote atomic orbitals, α, β, γ, δ will label auxiliary functions, and A,B,C,D . . . will label atomic
centers. We will often perform summations over indices corresponding to functions centered on a
particular atomic center. For instance,

∑
α∈A means that α runs over all auxiliary basis functions

centered on atom A.
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3.1 Discretization

3.1.1 Basis Sets

A discrete representation of our working equations starts with the expansion of the single-particle
states in terms of a second set of functions,

ϕk(r) =

Nbas∑
µ

bµkχµ(r) . (3.1)

We call χ a basis function, and the set of Nbas functions which we use to represent ϕk is called
a primary basis set. Unless the primary basis set spans the entire single-particle Hilbert space,
eq. (3.1) is an approximation. In practice, we assume that we can find a sufficiently large Nbas

so that

ϕk(r) ≈
Nbas∑
µ

bµkχµ(r) , (3.2)

i.e. that the error introduced by this expansion is small. Using the expansion (3.1) then restricts
the number of single-particle states to NMO where NMO ≤ Nbas for a closed-shell, and NMO ≤
2Nbas for an open shell system.

The complete Basis Set Limit

Since the MOs depend on r One could choose dirac delta functions or different flavours of splines
as basis functions in (3.1). This is often done for spherical systems where one can work in polar
coordinates169,298,470–472 but also sometimes for molecules as for instance in refs. [473, 474]. The
straightforward sampling of the whole R3 with equidistant grid points is easy to implement and
allows for a uniform convergence to the complete basis set (CBS) limit, i.e. the limit in which
the error introduced by the expansion eq. (3.1) vanishes,

ϕk(r) ≃
Nbas∑
µ

bµkχµ(r) . (3.3)

With uniform convergence (on R3), we mean that there is an integer N ′
bas, so that ∀ϵ > 0∣∣∣∣∣ϕk(r) −

Nbas∑
µ

bµkχµ(r)

∣∣∣∣∣ < ϵ , ∀Nbas > N ′
bas∀r, k , (3.4)

when the set of all ϕk is restricted to a finite subset. For delta functions or their equivalent in
reciprocal space, plane waves (PW), one can show that they indeed fulfill (3.4). This is due to
the fact that PWs are eigenfunctions of the kinetic energy operator.

− 1

2
∇2eiGr =

1

2
|G|2 eiGr . (3.5)
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The kinetic energy operator is a Sturm-Liouville operator and therefore the property (3.4) follows
as a corollary form the Sturm-Liouville expansion theorem.475 This also implies the validity of
(3.4) for the χµ being dirac deltas (with appropriate boundary conditions475) since the uniform
convergence property also holds in Fourier space. One can then increase Nbas by decreasing the
centers of the dirac deltas and evaluate the error of the expansion using (3.4) until the error
vanishes.

Atomic Orbital Basis sets

While uniform convergence is a strong argument for using dirac delta basis sets, the downside of
this approach is that a very large Nbas will be needed to converge the expansion. However, the
aim of the expansion (3.1) is to provide the best representation of the ϕk with as small a Nbas

as possible.
The solutions of the Schrödinger equation describing the hydrogen atom decay exponentially

from the atomic center and have a cusp at the position of the nucleus due to the singularity of
the external potential. Furthermore, each of these states can be characterized by three quantum
numbers describing the electron’s energy, angular momentum, and an angular momentum vector
component. The situation is qualitatively similar for atoms with more than one electron. Since
a molecule is composed of atoms one might therefore make the assumption that much of the
information which is needed to describe the behavior of the molecular orbitals is already contained
in the atomic orbitals. For this reason one typically uses atomic orbitals in the expansion (3.1).
The expansion (3.1) is then typically referred to as the linear combination of atomic orbitals
(LCAO) method. It is important to notice here that it is inefficient to use directly the solutions
of the Schrödinger equation for the Hydrogen atoms. When we refer to atomic orbitals in
the following we mean basis functions which resemble, loosely speaking, the hydrogenic orbitals:
More precisely, we denote all basis functions as AOs which are exponentially decaying for |r| → ∞
and atom-centered.

There are many possible realizations of this type of basis functions: Sturmians476–480, reduced
Bessel functions,481–483 Slater type orbitals (STO)446,484–487, Gaussian type orbitals (GTO)488,489

or any other type of atomic orbitals which do not have an analytical expression, typically referred
to as numerical atomic orbitals (NAO).490–493 The algorithms we will outline in this chapter can
be implemented with any of these types of basis functions.

Compared to the other types of AOs, GTOs have favorable analytical properties which allow
the efficient semi-analytical evaluation of integrals of the type (2.74). Therefore, they became
very popular in the early days of quantum chemistry and are still the most popular type of basis
functions. For an overview over the different types of GTO-type basis sets for non-relativistic
calculations, see ref. [489]. Bessel functions and Sturmians are essentially not used in practical
applications.1 STOs are used in the Amsterdam density functional (ADF) code446,496 in which

1Interestingly, reduced Bessel functions combine a variety of interesting properties which could make them a
suitable choice as basis functions for molecules: An integral involving the Coulomb potential and three atomic
centers which arise in DF can be solved analytically except for a semi-infinite 1-center integral. Furthermore, any



3.1. DISCRETIZATION 97

all the algorithms introduced in this thesis have been implemented. One typically hopes, that one
approaches the CBS limit faster with STOs than with GTOs. Therefore, they are sometimes used
in calculations where the evaluation of molecular integrals is relatively inexpensive compared to
tensor contractions of matrices in the AO or MO basis.497 This also the motivation for using
NAOs. Popular NAO-based codes are FHI-AIMS492,498,499 and BAND.491

Extrapolation to the Complete Basis set Limit

The uniform convergence of a basis set expansion allows for the extrapolation to the CBS limit.
This is only helpful if the convergence rate of the expansion is known and it is typically impossible
to determine this property analytically. However, to obtain converged MBPT results it is in
most cases decisive to perform extrapolations to the CBS limit. One then typically resorts to
numerical experiments and fits the empirical results to analytical formulas which describe the
error introduced by (3.1) as a function of Nbas. For GW calculations with PW basis sets, there
is for instance numerical evidence that the QP energies converge like 1

Nbas
.500 Interestingly, the

same behavior has been observed in GW calculations for molecules.501 For correlation energies,
different extrapolation schemes are in use.502 The most popular techniques is possibly the one
introduced by Helgaker and coworkers in ref. [503]

3.1.2 Slater Type Orbital Basis Sets

In this section, we will describe the design of STO-type basis sets which are suitable for MBPT
calculations. In this context, the index µ in eq. 3.1 becomes a composite index, collecting the
five defining parameters of a Slater type function

χµ(r, θ, ϕ) = χA,α,n,l,m(r, θ, ϕ) = C(α, n)rn−1e−αrZlm(θ, ϕ) , r = |r −RA| , (3.6)

the exponent α and the quantum numbers (n, l,m), as well as the nucleus A on which the
function is centred. In (3.6), C(α, n) is a normalization constant and Zlm denotes a real spherical
harmonic. The main difference to Gaussian type functions is in the dependence of the exponential
on r instead of r2 which mainly results in a different behavior close to the atomic nuclei and
a slower decay for large r. While STO-type basis sets are well developed for independent-
electron methods487,504–507 we are not aware of any attempt to construct general Slater type
basis sets which are consistent with the requirements of correlated electrons methods. Here, we
make a first attempt to present such basis sets for the whole periodic table. Notice, that the
concept of correlation consistency has also been applied to NAO basis sets for RPA total energy
calculations.493

STO can be exactly expanded in terms of spherical Bessel functions.482,494 The resulting 1-centers integrals are
difficult to evaluate numerically but it has recently been shown that a more favorable expression can be obtained
by applying an S transformation which converts them to sine integral.495
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Correlation Consistent Atomic Basis Sets

In the construction of our basis sets we make two assumptions: First, we assume that the
principles guiding the construction of GTO-type basis sets for correlated-electron methods which
have been developed over the last decades should be applicable to STO-type basis sets as well.
This can be justified as follows: Based on numerical experiments on correlation consistent GTO-
type basis sets, Helgaker et al.503 established the relation

Ecorr
∞ − Ecorr

X = aX−3 (3.7)

between the correlation energy Ecorr
∞ at the CBS limit and the correlation energy Ecorr

X calculated
with a given correlation consistent basis set with cardinal number X = lmax + 1. Conceptually,
their formula is based on earlier work by Schwartz508 and the mathematical more rigorous work
by Hill509 on the convergence of the ground state of the Helium atom in a full configuration inter-
action calculation with respect to the single-particle basis. Later on, Kutzelnigg and Morgan510

generalized that result to arbitrary n-electron systems for MP2 calculations.
In principle, (3.7) is only valid in the limit of large X, however, there is numerical evidence

that it is already a good approximation for X = 3 and X = 4.503,511 Since (3.7) is independent
of the type of localized basis functions508–510, this should also be the case for STO-type basis
sets provided that they are also constructed in a correlation consistent fashion as first defined by
Dunning;512 such that the total basis set incompleteness error is distributed equally between the
different angular momenta functions. This requires that polarization functions are added in well-
defined sequences.489 There is numerical evidence that the consistent polarization for correlated
methods is 1p on the double-ζ (DZ), 2p1d on the TZ and 3p2d1f on the QZ level for first-row,
and 1d on the double-ζ (DZ), 2d1f on the TZ and 3d2f1g on the QZ level for second- and third
row elements489 and analogously for first-row atoms. The design of correlation consistent basis
sets for heavier elements might follow different principles.513–517

Construction of Correlation Consistent Slater-Type Basis sets

Based on the considerations above, we construct correlation consistent basis sets of TZ and QZ
quality. We name these basis sets TZ3P and QZ6P, respectively. We also add additional diffuse
functinos to these basis sets. The sets containing those functionas are named aug-TZ3P and aug-
QZ6P. The acronym xP refers to the number of polarization functions we use for the elements
of the first three rows of the periodic table. This choice is consistent with the requirements for
correlation consistent basis sets stated above.

At this point, we introduce our second assumption: Since the ADF code only supports basis
functions up to l = 3, for second- and third-row elements we chose the polarization 2d1f and
3d3f for TZ and QZ respectively, and for consistency also 2p1d and 3p3d for Hydrogen and
Helium. A good justification for the validity of this approximation can not be given and as we
will see later, our results indeed suggest that the replacement of a g with another f function
negatively affects the QP energies for small molecules. Generalization of ADF to accommodate
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use of higher angular momenta functions is therefore desirable. Therefore, we emphasize that
the basis sets we are constructing here are not correlation consistent in a strict sense but rather
as correlation consistent as possible in our current implementation.

The TZ2P and QZ4P basis sets which have been described in detail in ref. [487] serve as
starting points for our new basis sets. TZ2P (QZ4P) is of DZ (TZ) quality in the core region
and of TZ (QZ) quality in the valence region. For the TZ3P and QZ6P basis sets, we chose not
to optimize exponents but rather to add additional polarization functions in an ad-hoc manner.
This approach can be justified by the observation that precise values of exponents become less
important as a basis set approaches completeness.489,504 This is especially true for molecules as
opposed to isolated atoms. The latter case generally requires larger and more optimized basis
sets than the molecular case. Instead, we rather focus on choosing the exponents in a way that
their overlap is small and linear dependency problems are more likely to be avoided.

TZ3P is simply obtained by augmenting the TZ2P basis set by another locc + 1-function for
all elements. The exponent is chosen so that it is twice as large as the exponent of the locc + 1-
function in the TZ2P basis set. This is due to the fact that the exponents of the polarization
functions in the TZ2P and QZ4P basis sets are chosen in a way that the basis sets become
more accurate in the valence region, which is favorable for the calculation of bonding energies.
The calculation of IPs also requires the accurate representation of the electron density closer to
the core, and TZ3P should yield a major improvement over TZ2P in that respect. The same
reasoning has also been followed in ref. [518]. In complete analogy, the QZ6P basis set is obtained
by adding an additional tight locc + 1-function and an locc + 2-function for all elements.

The exponents α1, α2 of the polarization functions in the QZ4P basis set fulfill α1
α2

≈ 2 for
each l. Thus, the polarization functions in the TZ3P and QZ6P basis sets loosely follow an
even-tempering scheme519,

αi = α1β
i−1 , i = 2, . . . ,M , β = 2 , (3.8)

with M being equal to two (three) for locc + 1 in TZ3P (QZ6P) and one (three) for locc + 2. The
value of β is rather large to avoid linear dependency problems, and in conjunction with a rather
small α1 ensures that the exponents span a rather wide range of values in the QZ6P case.520 Ren
et al. recently used a similar reasoning to chose the exponents of Slater type functions for G0W0

calculations for periodic systems.521

Adding Diffuse Functions

It is known from electron scattering experiments that molecular electron affinities are sometimes
negative, i.e. their anion state at the geometry of the neutral molecule is unstable.522–524 This
corresponds to a positive LUMO QP energy which formally corresponds to a non-normalizable
continuum orbital. However, as an artefact of working with a finite basis, the orbital will always
be constrained to be normalizable.525 Very diffuse functions are then needed to mimic the con-
tinuum state, and for this reason we augment our basis sets with additional diffuse functions (See
also ref. [526] and ref. [527]). The resulting basis sets are denoted as aug-TZ3P and aug-QZ6P
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and are obtained from TZ3P and QZ6P, respectively by adding diffuse s, p and d-functions for
all element types, with the important exceptions of first row atoms where we only add diffuse s
and p functions.2 We decided to chose the exponents of the diffuse functions in line with (3.8),
except for a small shift. More precisely, the exponent of the most diffuse function for a given
angular momentum is αl,min, the exponents of the diffuse function is chosen to be

αl,diffuse = αl,min/2 + 0.05αl,min (3.9)

The exceptions are the elements Hydrogen to Beryllium for which we chose the already optimized
exponents by Chong et al.528 These exponents are very close to fulfilling (3.9). Our choice of
exponents is a compromise between two requirements: We would like the additional functions to
be as diffuse as possible but we still want to be able to fit them accurately with a large auxiliary
basis set, which, as we will discuss in chapter 3.1.3, is already challenging. In practice, this
means that 2αl,diffuse should be at least equal or preferably slightly larger (for this reason we
added the shift in (3.9)) than the exponent of the most diffuse function in the auxiliary basis set.

3.1.3 Auxiliary Basis Sets and Basis Transformations

We have already seen that the electron-electron interaction in the MO basis eq. (2.74) becomes
a 4-index tensor. This obviously does not change when we transform to the AO basis. Using

vklmn =
∑
µνκλ

∫
dr

∫
dr′b∗µkχµ(r)bλnχλ(r)vc(r, r

′)b∗νlχν(r′)bκmχκ(r′)

=
∑
µνκλ

b∗µkbλnvµλνκb
∗
νlbκm ,

(3.10)

the Coulomb potential in the AO basis is

vµνκλ =

∫
dr

∫
dr′χµ(r)χν(r)vc(r, r

′)χκ(r′)χλ(r′) . (3.11)

This implies that all operations involving a contraction of the form (2.144) (or inversions, diag-
onalizations and related operations which can be formulated in terms of matrix multiplications)
will scale as N6 in the basis of AOs or MOs. While this scaling is difficult to circumvent for
quantities which depend on 4 coordinates in real space like the 2-particle Green’s function, the
scaling of N6 is simply an artefact of the chosen representation for all 4-point quantities which
only depend on 2 spatial coordinates.

2This is slightly different from usual augmentation approaches encountered for Gaussian type basis sets. Dun-
ning and coworkers defined the prefix ”-aug” to mean adding an additional diffuse functions for all angular
momenta already present in a basis set for every atom type.526 On the contrary, in a process which they denoted
as minimal augmentation, Truhlar and coworkers only added diffuse s and p functions to all elements heavier than
Hydrogen.527 Our approach is can be seen as a compromise between both.
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While this might be clear from physical considerations, it can also demonstrated by numerical
experiments that the rank of such quantities grows slower than their dimension with system size:
The Eckard–Young theorem529–531 guarantees the optimal rank-r approximation M (r) to some
matrix M to be given by the first r terms in the sum on the r.h.s. of

M (r) =

r∑
i

σivi ⊗ ui, σi ≥ σi+1 , (3.12)

where σ is a singular value and vi and ui are vectors of the matrices vc and U from the singular
value decomposition (SVD) of M . In this way one can indeed show that the ranks of P (0), vc
and W should only grow linearly with system size532 and using (3.12) one might decompose P (0)

and vc and therefore also their reducible counterparts as

Mµνκλ =
∑
αβ

CµναZαβ[CT ]βκλ, M = P (0), vc , (3.13)

where Z is the diagonal matrix of singular values and C collects the left singular vectors of M .
An explicit SVD would scale as N4

basr and is prohibitive in practice.532 Instead, it is common to
represent vc and W in a predefined auxiliary basis A = {f}, growing linearly with system size.
Expanding all products of AO pairs in terms of A,

χµ(r)χν(r) =
∑
α

Cµναfα(r) , (3.14)

vc and W can be expressed as

vαβ =

∫
drdr′fα(r)vc(r, r

′)fβ(r′) (3.15)

Wαβ =

∫
drdr′fα(r)W (r, r′)fβ(r′) . (3.16)

For historical reasons, this is known as density fitting (DF), sometimes also denoted as resolution
of the identity (RI).533,534 The same goal can be achieved by using Cholesky decomposition (CD)
methods535–539 which can be seen as on-the-fly generations of auxiliary basis sets.

We see that eq. (3.15) is related to (3.11) by a basis transformation which can generally be
written as

C : vP 7→ vA (3.17)

and in the special case of vc, we have through (3.14)

vµνκλ =
∑
αβ

CµναvαβCκλβ . (3.18)
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For the implementation of the SOX term and for the solution of the BSE@GW equations we will
also need to transform the bare and screened electron-electron interactions from the auxiliary
basis to the MO basis. This is achieved by combining (3.1) and (3.14),

ϕk(r)ϕl(r) =
∑
µν

∑
α

bµkbνk′Cµν,αfα(r) =
∑
α

Cklαfα(r) , (3.19)

in which we have defined
Ckl,α =

∑
µ,ν

bµkCµν,αbνl , (3.20)

and therefore
Mpqrs =

∑
αβ

CpqαZαβ[CT ]βrs, M = P (0), vc , (3.21)

Using transformations of this type, the asymptotic scaling for the implementation of the GW
approximation reduces to N4. For instance, the G0W0 self-energy becomes

Σµν,iτ =i
∑
κλ

G
(s)
κλWµκνλ

=i
∑
κλ

G
(s)
κλ

∑
αβ

CµκαWαβ,iτ [CT ]βνλ

=i
∑
κ

∑
β

[∑
α

CµκαWαβ,iτ

]
︸ ︷︷ ︸

O(N4)

[∑
λ

[CT ]βνλGκλ

]
︸ ︷︷ ︸

O(N4)

,

(3.22)

and the ordering of the terms clearly shows that this scales as N4. Such a procedure, often called
global density fitting, is often encountered in implementations of GW and RPA in quantum
chemistry codes.244,499,501,540–544

Given some target precision ϵ, the two main goals of DF are first, to find a matrix M ′ with
dimension Naux for which

∥M −M ′∥ < ϵ (3.23)

with Naux as small as possible and M defined by (3.13) and second, to improve over the N4 scaling
of (3.17) by constructing C in a way that it becomes sparse. In fact, (3.17) can be constructed in
a way that the number of non-zero elements in C increases asymptotically linearly with system
size, which then allows us to implement transformations eqs. (3.13) and (3.21) with quadratic
scaling with system size. Both goals are in principle in conflict with each other. In DF, one
minimizes the residual function

rµν(r) = χµ(r)χν(r) −
∑
p

Cµνpfp(r) ∀µ, ν , (3.24)



3.1. DISCRETIZATION 103

with respect to some appropriate norm. In the RI-V approach, the Coulomb repulsion of r is
minimized,

∂

∂Cκλq

∫
drdr′ rκλ(r)vc(r, r

′)rµν(r′) = 0 , (3.25)

and it follows that ∑
p

CµνpVpq =

∫
drdr′ χµ(r)χν(r)vc(r, r

′)fq(r
′) , (3.26)

i.e. the error in the low-rank approximation of vc is quadratic in r since the terms linear in C
vanish. Of course, a similar conclusion can not be drawn for P (0) and consequently also not for
W . Still, it seems that this metric is an excellent choice if the goal is to fulfil (3.23) with Naux as
small as possible and using auxiliary fit sets from standard libraries. As shown by van Setten et
al, QP HOMOs and LUMOs only deviate by a few meV from the ones obtained from calculations
without any low-rank approximation501,545 when appropriate auxiliary fit sets546,547 are used.

On the other hand, RI-V is a very bad choice in the sense that the slow decay of the kernel
of the Coulomb operator ensures that C will be dense. In the RI-SVS approach,449,452 (3.24) is
minimized with respect to the L2 norm which requires larger Naux to fulfil (3.23) but results in a C
with the number of non-zero elements increasing only linearly with system size for exponentially
decaying basis functions. It has been shown by Wilhelm et al. that this approach results in
tremendous speed-ups in the evaluation of eqs. (3.79), (3.81) and (3.82) without requiring to
large Naux to make the evaluation of (3.80) problematic for systems of more than 1000 atoms.6

However, for rather small systems in which many basis functions are centered very closely to
each other, the number of non-zero elements in C will not be much different from N2

bas ×Naux.
Thus, due to the usually larger Naux compared to RI-V, the method will only be advantageous
for sufficiently large systems.6

Local density fitting approximations

In local density fitting (LDF) approximations, this shortcoming is addressed by building in
sparsity into the fitting procedure a priori. In pair atomic density fitting (PADF), an expansion
of products of AOs χµ(r)χν(r) of the form

χµ(r)χν(r) =
∑

p∈A∪B
Cµνpfp(r) ∀µ ∈ A, ν ∈ B (3.27)

is used so that the number of non-zero elements in C scales at most quadratic with system size.
Eq. (3.24) then becomes

rPADF
µν (r) = χµ(r)χν(r) −

∑
α∈A∪B

Cµνpfα(r) ∀µ ∈ A, ν ∈ B , (3.28)

and the self-repulsion of the residual

rPADF
µν (r)vc(r, r

′)rPADF
µν (r′) ∀µ ∈ A, ν ∈ B
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is minimized. This leads to an expression of the form

Cνµα =
∑
β∈B

Oµνβ

[
v−1
c

]
βα

∀µ, α ∈ A, ν ∈ B (3.29)

for the fit coefficients where

Oµνβ =

∫
drχµ(r)χν(r)

∫
dr′vc(r, r

′)fβ(r′) , (3.30)

and vα,β is given by (3.15). Also, in the fit coefficients, the fit function is always assumed to be
centered on the second atom. The PADF expansion of the products of AOs can then be written
as

χµ(r)χν(r) =


∑
β∈B

bµν,βfβ(r) +
∑
α∈A

bνµ,αfα(r) A ̸= B∑
α∈A

1

2
(bνµ,α + bµν,α) fα(r) A = B ,

(3.31)

where the factor of 1/2 in case A = B is introduced to facilitate evaluation with the same algo-
rithm while avoiding double counting. Therefore, the basis transformation (3.13) then becomes

Mµνκλ =
∑
β∈B

∑
δ∈D

CµνβZβδCκλδ +
∑
α∈A

∑
δ∈D

CνµαZαδCκλδ

+
∑
β∈B

∑
γ∈C

CµνβZβγCλκγ +
∑
α∈A

∑
γ∈C

CνµαZαγCλκγ M = P (0), vc ,
(3.32)

One can imagine that the AOs which are decaying the fastest (i.e. the ones with the largest
exponents) will only overlap with a limited amount of basis functions in the molecule. If µ
denotes one of those functions, χµ(r)χν(r) will therefore be almost zero for many pairs of µ, ν.
If

χµ(r)χν(r) ≈ 0 ∀r (3.33)

we also have ∑
α

Cµναfα(r) ≈ 0 (3.34)

by (3.14). In practice, this means that all of these coefficients are assumed to be zero and are
therefore not calculated. In case two atoms A and B are very far apart, none of the pair products
which can be built from the AOs centered on these atoms will be different from zero and therefore

Cµνα = 0 ∀µ ∈ A, ν ∈ B . (3.35)

Therefore, the number of so that the number of non-zero elements in C will asymptotically
increase linearly with the system size. How fast this asymptotic limit can be reached will depend
on the geometry of the system as well as one the cut-offs which are used to define an overlap
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Basic Normal Good VeryGood

Potential 0.01 0.005 0.001 0.0005
Basis 0.002 0.001 0.0005 0.0001
Fit 0.02 0.01 0.005 0.0001

Table 3.1: Thresholds for the linear scaling of the fit coefficient tensor C. All values are in atomic
units.

to be zero. For many atoms pairs, some of the pair-products will be zero, but not all of them.
Therefore, for each atom, we reorder all AOs from the most diffuse to the least diffuse one so
that all non-zero elements in C are grouped in dense blocks. This allows us to only work with
basic BLAS routines for dense matrices, even though C is sparse.

To determine when a pair-product is negligible, we define a threshold ε > 0 and consider a
basis functions as negligible for |r| > dµ if

|χµ(r)| < ε ∀|r| > dµ .

dµ is a basis function dependent distance which is determined at run-time and depends on ε.
The fit-coefficient Cννα is then only calculated if

|RA −RB| < dµ + dν .

We define a similar threshold for the overlap of two auxiliary basis functions: If two atoms are
further apart than the sum of the ranges of the most diffuse fit functions, then we can use the
multipole approximation to the Coulomb potential.548 Furthermore, if the range of the Coulomb
potential on atom A does not overlap with any AO on atom B (and vice versa) the two atoms
are defined as not interacting. Therefore, we end up with three different thresholds in total,
which we call Basis, Fit and Potential, respectively. We group the thresholds into different tiers,
ranging from Basic to VeryGood. The values in the currently used implementation of MBPT in
ADF are given in table 3.1. Notice, that these values are not the same as the ones we have used
in ref. [35, 36] and they are also different from the ones used in HF where looser thresholds can
be used to obtain the same level of accuracy.

Numerical Issues with PADF

Issues with PADF frequently arise from the presence of diffuse functions in the AO-basis set.
To understand the source of the problem, we recall that very large AO basis sets with many
diffuse functions might be locally overcomplete which causes almost linear dependence of a
subset of basis functions. These lead to numerical instabilities in the SCF549 during canonical
orthonormalization when the condition number of the AO-overlap matrix approaches infinity.550

To restore numerical stability, one projects out the almost linearly dependent part from the
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basis by removing eigenvectors from the transformation matrix corresponding to eigenvalues of
the AO-overlap matrix smaller than some threshold ϵD,551 effectively diminishing the basis set
size. This is not a severe restriction in practice since numerical instabilities usually do not occur
when all eigenvalues are larger than ϵD = 10−6 - 10−7.552–554

Using PADF, numerical instabilities can already occur when all eigenvalues are considerably
larger as has e.g. been observed for linear-response TDDFT with augmented basis sets555 and
MP2/QZ calculations35. The reason for this behavior is that individual fitting coefficients can
become quite large for diffuse products from AOs centered on distant atoms. Note, that this
is a fundamental difference to global DF. As a qualitative example, consider a linear alkane
chain CnH2n+2 and the pair product of a diffuse AOs on C1 and Cn, respectively. The AOs
will only have some (small) overlap in the middle of the chain. In global DF, this pair product
could possibly be described very well with only a small set of ABFs centered on atoms in this
region. In PADF, this overlap needs to be described with the asymptotic tails of diffuse ABFs
on C1 and Cn. When there is no appropriate ABF in the auxiliary basis, this will lead to
very large fitting coefficients for some (diffuse) ABFs. In the transformation of the Coulomb
potential from auxiliary basis to AO-product basis, these large fitting coefficients must cancel
with contributions with opposite sign which is numerically unstable.556 Thus, relatively small
errors might accumulate during the SCF and lead to an erroneous (hole) density matrix and
potentially wrong eigenvalues.

To summarise, projecting out parts of the basis during canonical orthonormalization plays a
dual role when PADF is used in the SCF. First, it ensures numerical stability of the SCF and
second, as a side-effect, it removes the part of the basis which potentially results in diffuse AO-
products which are potentially difficult to fit. This nicely illustrates that the appropriate choice
of auxiliary basis and the problem of linear dependencies are intertwined. Adding more diffuse
functions to the auxiliary basis the pair product in our example can be better approximated,
the fitting coefficient become smaller, and the linear dependency problem is extenuated. This
means, the number of AOs which needs to be removed becomes smaller and larger basis sets can
be used in practice.

For correlated methods we observed, that a value of ϵD = 10−3, corresponding to a drastic
truncation of the basis, seems to provide a good trade-off between accuracy and numerical
stability for all basis sets beyond TZ quality and also augmented basis sets. However, while
this truncation prevents collapse to artificially low QP energies, it also leads to deteriorated
results compared to the default of ϵ = 10−4. Increasing the basis set more and more, larger
and larger parts of the virtual space need to be projected out which ultimately prevents us from
reaching the complete basis set (CBS) limit for correlated methods. We expect, however, that
carefully optimized auxiliary fit sets will enable the numerically stable application of PADF to
these methods with larger basis sets.

In addition to the usual canonical orthonormalization[550] during the SCF we also project
out too diffuse functions from the primary basis from all quantities in the primary basis, i.e.
Green’s functions and self-energy like objects. To do so, we first diagonalize the overlap matrix
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of primary basis functions S,
S = UTΛU . (3.36)

We then remove a column ui from the transformation matrix if the corresponding eigenvalue λi
is smaller than some predefined threshold ϵs. We then define

V = UUT , (3.37)

and use this projector to transform all matrices in the primary basis, the Green’s functions, the
self-energy contributions as well as the matrices defined in (3.215) according to

K = VTK′V , (3.38)

where K′ would be the original exchange-like matrix in the primary basis including the diffuse
part. This transformation is not necessary if a very large auxiliary basis set is used and is
switched off in that case.

3.1.4 Imaginary time and Frequency discretization

Our implementation of the GW approximation is based on the so-called space-time method by
Godby and coworkers.132,133 They observed that it is much simpler to solve the Dyson equations
in the GWA in reciprocal space and frequency while the kernels of these Dyson equations are
most easily evaluated in real space and time. This is due to the fact that the kernels are direct
products in time while they are convolutions in frequency space. On the other hand, the Dyson
equations can be solved by inversion in frequency space while this is not possible in time. We
can switch between both representations using Fourier transforms (FT).

G(iτ)

P(iτ) P(iω)

W(iω) W(iτ)

Σ(iτ) Σ(iω)

Σ(ω)

FT

FT

FT

AC

Figure 3.1: Schematic work flow for the calculation of the self-energy in the whole complex plane
in ADF. FT denotes Fourier transform and AC denotes analytical continuation.

Moreover, it is beneficial to work on the imaginary axes. In section 2.3.1 we have already
seen why this is the case. On the real time axis, the single-particle Green’s function oscillates,
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while it is exponentially decaying on the imaginary time axis. On the real frequency axis the
Green’s function has poles (in which we are interested, but only at the end of the calculation),
while it has none on the imaginary time axis. Only in the end, we need to transform to the
real frequency axis from where we extract the physically relevant properties (the positions of the
poles). The procedure is illustrated in figure 3.1.

To achieve an efficient implementation of this method we therefore need to discretize imagi-
nary time and imaginary frequency with as little grid points as possible while still retaining the
necessary accuracy. In their original work, Godby and coworkers could not find small enough
grids in order to implement the space-time method efficiently and only recently, building on ear-
lier work by Almlöf557, Kresse, Kaltak and coworkers could solve this issue by using non-uniform
spaced grids in imaginary time and imaginary frequency and an efficient way to switch between
both domains134,558. Following this development, there has been a surge of new GW implemen-
tations based on the space-time method for periodic134,272,425–430 and finite6,36,269,431,433 systems.
The algorithms for finding the imaginary time and frequency points are rather sophisticated. In
the following, we will outline our algorithm which closely follows the work by Kresse, Kaltak and
coworkers.558

Definition of the Optimization Problem

The algorithm for the determination of imaginary time and frequency grids and corresponding
weights for the numerical integration over these variables start from the RPA correlation energy
expression, (2.355). Using the expansion

ln(1 − x) = −
∞∑
n=1

1

n
xn ,

eq. (2.355) becomes
ERPA

c = E(2)
c + E(3)

c + . . . , (3.39)

where

E(2)
c = − 1

8π

∫
dr

∫
dω

[∫
dr′P (0)(r, r′, iω)vc(r

′, r)

]2
. (3.40)

We now use (2.231) to make the substitution

P (0)(r, r′, iω) = −i
∫
dτeiωτP (0)(r, r′, iτ) , (3.41)

and use ∫
dωeiω(τ+τ ′) = 2πδ(τ + τ ′)
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to obtain the corresponding expression in imaginary time,

E(2)
c =

1

8π

∫
dτ

∫
dτ ′
∫
dωeiω(τ+τ ′)

×
∫
drdr2dr3dr4P

(0)(r, r2, iτ)vc(r2, r3)P
(0)(r3, r4, iτ

′)vc(r4, r)

=
1

2

∫ ∞

0
dτ

∫
drdr2dr3dr4P

(0)(r, r2, iτ)vc(r2, r3)P
(0)(r3, r4, iτ)vc(r4, r) .

(3.42)

This term is called the direct second-order term and is the counterpart of the SOX term in-
troduced in section 2.4.5. Using (2.277) as well as the definition of P (0) (2.194) in terms of
χ(0),

P (0) = χ(0)(1, 2, 3, 4)δ(1+, 3)δ(2, 4) ,

P (0) assumes the form

P (0)(r1, r2, iτ > 0) = −i
∑
ia

e−(ϵa−ϵi)τϕi(r1)ϕ
∗
i (r2)ϕa(r2)ϕ

∗
a(r1) (3.43)

and therefore we obtain for the last expression in (3.42)

E(2)
c =

1

2

∫ ∞

0
dτ

∫
dr1dr2dr3dr4e

−(ϵa+ϵb−ϵi−ϵj)τϕi(r1)ϕ
∗
i (r2)vc(r1, r2)

× ϕa(r2)ϕ
∗
a(r1)ϕj(r3)ϕ

∗
j (r4)vc(r3, r4)ϕb(r4)ϕ

∗
b(r3)

= − 1

2

∫ ∞

0
dτ
∑
iajb

v2iajbe
−(ϵa+ϵb−ϵi−ϵj)τ ,

(3.44)

where we have used (2.74) to arrive at the last equation. Solving the integral over imaginary
time analytically, ∫ ∞

0
dτe−(ϵa+ϵb−ϵi−ϵj)τ =

1

ϵa + ϵb − ϵi − ϵj
(3.45)

eq. (3.44) becomes

E(2)
c = −1

2

∑
iajb

v2iajb
ϵa + ϵb − ϵi − ϵj

. (3.46)

Since P (0) is even in time, its Fourier transform to imaginary frequency reduces to a cosine
transform. Using (A.11), eq. (3.43) becomes

P (x1, x2, iω) = − 2i
∑
ia

∫ ∞

0
dτe−(ϵa−ϵi)τϕi(r1)ϕ

∗
i (r2)ϕa(r2)ϕ

∗
a(r1) cos(τω)

= − 2i
∑
ia

ϵa − ϵi
(ϵa − ϵi) − ω2

ϕi(r1)ϕ
∗
i (r2)ϕa(r2)ϕ

∗
a(r1) ,

(3.47)
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which allows us to evaluate E
(2)
c by integration over imaginary frequency,

E(2)
c = − 1

4π

∑
iajb

v2iajb

∫ ∞

0
dω

ϵa − ϵi

(ϵa − ϵi)
2 − ω2

ϵb − ϵj

(ϵb − ϵj)
2 − ω2

. (3.48)

We can now approximate the integrals eqs. (3.44) and (3.48) by numerical quadrature,∫ ∞

0
dτe−(ϵa+ϵb−ϵi−ϵj)τ ≈

Nτ∑
k=1

αje
−(ϵa+ϵb−ϵi−ϵj)τj , (3.49)

and ∫ ∞

0
dω

ϵa − ϵi

(ϵa − ϵi)
2 − ω2

ϵb − ϵj

(ϵb − ϵj)
2 − ω2

≈
Nω∑
k=1

σk
ϵa − ϵi

(ϵa − ϵi)
2 − ω2

k

ϵb − ϵj

(ϵb − ϵj)
2 − ω2

k

. (3.50)

Since we know the exact expression for E
(2)
c , (3.46), comparison of eqs. (3.49) and (3.50)

with (3.46) provides us with a measure for the error introduced by the numerical quadratures
eqs. (3.49) and (3.50). We now introduce the abbreviations x = ϵa − ϵi and x′ = ϵb − ϵj and
subtract eqs. (3.49) and (3.50) from (3.46). This yields the minimization problems

1

x+ x′
−

Nτ∑
k

αke
−(x+x′)τk !

= 0 (3.51)

in imaginary time and

1

x+ x′
− 1

2π

Nτ∑
k

σk
x

x2 − ω2
k

x′

x′2 − ω2
k

!
= 0 (3.52)

in imaginary frequency over all pairs

(x, x′) ∈ [ϵmin, ϵmax] × [ϵmin, ϵmax] .

We now use the approximation that the error can be sufficiently minimized by restricting our-
selves to x = x′.558 We then obtain

1

2x
−

Nτ∑
k

αke
−2xτj !

= 0 (3.53)

in imaginary time and

1

x
− 1

π

Nω∑
k

σk

(
2x

x2 − ω2
k

)2
!

= 0 (3.54)

in imaginary frequency which are well defined one-dimensional optimization problems. We can
now minimize the errors described by these expressions for predefined grid sizes Nτ and Nω
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with respect to a suitable norm to find optimal sets of imaginary frequency {ωk)}k=1,...Nω
and

imaginary time points {τk)}k=1,...Nτ
. For imaginary time, we use the algorithm described in

ref. [559] to minimize

∥∥∥η(τ)(x;α, τ)
∥∥∥
∞
, η(τ)(x;α, τ) =

1

2x
−

Nτ∑
j

αje
−2xτj . , (3.55)

i.e., we try to minimize the maximum (Chebyshev) norm. Therefore, this algorithm is sometimes
called minimax algorithm. This norm is in principle to be preferred over the L2 norm since it
will keep the error introduced by the numerical quadrature well balanced for all x. However,
it is difficult to converge and requires points and weights as input which are already very close
to the final grid points. In the absence of knowledge of such grid points and weights for the
imaginary frequency domain, we perform a least-squares (LS) optimization for the imaginary
frequency grid instead

∥∥∥η(ω)(x;σ, ω)
∥∥∥
2
, η(ω)(x;σ, ω) =

1

x
− 1

π

Nω∑
k

σk

(
2x

x2 + ω2
k

)2

. (3.56)

For a discussion of the pros and cons of minimizing the L2 instead of the Chebyshev norm we
refer to the appendix of ref. [560].

The Levenberg-Marquardt algorithm We solve both optimization problems eqs. (3.55)
and (3.56) using a Levenberg–Marquardt algorithm (LMA),561 an extension of the Newton-
method to solve non-linear systems of equations.562 Since the minimax algorithm for the deter-
mination of the imaginary time grid is well documented559,563,564 we focus here on the imaginary
frequency domain. In the LMA for the determination of frequency points and corresponding
weights, we follow the gradient of the residual function η with respect to the parameters {σ} and
{ω} until the LS error is converged. The necessary derivatives on the imaginary frequency axis
are

∂η

∂σk
= − 4

π

x2

(x2 + ω2
k)2

∂η

∂ωk
= =

16σk
π

x2ωk

(x2 + ω2
k)3

.

(3.57)

The error function η(ω) is minimized on a logarithmic grid (which places the majority of the
sampling points at small values of x) of size 40×Nω, {xi}i=1,...,40×Nω

in the interval [1, xmin/xmax],
with xmin (xmax) being the smallest (largest) considered electron-hole transition energy. Using
such a logarithmic grid emphasizes the dominance of particle-hole transitions with small energies
in the screening of the electron-electron interaction. Smaller sized grids than ours would most
likely suffice as well. However, the computational effort for the determination of the frequency
grids is negligible.
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Writing ηi = η (xi; {σ} , {ω}), we can define the Jacobian (the matrix of all partial first-order
derivatives)

Jik =

− 4
π

x2
i

(x2
i+ω2

k)
2 k ≤ Nω

16σk
π

x2
iωk

(x2
i+ω2

k)
3 k > Nω

(3.58)

which is a concatenation of the derivatives defined in (3.57) evaluated at the positions of all grid
points xii=1,...,40×Nω

. In the Newton procedure, we will find an update vector δ⃗ by solving

J δ⃗ = η⃗ (3.59)

using the pseudo-inverse of J ,

δγ =
(
JTJ

)−1
JT η⃗ . (3.60)

In the variant of Levenberg and Marquardt, we solve instead(
JTJ − λdiag

(
JTJ

))
δ⃗ = JT η⃗ , (3.61)

for δ in a LS sense. We start by setting λ = 0.001. When the LS error is smaller than the one
of the previous iteration, λ is divided by 10, i.e. damping is reduced. If the LS error increases.
λ is multiplied by 10, i.e. damping is increased. The procedure is repeated until variation of
the LS error between 2 consecutive iterations is smaller than some predefined threshold. This
procedure is also known as Tikhonov regularization or kernel ridge regression in the literature.

For the imaginary frequency domain we first minimize the L2 norm on the logarithmic grid
which provides us with a preliminary error distribution function ηω. We then find the extrema
of this error distribution function and minimize the L2 norm for the positions of these extrema
xk. This gives an improved error distribution function ηω with smaller maximum error. We then
go back to minimizing the L2 norm on the logarithmic grid and continue this procedure until the
error function is stationary. The effect of this combined optimization is demonstrated for the Ne
atom in figure 3.2 which shows that the combined optimization scheme leads to a much smaller
numerical integration error than a simple LS scheme.

preconditioning for the ω-Optimization η(ω) might have multiple minima and especially
for larger Nω the LMA only converges to a useful minimum when it is initialized with σ and ω
which are already sufficiently close to the parameters which minimize η(ω). In practice, we found
that at a useful (but not necessarily global) minimum of

∥∥η(ω)(x;σ, ω)
∥∥
2
η(ω) has 2Nω or 2Nω−1

extrema. This behavior can be exploited to find good starting points for the LMA for different
ratios xmin/xmax and Nω. We always start the LMA from pretabulated values.3 These values
have been obtained by a simple metropolis algorithm for several xmin/xmax and for Nω between
1 and 40 and are chosen so that η(ω) has 2Nω or 2Nω − 1 extrema for a given Nω. In a GWA

3The pretabulated values are available on Github (https://github.com/ArnoFoerster/Imaginary-Frequency-
Grids-GW-and-RPA)

https://github.com/ArnoFoerster/Imaginary-Frequency-Grids-GW-and-RPA
https://github.com/ArnoFoerster/Imaginary-Frequency-Grids-GW-and-RPA
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Figure 3.2: Error distribution functions η(ω)(x;σ, ω) for the Ne-atom using simple LS minimiza-
tion (blue lines) and the combined LS/minimax-scheme (orange lines) for the first three frequency
points (from top to bottom)
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calculation, the LMA is then initialized with the pretabulated parameters which are closest to
the xmin/xmax of the calculation.

To avoid unnecessarily large grids, the Nω and Nτ are determined at run-time and the user
only specifies an upper limit of points for both, imaginary time and frequency grids. More
precisely, for small Nω, grid points and weights are calculated and the L2 norm of ηω is cal-
culated. Then we increase the imaginary frequency grid until the least square error is smaller
than ϵω = 1e−10. The number of points which are required to reach this accuracy strongly
depends on xmin/xmax. In our experience, the QP energies converge faster with respect to the
imaginary time grid than with respect to the imaginary frequency grid. For example, for a
Hydrogen-molecule in a triple-ζ (TZ) basis, Nω = 7 will already be sufficient to reach the desired
accuracy, while for the Iodine molecule in a QZ basis Nω = 31 will be necessary.

Discrete Fourier Transforms

Since we want to switch between imaginary time and imaginary frequency, we write the discrete
version of (2.231) as

F (iωk) = −i
Nτ∑
j

{
γ
(c)
kj cos(ωkτj) (F (iτj) + F (−iτj)) + iγ

(s)
kj sin(ωkτj) (F (iτj) − F (−iτj))

}
,

(3.62)
where we have split the function F into even and odd parts. This is useful since it simplifies
working with the bosonic quantities P (0), W (0) and their reducible counterparts. The Fourier
transform from imaginary frequency to imaginary time can then be calculated by inverting the

matrices with the elements γ
(c)
kj cos(ωkτj) and γ

(s)
kj sin(ωkτj) (In case Nτ ̸= Nω, a pseudo-inverse

can be calculated). To calculate the matrices γ(c) we minimize∥∥∥η(c) (x; γ(c)
)∥∥∥

2
, η(c)

(
x, γ(c)

)
=

2x

x2 + ω2
k

−
Nτ∑
j=1

γ
(c)
kj cos(ωkτj)e

−xτj , (3.63)

for all ωk and for γ(s), we minimize∥∥∥η(s) (x; γ(s)
)∥∥∥

2
, η(s)

(
x, γ(s)

)
=

2ωk

x2 + ω2
k

−
Nτ∑
j=1

γ
(c)
kj sin(ωkτj)e

−xτj , (3.64)

with a LMA. These forms of the error functions simply follow from the analytical sine and cosine
transformations of e−xτ eqs. (A.11) and (A.12). The procedure is the same as described in
ref. [134]. In all cases, the LMA converges smoothly from arbitrary starting values.

3.2 Working Equations

In this section, we will express the approximations to the self-energy towards the end of sec-
tion 2.2.3 in a form which is suitable for numerical implementations. This is straightforward
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if these expressions are evaluated using interacting single-particle Green’s functions. In case
the Green’s functions are non-interacting, one can make use of eqs. (2.204), (2.228), (2.230)
and (2.231) to derive compact expressions. For each self-energy expression, we will also give the
corresponding expression for the total energy in the section following the next one.

3.2.1 The GW Equations in the Atomic Orbital Basis

We now write down the GW equations in the AO basis using the discrete bases for the repre-
sentation of imaginary time and frequency dependence. To start with, we repeat eqs. (2.228)
and (2.229) in our new notation. Since the single-particle propagator is diagonal in spin, we will
also replace x with r,

G(0),>(r, r′, iτ) = −i
∑
a

ϕa(r)ϕ∗a(r′)e−ϵaτ

G(0),<(r, r′, iτ) = −i
∑
i

ϕ∗i (r)ϕi(r
′)e−ϵiτ

(3.65)

and
G(s)(r, r′, iτ) = −i

∑
a

ϕa(r)ϕ∗a(r′)e−ϵaτ + i
∑
i

ϕ∗i (r)ϕi(r
′)e−ϵiτ . (3.66)

Through (3.1) we obtain (using the fact that in the non-relativistic case the MOs are real)

G(0),<(r, r′, iτ) = − i
∑
i

∑
µν

χµ(r)bµie
−ϵiτ biνχν(r′) (3.67)

G(0),>(r, r′, iτ) = − i
∑
a

∑
µν

χµ(r)bµae
−ϵaτ baνχν(r′) (3.68)

and from the identity

G(0),≶(r, r′, iτ) =
∑
µν

χµ(r)G(0),≶
µν,τ χν(r′) (3.69)

we obtain the representation of lesser and greater propagators in the STO basis,

G(0),<
µν,τ = − i

∑
i

bµie
−ϵiτ biν (3.70)

G(0),>
µν,τ = − i

∑
a

bµae
−ϵaτ baν . (3.71)

While Σ also transforms as a 2-point correlation function,

Σµν,τ =

∫
drdr′χµ(r)Σ(r, r′, iτ)χν(r′) . (3.72)

all 2-electron operators transform as 4-point correlation functions in the AO basis,15,69,294

P
(0)
µκνλ,τ =

∫
drdr′χµ(r)χν(r)P (0)(r, r′, iτ)χκ(r′)χλ(r′) (3.73)
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vµνκλ =

∫
drdr′χµ(r)χν(r)vc(r, r

′)χκ(r′)χλ(r′) (3.74)

Wµνκλ,τ =

∫
drdr′χµ(r)χν(r)W (r, r′, iτ)χκ(r′)χλ(r′) . (3.75)

In this representation, the calculation of the screened interaction (3.75) from P (0) and vc requires
the inversion of a matrix in the AO-product space P = {χµ}⊗{χν} for all frequency points whose
dimension scales as N2 with system size. Hence, the matrix inversion scales as N6. For this
reason, we use their representation in terms of the auxiliary basis instead,

P
(0)
αβτ =

∫
drdr′fα(r)P (0)(r, r′, iτ)fβ(r′) (3.76)

vαβ =

∫
drdr′fα(r)vc(r, r

′)fβ(r′) (3.77)

Wαβ,τ =

∫
drdr′fα(r)W (r, r′, iτ)fβ(r′) . (3.78)

Using eqs. (3.13) and (3.14), the equations to be solved in a G0W0 calculation become

P
(0)
αβ,τ =CµναP

(0)
µνκλ,τCκλβ = −iCµναG

<
µκ,τG

>
νλ,τCκλβ (3.79)

Wαβ,ω =Vαβ + VαγP
(0)
γδ,ωWδγ,ω =

[
[vc]

−1 − P (0)
]−1

αβ,ω
(3.80)

Σx
µν =i

∑
κλ

∑
αβ

G<
κλ,τ=0CµκβVαβCνλα (3.81)

Σc
µν,τ =i

∑
κλ

∑
αβ

Gκλ,τCµκβW̃αβ,τCνλβ , (3.82)

where we have split the screened electron-electron interaction according to W̃ = W − V . This
isolates the Fock term from the GW self-energy. Also notice, that we only need P (0)(iτ > 0)
since P (0)(iτ) = P (0)(−iτ). Therefore, (3.79) follows directly from (3.43). We now outline how
the sparsity of the map from P to A can be exploited to reduce this scaling to N2.

It should be noted that also in a plane-wave basis density-density response functions become
matrices whose dimension only grows linearly with system size.565 The challenge in such calcu-
lations is the size of the plane wave basis which is typically too large to allow for the solution
of (3.80) in the space of all plane-waves.565 Also in the plane-wave representation one can ex-
ploit the rank deficiency of the matrices to reduce their dimension, for instance using localized
Wannier-type orbitals247,566 or other low-rank approximations to the screened interaction.567–569

3.2.2 GW with pair atomic density fitting

Polarizability After the Green’s function eqs. (3.70) and (3.71) have been constructed, P (0)

can be evaluated. Using (3.32), the contribution of each atom pair (A,B) to P (0), eq. (3.79),
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is given as the sum of four contributions (we will indicate the atomic indices in all following
intermediates as superscripts),

PAB
αβ,τ = −i

(
P

(0)AB,I

αβ,τ + P
(0)AB,II

αβ,τ + P
(0)AB,III

αβ,τ + P
(0)AB,IV

αβ,τ

)
, (3.83)

where

P
(0)AB,I

αβ,τ =
∑
µ∈A

∑
ν∈B

∑
κ∈C

∑
λ∈D

CDAA
λµα G<,DC

λκ,τ G>,AB
µν,τ CCBB

κνβ

P
(0)AB,II

αβ,τ =
∑
µ∈A

∑
ν∈B

∑
κ∈C

∑
λ∈D

CDAA
λµα G<,AC

µκ,τ G>,DB
λν,τ CCBB

κνβ

P
(0)AB,IV

αβ,τ =
∑
µ∈A

∑
ν∈B

∑
κ∈C

∑
λ∈D

CDAA
λµα G<,AB

µν,τ G>,DC
λκ,τ CCBB

κνβ .

(3.84)

The symmetry of P (0) implies P (0)AB,III
=
[
P (0)BA,II

]T
and P (0)AB

=
[
P (0)BA

]T
. Also note,

that Re P (0)(iτ) = 0. Defining the intermediates

F<,ABB
µνβ,τ =

∑
κ∈C

G<,AC
µκ,τ CCBB

κνβ (3.85)

F>,ABB
µνβ,τ =

∑
κ∈C

G>,AC
µκ,τ CCBB

ν′νβ (3.86)

H<,ACB
µκβ,τ =

∑
νinB

F<,ABB
µνβ,τ G>,BC

νκ,τ (3.87)

H>,ACB
µκβ,τ =

∑
ν∈B

F>,ABB
µνβ,τ G<,BC

νκ,τ , (3.88)

(3.84) is most conveniently evaluated as

P
(0)AB,I

αβ,τ + P
(0)AB,IV

αβ,τ =
∑
ν∈B

∑
κ∈C

(
H<,CBA

κνα,τ +H>,CBA
κνα,τ

)
CCBB
κνβ

P
(0)AB,II

αβ,τ =
∑
µ∈A

∑
ν∈B

F>,BAA
νµα,τ F<,ABB

µνβ,τ .
(3.89)

We parallelize the outermost loop over all atoms and perform all tensor contractions using level-
3 BLAS. No tensor contraction involves more than three atomic centers and since contractions
corresponding to distant centers (for which all elements in C are zero) can be skipped, the
operation count scales asymptotically as N2. We always evaluate the intermediates eqs. (3.85)–
(3.88) on the fly since storage of 2-center quantities with more than 2 indices would become
prohibitive very quickly.
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Screened Coulomb interaction After having evaluated P (0) for all atom pairs, W̃ can be
evaluated as in conventional approaches using matrices of dimension Naux ×Naux. After trans-
forming the matrix P (0) (which is even in imaginary time) to the imaginary frequency axis using
(3.62), the screened interaction Wω can be obtained by inversion,

W̃iωk
=
[
v−1
c − P

(0)
iωk

]−1
− vc . (3.90)

(3.90) has been used in all calculations presented in this work. Only recently, we have replaced
it by

W̃ω =

{[
1 − vcP

(0)
iωk

]−1
− 1

}
vc , (3.91)

which seems to slightly improve the numerical stability and does not require the inversion of
the bare electron-electron interaction. W (iωk) is stored in distributed memory. Note, that on
the imaginary frequency axis, Im P (0) = 0 and thus Im W = 0 as well. To evaluate (3.90), the
dielectric function is not constructed explicitly as it is not symmetric and its inversion would

be computationally demanding. We invert [vc]
−1 − P

(0)
ω (and vc which only needs to be done

once) using an LU decomposition with partial pivoting as implemented in SCALAPACK. Note,
that inversion using CD would be numerically unstable since our C is not full-rank and therefore
it does not conserve the positive semi-definiteness of W . We subsequently transform W back
to imaginary time. In order to optimize the memory requirements of our algorithm and in
contrast to our original implementation,36 in our current implementation we retrieve all matrices
P (iωk) and W (iωk) from disk when they are needed. This strategy can come with substantial
computational overhead especially on disk-less compute nodes.

Self-energy Next, the contributions to Σ for all atom pairs,

Σc,AB
µν,τ = iΣAB,I

µν,τ + iΣc,AB,II
µν,τ + iΣc,AB,III

µν,τ + iΣc,AB,IV
µν,τ , (3.92)

are evaluated, where ΣAB,III =
[
ΣBA,II

]T
, ΣAB =

[
ΣBA

]T
. Also, Im Σc = 0, since Re G≶ = 0

and Re W = 0. We only give here the equations for Σc(iτ) as Σx is obtained in exactly the same
way by replacing W with vc and G(iτ) with G(iτ → 0−). To express the individual contributions
to Σ we define the intermediate

IABC
µνγ,τ =

∑
β∈B

CABB
µνβ W̃BC

βγ,τ , (3.93)

and together with (3.86) and (3.85) we obtain

Σc,≶,AC,I
µκ,τ =

∑
ν∈B

∑
λ∈D

∑
α∈A

∑
γ∈C

G≶,DB
λν,τ CDAA

λµα W̃AC
αγ,τC

BCC
νκγ =

∑
ν∈B

∑
α∈A

F≶,BAA
νµα,τ IBCA

νκα,τ (3.94)

Σc,≶,AC,II
µκ,τ =

∑
ν∈B

∑
λ∈D

∑
α∈A

∑
β∈B

G≶,DB
λν,τ CDAA

λµα W̃AB
αβ,τC

CBB
κνβ =

∑
ν∈B

∑
α∈A

F≶,BAA
νµα,τ ICBA

κνα,τ (3.95)
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Σc,≶,AC,IV
µκ,τ =

∑
ν∈B

∑
λ∈D

∑
δ∈D

∑
β∈B

G≶,DB
λν,τ CADD

µλδ W̃DB
δβ,τC

CBB
κνβ =

∑
λ∈D

∑
δ∈D

[∑
ν∈B

G≶,DB
λν,τ ICBD

κνδ,τ

]
CADD
µλδ .

(3.96)

As for P (0) we parallelize the outermost loop over all atoms and completely rely on level-3 BLAS
for all tensor contractions. Due to its prefactor of N2

bas,l × N2
aux,l, where Naux,l (Nbas,l) denote

the number of ABFs (AOs) on one atomic center, the calculation of I is the most expensive step.
For weakly interacting atom pairs, we rely on multipole expansions of the Coulomb potential to
reduce the prefactor of all contractions involving W (and vc for Σx) considerably. We however
found this approximation to introduce numerical instabilities for qsGW , where we switch it off.
Still, also for qsGW Σ can be evaluated with a quadratic operation count only but the prefactor
is somewhat higher compared to diagonal approximations to GW .

In a scGW calculation the self-energy is processed further in the AO basis. For all other
types of GW calculations, the self-energy is transformed to the MO basis according to

Σ≶
pq =

∑
µν

bµpΣ
≶
µνbνq . (3.97)

In a G0W0 or evGW calculation, only the diagonal elements are relevant, while in qsGW the
whole self-energy matrix in the MO basis is needed.

Self-Energy in Imaginary Frequency

The first step in the transformation of the self-energy (3.97) to the real frequency axis is its
Fourier transform to the imaginary axis. For this, we introduce the time-ordered self-energy,

Σ(iτ) = Θ(τ)Σ>(iτ) − Θ(−τ)Σ<(iτ) , (3.98)

which becomes

Σpq(iω) = − i

2

∫
dτ cos(ωτ) [Σpq(iτ) + Σpq(−iτ)] +

1

2

∫
dτ sin(ωτ) [Σpq(iτ) − Σpq(−iτ)]

= − i

∫ ∞

0
dτ
[
Σ>
pq(iτ) − Σ<

pq(−iτ)
]

cos(ωτ) +

∫ ∞

0
dτ
[
Σ>
pq(iτ) + Σ<

pq(−iτ)
]

sin(ωτ)

(3.99)
and through (3.62) the last equation becomes

Σpq(iωk) = −i
Nτ∑
j

γ
(c)
kj cos(ωkτj)

[
Σ>
pq(iτj) − Σ<

pq(iτj)
]

+

Nτ∑
j

γ
(s)
kj sin(ωkτj)

[
Σ>
pq(iτj) + Σ<

pq(iτj)
]
.

(3.100)
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In our implementation, this is actually rewritten as

Σpq(iωk) =

Nτ∑
j

γ
(c)
kj cos(ωkτj)

[(
−iΣ>

pq(iτj)
)
−
(
−iΣ<

pq(iτj)
)]

+i

Nτ∑
j

γ
(s)
kj sin(ωkτj)

[(
−iΣ>

pq(iτj)
)

+
(
−iΣ<

pq(iτj)
)]

,

(3.101)

since we work with real quantities whenever possible. Therefore, we calculate −iΣ = GW instead
of Σ = iGW .

Analytical Continuation

Σ is now known on a discrete set of points W = {iωβ}β=1,Nω
on the imaginary frequency axis.

In a next step, we will need to analytically continue the self-energy to the whole complex plane
since we are interested in its behavior on the real frequency axis. To this end, we seek to find
a function f which is analytic in the largest possible domain A ⊂ C and coincides with Σ in
W. For a meromorphic function (as the self-energy) which is known on the whole imaginary
axis, it is always possible to find such a function so that A = C, but since we only know the
self-energy on a small subset of points, only an approximate solution can be found. The problem
here is, that the AC is exceptionally ill-conditioned, i.e. numerical noise in the input data might
significantly affect the output466.

Among the many developed algorithms (see for instance ref.467 for an overview), the construc-
tion of a continued fraction570,571 via a Padé approximant is most common in implementations of
the GWA. While in many codes Thiele’s reciprocal difference method is implemented,134,427,430

we have implemented the variant by Vidberg and Serene570, which has for example also been
implemented by Kutepov428. In the latter variant, the coefficients of the continued fraction are
calculated while the former method returns the value of the continued fraction571. While it has
been claimed that the former variant is numerically more stable134, we did not experience any
numerical issues in our implementation with the latter. AC typically yields good results for states
close to the HOMO-LUMO gap545 while it becomes unreliable for core states572,573. Exceptions
are cases for which the self-energy has a pole close to the position of a QP energy574. Partial
self-consistency in G pushes the poles away from the QP peak296, and consequently, these issues
should not be present in qsGW as well. This is different from situations in which the indepen-
dent QP picture breaks down and the spectral weight of a single excited electrons is distributed
between multiple peaks. The former is a purely numerical issue while the latter is caused by
strong correlation and can not be overcome by partial self-consistency. It has also been shown in
ref. [269] that AC yields accurate results for semi-core and inner valence states in case the real
part of the self-energy does not have poles in the vicinity of the QP solutions.

In the continued fraction method, the self-energy at a point z in the complex plane is given
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as
C(z) =

a1

1 +
a2(z − iω1)

1 + a3(z−iω2)
1+...

, (3.102)

where {ωk}k=1,...Nω
is the set of imaginary frequencies on which we have evaluated the self-energy.

The continued fraction expansion needs to fulfil

C(iωk) = Σ(iωk) ∀k .

The Nω complex coefficients {ak}k=1,...Nω
are determined recursively. We define

gi(iωk) =

{
Σ(iωk) i = 1
gi−1(ωi−1)−gi−1(z)
(z−iωi−1)gi−1(z)

i ≥ 2
(3.103)

In the end, we set ak = gk(iωk) and identify Σ with C.
If one is only interested in accurate valence states, AC via Padé approximants is not prob-

lematic for G0W0 since the equtions for different single-particle levels do not couple. In evGW ,
the situation is only slightly different. The NMO equations are still independent, but informa-
tion from all QP energies enters the polarizability so that there is an implicit dependence of the
QP energies on each other. In practice, this is also not an issue since the numerical errors are
typically orders of magnitude smaller than the absolute values of the QP energies.

The situation is different for qsGW . The off-diagonal elements of Σc are often equal to or very
close to zero575 and generally small compared to the diagonal elements. For these off-diagonal
elements, numerical errors from AC can be orders of magnitudes larger than their values. Since
there are many of them, this might significantly alter the solutions of eq. (3.115). Due to the
non-linear nature of the QP equations, this can complicate convergence of the SCF procedure
or even lead to erroneous results. The development of more reliable methods for AC is a very
active field of research467,576–580 and it would certainly be interesting to investigate whether
other techniques are more suitable for qsGW . For now, we restrict ourselves to the techniques
of Padé-approximants. To ensure numerical stability, two aspects need to be considered:

First, it seems reasonable to assume that AC close to the Fermi energy is also more reliable for
the off-diagonal elements of Σ. To this end, using (2.342) to construct the exchange-correlation
potential seems to be more suitable for our implementation than (2.341). As we will see later on,
both constructions of the exchange-correlation potential lead to similar results, but using(2.342),
the SCF procedure is significantly easier to converge. In fact, applying the same reasoning one
could justify to use Σ(ω = 0)272 instead. However, as we will show below, using (2.342) is
sufficiently numerically stable.

Second, after evaluating eq. (2.342) or (2.341), numerical noise needs to be removed rigorously
from vQP . At self-consistency, the off-diagonal elements of vQP need to be zero: In the (n+ 1)th

iteration, vQP is expressed in the basis which diagonalizes the operator defined in (3.116) in the
nth iteration. At self-consistency b(n+1) = b(n), which will not be the case when the off-diagonal
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elements of vQP will be different from zero. In our present implementation, we set all values
with magnitude smaller than 1e−6 to zero. This cut-off is of the order of the numerical noise
introduced by the AC. As we will show later on, despite this drastic cut-off the HOMO and
LUMO energies can be converged to a degree that the QP energies are converged within a few
meV.

Fully Self-Consistent GW

In a fully self-consistent GW calculation, the Dyson equation (2.131) for the interacting single-
particle Green’s function is typically solved by inversion.243,244,387 This requires the adjustment
of the chemical potential in each self-consistency cycle387 and generally seems to be very sen-
sitive to numerical noise. We therefore prefer to directly solve (2.259) for the amplitudes and
conjugated amplitudes. This can be done directly using a Schur decomposition581 (LAPACK

routine ZGGES) which yields a set of complex eigenvectors ψk, ψ
†
p and complex eigenvalues ϵQP

p

for all ωk. More precisely, the Schur decomposition of a matrix A is

A = QUQ† ,

where U is upper triangular and Q unitary. The columns of Q and Q† span the eigenspace
and dual space of A while the diagonal elements of U can be identified with the eigenvalues
of (2.259). These can then be used directly to construct the interacting single-particle Green’s
function in imaginary frequency in the spectral representation (2.236).

Expanding the Dyson amplitudes in the first equation in (2.259) using (3.1), multiplying
from the left with χ∗

µ and integrating over r1, turns it into a generalized eigenproblem for the
coefficients of the expansion (3.1),∑

ν

[
hµν + Σσ

µν(ϵQP
p )

]
bpν =

∑
ν

Sµνbpνϵ
QP
p (3.104)

with

hµν =

∫
dr1χ

∗
µ(r1)h1(r1)χν(r1) (3.105)

Sµν =

∫
dr1χ

∗
µ(r1)χν(r1) (3.106)

Σσ
µν(ϵQP

p ) =

∫
dr1dr3χ

∗
µ(r1)Σ(r1, r2, σ, ϵ

QP
p )χν(r2) . (3.107)

The second equation in (2.259) turns into an analogous expression for the expansion coefficients
of the conjugated Dyson amplitudes∑

µ

b∗pµ
[
hµν + Σσ

µν(ϵQP
p )

]
=
∑
µ

b∗pµSµνϵ
QP
p , (3.108)
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or in matrix notation

Σ [ϵ]b =Sbϵ (3.109)

b∗Σ [ϵ] =b∗Sϵ . (3.110)

Therefore, we do not calculate the Schur factorization of Σ but rather of S−1Σ. This is
inefficient when solving generalized eigenproblems of the form of eq. (3.104) with Σ and S
Hermitian, since generally S−1Σ will be non-Hermitian. Since in our case Σ is already non-
Hermitian, there is no reason not to calculate S−1Σ.

To obtain the corresponding density, we first sort all eigenpairs (ψk, ψ
†
p, ϵ

QP
p )p=1,...NMO

ac-
cording to the magnitude of the real part of the eigenvalues. For N electrons, the lowest N
eigenvalues are then associated with N occupied QP states. We then analytically continue the
Green’s function to the real frequency axis and evaluate the density-matrix P using the occupied
eigenstates which is used to calculate ΣH and Σx.

The next self-consistency cycle starts with the calculation of the Green’s function in imaginary
time. Notice, that Re G(iτ) ̸= 0 as it is the case for G(s) since the ϵQP are complex. To Fourier
transform the Green’s function to imaginary time, we use (2.230),

G(iτ) =
i

2π

∫
dωG(iω)e−iωτ

=
i

2π

∫
dω cos(ωτ) [G(iω) +G(−iω)] +

1

2π

∫
dω sin(ωτ) [G(iω) −G(−iω)]

=
i

2π

∫ ∞

0
dωRe G(iω) cos(ωτ) +

i

2π

∫ ∞

0
dωIm G(iω) sin(ωτ) .

(3.111)

We then have

G(iτ > 0) = G>(iτ) =
i

2π

∫ ∞

0
dωRe G(iω) cos(ωτ) +

i

2π

∫ ∞

0
dωIm G(iω) sin(ωτ)

G(iτ < 0) = G<(iτ) =
i

2π

∫ ∞

0
dωRe G(iω) cos(ωτ) − i

2π

∫ ∞

0
dωIm G(iω) sin(ωτ) ,

(3.112)

since cos is even and sin is uneven. The same equations can also be found in ref. [427] albeit
without the factor of i which is due to the fact that the Green’s function in ref. [427] is defined
without the prefactor of −i.

Quasi-particle self-consistent GW

As in evGW , also in qsGW the full self-energy needs to calculated self-consistently. However,
we only need the Hermitian part. We therefore only need (3.104) with the matrix elements of
the self-energy replaced by

vQP (ϵQP
p ) =

1

2

[
Σ(ϵQP

p ) + Σ†(ϵQP
p )

]
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with the exact dependence on the ϵQP
p given by one of eqs. (2.341) and (2.342)

We will write this equation in the basis of MOs in which the Hamiltonian of the preceding
iteration is diagonal (and in which S is diagonal as well). In the first iteration, we obtain a
correction to the QP energies corresponding to G(s),∑

q

vQP
pr (ϵQP

p )Urq =
(
ϵQP
p − ϵp

)
Upq .

We then define
HQP

[
G(s)

]
= HH [n(r)] + vQP

xc

[
G(s)

]
(3.113)

where we have defined the Hartree Hamiltonian

HH [n(r)] = t(r) + vext(r) + VH [n(r)] (3.114)

and update HQP in each iteration according to∑
r

HQP (n+1)

pr U (n+1)
rq = ω(n+1)

p U (n+1)
pq , (3.115)

with
HQP (n+1)

= HH + ∆V
(n+1)
H + vQP (n+1)

xc (3.116)

and
V QP (n+1)

xc = Vx[P (n)] + vQP
c [G

(n)
0 ] . (3.117)

In each iteration, HQP is expressed in the basis in which G
(n)
0 is diagonal. That is, at the (n+1)th

iteration, HQP is expressed in terms of the
{
ϕ
(n)
i

}
and unless self-consistency has been reached,

U (n) will not be unity and defines a rotation of the molecular orbitals. We now set

b(n+1)
µp =

∑
q

b(n)µq U
(n+1)
qp

ϵ(n+1)
p =ω(n+1)

p ∀p
(3.118)

and evaluate G
(n+1)
0 using eqs. (3.70) and (3.71) which in turn is used to evaluate eq. (3.92) as

described in section‘3.2.1 and finally eqs. (2.341) and (2.342). The 1RDM is then evaluated and
the change in the Hartree-potential is calculated as

∆v
(n+1)
H = vH [∆n(r)(n+1)] , (3.119)

with

∆n(r)(n+1) = n(r)(n+1) − n(r)(n) . (3.120)

The cycle is repeated until self-consistency is reached.
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G0W0 and eigenvalue-only self-consistent GW

In a G0W0 or evGW calculation, the diagonal elements of the self-energy (3.101) are analytically
continued to the real frequency axis, where (2.334) is solved using bisection. In a G0W0 calcu-
lation, these are the final QP energies. In an evGW calculation, the resulting QP energies are
used in eqs. (3.70) and (3.71) and the procedure outlined in section 3.2.1 is repeated until the
QP energies are stationary.

To summarize this section, a pseudocode of our implementation together with theoretical
asymptotic scaling with system size is given in figure 1.

Convergence Acceleration

As outlined so far, in each iteration of the self-consistency cycle the previous qsGW Hamiltonian
is replaced by the new one. Similarly, in evGW , the QP energies of the previous iteration are
replaced by the new ones. The procedure is the same as in the Roothaan algorithm for the
HF approximations582 which is well known to be numerically unstable583 and where convergence
difficulties are encountered already for the simplest molecules584,585. Also in many GW imple-
mentations, convergence has been shown to be much slower than with a simple linear mixing
scheme244,540. While the latter seems to work reasonably well for evGW 277, it seems that there
is room for improvement, especially for qsGW 277. We therefore implemented an iterative fixed
point procedure of the general form{

G
(m)
0

}
0≤m≤n+1

→ H̃QPn+1 → ϵ(n+1) , b(n+1) . (3.121)

We replace (3.115) by ∑
r

H̃QP (n+1)

pr U (n+1)
rq = ω(n+1)

p U (n+1)
pq , (3.122)

with

H̃QP (n+1)
=

n+1∑
m=n−n0

αmH
QP (m)

, (3.123)

where
n∑

m=n−n0

αm = 1 , (3.124)

needs to be fulfilled and n0 is the maximum number of previous iterations taken into account.
We determine the expansion coefficients αm using Pulay’s DIIS method468. In the DIIS method,
we seek to minimise the residual error

r(n+1) =
n∑

m=n−n0

αmr
(m) , (3.125)
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Algorithm 1 Pseudocode for the evaluation of the self-energy on the real frequency axis using
PADF. The asymptotic operation count of some key steps is given on the right.

Compute C, vc, [vc]
−1

Input MO coefficients bµn, orbital energies ϵn

Compute {τi}i=1,...,Nτ
, {ωk}k=1,...,Nω

,
{
γ
(c)
ki , γ

(s)
ki

}
k=1,...,Nω ,i=1,...Nτ

for τ = τ1, τ2, τ3 . . . , τNτ do
Calculate G using (3.70), (3.71) ▷ N3Nτ

for A ∈ Natom, B ∈ Natom do
Evaluate PAB(τi) using (3.83)-(3.89) ▷ N2Nτ

end for
for ω = ω1, ω2, ω3 . . . , ωNω do

Calculate contribution to P (ωi) using (3.62) ▷ N2NτNω

end for
end for
for ω = ω1, ω2, ω3 . . . , ωNω do

Calculate W (ωk) using (3.90) ▷ N3Nω

end for
for τ = τ1, τ2, τ3 . . . , τNτ do

for ω = ω1, ω2, ω3 . . . , ωNω do
Calculate W (τi) using (3.62) ▷ N2NτNω

end for
for A ∈ Natom, B ∈ Natom do

Evaluate ΣAB(τi) using eqs. (3.92) and (3.94)–(3.96) ▷ N2Nτ

end for
end for
if qsGW then

Calculate Σpq,τi

end if
if G0W0 or evGW then

Calculate Σpp,τi

end if
Evaluate (3.101) to obtain Σ(iω)
AC to obtain C(z) = Σ(z)

subject to the constraint eq. (3.124). One might additionally require the αm to be positive (what
is usually called EDIIS)553 but we did not find any improvement over the simple DIIS.

Different implementations of DIIS differ in the definition of the residual error. For qsGW ,
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since G0 uniquely determines HQP , we would ideally define

rqsGW (n+1)
= G

(n+1)
0 −G

(n)
0 , (3.126)

however, storage (or recalculation) of this quantity for n0 iterations is inefficient. Therefore, one
can use

rqsGW (n+1)
= P (n+1) − P (n) , (3.127)

which is related to the time-ordered Green’s function by taking the limit τ → 0−. In this work,
we have used a different definition for the residual which is, however, identical to (3.127). In the
calculations performed in this work, we have used

rqsGW (n+1)
=
[
P (n+1) +Q(n+1)

]
−
[
P (n) +Q(n)

]
.

Here, Q is defined like P , but with the summation spanning the virtual orbital space,

Qµν =
∑
a

bµa

[
b†
]
aν

.

This is based on the intuitive assumption that convergence could be improved by including
information about the virtual orbitals in the residual. However, note that S−1 = 1

2P + Q, so
that we obtain P +Q = 1

2P +S−1. Apart from the factor of 1/2, (3.127) is therefore completely
equivalent to this expression.

Technically, in the nth iteration we solve (3.115) and evaluate the corresponding b(n) from
which we calculate P (n) and Q(n). We check for convergence by evaluating the Frobenius norm
of the residual (3.127),

NF =
1

N2
MO

√∑
µν

[
r
(n+1)
µν

]2
, (3.128)

and terminate the SCF as soon as NF < ϵSCF for two subsequent iterations. As we will show
later on, ϵSCF = 1e−7 leads to QP energies which are converged within a few meV for all
systems in the GW100 database545. Subsequently, we store r(n+1) and HQP (n+1)

and determine
the expansion coefficients αm using the DIIS method, setting n0 = 10. Finally, we solve (3.122)
and use the resulting U to evaluate (3.118).

For evGW , the definition of the residual is straightforward, since only the QP energies change
in each iteration. We therefore define the vector of QP energies

ϵ⃗QP = [ϵQP
1 , . . . ϵQP

NMO
]

amd the residual as
revGW (n+1)

= ϵ⃗QP (n+1) − ϵ⃗QP (n)
. (3.129)

As for qsGW , we use n0 = 10 by default. We consider the QP energies as converged when the
difference between the HOMO QP energy of two subsequent iterations falls below 1 meV.
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3.2.3 Vertex Corrections to the Self-Energy

We now give the working equations for the vertex corrections. These are all different variants of
SOSEX with different versions of screening, ranging from SOSEX(W ,vc) to SOX. Since evaluation
of these expressions is rather inefficient in the AO basis4, they are evaluated in the MO basis
directly with N5 scaling with system size. However, the efficient frequency integration as well as
the DF approximation result in a very low prefactor which makes these approaches applicable
to systems with up to 50-100 atoms with large basis sets on standard hardware.

The derivation of these equations uses the fact that the single-particle Green’s functions
eqs. (3.65) and (3.66) are diagonal in the MO basis,

G>
aa′(iτ) = iδa,a′∈virte

−ϵaτ (3.130)

and
G<

ii′(iτ) = iδi,i′∈occe
−ϵiτ , (3.131)

with
Gpp′ = Θ(iτ)G>

aa′(iτ) − Θ(−iτ)G<
ii′(iτ) . (3.132)

we note again, that all QP energies are given relative to the chemical potential.

MP2 and statically screened second-order exchange

Using the definitions above eqs. (3.130)–(3.132), the SOX contribution to the self-energy in a
given basis (this might be either the AO or the MO basis and we denote it here with x, y) can
be evaluated as

ΣG3W2
xy (τ12) = −

∑
prq

∫
dτ3dτ4G

(s)
p (τ14)Wxpqr(τ13)G

(s)
q (τ43)G

(s)
r (τ32)Wpqry(τ42) . (3.133)

Using a time-independent interaction, like with a statically screened or unscreened interaction
(we use the bare Coulomb interaction in the following) and after transformation to the imaginary

4We refer to the discussion in ref. [35].
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frequency axis through eq. (2.231), eq. (2.232)

ΣSOX
xy (iω) =i

∑
prq

∫
dτeiωτG(s)

p (iτ)W (0)
xpqrG

(s)
q (−iτ)G(s)

r (iτ)W (0)
pqry

= +
∑
prq

vxpqrvpqry

∫ ∞

0
dτeiωτG

(s)
>,p(iτ)G

(s)
<,q(−iτ)G

(s)
>,r(iτ)

−
∑
prq

vxpqrvpqry

∫ ∞

0

dτe−iωτG
(s)
<,p(−iτ)G

(s)
>,q(iτ)G

(s)
<,r(−iτ)

=

occ∑
i

virt∑
ab

vxaibvaiby

∫ ∞

0
dτe−(ϵa−ϵi+ϵb−iω)τ

−
occ∑
ij

virt∑
a

vxiajviajy

∫ ∞

0

dτe−(−ϵi+ϵa−ϵj+iω)τ

(3.134)

the SOX term becomes

ΣSOX
xy (iω) =

occ∑
i

virt∑
ab

vxaibvaiby
ϵa + ϵb − ϵi − iω

−
occ∑
ij

virt∑
a

vxiajviajy
ϵa − ϵi − ϵj + iω

. (3.135)

Notice, that we have just proved the result of section 2.4.5 which we have illustrated in figure
2.7: Using a static electron-electron interaction, only the terms involving alternating greater and
lesser propagators remain in the self-energy expression for the G3W2 term.

The statically screened G3W2 contribution to the self-energy is then obtained by replacing
vc with W (iω = 0). We thereby rely on the assumption that GW already gives rather accurate
QP energies. We thus expand ΣG3W2 around the GW QP energies. At zeroth order, we obtain

ϵGW+G3W2
p = ϵGW

p + ΣsG3W2
pp (ϵGW

p ) , (3.136)

where ΣG3W2
pp is evaluated using the GW QP energies,

ΣsG3W2
pp (ϵGW

p ) =
occ∑
i

virt∑
ab

W (iω = 0)paibW (iω = 0)aiby

ϵGW
a + ϵGW

b − ϵGW
i − ϵGW

p

−
occ∑
ij

virt∑
a

W (iω = 0)piajW (iω = 0)iajy

ϵGW
a − ϵGW

i − ϵGW
j + ϵGW

p

,

(3.137)
and where we have used the analytical continuation of (3.135) from the imaginary axis to the
complex plane. Using the ΣGW+G3W2 self-energy in (2.334) is possible as well and has been done
in ref. [379]. Due to its much smaller computational cost, all values presented in this work have
been obtained using equation (3.136).



130 CHAPTER 3. NUMERICAL IMPLEMENTATION

SOSEX

The expression for the SOSEX(W ,vc) self-energy is slightly more involved due to the presence
of an integral over imaginary time which does not contain a δ-function. We obtain

ΣSOSEX(W,vc)
xy (iω) =i

∑
qrs

∫
dτ12dτ3e

iωτ12G(s)
q (τ12)Wxqrs(τ13)vqrysG

(s)
r (τ32)G

(s)
s (τ23)

= − 1

2π

∑
qrs

∫
dτ12

∫
dω′eiωτ12e−iω′τ1G(s)

q (τ12)Wxqrs(iω
′)vqrys

×
∫
dτ3e

iω′τ3G(s)
r (τ32)G

(s)
s (τ23)︸ ︷︷ ︸

I(τ2)

.

(3.138)

The integral over τ3 is split at τ2, and using eqs. (2.204), (2.214), (A.9) and (A.10) we obtain

I(τ2) =

∫ ∞

τ2

dτ3e
iω′τ3G(s)

r (τ32)G
(s)
s (τ23) +

∫ τ2

−∞
dτ3e

iω′τ3G(s)
r (τ32)G

(s)
s (τ23)

=

∫ ∞

τ2

dτ3e
iω′τ3G

(0)
>,r(τ32)G

(0)
<,s(τ23) +

∫ τ2

−∞
dτ3e

iω′τ3G
(0)
<,r(τ32)G

(0)
>,s(τ23)

=e−(ϵr−ϵs)τ2

{
Θ(ϵr)Θ(−ϵs)

∫ ∞

τ2

dτ3e
−(ϵs−ϵr−iω′)τ3 + Θ(ϵs)Θ(−ϵr)

∫ τ2

−∞
dτ3e

−(ϵs−ϵr−iω′)τ3

}
=

eiω
′τ2

ϵs − ϵr − iω′ {Θ(ϵr)Θ(−ϵs) − Θ(ϵs)Θ(−ϵr)} .

(3.139)
Combing this result with the previous expression, we therefore obtain

ΣSOSEX
xy (iω) =

1

2π

all∑
q

occ∑
i

virt∑
a

∫
dω′

∫
dτe−i(ω′−ω)τG(s)

q (τ)︸ ︷︷ ︸
I

×
{
Wxqai(iω

′)vqayi
ϵi − ϵa − iω′ +

Wxqia(iω′)vqiya
ϵi − ϵa + iω′

}
.

(3.140)

The integral over τ can be written as

I = −iΘ(ϵq)

∫ 0

−∞
e−(iω′−iω−ϵq)τdτ + iΘ(−ϵq)

∫ ∞

0
e−(iω′−iω−ϵq)τdτ . (3.141)
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Integrating out τ and inserting the solution into the previous expression we get

ΣSOSEX
xy (iω) =

i

2π

occ∑
i

virt∑
ab

∫
dω′ Wxbai(iω

′)vbayi
(ϵi − ϵa − iω′)(iω′ − iω − ϵb)

+
i

2π

occ∑
i

virt∑
ab

∫
dω′ Wxbia(iω′)vbiya

(ϵi − ϵa + iω′)(iω′ − iω − ϵb)

+
i

2π

occ∑
ij

virt∑
a

∫
dω′ Wxjai(iω

′)vjayi
(ϵi − ϵa − iω′)(iω′ − iω − ϵj)

+
i

2π

occ∑
ij

virt∑
a

∫
dω′ Wxjia(iω′)vjiya

(ϵi − ϵa + iω′)(iω′ − iω − ϵj)
.

(3.142)

Our final expression is obtained by combining the sums over occupied and virtual single-particle
states,

ΣSOSEX
xy (iω) = − i

2π

all∑
q

occ∑
i

virt∑
a

∫
dω′ Wxqai(iω

′)vyiaq
(ϵi − ϵa − iω′)(iω′ − iω − ϵq)

− i

2π

all∑
q

occ∑
i

virt∑
a

∫
dω′ Wxqai(iω

′)vyaqi
(ϵi − ϵa + iω′)(iω′ − iω − ϵq)

.

(3.143)

3.2.4 Correlation Energies

RPA and direct MP2 Correlation Energies

After constructing the polarizability in imaginary time, we can already use it to calculate the

RPA correlation energy or equivalently it’s second-order contribution E
(2)
c only. For the former,

we need to transform the matrix P (0) to the imaginary frequency axis using (3.62) (which reduces
to a cosine transform since P (0) is bosonic). Defining the intermediate

Zαβ(iω) =
∑
γ

P
(0)
αγ,iωvγβ

(2.355) becomes

ERPA
c =

1

2π

∫ ∞

0
dωTr {[ln (1− Z(iω))] + Z(iω)}

=

Nω∑
k

σkTr {[ln (1− Z(iωk))] + Z(iωk)}
(3.144)
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in the auxiliary basis. Since matrix logarithms are difficult to calculate, we use that (assuming
Z can be diagonalized with eigenvalues λj)

Tr [lnZ] =
∑
j

ln(λj) = ln

∏
j

λj

 = ln det (Z) ,

and evaluate the determinant of Z instead. For the same reason for which we do not invert W
by CD, we also calculate the determinant of Z by LU decomposition. P (0)(iτ) is stored on disk
for all imaginary time points before it is Fourier transformed to the imaginary frequency axis
and (3.144) is calculated.

E
(2)
c is directly evaluated directly in imaginary time and is given by

E(2)
c = − 1

2

Nτ∑
k

αkTr

(∑
γ

Zαγ,τkZγβ,τk

)

= − 1

2

Nτ∑
k

αk

∑
αβ

Zαβ,τkZβα,τk .

(3.145)

Here, P (0)(iτ) is evaluated for a single imaginary time point and (3.145) is evaluated directly for
each point, i.e. P (0)(iτ) does not need to be stored on disk. Using (2.282) we also have

Zαβ,σ,τk =
∑
γ

P (0)
αγ,σ,τk

vγβ (3.146)

and
Zαβ,τkZβα,τk =

∑
σ=α,β

∑
σ′=α,β

Zαβ,σ,τkZαβ,σ′,τk . (3.147)

When working in the AO basis, we are only interested in the contribution to E
(2)
c from electrons

with unpaired spins which is used for instance in spin-opposite scaled (SOS) MP2394 or in DOD-
DHs.586 In that case, only the terms with σ ̸= σ′ contribute and the resulting correlation energy
expression is scaled by an empirical factor. These factors for different DOD double hybrids can
be found in table 1 of ref. [218].

Vertex Corrections

We now use the different flavors of the G3W2 expression to the self-energy to obtain vertex
corrections to the energy expression (2.355). Inserting the AC-SOSEX self-energy (2.364) into
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(2.351), we obtain

ESOSEX(W,vc)
c =

1

2

∫
d1 . . . d4 G(s)(1, 2)G(s)(2, 3)G(s)(3, 4)G(s)(4, 1)

×
{

1

2
W (0)(3, 1)W (0)(2, 4)

+
1

3
W (0)(3, 1)

∫
d5d6 W (0)(2, 5)P (0)(5, 6)W (0)(6, 4) + . . .

}
.

(3.148)

In contrast to the RPA energy expression, the terms in this equations can not be summed exactly
due to the presence of the 1/n-terms. However, defining

Σλ
Hxc =

∞∑
n=1

λnΣ
(n)
Hxc

[
G(s), vc

]
. (3.149)

we can rewrite (2.351) as an integral over a coupling constant λ,

Ec =
1

2

∑
n=2

1

n

∫
d1d2G(s)(1, 2)Σ

(n)
Hxc(2, 1)[G(s)] =

1

2

∫ 1

0

dλ

λ

∫
d1d2G(s)(1, 2)Σ

(λ)
Hxc(2, 1)[G(s)] .

(3.150)
Eq. (3.149) then becomes

Σλ
Hxc =

∞∑
n=1

Σ
(n)
Hxc

[
G(s), λvc

]
=

∞∑
n=1

Σ
(n)
Hxc

[
G(s),W (λ)

]
, (3.151)

where W (λ) is defined by

W (λ)(1, 2) = λW (0)(1, 2) + λW (0)(1, 3)P (0)(3, 4)W (4, 2) . (3.152)

Defining

W =

∫ 1

0
dλW (λ) , (3.153)

and
Σ = Σ

[
W
]

(3.154)

the correlation energy becomes

Ec =
1

2

∫
d1d2 G(s)(1, 2)Σc(2, 1) . (3.155)

The integral in (3.153) needs to be computed numerically, but converges typically very fast
when Gauss-Legendre grids are employed.334 In ref. [587] a trapezoidal rule for the solution of
this integral has been used and also ref. [335] suggests that this choice is often suitable for the
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calculation of correlation energies within the RPA and beyond. Below, we will assess the effect
of such approximate coupling constant integration on absolute and relative correlation energies.
Notice, that using a trapezoidal rule, (3.155) reduces to

Ec =
1

4

∫
d1d2 G(s)(1, 2)Σc(2, 1) , (3.156)

and when the statically screened G3W2 self-energy (2.365) is used in this expression, the energy
expression of ref. [40] is obtained. When additionally both W (0) are replaced by W (0), (3.156)
gives the SOX term of MP2 (evaluated with G(s)).290

Using (3.155), simple expressions for the AC-SOSEX energy in the canonical basis of KS
orbitals can be obtained. The derivations are similar to the ones of section 3.2.3 With (3.155), the
AC-SOSEX self-energy (2.364) and eqs. (3.130)–(3.132) we obtain for the AC-SOSEX correlation
energy

ESOSEX(W,vc) =
i

2

∑
pqrs

∫
dτ12dτ3G

(s)
p (τ13)G

(s)
q (τ31)G

(s)
r (τ12)G

(s)
s (τ21)vspqrW rspq(τ23)

= − 1

4π

∑
pqrs

∫
dω′W (0)

spqrW rspq(iω
′)

∫
dτ12G

(s)
r (τ12)G

(s)
s (τ21)

×
∫
dτ3e

−iω′τ23G(s)
p (τ13)G

(s)
q (τ31)︸ ︷︷ ︸

I(iτ12)

.

(3.157)

The integral over τ3 is the same as in section 3.2.3, eq. 3.139,

I(iτ12) =
[Θ(ϵp)Θ(−ϵq) − Θ(ϵq)Θ(−ϵp)] eiω

′τ12

ϵp − ϵq + iω′ = −eiω′τ12 Θ(−ϵp) − Θ(−ϵq)
ϵp − ϵq + iω′ (3.158)

The remaining integral over τ12 is

Iτ12 = −
∫
G(s)

r (τ12)G
(s)
s (τ21)e

iω′τ12dτ12 =
Θ(−ϵr) − Θ(−ϵs)
ϵr − ϵs − iω′ , (3.159)

so that the correlation energy becomes

ESOSEX(W,vc) = − 1

4π

∑
pqrs

∫
dω′vspqrW rspq(iω

′)
Θ(−ϵr) − Θ(−ϵs)
ϵr − ϵs − iω′

Θ(−ϵp) − Θ(−ϵq)
ϵp − ϵq + iω′ (3.160)

Each of the nominators can only give a non-vanishing contribution if one of the two occupation
numbers is zero. If the difference of the occupation numbers is −1, we simply flip sign in the
denominator. Without loss of generality we can then decide that the indices r and p belong to



3.2. WORKING EQUATIONS 135

occupied and the indices s and q to virtual single-particle states. This gives us a factor of 4. We
can then use the symmetry of the Coulomb interaction to obtain

ESOSEX(W,vc) = − 1

4π

occ∑
ij

virt∑
ab

∫ ∞

0
dωW iajb(iω)W

(0)
jaib

4(ϵi − ϵa)(ϵj − ϵb)

[(ϵi − ϵa)2 + ω2] [(ϵj − ϵb)2 + ω2]
. (3.161)

For a closed-shell system we can integrate out spin which gives an additional factor of 2. This
can be seen by writing out the spin-dependence of the electron-electron interactions in the SOX
term explicitly,

vspqrvrspq =

∫
dr1 . . . dr4ϕ

∗
s(r1)ϕp(r1)ϕ

∗
q(r3)ϕr(r3)ϕ

∗
r(r2)ϕs(r2)ϕ

∗
p(r4)ϕq(r4)

×
∑

σ1,...σ4=α,β

s∗s(σ1)sp(σ1)s
∗
q(σ3)sr(σ3)s

∗
r(σ2)ss(σ2)s

∗
p(σ4)sq(σ4)

=

∫
dr1 . . . dr4ϕ

∗
s(r1)ϕp(r1)ϕ

∗
q(r3)ϕr(r3)ϕ

∗
r(r2)ϕs(r2)ϕ

∗
p(r4)ϕq(r4)

×
∑

σ1,...σ4=α,β

δσ1,σ2δσ1,σ4δσ3,σ4δσ3,σ2

=

∫
dr1 . . . dr4

∑
σ=α,β

ϕ∗s(r1, σ)ϕp(r1, σ)ϕ∗q(r3, σ)ϕr(r3, σ)

× ϕ∗r(r2, σ)ϕs(r2, σ)ϕ∗p(r4, σ)ϕq(r4, σ) .

(3.162)

Therefore, we recover the well-known SOSEX correlation energy expression for a closed-shell
system334,587 as

ESOSEX(W,vc) = − 1

2π

N/2∑
ij

virt∑
ab

∫ ∞

0
dωW iajb(iω)W

(0)
jaib

4(ϵi − ϵa)(ϵj − ϵb)

[(ϵi − ϵa)2 + ω2] [(ϵj − ϵb)2 + ω2]
, (3.163)

where we have indicated that only N/2 orbitals are occupied and indices with upper bars de-
note spatial orbitals. In a spatial orbital basis (summing over spins), the SOSEX(W (0),W (0))
Correlation energy is obtained from (2.362) and (2.65) as

ESOSEX(W (0),W (0)) = − 1

2

∑
pqrs

∫
dτ12G

(s)
p (τ12)G

(s)
q (τ21)G

(s)
r (τ12)G

(s)
s (τ21)

×W spqr(iω = 0)W rspq(iω = 0)

= −
occ∑
ij

virt∑
ab

W spqr(iω = 0)W rspq(iω = 0)

ϵi + ϵj − ϵa − ϵb
.

(3.164)
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This expression is completely equivalent to the SOX in MP2 with the bare electron-electron
interaction replaced by the statically screened, coupling constant averaged one. The SOX con-
tribution to the correlation energy in the spin-orbital basis is

ESOX = −1

2

occ∑
ij

virt∑
ab

viajbvjaib
ϵi + ϵj − ϵa − ϵb

. (3.165)

This can be combined with the direct term E
(2)
c , which we have already written down in the

basis of spin-orbitals in (3.44). The same expression is obtained through (2.351) from the full
second-order self-energy. We obtain

EMP2 =
1

2

occ∑
ij

virt∑
ab

viajb [viajb − vjaib]

ϵi + ϵj − ϵa − ϵb
. (3.166)

Notice, that one often encounters the expression

EMP2 =
1

4

occ∑
ij

virt∑
ab

[viajb − vjaib]
2

ϵi + ϵj − ϵa − ϵb
. (3.167)

The equivalence of both expressions follows from

viajbviajb − 2viajbvjaib + vjaibvjaib = 2viajbviajb − 2viajbvjaib

where we have permuted i and j in the third term on the l.h.s. Summing over spin (see (2.282)
for the direct term), we obtain for a closed shell system

EMP2 =

N/2∑
ij

virt∑
ab

viajb [2viajb − vjaib]

ϵi + ϵj − ϵa − ϵb
. (3.168)

In all of these expressions the matrix elements of the type Mpqrs are evaluated using eqs. (3.20)
and (3.21). In practice, we fix the indices i, j and evaluate all integrals as well as the energy
denominator for the fixed pair i, j so that each contribution to EMP2 becomes a vector product,
i.e.

EMP2 =
∑
i≤j

e
(2)
ij , (3.169)

where

e
(2)
ij =

virt∑
ab

viajb [viajb − vjaib]

ϵi + ϵj − ϵa − ϵb
.

This can be parallelized efficiently over all pairs of occupied single-particle states.
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3.2.5 The Bethe-Salpeter Equation as an effective 2-particle Problem

We now move on to the implementation of (2.316). As already discussed, in practice one typically

builds χ
(0)
eh using the non-interacting propagators. Repeating the derivation (2.276) and using

(2.229), we obtain

χ
(0)
eh (x1, x2, x1′ , x2′ , iτ) = −iG(s)(1, 2′)G(s)(2, 1′)

= iΘ(τ)G
(s)
> (x1, x2′ , τ)G

(s)
< (x1′ , x2,−τ) + iΘ(−τ)G

(s)
< (x2′ , x1, τ)G

(s)
> (x2, x1′ ,−τ)

= − iΘ(τ)
∑
ia

e−(ϵa−ϵi)τϕa(r1)ϕ
∗
a(r2′)ϕ

∗
i (r1′)ϕi(r2)

− iΘ(−τ)
∑
ia

e−(ϵa−ϵi)τϕ∗a(r2′)ϕa(r1)ϕi(r2)ϕ
∗
i (r1′) .

(3.170)

We now introduce a basis of resonant (particle-hole) excitations, and anti-resonant (hole-particle )
excitations B = R⊕A. Bases for R and A are conveniently built from the single-particle orbitals,
more precisely R = {ϕi}i=1,... ,Nocc

⊗ {ϕ∗a}i=1,... ,Nvirt
and A = {ϕa}a=1,... ,Nvirt

⊗ {ϕ∗i }i=1,... ,Nocc
.

The elements of this basis can be interpreted as non-interacting two-particle amplitudes,

χ
(r)
S (r1, r1′) =ϕi(r1)ϕ

∗
a(r1′)

χ
(a)
S (r1, r1′) =ϕa(r1)ϕ

∗
i (r1′) .

(3.171)

We now express the interacting amplitudes χS(r, r′) in terms of elements of B,

χS(r, r′) =
∑
S′

A
(r)
SS′χ

(r)
S′ (r, r′) +

∑
S′

A
(a)
SS′χ

(a)
S′ (r, r′) , (3.172)

i.e. as linear combination of non-interacting two-particle amplitudes. In this basis, every map
F : B 7→ B can be written as

F =

(
F (r,r) F (r,a)

F (a,r) F (a,a)

)
, (3.173)

where (x, y) denotes the respective sector of B. With the general basis transformation of a 4-point
correlation function F ,

Fpqrs =

∫
dx1x2x3x4ϕ

∗
p(x1)ϕ

∗
q(x2)F (x1, x2, x3, x4)ϕr(x3)ϕs(x4) , (3.174)

The transformations to the different sectors of B are obtained as[
F (rr)

]
SS′

=

∫
dx1x2x3x4χ

(r)∗

S (x2, x4)F (r, r′, x3, x4)χ
(r)
S′ (x3, x1)[

F (ra)
]
SS′

=

∫
dx1x2x3x4χ

(r)∗

S (x2, x4)F (r, r′, x3, x4)χ
(a)
S′ (x3, x1)[

F (ar)
]
SS′

=

∫
dx1x2x3x4χ

(a)∗

S (x2, x4)F (r, r′, x3, x4)χ
(r)
S′ (x3, x1)[

F (aa)
]
SS′

=

∫
dx1x2x3x4χ

(a)∗

S (x2, x4)F (r, r′, x3, x4)χ
(a)
S′ (x3, x1) .

(3.175)
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From the definition (3.171) as well as the orthonormality of the single-particle orbitals the rela-
tions

χ
(r)
S (r, r′) = χ(a)∗(x2, x1) (3.176)∫

dx1x2χ
(x)∗

S (r, r′)χ
(y)
S′ (r, r′) = δSS′δµν x, y = [r, a] (3.177)

follow. Using (3.171) and defining the differences of non-interacting particle-energies,

Ω
(0)
S = ϵa − ϵi , (3.178)

allows us to write

χ
(0)
eh (x1, x2, x1′ , x2′ , iτ) = − iΘ(τ)

∑
S

e−Ω
(0)
S τχ

(a)
S (x1, x1′)χ

(a)∗

S (x2′ , x2)

− iΘ(−τ)
∑
S

eΩ
(0)
S τχ

(r)
S (x1, x1′)χ

(r)∗

S (x2′ , x2′) .
(3.179)

To transform the expressions to the imaginary frequency axis, we use again (2.232) and obtain

χ
(0)
eh (x1, x2, x1′ , x2′ , iω) =

∑
S

χ
(a)
S (x1, x1′)χ

(a)∗

S (x2′ , x2)

iω − Ω(0)
−
∑
S

χ
(r)
S (x1, x1′)χ

(r)∗

S (x2′ , x2′)

iω + Ω(0)
. (3.180)

This expression closely resembles (2.275). The only differences are the replacement of all inter-
acting quantities with non-interacting ones and the states S over which is summed. Recall, that
in the expression of the generalized interacting susceptibility we do not sum over S = 0 since
we have subtracted the static contribution from the product G(1, 1′)G(2, 2′). Using section 3.2.5
and eq. (3.175) the diagonal blocks of eq. (3.180) are

[
L
(rr)
0

]
SS′

=
∑
S′′

∫
dx1x2x3x4

χ
(r)∗

S (x2, x4)χ
(r)
S′′(x2, x4)χ

(r)∗

S′′ (x3, x1)χ
(r)
S′ (x3, x1)

iω + ES′′

+
∑
S′′

∫
dx1x2x3x4

χ
(r)∗

S (x2, x4)χ
(a)
S′′ (x2, x4)χ

(a)∗

S′′ (x3, x1)χ
(r)
S′ (x3, x1)

−iω + ES′′

=
δSS′

iω + ES
,

(3.181)
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and [
L
(aa)
0

]
SS′

=
∑
S′′

∫
dx1x2x3x4

χ
(a)∗

S (x2, x4)χ
(r)
S′′(x2, x4)χ

(r)∗

S′′ (x3, x1)χ
(a)
S′ (x3, x1)

iω + ES′′

+
∑
S′′

∫
dx1x2x3x4

χ
(a)∗

S (x2, x4)χ
(a)
S′′ (x2, x4)χ

(a)∗

S′′ (x3, x1)χ
(a)
S′ (x3, x1)

−iω + ES′′

=
δSS′

−iω + ES

,

and the off-diagonal blocks are zero,

[
L
(ra)
0

]
SS′

=

∫
dx1x2x3x4

∑
S′′

χ
(r)∗

S (x2, x4)χ
(r)
S′′(x2, x4)χ

(r)∗

S′′ (x3, x1)χ
(a)
S′ (x3, x1)

iω + ES′′

+

∫
dx1x2x3x4

∑
S′′

χ
(r)∗

S (x2, x4)χ
(a)
S′′ (x2, x4)χ

(a)∗

S′′ (x3, x1)χ
(a)
S′ (x3, x1)

−iω + ES′′
= 0 ,

(3.182)

and[
L
(ar)
0

]
SS′

=
∑
S′′

∫
dx1x2x3x4

χ
(a)∗

S (x2, x4)χ
(r)
S′′(x2, x4)χ

(r)∗

S′′ (x3, x1)χ
(r)
S′ (x3, x1)

iω + ES′′

+
∑
S′′

∫
dx1x2x3x4

χ
(a)∗

S (x2, x4)χ
(a)
S′′ (x2, x4)χ

(a)∗

S′′ (x3, x1)χ
(r)
S′ (x3, x1)

−iω + ES′′
= 0 ,

(3.183)

In other words, the non-interacting generalized susceptibility is diagonal in the space of resonant
and antiresonant transitions. For the matrix elements of the Kernel of (2.316),

Γ(0)GW
(1, 2, 1′, 2′) = W (0)(1, 1′)δ(1, 2)δ(1′, 2′) −W (1, 1′)δ(1, 2′)δ(2, 1′)δ(t1 − t1′) , (3.184)

we obtain

Γ
(0)(rr)

SS′ =

∫
dx1dx2ϕ

∗
b(x1)ϕ

∗
i (x2) [vc(r1, r2)ϕj(x1)ϕa(x2) −W (r1, r2, iω = 0)ϕa(x1)ϕj(x2)]

Γ
(0)(ra)

SS′ =

∫
dx1dx2ϕ

∗
j (x1)ϕ

∗
i (x2) [vc(r1, r2)ϕb(x1)ϕa(x2) −W (r1, r2, iω = 0)ϕa(x1)ϕb(x2)]

Γ
(0)(ar)

SS′ =

∫
dx1dx2ϕ

∗
b(x1)ϕ

∗
a(x2) [vc(r1, r2)ϕj(x1)ϕi(x2) −W (r1, r2, iω = 0)ϕi(x1)ϕj(x2)]

Γ
(0)(aa)

SS′ =

∫
dx1dx2ϕ

∗
j (x1)ϕ

∗
a(x2) [vc(r1, r2)ϕb(x1)ϕi(x2) −W (r1, r2, iω = 0)ϕi(x1)ϕb(x2)] .

(3.185)
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For real orbitals
Γ(0)(rr) = Γ(0)(aa) and Γ(0)(ar) = Γ(0)(ra) , (3.186)

and summing over spins, we obtain

Γ
(0)(rr)

iajb =

∫
dr1dr2

∑
σi,σj ,σa,σb=α,β

ϕ∗b(r1)ϕj(r1)vc(r1, r2)ϕ
∗
i (r2)ϕa(r2)δσb,σjδσi,σa

−
∫
dr1dr2

∑
σi,σj ,σa,σb=α,β

ϕ∗b(r1)ϕa(r1)W (r1, r2, iω = 0)ϕ∗i (r2)ϕj(r2)δσa,σb
δσi,σj

Γ
(0)(ra)

iajb =

∫
dr1dr2

∑
σi,σj ,σa,σb=α,β

ϕ∗j (r1)ϕb(r1)vc(r1, r2)ϕ
∗
i (r2)ϕa(r2)δσb,σjδσi,σa

−
∫
dr1dr2

∑
σi,σj ,σa,σb=α,β

ϕ∗j (r1)ϕa(r1)W (r1, r2, iω = 0)ϕ∗i (r2)ϕb(r2)δσa,σjδσi,σb
.

(3.187)
The BSE can then be written as

L =
[
L−1
0 −K

]−1
=

[(
ES 0
0 ES

)
− iω

(
1 0
0 1

)
+

(
Γ(0)(rr) Γ(0)(ra)

−Γ(0)(ra) −Γ(0)(rr)

)]−1

= [−iωI +M ]−1 ,

(3.188)

with I being the identity matrix and

M =

(
A B
−B −A

)
, (3.189)

with

ASS′ = Aiajb = δabδij (ϵi − ϵa) + viajb −W (iω = 0)ijab (3.190)

BSS′ = Biajb = viajb −W (iω = 0)ajbi . (3.191)

Following the derivations of section 2.3.1 leading to (2.259), we make us of the spectral represen-
tation of χ (2.275) we can now reformulate the Dyson equation (3.188) as an effective 2-particle
problem, ∑

S′

[
[M − iωI]−1

]
SS′

χS′ =
1

ΩS − iω
χS , (3.192)

with χS ∈ B. Consequently, ∑
S′

[M − iωI]SS′ χS′ = [ΩS − iω]χS , (3.193)
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and since iω only results in a constant shift of the eigenvalues, we obtain∑
S′

MSS′ |χS′⟩ = ΩS |χS⟩ . (3.194)

Diagonalization of M yields a set of eigenvectors and excitation energies ΩS , from which the
spectral representation of the interacting 2-particle Green’s function is readily constructed. One
huge advantage of this form of the BSE is that it eliminates the dependence on ω. This is however
only possible in the static approximation for W . If the dynamic W is used, one ends up with
an eigenproblem of the same form as (3.194), however, with a frequency dependent M .127,128 In
this case, M would need to be diagonalized for each ω separately and it is more convenient to
construct L by direct inversion of L−1

0 −K for each ω. This is of course the same situation as
for the Dyson equation for the single-particle Green’s function. In a fully self-consistent GW
calculation, the Dyson equation for the interacting single-particle Green’s function is often solved
by inversion. When the self-energy is approximated as static, Dyson’s equation is more easily
solved by diagonalizing the resulting Hamiltonian which gives the spectral representation of the
new Green’s function.

Notice, that we have only derived the working equations for the BSE with static screening
but not the dynamical version which starts from (2.315). For thorough discussions as well as
derivations of the working equations for this case we refer to the work of Strinati on this subject,
especially ref. [156] or ref. [128]. The implementation of this equation in plane-wave code has for
instance been described by Kutepov.424

It is convenient to rewrite (3.194) as

A |χ(r)
S ⟩ +B |χ(a)

S ⟩ = ΩS |χ(r)
S ⟩ (3.195)

B |χ(r)
S ⟩ +A |χ(a)

S ⟩ = −ΩS |χ(a)
S ⟩ (3.196)

where we have introduced
χS = χ

(r)
S + χ

(a)
S . (3.197)

This definition makes sense due to the orthogonality of the spaces of resonant and antiresonant

transitions, i.e. χ
(r)
S ∈ R and χ

(a)
S ∈ A. The equations are simplified under the assumption

that resonant and antiresonant transitions do not couple, or equivalently, that excitons can be
described as a superposition of particle-hole transitions only. This is the so-called Tamm-Dancoff
approximation365,588 (TDA).5 Equations (3.195) and (3.196) then become

A |χ(r)
S ⟩ = ΩS |χ(r)

S ⟩ (3.198)

A |χ(a)
S ⟩ = −ΩS |χ(a)

S ⟩ . (3.199)

5The Tamm-Dancoff approximation has first been introduced by Igor Tamm and Sidney Dancoff to describe
collective excitations in nucelar physics in Hartree-Fock theory.588,589. Head-Gordon and Hirata introduced it to
molecular physics in the framework of time-dependent DFT.365
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Therefore, since

ΩS |χ(r)
S ⟩ ⟨χ(a)

S |χ(a)
S ⟩ = −ΩS |χ(a)

S ⟩ (3.200)

and because of equation (2.260),

|χ(r)
S ⟩ = − |χ(a)

S ⟩ . (3.201)

The pair of equations (3.196) and (3.195) can be rewritten (subtracting/adding both equations)
as

(A−B) |χ(r)
S − χ

(a)
S ⟩ = ΩS |χ(r)

S + χ
(a)
S ⟩ (3.202)

(A+B) |χ(r)
S + χ

(a)
S ⟩ = ΩS |χ(r)

S − χ
(a)
S ⟩ , (3.203)

from were one obtains

(A+B)(A−B) |χ(r)
S − χ

(a)
S ⟩ = Ω2

S |χ(r)
S − χ

(a)
S ⟩ (3.204)

(A−B)(A+B) |χ(r)
S + χ

(a)
S ⟩ = Ω2

S |χ(r)
S + χ

(a)
S ⟩ . (3.205)

These versions of (3.194) are useful since they reduce the matrix sizes one needs to work with
by a factor of two.

To write down the working equations for a close-shell system, we need to explicitly take into
account the spin-strucure of the matrices Γ(0)(rr) and Γ(0)(ra) . It is clear that all terms with one
spin-up and three spin-down indicies (or the other way round) need to be zero. This leaves us
with 8 terms, and using (3.187) as well as the shorthand notation W = W (iω = 0)we obtain the

following structure of Γ(0)(rr) in the basis of spin indicies

Γ
(0)(rr)

iajb,σiσaσjσb
=
αα
αβ
βα
ββ

∣∣∣∣∣∣∣∣∣∣
αα αβ βα ββ

viajb −Wijab 0 0 viajb
0 −Wijab 0 0
0 0 −Wijab 0

viajb 0 0 viajb −Wijab

∣∣∣∣∣∣∣∣∣∣
(3.206)

and for Γ(0)(ra)

Γ
(0)(ra)

iajb,σiσaσjσb
=
αα
αβ
βα
ββ

∣∣∣∣∣∣∣∣∣∣
αα αβ βα ββ

viajb −Wajbi 0 0 viajb
0 0 −Wajbi 0
0 −Wajbi 0 0

viajb 0 0 viajb −Wajbi

∣∣∣∣∣∣∣∣∣∣
. (3.207)
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Since A±B = ES + Γ(0)(rr) ± Γ(0)(ra) , we also calculate[
Γ(0)(rr) ± Γ(0)(ra)

]
iajb,σiσaσjσb

=

αα
αβ
βα
ββ

∣∣∣∣∣∣∣∣∣∣
αα αβ βα ββ

fviajb −Wijab ∓Wajbi 0 0 fviajb
0 −Wijab ∓Wajbi 0
0 ∓Wajbi −Wijab 0

fviajb 0 0 fviajb −Wijab ∓Wajbi

∣∣∣∣∣∣∣∣∣∣
,

(3.208)

with f = 2 in the plus case and f = 0 in the minus case. Diagonalization results in[
Γ(0)(rr) ± Γ(0)(ra)

]
iajb,σiσaσjσb

=

1√
2

(αα+ ββ)
1√
2

(αα− ββ)
1√
2

(αβ + βα)
1√
2

(αβ − βα)

∣∣∣∣∣∣∣∣∣∣

1√
2

(αα+ ββ) 1√
2

(αα− ββ) 1√
2

(αβ + βα) 1√
2

(αβ − βα)

2fviajb −Wijab ∓Wajbi 0 0 0
0 −Wijab ∓Wajbi 0 0
0 0 −Wijab ∓Wajbi 0
0 0 0 −Wijab ∓Wajbi

∣∣∣∣∣∣∣∣∣∣
,

(3.209)
which shows that there only two different types of solutions: In the basis of spatial orbitals
singlet exciations are described by the matrix elements

(A+B)siajb =(ϵa − ϵi)δabδij −Wijab −Wajbi + 4viajb (3.210)

(A−B)siajb =(ϵa − ϵi)δabδij −Wijab +Wajbi (3.211)

and triplet excitations are described by

(A+B)tiajb =(ϵa − ϵi)δabδij −Wijab −Wajbi (3.212)

(A−B)tiajb =(ϵa − ϵi)δabδij −Wijab +Wajbi . (3.213)

Singlet and triplet excitation energies are then obtained by solving (3.205) or (3.204) with these
matrix elements.

Diagonalization of the 2-particle Hamiltonian

The dimension of the eigenproblems section 3.2.5 grows as n = NoccNvirt, i.e. linear with basis
set and quadratic with system size. For instance, a calculation of the excited states of the C60

molecule in a TZ3P basis set will already lead to matrices of dimension 180x1620 =≈ 3 × 105

whose diagonalization would already require 720 GB of storage. Such matrices can be stored
and diagonalized using highly efficient distributed solvers590 based on for instance the CHASE
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algorithm591 but performing such large calculations on standard hardware probably won’t become
routine anytime soon.

In applications where the full interacting generalized susceptibility is needed, for instance
when one solves the GW equations with screening calculated within BSE@GW instead of within
the RPA,361,362 there is no way around the diagonalization of the full BSE Hamiltonian. How-
ever, some approaches to circumvent the N6 scaling of these calculations by compressing the
BSE Hamiltonian have been suggested over the last years.442,444 A strategy which has been pur-
sued to calculate optical spectra is to use iterative Lanczos-type solvers,441,592,593 for instance
Haydock recursion,594 which only scales as N4 with system size or even cubic in an AO based
implementation.441

In practical applications one is however often interested in m≪ n low-lying excitonic states.
These can be found using iterative eigensolvers which only scale as mn2. Such solvers will still
require storage of the whole matrix to be diagonalized. Further savings of CPU time and memory
can be achieved by removing high-energy transitions from the particle-hole basis which are not
contributing significantly to the low-lying excitation energies.

Even with such techniques, application of the BSE@GW method to larger systems with a
few thousand virtual states is not possible. For such systems, one can however resort to iterative
eigenvalue solvers which have been developed for TD-HF over the last decades. Indeed, replacing
the matrix elements of the screened Coulomb interaction by the ones of the bare one in (3.205),
the TD-HF method is obtained (compare (2.316) to (2.293)). It is therefore clear that any solver
which can be used to solve (3.194) in the TD-HF case, can also be used for BSE@GW. We use
an extension of the Davidson algorithm595 originally proposed by Stratmann and Scuseria.596 It
projects the generalized eigenproblem (3.205) on a sequence of orhonormal subspaces

span
{
b
(n)
1 , . . . b

(n)
k

}
, (3.214)

in which (3.205) is solved. k denotes the size of the nth subspace and the bk are linear com-
binations of particle-hole states. The vectors forming the subspace are then updated until the
subspaces are converged. The procedure can be interpreted as an iterative optimization of the
basis of particle-hole states, where the part which does not carry useful information (i.e. the
particle-hole transitions which do not contribute to the low-lying excitons) is projected out.

Matrix Elements Equations (3.210)–(3.213) in the Davidson Method

The time-determining step in the Davidson diagonalization is the projection of the eigenproblem
in the full space on the subspaces. The term containing the bare Coulomb potential is easily
evaluated following the procedure in ref. [597]. For the matrix elements of the screened interaction
in the (n + 1)th subspace iteration, we define a column in the subspace labeled by si, sj , . . . ,
sa, sb, . . . , respectively, as

(A±B)(n+1)
sisa =

∑
sj ,sb

{
−W (iω = 0)(n)sasb,sjsi

∓W (iω = 0)(n)sasj ,sbsi

}
b(n)sisa . (3.215)
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In the minus case, this is equivalent to the evaluation of the greater or lesser component of
self-energy for a single imaginary time point. In the plus case, a similar algorithm can be used,
but the resulting matrix needs to be antisymmetrized.

Since we do not use the screened interaction at zero frequency in our GW implementation,
we calculate the zero-frequency component of P (0) from the imaginary time representation of
the polarizability by

P (ω = 0) =
1

2π

∫
P (0)(iτ)dτ , (3.216)

and we then use (2.301) to obtain W (ω = 0). We solve (3.215) in the basis of Slater functions
and then transform to the basis functions which span the subspace. Let us write (3.215) in the
primary basis as

K(±)
µν = −

∑
κλ

bκλW (iω = 0)µκνλ ±W (iω = 0)νκµλ . (3.217)

Within the PADF approximation, the contribution to K(±) for all atom pairs (A,B) is

K(±)AB
= K(±)AB,I

+ K(±)AB,II
+ K(±)AB,III

+ K(±)AB,IV
, (3.218)

where

K(+)AB,III
=
[
K(+)AB,II

]T
K(−)AB,III

= −
[
K(−)AB,II

]T
.

(3.219)

In these and in the following quantities the matrices are restricted to the primary basis functions
centered on the atoms denoted by the indices in the superscripts. Defining the intermediates

IABC
µνγ =

∑
β∈B

cABB
µνβ W (ω = 0)BC

βγ , (3.220)

and
FBAA
νµα =

∑
λ∈D

bDB
λν c

DAA
λµα . (3.221)

We can then write

K±,AC,I
µκ =

∑
ν∈B

∑
λ∈D

∑
α∈A

∑
γ∈C

bDB
λν c

DAA
λµα W (ω = 0)AC

αγ c
BCC
νκγ (3.222)

=
∑
ν∈B

∑
α∈A

FBAA
νµα IBCA

νκα,τ (3.223)

K±,AC,II
µκ =

∑
ν∈B

∑
λ∈D

∑
α∈A

∑
β∈B

bDB
λν c

DAA
λµα W (ω = 0)AB

αβ c
CBB
κνβ (3.224)

=
∑
ν∈B

∑
α∈A

FBAA
νµα ICBA

κνα (3.225)
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K±,AC,IV
µκ =

∑
ν∈B

∑
λ∈D

∑
δ∈D

∑
β∈B

bDB
λν c

ADD
µλδ W (ω = 0)DB

δβ cCBB
κνβ (3.226)

=
∑
λ∈D

∑
δ∈D

∑
ν∈B

bDB
λν I

CBD
κνδ bADD

µλδ , (3.227)

where in the + case b is symmetric, and antisymmetric otherwise. Note the close similarity to
the equations leading to the GW self-energy eqs. (3.92) and (3.94)–(3.96). However, eqs. (3.222),

(3.224) and (3.226) are evaluated using W instead of W̃ , i.e., they include the exx contribution
to the SEX self-energy.

We point out, that for systems with NoccNvirt of the order of a few 10000, direct diagonal-
ization of the full BSE Hamiltonian is computationally much more efficient than the Davidson
method. For Benzene with a QZ6P basis set, the dimension of the BSE Hamiltonian is around
n = 10000. The calculation of the three lowest singlet and triplet states (six states in total) took
less than 4 minutes on 8 cores of a intel skylake node. This is around 15-20 times faster than
the corresponding calculation using the Davidson method. For details we refer to A.4.3



Chapter 4

Technical Validation

Ideally, the result of a MBPT calculation should be independent of the particular implementa-
tion of the method. As explained in detail in the last chapter, choices regarding the numerical
representation of the involved quantities must be made, including the choice of a single-particle
basis as well as a discretization of frequency and/or time-variables. The choice of the single-
particle basis also entail a choice regarding the representation of the core electrons as well as of
the treatment of virtual states. Both factors are decisive since it is known that core correlation
plays a major role in MBPT calculations545 but also since many quantities like charged excita-
tions or correlation energies converge very slowly to the complete basis set (CBS) limit within
MBPT.296,545,598,599 For these reasons, achieving consensus between different MBPT codes is
challenging and requires careful convergence of a calculation with respect to all technical pa-
rameters. Due to limited resources and/or time constraints, it might not always be possible in
applications to only work with converged parameters. In that case, one would like to know how
a certain technical parameter affects the final result.

For these reasons, comparison between different codes through systematic benchmarks is
highly desirable. First, it allows to verify that the results from these codes agree within a
reasonable margin of error. Second, such benchmarks are crucial in order to quantify the influence
of the various technical parameters on a certain property. It is useful to thereby focus on the
comparison of different GW implementations. First of all, individual GW QP energies are very
sensitive to technical errors and their correctness also imply the correct calculations of derived
quantities like QP gaps which enter the working equations for correlation energies and 2-particle
response functions. Furthermore, the GW method has been implemented in many codes and
achieving consensus between these implementations has received much attention over the last
years.

Significant efforts towards comparing GW results from different codes in a systematic way
have been initiated by van Setten et al.545 in 2015 with the publication of the GW100 database
for finite systems. In their work, van Setten et al. compared the IPs and EAs of 100 small
and medium-sized molecules on the G0W0@PBE level of theory, calculated with three different

147
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codes, the GTO based all-electron code TURBOMOLE501,600, the NAO based all-electron code
FHI-AIMS492,498,499, and the PW code BerkeleyGW.225,601 Later, benchmarks for many more
codes followed, including the PW implementations in VASP134,602–604 in 2017605 and WEST565

in 2018,574 and the real-space finite-element (RSFE) implementation in nanoGW474 in 2019.606

Also the accuracies of many low-order scaling implementations of the G0W0 method were tested
for the GW100 database.6,36,269,433

These studies established the choice of single-particle basis as a crucial factor causing major
differences between different implementations. For instance, the results from TURBOMOLE,
FHI-AIMS and MOLGW,542 but also from the low-scaling implementations by Wilhelm et al.269

in CP2K607 and by Duchemin and Blase433, all using the same def2608-GTO type basis sets,
agree within a few ten meV on average for GW100, even though these implementations differ in
frequency treatment as well as calculation of four-center integrals. The differences between codes
using different basis sets are considerably larger. The discrepancy between the TURBOMOLE
and BerkeleyGW results of nearly 300 meV on average reported in ref.545 for the Highest Occupied
Molecular Orbital (HOMO) were not necessarily insightful since the BerkeleyGW results were
not CBS limit extrapolated. With only around 60 meV on average, the agreement between the
CBS limit extrapolated PW results obtained with VASP and TURBOMOLE was found to be
significantly better.605 However, for EAs the disagreement between different codes is considerable
larger and differences for systems with a positive LUMO can easily exceed several eV. It has also
been pointed out in ref. [605] that the type of GTO-type basis set has a major influence on these
EAs and that Dunning’s correlation consistent basis sets512 are more suitable than the def2-
series which has been used in ref. [545]. Beside the choice of the basis set, the treatment of core
electrons (pseudopotentials609 vs. all-electron) also plays a decisive role for many systems.574,610

The purpose of this chapter is to assess the errors introduced by the numerical approxima-
tions outlined in section 3. In section 4.1 we first compare our results for G0W0@PBE for the
GW100 database to the ones from other codes with implement the GW equations with GTOs,
PWs, and RSFEs. Since G0W0@PBE generally do not give accurate QP energies (see discussion
in section 2.4.4) we will only focus on numerical aspects and abstain from comparison to exper-
imental or other reference values calculated with other quantum chemical methods.287,611,612 In
section 4.2 we compare our qsGW results to the ones from TURBOMOLE.540,575 In section 4.4
we then continue with validating our RPA correlation energies for single atoms and also perform
some preliminary tests of SOSEX(W (0),W (0)). All of these systems are rather small. Therefore,
to complement the results of this section we also calculate IPs and EAs of small to medium
molecules from the GW5000 database.598 in section 4.3. These larger systems allow us to assess
the suitability of the sparsity thresholds for the PADF method introduced in section 3.1.3.
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4.1 Quasiparticle energies - G0W0

4.1.1 Computational Details

We follow the protocol for the GW100 benchmark as described by van Setten et al.545 and perform
non-relativistic G0W0@PBE189,190 calculations. We use the structures as available on the web
page for the GW100 database and also use the updated structures for Phenol and Vynilbromide.1

For consistency with other benchmarks for GW100, we always use the QP energy obtained from
the KS LUMO energy, which is usually, but not always, the energetically lowest virtual QP
energy. For a detailed discussion of the effect of orbital reordering we refer to ref. [606].

We performed calculations with the augmented versions of the basis sets described in this
work and extrapolated them to the CBS limit as described for instance in ref. [501]: We calculate
the QP energies ϵn with the aug-TZ3P and aug-QZ6P basis sets and estimate the CBS limit as

ϵCBS
n = ϵQZ

n − 1

NQZ
bas

ϵQZ
n − ϵTZ

n
1

NQZ
bas

− 1
NTZ

bas

= ϵQZ
n −

(
ϵQZ
n − ϵTZ

n

)(
1 −

NQZ
bas

NTZ
bas

)−1

, (4.1)

4.1.2 Convergence with respect to Imaginary Time and Frequency Grids

We first comment on the suitable of our numerical treatment of imaginary time and imaginary
frequency variables. In implementations based on the space-time method grids similar to ours
have been used by other researchers6,269,433 to implement the G0W0 method for finite systems.
Recently, Wilhelm et al. benchmarked the convergence of QP energies in the GW100 database
with respect to the grid sizes.269 They could clearly show that grids with 20-30 points are
sufficient to convergence all IPs and EAs in GW100. Our imaginary time and frequency grid
implementation allow us to use up to 40 points which ensures that the results are converged
with respect to this parameter.269 In ref. [269], Wilhelm et al. could also reproduce the results
obtained by van Setten et al.545 with the TURBOMOLE code with an accuracy of a few meV.
Since TURBOMOLE performs the frequency integration fully analytically, we conclude that
the frequency integration is a numerical parameter which is well under control in our updated
implementation.

4.1.3 Basis Set Errors

Before we discuss in detail the comparison of the STO results to the ones from other codes, we
consider the basis set errors and basis set convergence properties of aug-TZ3P and aug-QZ6P.
Using eq. (4.1), one implicitly assumes that when going to a larger basis set, each additional
basis function reduces the basis set error on average by the same amount. In other words, one
assumes uniform convergence of the basis set expansion, i.e. that eq. (3.4) holds. It is clear that
such an assumption will only be justified for rather large basis sets and, for the same reason,

1Data downloaded from the website of the GW100 project by Van Setten et al., https://gw100.wordpress.com

https://gw100.wordpress.com
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extrapolation is generally more reliable for larger systems. Usually one would also like to use
three or even more data points instead of using (4.1). It has, however, been pointed out511 that
including a calculation with a basis set of quality lower than TZ will deteriorate the quality of
the fit. Therefore, we calculate QP energies at the CBS limit from TZ and QZ results only.
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Figure 4.1: Basis set errors with respect to the CBS limit extrapolated IPs in the GW100 database
using the aug-TZ3P and aug-QZ6P basis sets. The univariate plots show the distributions of
errors with respect to the CBS limit extrapolated values. All values are in eV. The blue straight
line is a linear fit and the dotted line is defined by ∆TZ = ∆QZ . All values are in eV.

To demonstrate the accuracy of an extrapolation scheme, the extrapolated result should
ideally be compared to one obtained in a very large basis which already gives a result very close
to the CBS limit. Due to the limitations of our basis sets to angular momenta ≤ 3, this is not
possible for us. As a rule of thumb, extrapolation with basis sets of cardinality X and X− 1 can
provide the accuracy of a calculation using a basis set of accuracy X + 1.489 Recently, Bruneval
et al.599 found basis set errors of about 60 meV for the IPs of a large set of small to medium
organic molecules with the cc-pV5Z basis set. This is of the same order as the typical accuracy
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Figure 4.2: Basis set errors with respect to the CBS limit extrapolated EAs in the GW100
database using the aug-TZ3P and aug-QZ6P basis sets. The univariate plots show the distribu-
tions of errors with respect to the CBS limit extrapolated values. All values are in eV. The blue
straight line is a linear fit and the dotted line is defined by ∆TZ = ∆QZ . All values are in eV.

in a photo-ionization experiment599 and considerably lower than the 150 meV for IPs which are
usually found using the cc-pVQZ basis set.598,599 For EAs, one can usually expect errors of the
same order of magnitude than IPs when augmented basis sets are used.613 It is thus reasonable
to use this number as an estimate of the average error in our extrapolation.

The distributions of basis set errors with respect to the CBS limit extrapolated IPs and EAs
(excluding noble gases and the hydrogen molecule in the latter) for the GW100 database are
shown in figures 4.1 and 4.2, respectively. The average basis set error reduces from 300 (290)
meV to 170 (170) meV for IPs (EAs), i.e. there seems to be no qualitative difference in the
convergence to the CBS limit for IP and EA as one would expect for augmented basis sets. With
the exception of the IP of BeO, the basis set error with aug-QZ6P is always smaller than the one
with aug-TZ3P, i.e. aug-QZ6P gives higher QP energies. In both plots, we also highlight some



152 CHAPTER 4. TECHNICAL VALIDATION

0.4 0.2 0.0
IP

0.5

0.4

0.3

0.2

0.1

0.0

0.1

E
A

Cu2

TiF4
BN

BeO

F2
AlI3

Figure 4.3: Correlation between differences between the aug-TZ3P and aug-QZ6P results ∆T−Q

for EAs (y-axis) and IPs (x-axis). The univariate plots show the corresponding distributions.
The blue straight line is a linear fit and the dotted line is defined by ∆IP = ∆EA. All values are
in eV.

systems for which the convergence to the CBS limit seems to be rather slow, i.e. the differences
between QP energies on the TZ and QZ level are very large. For these systems, CBS limit
extrapolation will be less accurate. Without exception, the problematic systems are composed
of only a few atoms.

Also a good correlation between the basis set errors for IPs and EAs is desirable since it
implies a fast convergence of the HOMO-LUMO QP gap to the CBS limit. Fast convergence of
this quantity with basis sets augmented with diffuse functions has been demonstrated before.613

At first glance, the distributions of IP and EA BSEs appear rather similar, suggesting that such
an error cancellation might also be found for our basis sets. To investigate this further, we plot
all pairs (∆(QZ − TZ)IPi ,∆(QZ − TZ)EAi) (bivariate plot) together with the corresponding
error distributions (univariate plots) in figure 4.3 (omitting again all noble gases and H2). The
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blue solid line is a linear fit, the dotted black line is defined by the equation ∆(QZ − TZ)IPi =
∆(QZ−TZ)EAi , and Gaussian kernels are fitted to the univariate distributions. A few molecules
with large BSE for the IP but small basis set error for the EA (Cu2) or vice-versa (BN, TiF4,
F2, AlI3) aside, most systems cluster around the dotted line in the grey shaded area in which IP
and EA BSEs should cancel each other to a large extent.

4.1.4 Comparison to GTO-Type Basis Sets
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Figure 4.4: Distribution of deviations of the ADF IPs to the def2-GTO IPs for the GW100
database for TZ and QZ basis sets (∆X,i , X = TZ,QZ). The univariate plots show the distribu-
tion of the ∆TZ,i (upper histogram) and the ∆QZ,i (left histogram). The bivariate plots shows
the pairs (∆TZ,i,∆QZ,i) and the blue line is a linear fit. The dotted line is defined by ∆T = ∆Q.
Systems containing 5th row elements are highlighted in red. All values are in eV.

Additional insight into the convergence properties of the STO type basis sets is provided
when comparing them to GTO type ones of the same cardinality. Such a comparison is made in
figure 4.4 for results on the TZ and and for the QZ level. The univariate plot on top of figure 4.4
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shows the deviation of the aug-TZ3P IPs to the ones obtained with def2-TZVP and the univariate
plot on the right side of figure 4.4 shows the same for aug-QZ6P and def2-QZVP (here and in the
remainder of this paper, we use the results calculated with the TURBOMOLE code whenever we
refer to def2-GTO basis sets. We could have equally well used results obtained with other codes
like FHI-AIMS or MOLGW). Again, Gaussian kernels are fitted to the univariate distributions.
The bivariate plot shows the individual pairs (∆T,i,∆Q,i), with ∆T,i (∆Q,i) being the differences
between the IPs calculated with aug-TZ3P and def2-TZVP (aug-QZ6P and def2-QZVP) for the
ith datapoint in the GW100 database. The dotted line is defined by ∆T,i = ∆Q,i. The systems
for which the QP equations (2.334) can have multiple solutions (CI4, KBr, NaCl, BN, O3, BeO,
MgO, Cu2, and CuCN) are excluded from this comparison.574 Also Ag2 is not shown since the
deviations on the TZ and QZ level are exceptionally large.

We observe that the maximum of the Gaussian kernel function is close to zero eV for the TZ
and closer to 0.1 eV for the QZ basis sets. In other words, the aug-QZ6P IPs are consistently
smaller than the def2-QZVP IPs (with a mean deviation (MD) of 120 eV), while the aug-TZ3P
ones are with a MD of 60 meV only slightly smaller than the def2-TZVP IPs on average. The
missing g functions in the aug-QZ6P basis sets might be a reason for this discrepancy. We will
see in the next subsection that the CBS limit extrapolated IPs calculated with our basis sets are
on average lower than the def2-GTO results. This section clearly shows that this discrepancy is
mostly caused by the differences on the QZ level.

The deviations of the STO-type to the respective def2- basis sets are strongly correlated. In
cases in which the aug-TZ3P IPs are considerably smaller than their def2-TZVP counterparts,
also the aug-QZ6P IPs will be much smaller than the def2-QZVP ones. Good examples are the
five molecules represented by the points in the upper right corner of the bivariate plot. Since it
is known that the GTO-type basis sets allow for a reliable CBS limit extrapolation, this fact is
highly important since it guarantees that the same CBS limit extrapolation can be performed
using our STO-type basis sets.

We also shortly comment on the systems containing 5th-row elements, highlighted in red.
With the exception of one of them (Rb2), the agreement on the TZ is rather good, while they
agreement on the QZ level is significantly worse. This is again due to the inconsistent polariza-
tion for the heavier elements mentioned above; approaching the CBS limit for heavier elements
becomes difficult without Slater functions with angular momentum larger than l = 3.

To summarize the key points of this section, our STO type basis sets seem to behave qualita-
tively similar to the GTO-type basis sets, although the improvement when going from TZ to QZ
is smaller for the STO- than for the GTO-type basis sets. Together with the good correlation of
deviations on the TZ and QZ level, this indicates that our basis sets allow indeed for a meaningful
CBS limit extrapolation. However, the CBS limit extrapolated IPs from the STO-type basis sets
will on average be lower than their counterparts calculated using GTOs.
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4.1.5 Comparison to Other Codes

KS Eigenvalues

Before we dive into our comparison of the GW QP energies, we shorty compare our KS eigen-
values for the systems in GW100 to the ones from other codes. Here and in the following, we do
not include Phenol and Vynilbromide in the statistical analysis since different structures have
been used in the past for both systems.605 Our results (see supporting information of ref. [37] for
the raw data for all 100 systems) only confirm what is already well known; For KS eigenvalues,
the agreement between different codes is generally excellent. For example, the CBS limit extrap-
olated KS HOMO energies from the WEST code agree with the ones obtained from def-GTO
calculations within 30 meV on average, with a maximum deviations of 176 meV.574 These figures
reduce to 24 meV and 92 meV when the plane-wave results are compared to def2-QZVP.574 With
only 19 meV, the agreement from VASP to def2-QZVP is even better.605 One should keep in
mind that the extrapolation schemes for correlated-electron methods and localized basis func-
tions are not necessarily useful to extrapolate KS eigenvalues as has already been pointed out
in ref. [605] and in ref. [574]. Such a comparison should rather be based on non-extrapolated
results.614,615

Our KS HOMO eigenvalues calculated on the aug-QZ6P level of theory show a MAD of 26
meV to the ones on the def2-QZVP level and of 22 meV to the CBS limit extrapolated values
calculated with the WEST code. Our LUMO eigenvalues only differ to the ones from WEST by
35 meV on average. Major deviations of more than 150 meV are only found for Helium (340
meV), H2 (280 meV) and Ag2 (340 meV). With deviations of more than 420 meV to WEST
and 490 meV to def-QZVP, the latter system is also the only outlier for IPs. However, when the
ZORA is made, the deviations to WEST reduce to 15 meV for the HOMO and 17 meV for the
LUMO, respectively. Also, the deviation to the def2-QZVP IP reduces to an acceptable value
of 50 meV which is rather strange, given that the latter has been calculated without relativistic
corrections.

Ionization Potentials

We now turn our attention to the IPs calculated within the GWA. In addition to Phenol and
Vynilbromide, we again exclude the systems for which the QP equations (2.334) can have multiple
solutions (CI4, KBr, NaCl, BN, O3, BeO, MgO, Cu2, and CuCN)574 from the following statistical
comparison, but also TiF4 and OCS for which no IPs from the WEST code are available. Due
to large discrepancies between WEST and VASP, we also exclude the systems containing Iodine,
Gallium and Xenon. Finally, we also exclude all remaining systems containing 5th-row elements
from our analysis since for these systems (especially the ones containing Iodine and Ag2) the
different treatment of relativistic effects have been shown to significantly affects QP energies.605

This leaves us with a set of 81 molecules whose IPs we include in the statistical analysis in this
section.
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Table 4.1: G0W0@PBE ionization potentials (IP) for the GW100 database (third column)
Columns four to seven denote deviations of the ADF IPs to the ones from reference X,
∆X = IPX − IPADF . All values are in eV.

Name ADF ∆def2−GTO ∆V ASP ∆WEST ∆nanoGW

1 Helium 23.31 0.18 0.07 0.11 −0.11
2 Neon 20.06 0.27 0.11 0.27 0.39
3 Argon 15.26 0.02 0.06 0.11 0.19
4 Krypton 13.71 0.18 0.22 0.05 −0.06
5 Xenon 11.88 0.45 0.26 1.24 0.23
6 Hydrogen 15.88 −0.03 −0.03 −0.04 −0.13
7 Lithium dimer 5.08 −0.02 0.01 −0.04 −0.04
8 Sodium dimer 4.89 0.02 0.04 0.09 0.05
9 Sodium tetramer 4.25 −0.04 −0.08 −0.01 −0.03
10 Sodium hexamer 4.30 0.04 0.04 0.07 0.05
11 Potassium dimer 3.99 0.09 0.13 0.15 0.07
12 Rubidium dimer 3.78 0.10 0.24 0.23 0.08
13 Nitrogen 14.79 0.26 0.14 0.15 0.04
14 Phosphorus dimer 10.26 0.12 0.09 0.17 0.06
15 Arsenic dimer 9.58 0.08 0.01 −0.03 −0.09
16 Fluorine 14.99 0.12 −0.06 0.01 0.03
17 Chlorine 11.18 0.13 0.14 0.23 0.13
18 Bromine 10.46 0.10 0.11 −0.02 −0.17
19 Iodine 9.04 0.54 0.48 1.37 0.23
20 Methane 13.89 0.11 0.13 0.10 0.26
21 Ethane 12.35 0.11 0.15 0.09 −0.19
22 Propane 11.85 0.04 0.05 −0.01 −0.32
23 Butane 11.52 0.07 0.09 −0.11 −0.27
24 Ethylene 10.28 0.12 0.14 0.11 −0.01
25 Acetylene 11.14 −0.05 −0.07 −0.05 −0.21
26 Tetracarbon 10.74 0.17 0.15 0.16 0.06
27 Cyclopropane 10.63 0.02 0.09 0.04 −0.15
28 Benzene 9.07 0.03 0.04 0.01 −0.11
29 Cyclooctatetraene 8.16 0.02 0.03 0.00 −0.14
30 Cyclopentadiene 8.43 0.02 0.04 0.01 −0.13
31 Vinyl fluoride 10.24 0.08 0.04 0.05 −0.06
32 Vinyl chloride 9.82 0.08 0.10 0.12 −0.01
33 Vinyl bromide 9.03 0.11 0.72 0.61 0.49
34 Vinyl iodide 8.93 0.26 0.34 0.88 0.09
35 Tetrafluoromethane 15.43 0.17 −0.02 0.08 −0.04
36 Tetrachloromethane 11.24 −0.03 −0.04 0.05 0.00
37 Tetrabromomethane 10.05 0.17 0.20 0.06 −0.01
38 Tetraiodomethane 8.74 0.31 0.37 0.07
39 Silane 12.37 0.02 0.03 0.05 −0.12
40 Germane 12.09 0.03 0.04 0.23 −0.18
41 Disilane 10.46 −0.05 −0.02 0.06 −0.14
42 Pentasilane 9.07 −0.02 0.06 0.12 −0.08
43 Lithium hydride 6.52 0.07 −0.06 0.11 0.15
44 Potassium hydride 4.88 0.09 0.09 0.09 −0.20
45 Borane 12.93 0.03 0.02 0.02 −0.15
46 Diborane(6) 11.92 0.01 0.02 0.00 −0.25
47 Amonia 10.27 0.12 0.05 −0.09 −0.20
48 Hydrazoic acid 10.44 0.11 0.06 0.04 −0.26
49 Phosphine 10.27 0.08 0.08 0.16 0.04

Continued on next page
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Name ADF ∆def2−GTO ∆V ASP ∆WEST ∆nanoGW

50 Arsine 10.31 −0.11 −0.05 0.02 −0.11
51 Hydrogen sulfide 10.12 0.01 −0.01 0.11 0.07
52 Hydrogen fluoride 15.14 0.23 0.23 0.09 0.12
53 Hydrogen chloride 12.36 0.00 0.09 0.12 0.11
54 Lithium fluoride 10.03 0.24 0.04 0.08 0.03
55 Magnesium fluoride 12.44 0.07 −0.03 0.02 −0.14
56 Titanium tetrafluoride 13.93 0.15 0.08 0.00
57 Aluminum fluoride 14.33 0.15 0.00 0.07 −0.13
58 Boron monofluoride 10.59 0.14 −0.13 −0.03 −0.17
59 Sulfur tetrafluoride 12.34 0.05 −0.14 −0.02 −0.18
60 Potassium bromide 7.85 −0.24 −0.05 −0.74
61 Gallium monochloride 9.81 −0.07 0.08 0.36 −0.06
62 Sodium chloride 8.32 0.03 0.15 −0.14
63 Magnesium chloride 11.07 0.12 0.12 0.18 0.04
64 Aluminum iodide 9.38 0.20 0.20 0.93 −0.07
65 Boron nitride 10.94 0.15 0.25
66 Hydrogen cyanide 13.10 0.22 0.19 0.12 0.12
67 Phosphorus mononitrid 11.10 0.20 0.14 0.16 0.11
68 Hydrazine 9.40 −0.03 −0.07 −0.13 −0.30
69 Formaldehyde 10.46 0.00 −0.04 −0.05 −0.25
70 Methanol 10.54 0.13 0.07 0.07 −0.23
71 Ethanol 10.17 0.10 0.04 0.04 −0.20
72 Acetaldehyde 9.61 0.05 0.02 0.00 −0.22
73 Ethoxy ethane 9.41 0.02 0.02 −0.02 −0.30
74 Formic acid 10.84 0.03 −0.03 −0.03 −0.13
75 Hydrogen peroxide 10.96 0.14 0.00 0.04 0.02
76 Water 11.94 0.11 −0.10 −0.07 −0.12
77 Carbon dioxide 13.37 0.09 −0.01 0.00 −0.25
78 Carbon disulfide 9.80 0.15 0.16 0.25 0.09
79 Carbon oxide sulfide 10.90 0.21 0.16 0.26 0.08
80 Carbon oxide selenide 10.40 0.03 0.02 −0.03 −0.22
81 Carbon monoxide 13.66 0.05 −0.04 0.00 −0.18
82 Ozone 11.74 −0.23 0.33
83 Sulfur dioxide 11.86 0.20 0.05 0.10 0.05
84 Beryllium monoxide 8.99 −0.48 0.76
85 Magnesium monoxide 6.82 −0.07 0.24
86 Toluene 8.72 0.00 0.03 −0.01 −0.14
87 Ethylbenzene 8.65 0.01 0.04 0.01 −0.16
88 Hexafluorobenzene 9.70 0.04 −0.07 −0.05 −0.13
89 Phenol 8.47 0.04 −0.09 −0.24
90 Aniline 7.72 0.07 0.06 0.01 −0.14
91 Pyridine 9.18 0.00 −0.02 −0.05 −0.19
92 Guanine 7.77 0.10 0.08 0.05 −0.12
93 Adenine 8.14 0.01 −0.02 −0.05 −0.20
94 Cytosine 8.44 0.01 −0.04 −0.04 −0.19
95 Thymine 8.86 0.01 −0.03 −0.04 −0.22
96 Uracil 9.26 0.12 0.10 −0.07 −0.02
97 Urea 9.25 0.21 0.10 0.14 −0.03
98 Silver dimer 7.06 0.91 0.77 0.98 0.81
99 Copper dimer 8.20 −1.57 −1.01 −0.33
100 Copper cyanide 10.25 −0.73 0.40

Table 4.1 shows the results for all 100 IPs in the GW100 database obtained with our code
next to the deviations to def2-GTO, VASP, WEST and nanoGW, if available. To facilitate a
discussion of the data, figures 4.5 shows MADs and maximum absolute errors (MAE) between
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all codes, while figure 4.6 visualizes the distribution of the deviations of the ADF IPs to the ones
from other codes. The IPs from ADF, def2-GTO, VASP and WEST are all in good agreement
with each other, with MADs to each other between 56 and 86 meV, while the deviations to
nanoGW are about twice as large. Figure 4.6 also shows, that the deviations of the ADF IPs to
the ones from other codes (again, with the exception of nanoGW) show a small spread and no
outliers can be found. We note again, that we assume the CBS limit extrapolation error to be of
the order of at least 60 meV on average and all the values reported and compared here should
only be interpreted with these error bars. For the plane-wave codes, the CBS limit extrapolation
error is likely smaller than for the localized basis sets, but there are additional sources of error,
most notably pseudopotentials and box-size effects. In light of these uncertainties, the agreement
between all four codes can be considered as excellent.

MD

MAD

Figure 4.5: MADs, (upper triangle) and mean deviations (MD) (lower triangle) of the CBS limit
extrapolated IPs in the GW100 database (18 molecules have been excluded from the comparison,
see explanations above) computed with different codes. All values are in meV.

Looking at the mean deviations to the other codes in the lower triangle of figure 4.5 as well
as at the boxplots in figure 4.6, we see that ADF IPs are generally smaller than the ones from
def2-GTO, VASP and WEST. The reasons for the discrepancy between ADF and def2-GTO have
already been discussed above. We also see that the nanoGW IPs are on average much smaller
than the ones from all others codes. This is in line with the fact that the nanoGW results were
apparently obtained without basis set limit extrapolation,606 although the numerical parameters
determining the convergence to the CBS limit (grid spacing, chosen cut-off for virtual states and
radius of the sphere around a given finite systems) where tested for convergence separately.606

Still, our data analysis suggests that the nanoGW IPs are not as well converged as the ones from
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Figure 4.6: Deviation of IPs calculated with ADF to different codes. Black dots denote the
individual data points. The horizonal line in each box denotes the median deviation, the box
contains all data points between the first quartile (Q1) and third quartile (Q2) and the whiskers
are at Q1± 3

2 |Q1−Q3| (in case of a normal distribution, the whiskers include 99.3 % of all data
points). All values are in eV.

the other codes.
Systems containing Fluorine and Nitrogen generally show rather pronounced disagreements

between different codes (For example, consider the following deviations from ADF to def2-GTO:
N2: 260 meV, HCN: 220 meV, TiF4: 150 meV, AlF3: 150 meV, LiF: 240 meV, HF: 230 meV).
For Fluorine, this has already been observed by Maggio and Kresse in ref. [605], who pointed
at the default pseudopotentials in VASP as a potential source of these discrepancies. Another
possible explanation might be found in a a recent study by Bruneval et al.599 which suggests, that
molecules predominantly composed of Carbon and Hydrogen converge to the CBS limit rather
quickly, whereas the convergence is considerably slower for systems to a large part composed of
Fluorine and Nitrogen.

Finally, we shortly comment on some systems which we have excluded from the statistical
comparisons in figures 4.5 and figures 4.6. We find large differences for system containing 5th
row elements, e.g. Xe, ceAg2, I2, or CI4. Here, the ADF IPs are considerably lower than the
ones from other codes, indicating that the ADF results are not properly converged to the CBS
limit which is due to the missing basis functions with angular momentum higher than l = 3.

With 1.57 eV, the by far largest deviation reported in table 4.1 can be found between ADF
(8.20 eV) and TURBOMOLE (6.63 eV) for Cu2. FHI-AIMS gives an IP of 7.78 eV for this
system,545 which is in considerably better agreement with ADF. FHI-AIMS relies on an analytical
continuation from the imaginary to the real frequency axis with 16 sampling points (AIMS-P16),
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not much different from the procedure in ADF. We can conclude, that for this particular system,
the large deviation of ADF and FHI-AIMS to TURBOMOLE are caused by inaccuracies from
non-converged frequency grids. The ADF IP reported in table 4.1 has been obtained from
aug-TZ3P and aug-QZ6P calculation with 24 and 27 imaginary frequency points, respectively.
When 24 imaginary frequency points are used for the aug-QZ6P calculation as well, the IP
of Cu2 reduces to 8.05 eV, which is already in reasonable agreement with FHI-AIMS. Similar
conclusions can be drawn for CuCN. Another interesting case is BeO, with deviation of 0.48 eV
to def-GTO. Again, the large deviation is due to non-converged frequency grids. the ADF IP is
with 8.99 eV very close to the 9.07 eV obtained by AIMS-P16. With 128 imaginary frequency
points (AIMS-P128), FHI-AIMS gives an IP of 9.63 eV which is then in perfect agreement with
TURBOMOLE. Furthermore, in ref.545, three solutions are reported for BeO, while ADF only
recovers one of them. These three examples show, that the current frequency treatment in ADF
can not properly describe the IPs of systems for which the single QP picture breaks down in the
valence region.

Electron Affinities

We now turn our attention to the EAs. As for the IPs, table 4.2 shows the EAs calculated with
ADF and the differences to the other four codes excluding all noble gases and H2. However, it is
known, that the def2-GTO basis sets sometimes severely overestimate positive LUMO energies
which then deviate from results from plane-wave codes by more than 1 eV. Furthermore, since
EAs converge slower to the CBS limit than IPs when non-augmented basis sets are used,599 also
CBS limit extrapolation errors are larger for the remaining systems. On the other hand, PW
calculations require very large box sizes for these systems which makes it harder to converge
the EAs with respect to this parameter and for this reason results from VASP are often not
available.605

Table 4.2: G0W0@PBE electron affinities (EA) for the GW100 database (third column) Columns
four to seven denote deviations of the ADF EAs to the ones from reference X, ∆X = EAX −
EAADF . All values are in eV.

Name ADF ∆def2−GTO ∆V ASP ∆WEST ∆nanoGW

7 Lithium dimer 0.52 0.23 0.09 0.12 0.14
8 Sodium dimer 0.64 0.02 −0.04 −0.03 0.00
9 Sodium tetramer 0.92 0.23 0.15 0.16 0.20
10 Sodium hexamer 0.95 0.18 0.12 0.09 0.11
11 Potassium dimer 0.59 0.16 0.15 0.16 0.16
12 Rubidium dimer 0.67 0.07 0.06 0.07
13 Nitrogen −2.40 0.28 0.25 0.17
14 Phosphorus dimer 0.64 0.44 0.35 0.45 0.38
15 Arsenic dimer 1.08 0.44 −0.01 0.01 −0.04
16 Fluorine 0.54 0.69 0.52 0.58
17 Chlorine 0.83 0.57 0.42 0.55 0.52

Continued on next page
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Name ADF ∆def2−GTO ∆V ASP ∆WEST ∆nanoGW

18 Bromine 1.40 0.56 0.59 0.48 0.29
19 Iodine 1.56 0.65 1.65
20 Methane −0.78 −1.25 0.15 0.02 −0.10
21 Ethane −0.77 −1.16 −0.01 −0.11
22 Propane −0.72 −1.15 −0.03 −0.11
23 Butane −0.70 −1.13 −0.04 −0.13
24 Ethylene −1.91 0.09 0.11 −0.04
25 Acetylene −2.48 −0.08 −0.02 −0.20
26 Tetracarbon 2.62 0.53 0.47 0.48 0.52
27 Cyclopropane −0.73 −1.23 −0.02 −0.14
28 Benzene −0.96 0.07 0.03 −0.10
29 Cyclooctatetraene 0.03 0.09 0.02 0.04 −0.10
30 Cyclopentadiene −0.91 0.06 0.01 −0.15
31 Vinyl fluoride −1.92 0.04 0.03 −0.09
32 Vinyl chloride −1.31 0.14 0.12 0.10 0.00
33 Vinyl bromide −1.23 0.12 0.17 0.09
34 Vinyl iodide −0.77 0.40 0.55 0.44
35 Tetrafluoromethane −0.88 −3.00 0.05 −0.10
36 Tetrachloromethane 0.04 0.50 0.28 0.37 0.41
37 Tetrabromomethane 0.99 0.57 0.48 0.46 0.41
38 Tetraiodomethane 2.16 0.28 0.88 0.32
39 Silane −0.72 −1.54 −0.04 −0.11
40 Germane −0.47 −1.38 −0.14 −0.36
41 Disilane −0.75 −0.76 −0.02 −0.83
42 Pentasilane −0.08 0.08 0.05 0.15 −0.02
43 Lithium hydride 0.05 0.11 0.02 0.02 0.13
44 Potassium hydride 0.17 0.15 0.08 0.08 0.35
45 Borane −0.26 0.23 0.23 0.25 0.21
46 Diborane(6) −0.87 0.13 0.15 0.00
47 Amonia −0.76 −1.24 −0.05 −0.09
48 Hydrazoic acid −1.40 0.30 0.25 0.23
49 Phosphine −0.67 −1.59 −0.03 −0.06
50 Arsine −0.58 −1.36 −0.08 −0.16
51 Hydrogen sulfide −0.73 −1.52 −0.05 −0.11
52 Hydrogen fluoride −1.06 −0.98 −0.05 −0.12
53 Hydrogen chloride −1.19 −0.34 0.10 −0.03
54 Lithium fluoride −0.04 0.05 −0.13 −0.03 0.11
55 Magnesium fluoride 0.26 0.05 0.03 0.07 0.18
56 itanium tetrafluorid 0.09 0.97 0.83 1.14
57 Aluminum fluoride 0.06 0.17 −0.14 0.10 0.01
58 Boron monofluoride −1.21 0.16 0.28 0.24
59 Sulfur tetrafluoride −0.29 0.39 0.22 0.37 0.35
60 Potassium bromide 0.34 0.08 −0.02 0.06 0.59
61 Gallium monochloride 0.02 0.37 0.17 0.42 0.20
62 Sodium chloride 0.42 0.00 0.04 0.05 0.61
63 Magnesium chloride 0.68 0.00 −0.07 0.02 0.05
64 Aluminum iodide 1.18 −0.16 0.48 0.02
65 Boron nitride 4.05 −0.10 0.03 0.05
66 Hydrogen cyanide −2.31 0.09 0.06 −0.06
67 hosphorus mononitrid 0.12 0.47 0.40 0.35
68 Hydrazine −0.70 −0.98 −0.02 −0.08
69 Formaldehyde −1.06 0.35 0.30 0.15
70 Methanol −0.81 −1.00 −0.10 −0.19
71 Ethanol −0.73 −0.94 −0.11 −0.19

Continued on next page
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Name ADF ∆def2−GTO ∆V ASP ∆WEST ∆nanoGW

72 Acetaldehyde −1.16 0.33 0.29 0.29 0.25
73 Ethoxy ethane −0.62 −1.08 −0.09 −0.18
74 Formic acid −1.82 0.23 0.18 0.18 0.04
75 Hydrogen peroxide −2.06 0.11 0.26 0.28
76 Water −0.88 −1.13 −0.16 −0.03 −0.08
77 Carbon dioxide −1.03 0.10 0.06 −0.03
78 Carbon disulfide 0.10 0.45 0.32 0.40 0.32
79 Carbon oxide sulfide −1.22 0.39 0.28 0.20
80 arbon oxide selenide −0.93 0.41 0.29 0.22
81 Carbon monoxide −0.84 0.47 0.40 0.38
82 Ozone 2.03 0.66 0.47 0.53 0.52
83 Sulfur dioxide 0.86 0.63 0.39 0.51 0.36
84 Beryllium monoxide 1.99 0.73 0.74 0.52 0.54
85 Magnesium monoxide 1.74 0.39 0.31 0.21 0.52
86 Toluene −0.91 0.08 0.04 −0.09
87 Ethylbenzene −0.87 0.00 −0.03 −0.18
88 Hexafluorobenzene −0.03 −0.33 0.00 −0.08
89 Phenol −0.78 0.04 −0.07 −0.18
90 Aniline −0.91 −0.03 −0.07 −0.19
91 Pyridine −0.44 0.14 0.08 −0.05
92 Guanine −0.48 0.02 −0.03 −0.15
93 Adenine −0.28 0.07 −0.01 −0.13
94 Cytosine −0.18 0.17 0.06 0.09 −0.03
95 Thymine 0.02 0.16 0.04 0.08 −0.06
96 Uracil 0.05 0.20 0.06 0.10 −0.02
97 Urea −0.49 −0.68 −0.04 −0.12
98 Silver dimer 0.91 0.44 0.58 0.41
99 Copper dimer 1.00 0.23 0.24 0.41 0.25
100 Copper cyanide 1.47 0.38 0.44 0.51 0.34
MAD 0.48 0.21 0.16 0.21

Thus, for the full database, only comparison to WEST and nanoGW is possible. Excluding
again all compounds containing Iodine, Copper, Gallium and Xenon as well as remaining systems
containing 5th row elements, we find a MAD of 160 meV to the former and of 210 meV to the
latter code. These MADs are about twice as large as for the IPs but in light of the difficulties
mentioned above certainly not surprising and in line with the previous benchmark studies on
GW100.545,574,605,606 Figure 4.7 shows that the ADF EAs, as for the IPs, are on average smaller
than the ones from WEST while no trend in that direction can be observed when comparing to
nanoGW.

We furthermore observe significant deviations of the STO to the def2-GTO results of up to
several eVs for the molecules with with positive LUMOs. Contrariwise, the raw data in table 4.2
shows that the agreement with WEST is especially good for systems with positive LUMO. As an
example, consider the series of linear alkane chains, CnH2n+1 for n = 1, . . . , 4. With deviations
from 10 to 40 meV, the agreement with WEST is excellent, while def2-GTO overestimates the
EAs of these systems by more than 1 eV. In this context, it is interesting to investigate the
effect of the diffuse functions. This is shown in table 4.3 for some systems with LUMO well
above the vacuum level. Only comparing the basis set extrapolated values, the effect of the
diffuse functions seem to be rather small; for N2 the EA calculated from the basis set without
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Figure 4.7: Deviation of EAs calculated with ADF to different codes. Black dots denote the
individual data points. The horizonal line in each box denotes the median deviation, the box
contains all data points between the first quartile (Q1) and third quartile (Q2) and the whiskers
are at Q1± 3

2 |Q1−Q3| (in case of a normal distribution, the whiskers include 99.3 % of all data
points). All values are in eV. The deviations to VASP have been excluded due to the lack of
reference values for too many systems in GW100.

the diffuse functions is with 250 meV even higher than the augmented basis sets, and overall, the
average difference is only 50 meV which is well within the expected error range from the CBS
limit extrapolation. However, comparing the results form the finite basis sets, the differences are
exorbitant. Especially, on the TZ level, the addition of diffuse functions results in a lowering of
the EAs by nearly 1 eV on average. For the non-augmented basis sets, the average difference
between TZ and QZ basis set is 480 meV, resulting in differences of sometimes more than 1
eV between the EAs on the TZ and on the extrapolated level. In light of these differences,
the good agreement between the CBS limit extrapolated EAs is remarkable. Despite this good
agreement, the augmented basis sets should be the preferred choice to calculate EAs of systems
with unbound LUMOs since the extrapolation procedure generally becomes less reliable with
increasing difference between the results for the finite basis sets.

Finally, we compare our EAs for systems with a bound LUMO to WEST, nanoGW, and
def-GTO results. The MADs and MDs in figure 4.8 show that def2-GTO, nanoGW and and
WEST are generally in good agreement for these systems while the MADs to ADF are large. As
the MDs show, ADF significantly overestimates these EAs compared to the other codes, which
indicates that the results are not entirely converged to the CBS limit. This interpretation is also
in line with the raw data in table 4.2 showing that the deviations are generally largest for di- and
triatomic systems as well as molecules containing Fluorine and Chlorine, while the agreement
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aug. non.aug.
T Q Ex. ∆TQ T Q Ex. ∆TQ ∆TT ∆QQ ∆EE

13 N2 -2.65 -2.54 -2.40 -0.11 -3.00 -2.58 -2.15 -0.42 0.36 0.04 -0.25
20 CH4 -0.97 -0.89 -0.78 -0.08 -2.20 -1.59 -0.95 -0.61 1.23 0.70 0.17
21 C2H6 -0.96 -0.88 -0.77 -0.08 -2.13 -1.52 -0.87 -0.62 1.17 0.64 0.10
22 C3H8 -0.92 -0.83 -0.72 -0.08 -2.06 -1.44 -0.78 -0.62 1.14 0.61 0.06
23 C4H10 -0.89 -0.81 -0.70 -0.08 -2.04 -1.41 -0.74 -0.63 1.15 0.60 0.04
24 C2H4 -2.12 -2.03 -1.91 -0.09 -2.40 -2.12 -1.81 -0.28 0.28 0.09 -0.10
25 C2H2 -2.76 -2.65 -2.48 -0.11 -3.24 -2.87 -2.44 -0.37 0.48 0.22 -0.04
27 C3H3 -0.98 -0.88 -0.73 -0.10 -2.29 -1.61 -0.87 -0.68 1.31 0.73 0.14
31 C2H3F -2.21 -2.09 -1.92 -0.12 -2.50 -2.22 -1.91 -0.28 0.29 0.13 -0.01
39 SiH4 -0.92 -0.83 -0.72 -0.09 -1.75 -1.42 -1.08 -0.33 0.83 0.59 0.36
47 NH3 -0.93 -0.85 -0.76 -0.08 -1.85 -1.35 -0.85 -0.51 0.93 0.50 0.09
66 HCN -2.59 -2.48 -2.31 -0.12 -2.96 -2.61 -2.23 -0.35 0.37 0.14 -0.08
70 CH4O -1.05 -0.95 -0.81 -0.10 -2.00 -1.49 -0.93 -0.52 0.95 0.54 0.12
71 C2H6O -0.97 -0.87 -0.73 -0.10 -1.90 -1.39 -0.84 -0.51 0.93 0.52 0.11
76 H2O -1.02 -0.96 -0.88 -0.06 -1.75 -1.34 -0.89 -0.41 0.73 0.38 0.01

MD 0.09 0.48 0.81 0.43 0.05

Table 4.3: Comparison of EAs for selected molecules from the GW100 database calculated with
ADF with and without diffuse functions. All values are in eV.

MD

MAD

Figure 4.8: MADs, (upper triangle) and mean deviations (MD) (lower triangle) of the CBS
limit extrapolated EAs of the subset of systems with bound LUMO and medium sized organic
molecules (in total 48 data points) in the GW100 dataset computed with different codes. All
values are in eV.

for the medium organic molecules like the nucleo-bases is satisfactory. Adding additional diffuse
or tight functions would possible not result in an improved description of the EAs of the former
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system T Q ex. ex. (no gh.) def2-GTO WEST

F2 0.20 0.51 0.90 0.54 1.23 1.06
Cl2 0.74 0.95 1.21 0.83 1.40 1.38
Br2 1.27 1.45 1.69 1.40 1.96 1.88
TiF4 -0.33 -0.10 0.19 0.09 1.06 0.92
SO2 0.84 1.07 1.38 0.86 1.49 1.37

Table 4.4: Effect of the addition of additional off-center Slater functions via Ne ghost atoms on
the EAs of selected systems form GW100. All values are in eV.

systems. Instead, reaching the CBS limit is most likely only possible using basis functions with
higher angular momenta than l = 3 which are not available to us. However, we can try to
simulate the effect of these functions by adding additional off-center Slater functions to the basis
set which can be achieved conveniently by adding ghost atoms. This approach is reminiscent of
bond-centred basis functions which have for example been used by Dunlap and coworkers.616

As examples, we consider the dihalogens F2, Cl2 and Br2, SO2, as well as TiF4 and we
augment these structures with Ne ghost atoms for which we use the same basis set than for the
real atoms. For each atom A in a systems, we place two ghost atoms G,G′ on a straight line
defined by the position of A and every neighboring atom B so that the distance between A and
G (G′) equals one third (minus one third) of the distance between A and B. The results of
this augmentation is shown in table 4.4 and we clearly see that it reduces the basis set errors
considerably. Of course, such an augmentation should not be seen as a practical solution but
it shows that agreement between ADF and the other codes can in principle be reached also for
these systems.

4.2 Quasiparticle Energies - qsGW

4.2.1 Computational Details

We use the non-augmented TZ3P and QZ6P basis sets described in this work. CBS limit ex-
trapolated results are obtained using (4.1). In all calculations, we set the numericalQuality key
to Good. Exceptions are a few systems for which we observed inconsistencies with the Good fit
set: For Pentasilane, Na2, Na4, and Na6, we used the Excellent fit set, and for the nucleobases
we used the VeryGood auxiliary basis set. We used 32 imaginary time and 32 imaginary fre-
quency points each. For all TZ3P calculations, we set Dependency Bas=1e-3 and for QZ6P we
set Dependency Bas=5e-3 in the AMS input as described in ref.36. All calculations using aug-
mented basis sets (aug-TZ3P and aug-QZ6P) have been performed in the same way, but using
the excellent auxiliary fit set and numericalQuality VeryGood.
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Figure 4.9: Convergence of the qsGW SCF for Methane for different initial guesses and con-
structions of the correlation potential. log10 r, r defined in eq. (3.127), is plotted against the
number of iterations.

4.2.2 Comparison of exchange-correlation potentials in qsGW

We already noticed in section 2.4.4 that the correlated part of the exchange-correlation potential
of qsGW can be defined in different ways. Here we compare the two approaches to construct
this quantity introduced by Kotani et al.142 (eq. (2.341) and (2.342)) for a subset of molecules
from the GW100 database. For the reasons discussed in section 2.4.4, we do not assess the
approaches by Shishkin and Kresse176,177 and Kutepov et al.271,272. The data is shown in the
supporting information of ref. [38] and shows that the QP equations are significantly harder to
converge when the exchange-correlation potential obtained from (2.341) is used. An example of
the convergence behavior of both variants is shown in figure 4.9. Figure 4.9 plots log10 r with
r defined in eq. (3.127) against the number of iterations with two different initial guesses for
Methane. We see, that using (2.342), the SCF rapidly converges towards a fixed point, while
log10 r always remains much larger than −6 for (2.341). On the other hand, for the 10 converged
calculations differences in the final QP energies are small; for both, IPs and EAs, both variants
differ by only 20 meV on average, i.e the error introduced by averaging over the off-diagonal
elements of the self-energy are small. For this reason, we decided to use the correlation potential
as defined in (2.342) in all subsequent calculations.
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Figure 4.10: Mean absolute deviations (left plot) and maximum absolute deviations (right plot)
of qsGW IPs (upper triangle) and EAs (lower triangle) obtained with different initial guesses for
the GW100 database. All values are in meV.

Figure 4.11: Number of iterations needed to attain convergence of the SCF for different initial
guesses.

4.2.3 SCF Convergence

Next, we comment on the convergence of the qsGW SCF procedure. To this end, we compare
IPs and electron affinities (EA) for the molecules in the GW100 database for 3 different starting
points, PBE, PBE0, and HF. At self-consistency, the QP energies should be independent from
the initial guess and their differences will therefore provide information about the obtained
convergence of the QP energies for a given ϵSCF . In all calculations we set ϵSCF = 1e−7 and
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restrict all calculations to a maximum of 30 iterations.
Independent of the starting point, we could not reach convergence for Mgo, BeO, BN, Cu2,

and CuCN with our DIIS implementation. Employing a linear mixing procedure as implemented
in ref.540 with α = 0.35 we could reach convergence for these systems, albeit with a large number
of iterations. These systems are problematic for GW approaches since the spectral weight of the
single excited electron is distributed between multiple peaks574. qsGW relies on the validity of
the single QP picture. In situations, in which the quasi-particle equations might have multiple
solutions296,574 corresponding to the same non-interacting state, different solutions may be found
in different iterations of the qsGW SCF procedure. qsGW should select the solution with largest
QP weight270 but in situations where there are at least two solutions with (almost) equal QP
weight, the ”physical” solution might change in each iteration. In such cases, the DIIS algorithm
tries to minimize the the residual SCF error by interpolating between different solutions and
no fixed point of the map (3.121) is found.617 To overcome this issue with QP self-consistent
schemes, a regularization procedure has recently been proposed.617 On the other hand, linear
mixing results in a smooth but slow convergence pattern, if only α is chosen small enough to
make sure that in all iterations the ”physical” solution is the same. We do not know, how to best
solve this issue but we do not consider it to be a major concern as such convergence problems are
only encountered for systems in which the single QP picture is not valid. An erratic convergence
then rather indicates that qsGW is not an appropriate level of theory.

Figure 4.10 shows mean absolute deviations (MAD) as well as maximum absolute deviations
of the IPs and EAs obtained from different starting points. With MAD of 6 meV and 2 meV,
respectively, EAs are better converged than IPs. Also the maximum error is about twice as small
for EAs than for IPs. These differences are related to the AC procedure which gives smaller errors
for unoccupied states with usually featureless self-energy matrix elements. The maximum error
never exceeds 50 meV and is of the same order of magnitude than the experimental resolution
of photoionization experiments242 of the typical basis set errors of GW calculations after extrap-
olation.37,242,574,599,605. The distribution of iterations required for convergence is displayed in
figure 4.11. This includes the 5 problematic cases discussed above. The calculations on average
converge in around 10 iteration, with little dependence on the initial guess.

4.2.4 Comparison of Ionization Potentials for the GW100 Database

We now compare the IPs from our algorithm to the ones obtained with the TURBOMOLE code
for GW100. The TURBOMOLE results have been obtained with the GTO-type def2-TZVPP
basis sets. For some systems, TURBOMOLE results are not available and we exclude these from
our discussion. We use the TZ3P basis sets which we have shown to give comparable results to
def2-TZVP for GW10037. However, quantitative accuracy can not be expected.

The deviations to TURBOMOLE are shown in figure 4.12. The average deviation between
both codes is close to zero, and with one exception, for all IPs deviations are considerably
smaller than 300 meV, with the deviations for the majority of systems being smaller than 100
meV. Thus, our results are qualitatively similar and deviations can be attributed to different
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Figure 4.12: Distribution of deviations (in eV) of the IPs from TURBOMOLE and with our
implementation.

basis set errors and different constructions of the qsGW exchange-correlation potential. The IP
of Cyclooctatetrane is the only exception. Here, TURBOMOLE gives an IP of 9.30 eV, while
the ADF IP is with 8.38 eV nearly one eV smaller. For different starting points, we obtained the
same result within an accuracy of only a few meV, indicating that our IP is well converged. The
TURBOMOLE qsGW IPs on average overestimate the CCSD(T) reference values for GW100
by Klopper and coworkers543 in the same basis set by only a little more than 100 meV, while
the deviation for Cycloocatetrane is nearly one eV. The CCSD(T) IP for this system, is 8.35
eV, which is in very good agreement with our value. These numbers indicate that our IP is
reasonable, despite the large deviation to TURBOMOLE.

Ideally, we would also like to compare our EAs against literature data, however, with only
one exception (were optimized structures do not seem to be available)276, we are not aware of
any published EAs for molecular systems.

4.2.5 Basis set limit extrapolated Quasiparticle Energies



170 CHAPTER 4. TECHNICAL VALIDATION

Table 4.5: Complete Basis set limit extrapolated ionization potentials and electron affinities for
the GW100 database using the non-augmented basis sets.

IP EA
Name TZ3P QZ6P extra TZ3P QZ6P extra

1 Helium 24.320 24.560 24.790 −8.720 −2.770 2.780
2 Neon 21.740 21.650 21.550 −11.350 −3.780 4.600
3 Argon 15.480 15.600 15.720 −8.770 −1.910 5.950
4 Krypton 13.940 13.980 14.040 −7.420 −1.470 5.790
5 Xenon 12.270 12.290 12.320 −5.600 −1.370 6.320
6 Hydrogen 16.490 16.480 16.460 −3.070 −2.420 −1.700
7 Lithiumdimer 5.260 5.340 5.420 0.120 0.180 0.250
8 Sodiumdimer 5.000 5.040 5.100 0.220 0.270 0.330
9 Sodiumtetramer 4.250 4.340 4.450 0.470 0.520 0.580
10 Sodiumhexamer 4.390 4.450 4.530 0.470 0.480 0.490
11 Dipotassium 4.040 4.120 4.230 0.290 0.340 0.410
12 Dirubidium 3.840 3.910 4.010 0.280 0.330 0.400
13 Nitrogen 15.740 15.860 15.980 −3.230 −2.260 −1.180
14 Phosphorusdimer 10.270 10.370 10.480 0.130 0.360 0.600
15 Arsenicdimer 9.650 9.650 9.660 0.590 0.630 0.670
16 Fluorine 16.210 16.260 16.310 0.050 0.050 0.050
17 Chlorine 11.490 11.600 11.720 0.210 0.430 0.660
18 Bromine 10.670 10.720 10.770 1.010 1.050 1.090
19 Iodine 9.600 9.630 9.680 1.280 1.360 1.510
20 Methane 14.560 14.620 14.690 −2.300 −1.620 −0.780
21 Ethane 12.980 13.020 13.080 −2.270 −1.560 −0.650
22 Propane 12.320 12.350 12.390 −2.230 −1.510 −0.560
23 Buthane 11.850 11.900 11.970 −2.240 −1.500 −0.520
24 Ethylene 10.540 10.650 10.790 −2.430 −1.670 −0.700
25 Acetylene 11.290 11.420 11.590 −2.440 −1.960 −1.320
26 Tetracarbon 11.200 11.390 11.640 1.970 2.220 2.570
27 Cyclopropane 10.980 11.070 11.180 −2.420 −1.650 −0.610
28 Benzene 9.240 9.360 9.520 −1.820 −1.350 −0.690
29 Cyclooctatetraene 8.380 8.490 8.640 −0.900 −0.710 −0.460
30 Cyclopentadiene 8.620 8.730 8.880 −1.850 −1.500 −1.040
31 Vynilfluoride 10.580 10.660 10.770 −2.300 −1.620 −0.760
32 Vynilchloride 10.080 10.160 10.270 −2.160 −1.490 −0.650
33 Vynilbromide 9.270 9.370 9.490 −2.030 −1.570 −0.980
34 Vyniliodide 9.370 9.430 9.520 −1.450 −1.120 −0.620
35 Carbontetrafluoride 16.750 16.760 16.780 −2.270 −2.920 −3.690
36 Carbontetrachloride 11.660 11.730 11.800 −0.840 −0.570 −0.270
37 Carbontetrabromide 10.610 10.640 10.690 0.480 0.520 0.570
38 Carbontetraiodide 9.380 9.410 9.460 1.490 1.580 1.760
39 Silane 13.060 13.100 13.140 −1.830 −1.460 −1.040
40 Germane 12.740 12.760 12.790 −1.590 −1.450 −1.280
41 Disilane 10.860 10.890 10.930 −1.610 −0.930 −0.130
42 Pentasilane 9.470 9.520 9.570 −0.830 0.670 2.500
43 Lithiumhydride 8.090 8.160 8.230 0.100 0.120 0.150
44 Potassiumhydride 6.260 6.380 6.530 0.130 0.190 0.250
45 Borane 13.560 13.580 13.610 −0.620 −0.430 −0.200
46 Diborane6 12.610 12.640 12.690 −1.470 −1.310 −1.100
47 Amonia 11.030 11.080 11.130 −1.880 −1.310 −0.650
48 Hydrogenazide 10.750 10.870 11.010 −1.720 −1.230 −0.670
49 Phosphine 10.630 10.670 10.710 −1.580 −1.380 −1.170
50 Arsine 10.490 10.590 10.700 −1.540 −1.280 −0.980

Continued on next page
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IP EA
Name TZ3P QZ6P extra TZ3P QZ6P extra

51 Hydrogensulfide 10.310 10.410 10.520 −1.660 −1.110 −0.460
52 Hydrogenfluoride 16.400 16.380 16.360 −1.640 −1.360 −1.060
53 Hydrogenchloride 12.610 12.710 12.820 −1.650 −1.180 −0.670
54 Lithiumfluoride 11.770 11.790 11.810 0.170 0.220 0.280
55 Magnesiumfluoride 14.110 14.080 14.040 0.120 0.170 0.220
56 Titaniumfluoride 15.730 15.820 15.920 0.580 0.670 0.770
57 Aluminumtrifluoride 15.770 15.750 15.720 −0.530 −0.260 0.050
58 Fluoroborane 11.080 11.130 11.200 −1.670 −1.290 −0.830
59 Sulfertetrafluoride 13.130 13.120 13.120 −0.850 −0.630 −0.380
60 Potassiumbromide 8.290 8.310 8.330 0.460 0.490 0.510
61 Galliummonochloride 9.810 9.940 10.100 −0.130 −0.050 0.050
62 Sodiumchloride 9.110 9.220 9.360 0.540 0.590 0.660
63 Magnesiumchloride 11.680 11.800 11.940 0.220 0.300 0.410
64 Aluminumtriiodide 9.880 9.900 9.920 0.270 0.360 0.510
65 Boronnitride 11.680 11.820 11.980 3.140 3.330 3.550
66 Hydrogencyanide 13.600 13.710 13.850 −2.170 −1.470 −0.620
67 Phosphorusmononitride 11.900 11.990 12.100 −0.420 −0.130 0.190
68 Hydrazene 10.000 10.040 10.090 −1.710 −1.150 −0.500
69 Formaldehyde 11.200 11.230 11.260 −1.640 −1.450 −1.210
70 Methanol 11.430 11.440 11.460 −2.000 −1.460 −0.750
71 Ethanol 11.070 11.110 11.160 −1.970 −1.400 −0.640
72 Acetaldehyde 10.580 10.630 10.710 −1.910 −1.450 −0.850
73 Ethoxyethane 10.200 10.270 10.360 −2.180 −1.510 −0.600
74 FormicAcid 11.810 11.870 11.950 −1.960 −1.530 −0.960
75 Hydrogenperoxide 11.970 11.980 12.010 −1.810 −1.340 −0.730
76 Water 12.890 12.880 12.870 −1.640 −1.290 −0.850
77 Carbondioxide 14.010 14.080 14.180 −4.180 −1.410 2.550
78 Carbondisulfide 9.890 10.040 10.230 −0.430 −0.160 0.180
79 Carbonoxysulfide 11.180 11.330 11.520 −1.930 −1.080 0.020
80 Carbonoxyselenide 10.540 10.600 10.690 −1.450 −1.280 −1.040
81 Carbonmonoxide 14.450 14.520 14.620 −1.310 −1.040 −0.710
82 Ozon 13.140 13.250 13.400 1.890 2.020 2.190
83 Sulferdioxide 12.620 12.670 12.730 0.530 0.690 0.910
84 Berylliummonoxide 10.230 10.220 10.200 1.930 2.060 2.220
85 Magnesiummonoxide 8.100 8.140 8.200 1.580 1.720 1.910
86 Tuloene 8.880 8.990 9.140 −1.760 −1.370 −0.840
87 Ethybenzene 8.780 8.950 9.180 −1.790 −1.310 −0.640
88 Hexafluorobenzene 10.200 10.270 10.360 −0.900 −0.810 −0.680
89 Phenol 8.740 8.840 8.990 −1.630 −1.320 −0.890
90 Aniline 8.040 8.170 8.350 −1.780 −1.210 −0.420
91 Pyridine 9.650 9.760 9.910 −1.230 −1.010 −0.720
92 Guanine 8.100 8.200 8.330 −1.160 −0.750 −0.190
93 Adenine 8.390 8.460 8.550 −1.230 −1.060 −0.830
94 Cytosine 8.970 9.050 9.170 −0.930 −0.750 −0.500
95 Thymine 9.280 9.340 9.420 −0.760 −0.600 −0.370
96 Uracil 9.650 9.740 9.870 −0.710 −0.550 −0.330
97 Urea 10.460 10.520 10.600 −1.480 −0.970 −0.330
98 Silverdimer 7.000 7.060 7.150 0.490 0.570 0.690
99 Copperdimer 7.610 7.660 7.730 0.350 0.440 0.560
100 Coppercyanide 11.000 11.070 11.160 0.940 1.100 1.300

In table 4.5 we report CBS limit extrapolated EAs and IPs for the GW100 database. The
qsGW QP energies seem to converge faster to the CBS limit than their G0W0 counterparts.
Going from TZ3P to QZ6P, the basis set incompleteness error reduces by 80 meV on average,
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while for G0W0@PBE, we found an average reduction of 130 meV in the last section. Self-
consistent approaches might converge faster than G0W0 - Caruso et al. have already observed
that scGW QP energies converge faster to the CBS limit than G0W0

244.

Table 4.6: Complete Basis set limit extrapolated ionization potentials and electron affinities for
selected systems in the GW100 database using the augmented basis sets .

IP EA
Name TZ3P QZ6P extra TZ3P QZ6P extra

Methane 14.58 14.610 14.660 −0.790 −0.580 −0.260
Ethane 13.00 13.020 13.070 −0.720 −0.570 −0.350
Propane 12.33 12.350 12.380 −0.720 −0.550 −0.300
Buthane 11.86 11.890 11.950 −0.710 −0.550 −0.300
Ethylene 10.56 10.630 10.730 −0.850 −0.610 −0.220
Acetylene 11.36 11.430 11.530 −0.990 −0.630 −0.050
Vynilfluoride 10.65 10.670 10.690 −0.570 −0.570 −0.560
Vynilchloride 10.09 10.180 10.330 −0.760 −0.420 0.090
Vynilbromide 9.27 9.340 9.440 −0.760 −0.540 −0.220
Carbontetrafluoride 16.68 16.760 16.890 −0.500 −0.840 −1.350
Carbontetrachloride 11.66 11.750 11.890 −0.530 −0.240 0.170
Silane 13.00 13.110 13.280 −0.650 −0.550 −0.390
Germane 12.75 12.770 12.790 −0.530 −0.480 −0.410
Disilane 10.83 10.900 11.000 −0.510 −0.500 −0.480
Borane 13.54 13.580 13.640 −0.340 −0.270 −0.180
Diborane6 12.59 12.630 12.680 −0.710 −0.540 −0.300
Amonia 11.03 11.080 11.160 −0.660 −0.460 −0.180
Hydrogenazide 10.78 10.850 10.930 −0.580 −0.390 −0.120
Phosphine 10.65 10.680 10.740 −0.570 −0.490 −0.370
Arsine 10.49 10.580 10.710 −0.560 −0.460 −0.310
Hydrogensulfide 10.37 10.400 10.460 −0.570 −0.280 0.150
Hydrogenfluoride 16.37 16.320 16.260 −0.450 −0.430 −0.410
Hydrogenchloride 12.63 12.730 12.870 −0.570 −0.300 0.050
Fluoroborane 11.08 11.160 11.300 −0.540 −0.660 −0.870
Hydrogencyanide 13.63 13.720 13.860 −0.700 −0.430 −0.030
Formaldehyde 11.18 11.190 11.210 −0.700 −0.490 −0.130
Methanol 11.39 11.450 11.540 −0.680 −0.500 −0.220
Ethanol 11.07 11.110 11.160 −0.650 −0.490 −0.240
Acetaldehyde 10.58 10.630 10.710 −0.660 −0.450 −0.130
Ethoxyethane 10.21 10.260 10.340 −0.700 −0.520 −0.230
Water 12.85 12.900 12.970 −0.560 −0.410 −0.190
Urea 10.47 10.510 10.570 −0.460 −0.270 0.010

For the EAs, the average differences are much larger which is also due to the many systems
with negative EA in the GW100 database. For these systems CBS limit extrapolation is not
reliable without adding diffuse functions. Repeating these calculations with augmented basis
sets37 yields smaller differences between the aug-TZ3P and aug-QZ6P basis sets.37. In table 4.6,
these differences are shown for the series of linear alkanes from Methane to Butane. On both
the TZ and QZ level the augmented basis sets give a much higher EA. Also, the differences
between aug-TZ3P and aug-QZ6P are only modest with in between 150 and 200 meV, but they
are huge for the non-augmented basis sets. Also the extrapolated values are much smaller using
the augmented basis sets. The effect of augmentation is also profound for other systems. For
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example, using the non-augmented basis sets, the EA of carbontetrachloride is negative (-0.27
eV). Using the augmented basis sets, it becomes positive (0.17 eV) which is in much better
agreement with experiment (0.80 ± 0.34 eV)618.

4.3 QP Energies for Large Molecules

4.3.1 Computational Details

We also performed G0W0@PBE0192,193 calculations for a subset of of 250 molecules from the
GW5000 database598 using the zeroth order regular approximation (ZORA),619–621 which we
describe in the appendix A.1. Calculations are performed with the non-augmented TZ3P and
QZ6P basis sets. Eq. (4.1) is used for CBS limit extrapolation. We use 24 points in imaginary
frequency and imaginary time each, numericalQuality Good and the Normal auxiliary basis set
which is sufficient for non-augmented basis sets.36 We set Dependency Bas=5e-4.

4.3.2 Thresholds

We have so far assessed the validity of our numerical approximations for small molecules only.
However, the aim of these approximations is to perform MBPT calculations for large systems.
Therefore, we also need to assess the accuracy of our algorithms for large molecules. We focus
here on G0W0 only and restrict ourselves to rather small basis sets.

As a first test, we calculate the HOMO and LUMO QP energies of 20 organic molecules with
in between 85 and 99 atoms from the GW5000 database.[598] These tests are crucial for our
purpose sine they allow us to assess the effect of the values of the thresholds controlling distance
effects. As explained in detail in section 3.1.3, we essentially rely on three thresholds in our
implementation, which we organize in three tiers, denoted as Basic, Normal and Good.

The convergence with respect to these threshold tiers for HOMO and LUMO QP energies is
shown in figure 4.13. As shown in the lower panel, the HOMO energies from different threshold
tiers agree within 0.1 eV and the HOMO energies from the Normal and the Good threshold tier
usually agree within an accuracy of 60 mEV. Using the Basic threshold tier, the LUMO QP
energies show a maximum deviation of roughly 0.15 meV with respect to the Good tier. On the
other hand, the LUMO energies from the Normal and Good tier are in even better agreement than
the corresponding HOMO energies. Thus, using the Normal tier ensures an internal precision of
our implementation of 60 meV for HOMO and LUMO QP energies. However, if it can be affored
it is the safer choice to use the Good threshold quality instead. In our experience, it also leads
to better convergence of qsGW .

4.3.3 Accuracy with smaller basis sets

Finally, we investigate the accuracy of our algorithm as a function of systems size. To this end,
we randomly selected 250 molecules from the GW5000 database and sorted these systems from
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Figure 4.13: Deviations of the Basic and Normal threshold tiers with respect to the Good tier for
HOMO (bottom) and LUMO (top) QP energies on the G0W0/PBE0 level of theory (all values
in eV).
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Figure 4.14: HOMO (left), and LUMO QP energies (middle) as well as HOMO-LUMO QP gaps
(right) with different basis sets for 250 randomly selected molecules from the GW5000 database
(dots) as well as linear fits, f(x) = a×x+b. The systems have been sorted according to increasing
size.

smallest (12 atoms) to largest (99 atoms). Figure 4.14 shows the deviations to the CBS limit of
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our G0W0@PBE0 results for HOMO, LUMO and HOMO-LUMO QP gap with the TZ2P and
aug-DZP basis sets as well as FHI-AIMS results using the def2-TZVP and def2-QZVP basis
sets[598]. Additionally, we performed linear fits as implemented in Numpy[622], which are also
shown in figure 4.14. Essentially we obtain the same picture as for the 20 large molecules: TZ2P
performs nearly as good as def2-TZVP for the HOMO QP energies and considerably worse for
the LUMO level which translates into a worse description of the HOMO-LUMO gap. While it
is observed that the STO-results show a larger spread than their GTO counterparts especially
for LUMO energies, we also observe that the deviation to the CBS limit decreases with growing
system size for all basis sets. For all subplots in figure 4.14, the TZ2P fit is more or less parallel
(also see the fit-parameters in the supporting information of ref. [36]) to the GTO fits, while the
slope in the aug-DZP fit for the HOMO-LUMO gap is slightly more negative. As for the subset
of 20 large molecules, aug-DZP produces HOMO-LUMO gaps which on average agree with the
CBS limit extrapolated reference within 0.15 eV for systems larger than a few tens of atoms.
However, in some cases the errors can still be rather large (e.g. larger than 0.4 eV in 7 out of
250 cases), while the def2-QZVP BSE practically never exceeds 0.1 eV.

The decreasing errors are most likely due to basis set superposition which leads to a more
complete basis when the system increases and the assumption that this effect is more pronounced
for basis sets with many diffuse functions such as aug-DZP is reasonable. Thus, we can conclude
that the accuracy of our algorithm is not negatively affected by the system size. We note, that
local over-completeness and the associated numerical issues can already be encountered for very
small systems like the ones the left side of the plots in figure 4.14. On the other hand, it is highly
unlikely that they become more pronounced for larger systems due to the locality of the AOs
and auxiliary fit functions.

4.3.4 Accuracy with converged basis sets

For the GW100 database that discrepancies to other codes are more pronounced for smaller
systems than for medium sized ones. To confirm this observation for a larger number of systems,
we present here IPs and EAs of a subset of 250 medium to large organic molecules from the
GW5000 database598 for which CBS limit extrapolated references values calculated with FHI-
AIMS using the def2-GTO basis sets are available. We have already considered this subset in
ref36. We used here the TZ3P and QZ6P basis sets without diffuse functions since the LUMOs
of the considered systems are negative. As expected, we find better agreement with FHI-AIMS
than for GW100: For IPs, ADF deviated to FHI-AIMS by 62 meV on average as opposed to
the 86 meV for GW100. For EAs, the MAD is with 93 meV slightly worse but the agreement is
much better than for GW100.

4.4 Total Energies - Benchmark Results for Atoms

Before we move on to benchmarking the accuracy of some of the more advanced methods de-
scribed in section 2.4 we shortly assess the accuracy of our algorithms for correlation energies.
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4.4.1 Computational Details

The correlation energies presented here are evaluated based on exact exchange (EXX) only
OEP136,171 orbitals obtained in the implementation of Scuseria and coworkers623 within the
Krieger Lee Iafrate (KLI)624 approximation.

Relative energies

Correlation energies are calculated using,503

ECBS = EQZ − Ec
QZ +

Ec
QZ ∗ 43 − Ec

TZ ∗ 33

43 − 33
, (4.2)

where Ec
QZ (Ec

TZ) denotes the correlation energy at the QZ6P (TZ3P) level and EQZ is the
total energy at the QZ6P level. The extrapolation scheme has been shown to be suitable for
correlation consistent basis sets.489,503 We use here double augmented TZ3P and QZ6P basis
sets, with additional diffuse functions as well as additional tight 1s and 2p functions (see below).
Numerical quality and auxiliary fit set quality are set to excellent. No dependency thresholds
have been set. We use 32 points for imaginary time and imaginary frequency each.

To see how the inclusion of the ΣG3W2 self-energy influences the description of electron
correlation effects, we calculate the total correlation energies of 16 atoms with in between 2
and 36 electrons. For all systems with less or equal than 18 electrons, we compare the RPA
and RPA+SOSEX(W (0),W (0)) correlation energies to almost exact values by Froese-Fischer
and coworkers625 and for the heavier elements we use the CCSD(T) values by McCarthy and
Thakkar as reference.627 For Argon, their CCSD(T) energy deviates from the value from ref.625 by
only 0.01 %. We also compare them to different beyond-RPA approaches by Jiang and Engel298

(RPA+RSOX and RPA+SOX) and Gould et al.626 (gRPA+). To be consistent with ref.298 and
ref.626, we evaluate the correlation energies with exx only OEP orbitals, implemented within the
KLI approximation.623,624

To first obtain an idea about the numerical quality of our RPA correlation energies, we
compare them against the ones from Engel and coworkers which are free of basis set errors.298

We find deviations between 3 and 15 % for neutral atoms and much larger ones for cations.
Clearly, our standard basis sets are not compact enough for these systems (especially for the
cations) and do not capture the full correlation energy. Therefore, we augment them with four
tight 1s and two 2p functions each for TZ3P and QZ6P. Using these basis sets, total energies
for all atoms deviate to the ones from ref.298 by about 7 % on average. This is not perfect but
accurate enough for a qualitative comparison of the different beyond-RPA approaches.

The relative errors of correlation energies with respect to the reference values are shown in
figure 4.15. Simple RPA@EXX overestimates the correlation energies by typically between 25
% and 100 %. In accordance with the expectation that the correlation energy is more and more
dominated by charge screening with increasing electron number, the agreement with the exact
values becomes better for larger atomic numbers. RPA+SOSEX(W (0),W (0)) reduced the RPA
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Figure 4.15: Relative errors [in percent] of correlation energies calculates with different methods
compared to the exact values.625 The RPA+SOX and RPA+RSOX values are taken from Engel
and coworkers298 and the gRPA+ values are from Gould et al.626

correlation energy by 29 % on average, improving agreement with the reference considerably.
Especially for the systems with 2 or 4 electrons, the total correlation energies are still too high.
For the last three systems with 18 electrons or more, the agreement becomes much better, but the
correlation energy is still overestimated by a small amount. However, the SOSEX(W (0),W (0))
results have been evaluated with a single λ−integration point only. As we will see in the next
chapter, a larger λ-grid generally leads to a SOSEX(W (0),W (0)) correction of higher magnitude
and therefore to lower RPA+SOSEX(W (0),W (0)) correlation energies.

As one can expect, RPA+SOX considerably underestimates the correlation energies. RPA+RSOX
shows a tendency to underestimate the correlation energies and out of all assessed methods, the
deviations to the reference energies are clearly the smallest. For gRPA+, no clear trend in any
direction can be identified.

While gRPA+ is not diagrammatic, SOSEX(W (0),W (0)) and RSOX are two different strate-
gies to renormalize the SOX term. RPA+RSOX is based on the resummation of the Epstein-
Nesbet series[582] of hole-hole ladder diagrams[407, 408] while SOSEX(W (0),W (0)) results from
the resummation of ring diagrams, with the additional approximation of static screening. Both
classes of diagrams are contained in CCD which also includes particle-particle ladder diagrams
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and a third class of diagrams, coupling ladder and ring diagrams.[423] Thus, CCD can be seen
as a first-principle method to couple both renormalization strategies. Unfortunately, CCD scales
as N6, as opposed to N5. Since RPA+SOSEX(W (0),W (0)) overestimates, and RSOX under-
estimates the correlation energies, it seems worthwhile to look for alternative ways to combine
SOSEX(W (0),W (0)) with RSOX while retaining the N5 scaling.

In summary, the results presented here demonstrate that our implementation of RPA cor-
relation energies gives numerically good results and second, that the GW + G3W2 self-energy
massively improves over GW for the description of electron correlation. This, however, does
not necessarily imply improvements for properties like relative energies and charged excitations
in realistic systems. For example, RPA is often very accurate for relative energies since errors
in the correlation energies tend to cancel.299 On the other hand, beyond-RPA methods, while
improving total correlation energies, often do not yield improvements for relative energies.333 We
will assess the accuracy of the different flavors of RPA+SOSEX for relative energies in the next
chapter.



Chapter 5

Accuracy

In the last chapter, we have demonstrated that the numerical approximations we have introduced
in chapter 3 are well under control. We have explicitly shown that we can eliminate the basis set
incompleteness error to a large extent by extrapolation. Therefore, we are now in the position to
assess the accuracy of the techniques we have implemented without the results being skewed by
numerical errors. This is the purpose of the current section. We focus here on the accuracy which
can be achieved with qsGW as well as the effect of the vertex corrections on charged excitations
and electron-electron interaction energies. While the quality of qsGW has been assessed before
for optical excitations,277 charged excitations,276,628 benchmark results for large datasets and a
direct comparison to G0W0 for these datasets is missing.

Most importantly, we herein assess the effect of the statically screened G3W2 correction
to the GW self-energy for charged excitations and relative total energies for a wide range of
different binding characteristics, ranging from atomization energies to non-covalent interactions.
The results for total energies of atoms presented in the last chapter have already revealed that
the resulting correction to the RPA correlation energies, SOSEX(W (0),W (0)), corrects for the
major part of the overestimation of the correlation energies. Also Grüneis at al.360 have found
the statically screened G3W2 correction to give improvements over GW for the band structure
of solids. We will assess here whether it also outperforms GW for the calculation of QP energies
in finite systems.

Next, we assess the resulting expression for the correlation energy for relative energies, for
which the RPA has found widespread use in quantum chemistry.299,333,335,629–634 As already dis-
cussed, the RPA is generally believed to describe long-range electron correlation very accurately
since the effect of charge screening dominates in this limit.291 This property together with the
relation (2.356) is very desirable for the description of long-range dispersion effects or hydrogen
bonding, which are omnipresent in chemistry and biology, determining for instance the structure
of DNA or tertiary structures of proteins.399,635 The magnitude of dispersion interactions does
generally grow super-linearly with system size636 and it’s relative importance compared to cova-
lent bonding therefore increases with the number of electrons. Especially for larger systems, it
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becomes decisive to take into account the screening of the electron-electron interaction. CC and
MBPT based methods describe this screening by resummation of certain classes of self-energy
diagrams to infinite order.112,406,637

The RPA is the simplest first principle method which accounts for these effects and it is
known to indeed work reasonably well for non-covalent interactions. For AC-SOSEX, it is already
known that the improvements of absolute energies also translate into better relative energies for
many but not all reaction types333,334 and we assess in the following if this is also the case
for RPA+SOSEX(W (0),W (0)). To this end, we compare the performance of this method to
RPA and RPA+AC-SOSEX for for a wide range ot chemical systems, using datasets which
are commonly used to assess the accuracy of new methods for the calculation of ground state
energies.218,334,393,638

5.1 Computational Details

5.1.1 Quasiparticle Energies

Charged excitations in this work are calculated using (3.136). For qsGW , we set the dependency
threshold to 5e−3 and perform a maximum of 15 iterations of the self-consistency cycle. Following
the recommendations given in ref.38, we use VeryGood numerical quality and the corresponding
auxiliary basis set. We perform G0W0 calculations using PBE, PBE0, LRC-ωPBEh200 and
ωB97 - X219 orbitals and eigenvalues. We use Good numerical quality and the corresponding
auxiliary basis set for all G0W0 calculations and set the dependency threshold to 5e−4. All QP
energies are calculated using (4.1).

5.1.2 Relative Energies

We use in all calculations grids of 24 points in imaginary time and imaginary frequency which
is more then sufficient for convergence.35 The final correlation energies are then extrapolated to
the complete basis set limit using (4.2). Since the basis set error is not completely eliminated
with this approach, we also counterpoise correct all energies, taking into account 100 % of the
counterpoise correction. With these settings, we assume all our calculated values to be converged
well enough to be able to draw quantitative conclusions about the performance of the methods
we benchmark herein. We use the VeryGood numerical quality for integrals over real space and
distance cut-offs. Dependency thresholds36 have been set to 5e−4.

All Full configuration interaction calculations have been performed with the code by Knowles
and Handy.639,640 The 1- and 2-electron integral which are required as input have been generated
with ADF.
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5.2 Quasiparticle Energies

5.2.1 Organic Acceptor Molecules

We first assess the performance of the G3W2 QP energies in comparison to qsGW for a set of 24
organic acceptor molecules.641 The reference values are of CC singles doubles and perturbative
triples [CCSD(T)] quality and have been extrapolated to the CBS limit. Comparing these values
to the experimental data shown in figure 5.1, we see that there are sizable differences to the
CC values, especially for the fundamental gaps. Among the factors which might contribute to
the discrepancies are errors in the optimized geometries, missing zero point vibrational energy
corrections, and geometry relaxation after oxidation/reduction. For benzonitrile, the authors
of ref.641 calculated the values of the latter two corrections to be of the order of 0.18 and 0.14
eV, respectively. The errors in geometry or thermodynamical contributions are more difficult to
assess but can be sizable as well: For example, the structure used in the calculations might not
correspond to a global minimum on the potential energy surface. Finally, we note that the basis
set extrapolation can also introduce some errors, especially for the larger systems where no basis
sets larger than QZ were used.242 We estimate the error of our own CBS limit extrapolation to be
of the order of 50 meV for IPs and EAs of medium organic molecules.37. Due to all these factors
that affect the direct comparison to experiment, we exclusively use the CCSD(T) reference values
for the following quantitative discussion and only show the experimental values for comparison.

Performance of qsGW

For a variety of solids and metals it has been found that qsGW commonly overestimates band
gaps and IPs by about about 15-20 % when screening is calculated within the RPA.175,176,284,642,643

In contrast, the qsGW IPs shown in figure 5.1a are in excellent agreement with the CC reference
values, with no systematic overestimation. The fundamental gaps in figure 5.1c are even (a few
exceptions aside) systematically underestimated by qsGW . The overestimation of band gaps
by qsGW is usually explained by missing electron-hole interaction via vertex corrections in the
polarizability. Inclusion of an effective two-point kernel from time-dependent (TD) DFT or the
Bethe-Salpeter equation (BSE) has been demonstrated to significantly improve the agreement of
band gaps and IPs with experiment,176,282,356,360–362 demonstrating the importance of beyond-
RPA screening. For polar materials, i.e. materials with strong longitudinal-optical (LO) and
transverse-optical (TO) phonon splitting,644 electron-phonon coupling and phonon contributions
to the frequency-dependent screening can have a sizable effect on the QP spectrum as well.644,645

For example, qsGW overestimates the experimental band gap of V2O5 by about 100 %, which
to a large extent is due to LO-TO splitting.254

The systems we consider here are rather small and have a planar geometry. The reduction of
charge screening in low-dimensional materials has often been emphasized, for example in com-
parative studies on bulk and layered V2O5

253,254, MoS2
252 or polythiophene.251 Anti-screening

has been observed in a spin chain141 and also in finite conjugated systems.250 Finally, LO-TO
splitting will be absent entirely. These qualitative differences most likely explain the much higher
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Figure 5.1: Ionization potentials (top), electron affinities (middle) and fundamental gaps (bot-
tom) from qsGW and qsGW + G3W2 for a dataset of 24 organic acceptor molecules. The
dashed black diagonal lines are CCSD(T) reference values. Experimental results are given for
comparison as well. The values in parantheses denote mean absolute deviations (MAD) with
respect to CCSD(T). All values are in eV.
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accuracy of qsGW for the systems studied herein as compared to periodic systems.
The data clearly demonstrates qsGW to be an excellent first-principle method for the de-

scription of charged excitations for these weakly correlated, organic molecules. It is worthwhile
to compare the performance of this method for to previous benchmark results of different GW
methods. The accuracy of a large number of GW methods has been assessed for the same dataset
in ref.242. Out of all GW based methods, the authors found G0W0@LRC-ωPBE to perform best
(with optimized range separation parameter), with a MAD of 0.13 eV for IPs, and 0.18 eV for
EAs. All in all, qsGW seems to be superior.

The effect of the statically screened G3W2 correction

Now we look at the effect of adding the G3W2 correction. As can be seen in figure 5.1, on average
it lowers the qsGW IPs (see also the MDs in table 5.1) by a small amount and decreases the
EAs by a relatively larger amount, implying increasing fundamental gaps. For IPs, this slightly
worsens the agreement with the CC reference values, increasing the mean absolute deviation
(MAD) from 0.09 eV to 0.12 eV. However, given the errors from the basis set limit extrapo-
lation, this difference is not significant. Also, the G3W2 correction does not alter the MAD
for the fundamental gaps. Since the statically screened G3W2 correction tends to increase the
QP energies, a method which systematically overestimates IPs and EAs will be systematically
improved by the G3W2 correction. This is demonstrated in figure 5.2 for G0W0@ωB97-X and
G0W0@LRCωPBEh. Here, the G3W2 correction slightly improves the MAD with respect to the
CC reference values for the IPs from 0.26 to 0.16 eV, and from 0.16 to 0.13 eV. For the EAs,
the improvements are tremendous, and the inclusion of the G3W2 term leads to almost perfect
agreement with the reference values. In table 5.1, these results are summarized. Despite the
great performance of the G3W2 correction for the range-separated hybrids, the description of
fundamental gaps is actually deteriorated, which can be considered as a serious drawback of this
method.

Comparison of dynamically and statically screened SOX

In table 5.2 we compare a few beyond-GW approaches for the same dataset. These are GW +

SOSEX from ref.381 and GW + dynamically screened G3W2 from ref.379 (denoted as G0W0Γ
(1)
0

by the authors of ref.379). These methods have all been implemented perturbatively and only
differ in the way the electron-electron interaction in the SOX-term is screened (see figure 2.7).
The results from ref.381 and ref.379 clearly demonstrate that especially methods with bad or
only mediocre performance, like G0W0@PBE or G0W0@PBE0, profit immensely from vertex

corrections with fully dynamical self-energy: G0W0Γ
(1)
0 @PBE0 is very accurate, with a MAD

of 0.16 eV for the IPs and 0.09 eV for EAs. Especially G0W0Γ
(1)
0 @PBE performs much better

than G0W0PBE. For EAs, the MAD improve from 0.60 eV to 0.06 meV, however, with 0.28 eV

for IPs, G0W0Γ
(1)
0 @PBE is not very accurate. For EAs, with a MAD of 0.06 eV, G0W0@PBE

+ SOSEX performs excellent, but it is considerably less accurate for IPs (MAD = 0.33 eV). In
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GW GW +G3W2
qsGW ωB97X ωPBEH qsGW ωB97X ωPBEH

Ionization Potentials
MAD 0.09 0.26 0.16 0.12 0.16 0.13
MD 0.08 0.26 0.16 0.00 0.14 0.05
MAX 0.43 0.54 0.41 0.46 0.57 0.54

Electron Affinities
MAD 0.14 0.29 0.27 0.09 0.05 0.07
MD 0.14 0.29 0.27 -0.09 -0.03 -0.06
MAX 0.25 0.38 0.36 0.23 0.15 0.20

Fundamental Gaps
MAD 0.13 0.11 0.16 0.13 0.19 0.16
MD -0.06 -0.03 -0.12 0.09 0.17 0.11
MAX 0.35 0.25 0.28 0.60 0.66 0.62

Table 5.1: Mean absolute deviations (MAD), mean signed deviattions (MD), and maximum
errors (MAX) for IPs, EAs, and fundamental gaps for the 24 acceptor molecules for three different
starting points for several GW based methods plus the respective G3W2 corrections. All values
are in eV.

G(s) G0W0 G0W0+SOSEX G0W0 + dG3W2 G0W0 + sG3W2
IP EA IP EA IP EA IP EA

PBE 0.56/0.66 0.44/0.60 0.33 0.08 0.28 0.06 0.67 0.09
PBE0 0.19/0.22 0.39/0.39 0.12 0.16 0.16 0.09 0.28 0.06

Table 5.2: Comparison of MADs with respect to the CC reference values for different beyond-
GW method in comparison to G0W0 for different starting points. All values are in eV. The prefix
d denote that the screened interaction is dynamic, whereas s denotes the static interaction. For
G0W0, the two numbers denote MADs with ADF/FHI-AIMS.

summary, G0W0Γ
(1)
0 @PBE0 is the most accurate of these methods. However, it can not beat

qsGW and also not G0W0@ωB-97-X + G3W2 and G0W0@LRCωPBEh + G3W2.
For the sake of a direct comparison of dynamically and statically screened G3W2 corrections,

we also calculated G0W0@PB + G3W2 or G0W0@PBE0 + G3W2 with our implementation.
First, we note the reasonable agreement of the results obtained with our implementation and
FHI-AIMS on the GW level, which allows for a qualitative comparison. The differences mainly
result from the different basis sets used in the calculations.379,381 The MADs in table 5.2 clearly
show, that the statically screened G3W2 correction does not give good results for these starting
points. For EAs, the performance of the statically screened correction is comparable to the
dynamical one. However, the description of IPs is even worsened. Here, the methods with
dynamical screening are significantly better.

In ref.379, it was found that the magnitude of the G3W2 correction was much smaller, when
the statically screened interaction instead of the dynamically screened one was used. This is in
line with our results. For the HOMO QP energies, the correction often changes sign, i.e. the
HOMO QP energy is increased when the interaction is statically screened. Also in this case,
the correction for the LUMO level is typically much larger than the one for the HOMO level,
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Figure 5.2: Ionization potentials (left) and electron affinities (right) from G0W0@ωB97-X (+
ΣG3W2) (top) and G0W0@LRCω-PBEh (+ ΣG3W2) (bottom) and G0W0@ωB97-X + ΣG3W2,
for a dataset of 24 organic acceptor molecules. The dashed black diagonal lines are CCSD(T)
reference values and the values in parantheses denote mean absolute deviations (MAD) with
respect to CCSD(T). All values are in eV.

increasing the fundamental gaps. Due to the small magnitude of the correction, the statically
screened G3W2 correction works well if QP energies are already well described on the GW level.
The dynamically screened G3W2 term leads to a correction of larger magnitude and works best
for GW methods which severely underestimate IPs and overestimate EAs. This is the case for
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G0W0@PBE and (to a smaller extent) also for G0W0@PBE0242 and consequently, the addition
of SOSEX or dynamically screened G3W2 leads to large improvements.379 On the other hand,
G0W0@HF underestimates the HOMO QP levels and overestimates LUMO QP levels.242,379

Therefore, the addition of dynamically screened SOX deteriorates the results for this starting
point.

5.2.2 Ionization Potentials of Small Molecules

Starting Point GW GW +G3W2
qsGW 0.21 0.27
ωB97-X 0.20 0.27
LRC-ωPBEh 0.12 0.21

Table 5.3: MADs with respect to the EOM-CCSDT reference for the first ionization potentials
of a set of 40 small molecules. All values are in eV.

So far, the performance of the G3W2 self-energy correction has only been assessed for a
very specific type of molecules. We now also consider a second database curated by Bartlett
and coworkers.646 They calculated the IPs of 40 small organic and inorganic molecules, using
EOM-CCSD/cc-pVTZ & cc-pVQZ and EOM-CCSDT/cc-pVTZ. The reference values we use
here are obtained as follows: From the EOM-CCSD results obtained with the cc-pVTZ and cc-
pVQZ basis sets, we extrapolate the IPs to the CBS limit with the formula by Helgaker et al.503,
eq. (4.2). Note, that we used eq.(4.1) to obtain our own STO results. Subsequently, we add
the difference between the EOM-CCSD and EOM-CCSDT IPs to the CBS limit extrapolated
EOM-CCSD IPs. Thus, the reference values should be close to EOM-CCSDT quality at the CBS
limit. The MADs of the considered methods with respect to the EOM-CCSDT reference values
are shown in table 5.3. The qsGW IPs are with a MAD of 0.21 eV still in reasonable agreement
with the reference values, but the agreement is worse than for the acceptor molecules. For all
tested GW starting points, the G3W2 term worsens the IPs.

In summary, the results presented in this section reveal qualitative differences between the
dynamically screened G3W2 correction as recently tested in ref.379 and the statically screened
one for charged excitations. The magnitude of the G3W2 correction becomes much smaller when
the electron-electron interaction is statically screened. The addition of the dynamically screened
SOX term consistently lowers EAs and increases IPs, while the statically screened one often
decreases the IPs.

Popular methods like G0W0 based on PBE and PBE0 starting points predict too low ion-
ization potentials and too high electron affinities379 and the addition of dynamically screened
G3W2 correction results in major improvements for these methods.379 The statically screened
G3W2 correction, on the other hand, gives improvements over GW calculations which consis-
tently underestimate QP energies. This is the case for G0W0@LRCωPBEh and G0W0@ωB97-X.
Especially for EAs, improvements are tremendous. For IPs and fundamental gaps, the improve-
ments are not consistent and seem to be system-specific. For molecules with nearly 100 atoms,
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evaluating the perturbative G3W2 correction for a few states does not come with significantly
increased computational costs compared to a GW calculation. This is a big advantage over the
dynamically screened SOX correction.379

5.3 Relative energies

5.3.1 Dissociation Curves

The potential energy curves of small diatomic molecules serve as an important test for electronic
structure methods. We first consider molecules with different bonding types for which we were
able to calculate FCI reference values: H2 is covalently bound, LiH is an ionic molecule, and He2
has a very weak, non-covalent bond.

The dissociation curve of H2 calculated with RPA+SOSEX(W (0),W (0))@PBE is the red
line in figure 5.3. Our calculations are not converged with respect to the basis set size but com-
parison of our dissociation curves calculated with RPA@PBE and RPA+SOSEX(W ,vc)@PBE
to the ones presented in ref. [385] and [647] clearly shows that their qualitative behavior is
reproduced correctly. It is known that RPA describes the dissociation of covalently bonded
molecules qualitatively correctly while RPA+SOSEX(W ,vc) and other exchange-corrected RPA
approaches fail.340,385,647 Here we find that also RPA+SOSEX(W (0),W (0)) dissociates the hy-
drogen molecule correctly and that the potential energy curve has a similar shape than the RPA
one. Henderson and Scuseria have argued that the self-correlation in the RPA mimics static cor-
relation effects647 whose good description is necessary to dissociate H2 correctly. The fact that in
RPA+SOSEX(W (0),W (0) the self-correlation error is eliminated to some large extent (also see
table 1 in the SI) but not completely therefore explains the similarity to the RPA dissociation
curve.

To rationalize this result further, we also calculated the dissociation curve within the static
limit of RPA+SOSEX(W ,vc), RPA+SOSEX(W (0),vc) (blue curve). This shows that the screen-
ing of the second electron-electron interaction line is responsible for the qualitative differences be-
tween SOSEX(W ,vc) and SOSEX(W (0),W (0)). It should also be noted that the RPA+SOSEX(W (0),W (0))
dissociation curve of H2 very closely resembles the one calculated by Bates and Furche using the
approximate exchange kernel (AXK) correction to the RPA.341 SOSEX(W (0),W (0)) and the
AXK kernel have in common that both electron-electron interaction lines are screened. For LiH,
we find a similar behavior than for H2. For He2 (notice that we plotted here the binding energy
and not the total energy) we see that all approaches give the correct dissociation limit.

From these potential energy curves, we also extracted the equilibrium bond lengths via
cubic spline interpolation. These are shown in table 5.4 Around the equilibrium distances,
RPA+SOSEX(W ,vc) generally gives the best energies but this does not necessarily translate
into the best bond lengths. For the covalently bound molecules LiH and F2 as well as LiH
RPA+SOSEX(W ,vc) underestimates and RPA+SOSEX(W (0),W (0)) overestimates the bond
lengths. Again, RPA+SOSEX(W (0),W (0)) behaves qualitatively similar to RPA. For He2, both
approaches give similar results, while RPA+SOSEX(W (0),vc) fails completely. On the other
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Figure 5.3: Potential energy curves (in Hartree) of H2 (left) and LiH (middle), as well as binding
energy (in mHartree) as a function of system size for He2 on the right using FCI, RPA@PBE and
different variants of RPA+SOSEX@PBE. For H2 and He2, all calculations have been performed
with the TZ3P basis set. For Lih, all calculations have been performed using the TZP basis set.

method H2 LiH He2 F2 Be2

exp. 1.413648 2.320649

accurate 0.741 1.601 2.626 1.413648 2.320650
RPA 0.742 1.597 2.632 1.437 2.403
RPA + SOSEX(W (0),W (0)) 0.744 1.605 2.852 1.444 2.424
RPA + SOSEX(W, vc) 0.738 1.594 2.871 1.364 –
RPA + SOSEX(W (0), vc) 0.735 1.599 3.542 1.348 –

Table 5.4: Equilibrium bond length of selected molecules. All values are in Å. The bond lengths
for H2, He2, and LiH have been calculated using the TZ3P and TZP basis sets to make them
comparable to the FCI result. The bond lengths for F2 and Be2 have been obtained using the
QZ6P basis set. All RPA(+SOSEX) calculations have been performed with a PBE Green’s
function.

hand, unlike RPA+SOSEX(W (0),W (0)), RPA+SOSEX(W ,vc) does predict an unbound Be2
dimer.

5.3.2 Dissociation of charged Dimers

In table 5.5 we investigate the dissociation of four charged dimers by means of the SIE4x4
dataset.638 Here, the self-correlation error of RPA leads to considerable underbinding,299,385,647

whereas RPA+SOSEX(W ,vc) is exact,386 the remaining error for H2 being due to basis set errors
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RPA SOSEX(W ,vc) SOSEX(W (0),vc) SOSEX(W (0),W (0))

H +
2

1.0 5.19 0.76 -2.58 3.09
1.25 7.59 -0.26 -5.33 5.19
1.50 11.21 -1.31 -8.23 8.89
1.75 16.15 -2.30 -11.14 14.27
He +

2
1.0 13.23 0.23 -5.30 14.34
1.25 25.40 -2.84 -12.91 27.56
1.50 40.60 -5.64 -20.32 44.79
1.75 56.76 -7.65 -25.76 63.38
(NH3)

+
2

1.0 5.89 15.17 24.91 16.23
1.25 13.00 20.08 36.23 33.50
1.50 20.61 21.89 42.78 50.41
1.75 30.88 15.14 28.73 61.48
(H2O) +

2
1.0 10.19 29.79 51.70 33.79
1.25 20.62 12.16 21.61 38.68
1.50 31.88 2.35 4.58 50.58
1.75 42.08 0.50 5.47 65.61

MAD 21.95 8.63 19.22 33.24

Table 5.5: Errors in kcal/mol for the charger dimers in the SIE4x4 benchmark set calculated with
RPA and different variants of RPA+SOSEX. PBE orbitals have been used in all calculations

as well as the fact that PBE orbitals have been used. Furche and coworkers have observed a
catastrophic failure of RPA+SOX for (NH3)

+
2 and (H2O) +

2
651 and also SOSEX(W (0),W (0))

considerably deteriorates the RPA results for those systems. Only for H +
2 , one finds that the

partial cancellation of the RPA self-correlation leads to small improvements over RPA.

5.3.3 Thermochemistry and Kinetics

We move on to assess the performance of RPA+SOSEX(W (0),W (0)) for reaction types which
are relevant for thermochemistry and kinetics. Total atomization energies, ionization potentials
and electron affinities as well as barrier heights of different reactions serve hereby as important
testing grounds. For this work, we calculated the atomization energies (defined as the total
energy of the molecule minus the sum of the energies of the atomic fragments) of the 144 small
and medium molecules in the W4-11 dataset.652 The reference values have been calculated using
the highly accurate W4 protocol.653 For barrier heights, we use the BH76 database which is
a compilation of the HTBH38654 and NHTBH38655 databases for barrier heights by Truhlar
and coworkers, which are typically used in benchmarks of (beyond-)RPA methods.299,333,334,631

The reference values have been calculated with the W2-F12 protocol.638,656 To benchmark the
performance for ionization potentials and electron affinities we employ the G21IP and G21EA
databases by Pople and coworkers and use the original experimental reference values.657

To start with, we assess the effect of the Green’s function Gs used to calculate the correlation
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Figure 5.4: Mean absolute deviations (MAD) (lower triangle in each plot) and Maximum devia-
tions (MAX) (upper triangle) with respect to the reference values as well as using different KS
Green’s functions as input for BH76 (left), G21-IP (middle) and G21-EA (right) for RPA (top)
and RPA+SOSEX(W (0),W (0)) (bottom). All values are in kcal/mol.

energies. RPA calculations can in principle be performed self-consistently using a variety of
approaches.168,234,274,337,658–662 (see ref. [663] for a review) This is rarely done in practice since
self-consistent RPA calculations are computationally demanding and since the resulting energies
are often worse than the ones evaluated using a Green’s function from a generalized gradient
approximation (GGA) or hybrid calculation.660 GGAs like PBE or TPSS are often used to
construct Gs.334,393,634 Using hybrid orbitals can be seen as a pragmatic way to compensate for
the lack of self-consistency in the RPA calculation and therefore we assess here whether they
lead to improvements over GGA orbitals.

For W4-11, the differences between different starting points are minor, but PBE tends to
give the best results. For the BH76, G21IP, and G21EA datasets, we show mean absolute
deviations (MAD) and maximum deviations (MAX) with respect to the reference values and
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with respect to the different starting points in figure 5.4. The RPA results generally improve
with increasing amount of Fock exchange, while 25 % (PBE0) generally seems to work best for
RPA+SOSEX(W (0),W (0)). The differences are often substantial, for instance in case of the
RPA barrier heights (fig 5.4a) or the RPA+SOSEX(W (0),W (0)) electron affinities (fig 5.4f).

For charged excitations, this observation aligns very well with the experience from G0W0

calculations where hybrid functional with 25 - 50 % are typically a much better starting point
than GGAs.241,257 However, when G3W2 corrections are added to the G0W0 QP energies, using
a hybrid functional with a smaller fraction of exact exchange might often be beneficial.40,379 For
barrier heights, hybrid functionals with a larger fraction of exact exchange are usually required
to obtain qualitatively correct barrier heights638,664 and it therefore not surprising that hybrid
orbitals serve as a suitable starting point for RPA calculations.
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Figure 5.5: Errors of RPA@PBE and RPA+SOSEX(W ,vc)@PBE for the atomization energies in
the W4-11 dataset. Black dots denote the individual data points and the horizonal line in each
box denotes the median deviation. the box contains all data points between the first quartile
(Q1) and third quartile (Q2) and the whiskers are at Q1 ± |Q1 − Q3|. (in case of a normal
distribution, the whiskers include 99.3% of all data points). All values are in kcal/mol.

Our atomization energies for the W4-11 dataset are shown in figure 5.5. It has first been
observed by Furche629 that RPA underestimates atomization energies (indicated here by neg-
ative errors). This has been confirmed later by Ren at al.299 and Paier et al.333 for the 55
covalently bound molecules in the G2-I set.657 The same holds for RPA+SOSEX(W ,vc), but
compared to RPA the magnitude of the error is reduced on average.299,333 We observe here
that unlike SOSEX(W, vc), the addition of SOSEX(W (0),W (0) substantially overcorrects the



192 CHAPTER 5. ACCURACY

RPA atomization energies which are now much too high in magnitude. Notice, that our non-
counterpoise corrected calculations based on (T,Q) extrapolation will still include a sizable basis
set incompleteness error for atomization energies. However, our qualitative conclusions will be
valid. Adding bare SOX to RPA leads to underestimated correlation energies.298 This effect
is expected to be more pronounced for the molecule than for the individual atoms since more
electrons are correlated in the former. Therefore, RPA+SOX will substantially overestimate at-
omization energies and due to underestimated screening of the SOX term in SOSEX(W (0),W (0),
RPA+SOSEX(W (0),W (0) inherits this problem.
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Figure 5.6: Errors of RPA@PBE and different RPA+SOSEX variants for barrier heights (BH76,
left), ionization potentials (G21-IP, middle) and electron affinities (G21-EA, right). For an
explanation of the boxplots, see the caption of figure 5.5. All values are in kcal/mol.

As also shown in more detail in figure 5.6, the performance of RPA+SOSEX(W (0),W (0)) is
in all cases comparable to RPA+SOSEX(W ,vc), for which the trends presented here are well
known:299,334,385,631,665 RPA+SOSEX(W ,vc), fails for barrier heights, where the inclusion of
renormalized singles excitations is necessary to obtain good results299,333,334 and works very well
for charged excitations.299,631 We note, that RPA+SOSEX(W (0),W (0))@PBE0 performs very
well for charged excitations, with an accuracy challenging modern double-hybrid functionals.638
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5.3.4 Non-covalent Interactions

λ-dependence of the S66 Interaction Energies

We now discuss the dependence of the SOSEX correlation energies on the λ-integration for non-
covalent interactions. The magnitude of the SOSEX contribution to the correlation energy as
a function of the size of the λ-grid is shown in table 5.6 for three selected systems. One can
show, that for a 2-electron system like H2, the SOSEX(W, vc) correction equals minus half of the
RPA correlation energy (In other words, RPA+SOSEX is self-correlation free). This relation is
fulfilled for SOSEX(W, vc) with already 4 Gauss-Legendre points.

SOSEX(W, vc) SOSEX(W (0),W (0))
Nλ H2 (H2O)2 Benzene H2 (H2O)2 Benzene

1 15.51400 147.15253 287.90735 10.74228 101.45448 204.17377
2 16.63810 157.79684 307.48549 12.83037 119.99186 239.22546
4 16.63421 157.71007 307.35326 12.82006 119.79484 238.91728
6 16.63421 157.70997 307.35313 12.82006 119.79451 238.91688
1
2E

RPA 16.63421 16.63421

Table 5.6: Total magnitude of SOSEX correction in kcal/mol as a function of the size of the
λ-grid for selected systems.

The magnitude of the SOSEX correction is underestimated when the λ-integration is carried
out using a trapezoidal rule. This is illustrated in fig. 5.7 for H2 and (H2O)2. Using a single λ-
point corresponds to approximating the λ-dependence of the correlation energy as a straight line,
which leads to a small integration error. Also in section 5.3.4, we show the effect of the number
of points used for the λ-integration on the relative energies in the S66 dataset to be indeed
very small. Also the accuracy of the interaction energies with respect to the CCSD(T) reference
values is not negatively affected when only a single integration point is used and therefore all
benchmark results for the S66x8 database are carried out using the trapezoidal rule.

The effect of the number of points in the λ-integration on relative energies for SOSEX(W, vc)
and SOSEX(W,W (0)) for the S66 test set is shown in figure 5.8. Fig. 5.8a) shows the error in
the covalent bonding energies with respect to the converged λ−integration when only a single
integration point is used. Generally, the resulting integration errors are very small and do not
exceed 0.1 kcal/mol for most complexes. In parts b) and c) of figure 5.8, the relative errors of the
interaction energies with respect to the CCSD(T) reference values are shown. One can clearly
see, that the error in the λ-integration is negligible when looking at the accuracy of relative
energies. This is also reflected in the MADs with respect to the CCSD(T) reference shown in
figure 5.8.
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Figure 5.7: Magnitude of the SOSEX(W, vc) correlation energy as a function of λ relative to its
value at λ = 1 for H2 and (H2O)2.

S66 Interaction Energies

We now turn to our benchmark results for non-covalent interactions. As for the previous datasets,
we also assess the dependence of RPA and RPA+SOSEX correlation energies on the choice of the
KS Green’s function Gs. In figure 5.9 the interaction energies in the S66 database666 obtained
using different Gs are compared to each other as well as to the CCSD(T) reference values by
Hobza and coworkers.666 Following the discussion in 5.3.4, all values have been obtained using a
single integration point for the λ-integral. RPA and RPA+SOSEX(W (0),W (0)) are equivalently
independent of the choice of the KS Green’s function, with MADs between 0.20 and 0.39 kcal/mol
between the different functionals. However, individual values can differ by almost 2 kcal/mol
which is a sizable difference, given that the largest interaction energies in the S66 database
are of the order of 20 kcal/mol only. The performance of RPA compared to the CCSD(T)
reference is rather insensitive to the KS Green’s function, even though the hybrid starting points
lead to slightly better results. With 0.52 kcal/mol, the MAD for RPA@PBE is in excellent
agreement with the 0.61 kcal/mol MAD obtained by Nguyen et. al. in ref. [393], which has
been obtained with GTO-type basis sets and 50 % counterpoise correction instead of 100 %.
This shows, that our interaction energies are well converged with respect to the basis set size.
The RPA+SOSEX(W (0),W (0)) results are much better using the hybrid functionals than with
PBE. RPA+SOSEX(W, vc)@PBE, is slightly more accurate than RPA+SOSEX(W, vc)@PBE0,
but unlike for the datasets discussed before, the differences between the different starting points
are negligibly small. Also, the dependence of SOSEX(W, vc) on the starting point is smaller than
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Figure 5.9: Mean absolute deviations (MAD) (lower triangle in each plot) and Maximum devi-
ations (MAX) (upper triangle) for a) RPA, b) SOSEX(W (0),W (0)) and c) SOSEX(W (0), vc)
interaction energies for the S66 database using different KS Green’s functions as well as to the
CCSD(T) reference values (ref.). All values are in kcal/mol.

for SOSEX(W (0),W (0)).
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Figure 5.10: Deviations of RPA@PBE0 and both RPA + SOSEX@PBE0 variants for the S66
database with respect to the CCSD(T) reference. All values are in kcal/mol.

Figure 5.10 shows the deviations of RPA and both RPA+SOSEX variants with respect to
CCSD(T) for all datapoints in the S66 database. MADs and mean absolute percentage deviations
(MAPD) for the whole database as well as for the individual categories are presented in table 5.7.



5.3. RELATIVE ENERGIES 197

MAD
S66 hydr. bond dispersion mixed

Method [kcalmol ] [%] [kcalmol ] [%] [kcalmol ] [%] [kcalmol ] [%]

SOSEX(W (0),W (0))@PBE0 0.32 7.28 0.45 5.76 0.29 10.33 0.21 5.50
SOSEX(W (0), vc)@PBE0 0.28 6.88 0.30 3.42 0.34 11.77 0.20 5.25
SOSEX(W, vc)@PBE0 0.29 6.85 0.31 3.39 0.33 11.63 0.21 5.33
SOSEX(W, vc)@PBE 0.26 6.25 0.23 3.51 0.33 10.16 0.17 4.26
RPA 0.46 11.54 0.55 7.19 0.47 17.74 0.34 9.41
PBE0-D3(BJ) 0.28 5.09 0.47 4.80 0.18 5.09 0.18 5.42
DSD-PBE-P86-D3(BJ) 0.23 5.07 0.31 3.71 0.21 6.99 0.16 4.43

Table 5.7: MADs (absolute and in %) of different electronic structure methods with respect to
the CCSD(T) reference values for the whole S66 database and for its subcategories.

The interactions of the first 22 complexes in the database are dominated by Hydrogen bonds
which are predominantly of electrostatic origin.667 The next 22 complexes are mostly bound
by dispersion interactions and the remaining interactions are of mixed nature.666 It is useful to
distinguish between these different interaction patterns in the following comparison.

For the whole database, RPA gives a MAPD of 11.5 % and the SOSEX corrections sizably
reduce the MAPDs with respect to the CCSD(T) reference values to in between 7.3 % and
6.3 %. SOSEX(W, vc) outperforms SOSEX(W (0),W (0)) by far for the hydrogen-bonded com-
plexes, and is even slightly more accurate than the double-hybrid DSD-PBE-P86-D3(BJ),208 one
of the best double hybrid functionals for weak interactions.413 For dispersion interactions, the
performance of SOSEX(W (0),W (0)) and SOSEX(W, vc) is comparable. Here, the empirically
dispersion corrected207,213 functionals, the hybrid PBE0-D3(BJ) and DSD-PBE-P86-D3(BJ), are
much more accurate than all MBPT based methods. A few exceptions aside, fig. 5.10 shows that
RPA understabilizes the complexes in the S66 database (indicated by positive errors). SOSEX
corrections lower the interaction energies, i.e. the complexes are predicted to be more stable.
SOSEX(W, vc) shows a tendency to overstabilize the hydrogen-bonded complexes. For these
systems, the RPA+SOSEX(W (0),W (0)) energies are almost identical to the ones from RPA.

Also from the sizable differences of SOSEX(W, vc) (green points) to its static limit (with only
a single screened interaction line, blue points) shown in figure 5.10 it is clear that the dynamical
screening effects are important for the hydrogen-bonded complexes. As can be seen from the
MAPD in table 5.7, this does however not improve agreement with the CCSD(T) reference
values. For the dispersion bound complexes, there are only negligible differences between both
variants, demonstrating that the dynamical variations of the screening average out. For the last
22 complexes in the database the differences are slightly larger. In all cases, dressing the second
electron-electron interaction line does not alter the results decisively.
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S66x8 Interaction Energy

The S66x8 dataset contains the complexes in the S66 database at 8 different geometries.666 The
separations of the monomers in the complexes are given relative to their equilibrium distances,
i.e. a relative separation of 2.0 means that the monomers separation in the complex is twice as
large as the equilibrium separation. For our assessment of the SOSEX(W (0),W (0)) correction,
we divide the separations of the potential energy curve in three regions, which we denote as short
(equilibrium distance scaled by a factor 0.9-0.95), middle (1.0-1.25) and long (1.5-2.0). All RPA
(+SOSEX) calculation discussed here have been performed using a PBE0 Green’s function.
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Figure 5.11: MADs (in percent) for the S66x8 database with respect to the CCSD(T) refer-
ence values for RPA, RPA+SOSEX(W, vc) and RPA+SOSEX(W (0),W (0)). MADs are shown
separately for the whole database (columns on the left) and for different monomer-monomer
separations.

short [%] middle [%] long [%]

SOSEX(W, vc) 35.2 42.8 13.5
SOSEX(W (0),W (0)) 31.0 37.9 19.1

Table 5.8: Relative improvements obtained with different SOSEX variants over RPA for different
groups of monomer-monomer separations.

The results of our comparison are shown in figure 5.11, where the MAPDs with respect
to CCSD(T) for the whole database as well as for the scaled monomer-monomer separations
are shown. For the whole database, the average relative deviations with respect to the reference
values are larger than for S66. With in between 31 and 43 %, both SOSEX correction lead to siz-
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Figure 5.12: Upper plots: three RPA+SOSEX(W ,vc)@PBE0 potential energy curves in the
S66x8 database (green), separated in correlation contributions (yellow) and HF energy (evaluated
with PBE0 orbitals). Lower plots: decomposition of the correlation energies into RPA and
SOSEX(W ,vc) contributions. All values are in kcal/mol.

able improvements over the RPA in the short and medium regime. For large monomer-monomer
separations, the improvements become much smaller, with 14 % for SOSEX(W, vc) and 19 %
for SOSEX(W (0),W (0)). This can be rationalized by observing that for large electron-electron
distances the correlation contributions to the interaction energies quickly decay to zero. This is
shown in figure 5.12 where we have plotted three of the RPA+SOSEX(W ,vc) potential energy
curves (Green curves in the upper plots) in the S66x8 database and separated the correlation
contributions (The Green curves are the sums of the red and yellow curves). The lower plots
separately show the RPA and SOSEX(W ,vc) contributions to the correlation energy differences.

In all three plots, the potential energy curves are dominated by the difference of the corre-
lation energy of the dimer and the sum of correlation energies of the monomers. Therefore, the
approximation used for the calculation of the correlation energy plays a large role. However, this
difference quickly goes to zero for larger separations. At two times of the equilibrium distance,
the correlation contributions to the potential energy curves are almost zero in all three consid-
ered examples. Therefore, the expression used for the correlation energy becomes less and less
important with increasing monomer separation. This argument also holds if one expresses the
contributions in % of the total interaction energy.
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One would expect the SOSEX contribution to decay faster than the RPA one, since the
former is of exchange nature and therefore fundamentally short-ranged.298 However, the plots in
the lower part of figure 5.12 shows that this is only the case for the potential energy curve on
the right, but not for the two curves on the left, where SOSEX and RPA contributions seem to
decay equally fast.

In conclusion, we have here assessed the accuracy of the SOSEX(W (0),W (0)) correction to
RPA correlation energies for a wide range of chemical problems including bond dissociation,
thermochemistry, kinetics, and non-covalent interactions. In situation where the addition of
SOSEX(W, vc) leads to major improvements over the RPA, the addition of SOSEX(W (0),W (0))
does as well. This is the case for the calculation of ionization potentials and electron affinities
where RPA+SOSEX approaches challenge the accuracy of modern double-hybrid functionals.638

Also for non-covalent interactions both SOSEX variants lead to the same substantial improve-
ments over RPA. SOSEX(W, vc) is most accurate for the hydrogen-bonded complexes while
SOSEX(W (0),W (0)) is slightly more accurate for dispersion interactions. We also showed that
the frequency-dependence of the screened interactions does seem to be an important factor for
hydrogen-bonding but not for dispersion interactions.

We have observed differences in both SOSEX variants for the dissociation of diatomic molecules.
As RPA and unlike RPA+SOSEX(W ,vc),

385,647 RPA+SOSEX(W (0),W (0)) dissociates the Hy-
drogen molecule correctly. RPA does so because the self-correlation error effectively describes
static correlation.647 The situation seems to be similar for RPA+SOSEX
(W (0),W (0)) since in contrast to RPA+SOSEX(W ,vc) it is not completely self-correlation free
for 1-electron systems. We have also shown that this qualitative difference is due to the screening
of the second electron-electron interaction line.

The incomplete cancellation of self-correlation error does however negatively affect the dis-
sociation of charged dimers for which RPA+SOSEX(W ,vc) fixes most of the deficiencies of
RPA.385,651 Here, RPA+SOSEX(W (0),W (0)) performs even worse than RPA. Furthermore, the
good dissociation of diatomic molecules does not automatically carry over to accurate barrier
heights654,655 where both SOSEX variants considerably worsen the RPA results.

Our results suggest that the statically screened SOSEX is a suitable alternative to dynam-
ically screened SOSEX. While both formally scale as N5 with system size, the computation of
the SOSEX(W, vc) correction requires a numerical imaginary frequency integration. The calcu-
lation of the SOSEX(W (0),W (0)) correction is therefore much cheaper, comparable to MP2.
MP2 is however inadequate for large molecules since it neglects screening effects entirely.111,393

RPA+SOSEX(W (0),W (0)) is in principle applicable also to large molecules. A stochastic linear
scaling implementation of the SOSEX self-energy has already been developed382 and a recent
RPA+SOSEX implementation by Ochsenfeld and co-workers668 allowed applications to the L7
dataset,399 albeit with small basis sets. Other low-scaling MP2 implementations669–671 could
potentially be generalized to SOSEX as well.

Finally, it should be mentioned that the accuracy of the dynamically screened SOSEX correc-
tion to the RPA can be improved upon by the addition of renormalized single excitations.299,334

Other methods which have been shown to outperform SOSEX, in particular for barrier heights,
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are the AXK kernel method341,651,672 or a SOSEX variant in which the terms of RPA and SOSEX
beyond second order in vc are scaled down.672 It remains to be investigated whether the concept
of static screening can also be combined with those approaches and leads to good results.
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Chapter 6

Applications

In chapter 3, we have shown how the formalism developed in chapter 2 is translated into ef-
ficient algorithms for the calculation of charged and optical excitations of large molecules. In
chapter 5, we have furthermore scrutinized the reliability of the implemented numerical approx-
imations by means of detailed comparisons to other codes. We have then assessed the accuracy
of the implemented algorithms for charged excitations and electron-electron interaction ener-
gies by comparison to reference results obtained from computationally more involved approaches
(mostly high-level CC methods). Before concluding this thesis and in order to showcase both,
the computational efficiency as well as the predictive power of the developed algorithms, we
present applications to relatively large, biologically relevant systems: In section 6.1, we use the
GW formalism to calculate ionization potentials of large DNA oligomers and in section 6.2 we
calculate the low-lying excitonic states of a six-chromophore model of the photosystem II (PSII)
reaction center (RC) with nearly 500 atoms and 2000 correlated electrons in total.

6.1 DNA

Oxidation of DNA is related to genetic damage673 and to investigate the mechanisms behind these
processes quantum chemically, electron addition and removal energies need to be computed with
high accuracy. A necessary first step for such studies is the selection of appropriate model system
which should represent DNA under physiological conditions as accurately as possible while still
being computationally feasible. As an illustrative example how the new qsGW implementation
can be used effectively in practice, we investigate the dependence of IP and EA of oligomers of
Adenine-Thymine (AT) base pairs on the oligomer size.

6.1.1 Computational Details

The structures of the DNA fragments have been taken from ref.669. We performed qsGW calcu-
lations using the TZ2P487, TZ3P and QZ6P basis sets, starting from a PBE0192,193 initial guess.

203
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We set the numerical quality to VeryGood, but used the Good auxiliary basis set, with the excep-
tion of the QZ6P calculations were we also used the VeryGood auxiliary basis set. We also set
MBPT.ThresholdQuality=Normal. In ref.36 we have shown that these thresholds are sufficient
to converge quasi-particle energies within a few ten meV. 16 grid points in imaginary time and
imaginary frequency have been used. Solvent effects have been accounted for exclusively on the
KS level using the conductor like screening model (COSMO)674–676 (see appendix A.2 for a brief
introduction) as implemented in ADF677 using the BLYP187,678,679 functional with D3(BJ) dis-
persion correction and the TZ2P basis set. Numericalquality Good has been used. The solvent

correction ∆Es is then obtained as ∆Es = E
(+)
s −E(0)

s , i.e. as the difference between the solvent
contributions to the bonding energies of the oxidized species and the neutral species both at the
equilibrium geometry of the neutral species.

6.1.2 Results

AT1

AT1+B

AT2

AT4

Figure 6.1: DNA model systems used in this work.

The calculated charged excitations are shown in table 6.1 for different basis sets and fragment
sizes between 1 and 4 AT pairs (We refer to these systems as ATx, were x denotes the number
of AT base pairs). These systems are shown in figure 6.1. For all fragments, we calculated the
IPs with the TZ2P and TZ3P basis set with 1d1f, and 2d1f shells of polarization functions for
2nd and 3rd row atoms (and analogously for other atoms). We see, that going from TZ2P to
TZ3P only has a small effect on the IPs and EAs, reducing the basis set incompleteness error by
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IP EA
calculation AT1 AT1+B AT2 AT4 AT1 AT1+B AT2 AT4

TZ2P 7.84 7.34 6.94 -0.84 -0.65 -0.45
TZ3P 8.47 7.90 7.35 6.97 -0.41 -0.80 -0.63 -0.40
QZ6P 8.50 7.96 -0.26 -0.62

extra 8.55 8.04 (7.49) (7.11) -0.07 -0.38 ( -0.21) ( 0.02)
∆sol. 1.82 -0.99 -0.52 -0.01 1.55 1.87 1.62
ϵ+ ∆sol. 6.73 7.05 6.97 7.10 1.62 1.66 1.64

Table 6.1: Ionization potentials (IPs) and electron affinities (EAS) of DNA fragments consisting
of different numbers of adenine-thymine base pairs calculated with different basis sets and con-
tributions of solvent from ∆BLYP calculations. Extra(TQ) denotes extrapolation to the CBS
limit based on TZ3P and QZ6P calculations and numbers in parentheses are obtained by adding
the difference between ϵCBS

i − ϵTZ3P
i to the result obtained at the TZ3P level. ∆sol. has been

calculated using COSMO. All values are in eV.

only a few ten meV. These calculations with two rather similar basis sets are necessary to rule
out the possibility that a result is simply an artefact of a chosen basis set. Going from TZ3P to
QZ6P, the IP of the AT1+B increases by a modest 60 meV, while the EA reduces by 180 meV.
Based on the TZ3P and QZ6P calculations, we can estimate the QP energies at the CBS limit
by extrapolation. Comparing the TZ3P results to the extrapolated ones, we find a basis set limit
incompleteness error of 140 meV for the IP and of 420 meV for the EA of AT1. For AT1, we
find a similar basis set limit incompleteness error of 80 meV for the IP and of 340 meV for the
EA.

On standard hardware, calculations on the QZ level are not feasible for AT4 and already for
AT2, the QZ calculation is cumbersome. This is not only due to the large number of diffuse
AOs which make makes it difficult to exploit distance-based cut-offs36 but also due to the large
auxiliary basis sets which are required to make the calculations numerically stable. However,
we can estimate the CBS limit based on the differences between the QP energies at the CBS
limit and the largest affordable basis set for the larger systems for the smaller fragments. This is
justified with the observations made in ref.36 for G0W0 were we found the basis set incompleteness
error on average to decrease with increasing system size36 but only to a certain extent since basis
functions are localised. Based on this assumption, we correct the IPs and EAs of AT2 and AT4
on the TZ3P level by the basis set limit incompleteness error found for AT1+B. (140 meV and
420 meV, respectively). There is of course a small uncertainty due to the different basis set errors
for AT1 and AT1+B. For the extrapolation itself, we assume the error to be rather small for the
IP, since the difference between TZ3P and QZ6P are rather small. For the EAs, the error might
be larger. Still, we can safely assume, that the basis set errors for AT2 and AT4 are below 100
meV.

The energy required to remove or add an electron from a DNA oligomer in vacuum is strongly
size dependent: The vertical IP in vacuum decreases rapidly with increasing oligomer size, with a
difference of almost 1 eV between AT1 and AT4. For the EA, a difference of 0.4 eV is found. The
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IPs of the solvated DNA oligomers, on the other hand, are almost independent of the number of
base pairs. When an electron is removed from the oligomer, the surrounding cloud of electrons
stabilizes the resulting hole. Increasing the oligomer size thus reduces the IP potential since
the hole becomes more and more stabilized. In the aqueous environment, the solvent plays the
same role and consequently, the inclusion of water via the COSMO effectively compensates for
the effect of the DNA environment. Of course, the comparison is slightly skewed since the DNA
environment and the solvent are not treated at the same level of theory. However, there is some
evidence that COSMO and other polarizable continuum models are fairly accurate in describing
the dielectric screening properties of water680.

The IP of AT1+B, AT2, and AT4, all agree within 130 meV. In light of possible basis set
errors and errors of the qsGW method itself, the difference is well within the error margin of our
method. Only for AT1 we obtain a significantly lower IP, which indicates that the DNA backbone
apparently plays an important role in stabilizing ionized DNA oligomers. For the EAs, we arrive
at the same conclusion. The differences between the considered systems are even smaller, the
aqueous EAs of AT1, AT2 and AT4 being with 1.62, 1.66 and 1.64 eV in excellent agreement.
Recently, Pluhařová et. al.673,681,682 also concluded that the effect of the DNA environment on
the IPs of individual aqueous nucleobases seems to be modest. On the BMK683/6-31G* level
of theory, they obtained an IP of 7.24 eV for a fragment of 2 solvated AT base pairs including
backbone from the Dickerson dodecamer, but for the isolated AT base pair, they obtained and
IP of 7.58 eV. The first number is in good agreement with ours, while the second one differs
from our result for AT1 by almost 1 eV. However, the difference of only 340 meV between both
fragments is of the same order as our difference between the IPs of AT1 and AT2 of 260 meV.
Thus, our conclusions regarding the role of the explicit inclusion of the DNA environment on the
calculated IPs are very similar.

In conclusion, we have shown that IPs and EAs of the considered DNA oligomers in vacuum
are strongly size-dependent. Upon taking into account the effect of the aqueous environment,
the QP energies become almost independent of the system size. This confirms the results of
previous DFT studies.673,682

6.2 Chlorophylls

The absorption of photons by a molecule or a material upon interaction with electric radiation
is a key process in the conversion of light into chemical or electrical energy. In the photosystem
II (PSII) reaction center (RC), photons are captured by chromophoric complexes which then
leads to the generation of free charge carriers.684 In the first step of this process an electron-hole
pair is formed, where electron and hole are bound due to their Coulombic interaction.3 Such
bound electron-hole states are commonly referred to as excitons and correspond to the energies
of the absorbed photons.685 In the current work we look at the characterization of such low-lying
excited states of the RC of PSII which is at the heart of photosynthetic function.686 As shown in
figure 6.2, the PSII RC comprises six chromophores, a ”special pair”,687,688 of two Chlorophyll a
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(chla) molecules (PD1 and PD2), flanked by two more chla (ChlD1 and ChlD2) and two Pheophytin
(PheoD1 and PheoD2) molecules, with around 2000 electrons in total. By now, it has been firmly
established that the primary events of charge separation in PSII are determined by a complex
interplay of all these six chromophores.689 Therefore, all six chromophores should ideally be
treated on a quantum mechanical level and their couplings need to be taken into account.

Figure 6.2: Chromophores of the Photosystem II reaction center.

In most current calculations of larger biomolecular complexes, one resorts to Hartree-Fock
(HF)690,691 or Time-dependent (TD) Density Functional Theory (DFT) with a range-separated
hybrid (RSH) exchange-correlation kernel689,692–696. RSHs frequently offer good agreement with
experiment for Chla monomers and dimers,695,697,698 but also large deviations to more advanced
multi-configurational698,699 and wave-function based methods have been reported.700 To mitigate
such errors, RSHs can be parametrized empirically for each system under investigation (as for
example done in references in701 and702), but this makes them non-transferable and unreliable for
general applications. More systematic parametrization procedures for range-separated function-
als have been suggested as well201–204 which always require to perform exploratory calculations to
find the ideal range-separation parameter. Furthermore, heterogeneous systems like large com-
plexes of Chromophores might require different range separation parameters for different parts
of the complex.206

Turning to wave-function based methods for excited states, we find the second-order algebraic
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diagrammatic construction scheme (ADC(2))703,704 and coupled cluster62–66 with approximate
doubles (CC2)705 easy to apply and reasonably cost-efficient. CC2 results are typically in good
agreement with more involved methods like equation-of-motion (EOM) CC706 with singles and
doubles (EOM-CCSD) or similarity-transformed (ST) EOM707,708-CCSD709,710. For these meth-
ods we are aware of one study of a tetrameric model by Suomivuori et al.711 using ADC(2)
together with the spin-opposite-scaled712 and reduced-virtual-space (RVS)713 approximations.
Unfortunately, they did not include the Pheophytin chromophores in their calculations, which
are known to play a key role in the initial charge separation immediately after photoexcita-
tion.696,714–716 This is potentially possible, but we note that most applications of wave-function
based methods698,700,717,718 focus on single chromophores. Utilizing subsystem methods719–725

the applicability of these methods can be extended. In this family of methods one describes the
full RC by an effective Hamiltonian with a limited amount of levels for each chromophore. The
information needed to build such an effective Hamiltonian are the monomeric excitation energies
as well as the inter-monomeric couplings. These parameters can be computed in a first principles
manner with various electronic structure methods726–728. While the subsystem approach can be
used with high-level monomer calculations, a drawback is that commonly used approximations to
calculate the couplings between the chromophores are often not accurate enough.697,713,729 In the
current work we will therefore examine how a large system can be treated directly without having
to resort to partitioning and subsystem methods. As the states of interest are the lowest energy
ones, we thereby focus on a limited number of states, but describe them in a supermolecular
fashion that fully accounts for all intermolecular couplings of the chromophores.

Our approach is based on the BSE@GW method which has recently been shown to repro-
duce experimental low-lying excitation energies of Chls with high accuracy.268,730 So far, it has
only been applied to monomeric models of PSII.268,730 In section 6.3 we first contrast the qsGW
method to evGW for monomers and then confirm the excellent agreement with experiment and
other quantum chemical calculations for both methods. We then use the BSE@qsGW imple-
mentation to calculate the low-lying excitation of the hexameric complex. Finally, section 6.3
summarizes and concludes this work.

6.2.1 Computational Details

All calculations have been performed with a locally modified development version of ADF2022.1496,731

Unlike in all other calculations reported in this thesis, the projection technique outlined in sec-
tion 3.1.3 has been used here.

For the hexameric unit of PSII, we used the structure of ref. [732] which has been optimized
at the PBE level of theory taking into account environment effects using a QM/MM approach.
Dimer structures have been optimized in this work using CAM-B3LYP-D3(BJ), a triple-ζ +
polarization (TZP)487 basis set and Good numerical quality. The monomer structures used in
section 6.3.1 and sec. 6.3.2 are taken from the structure by ref. [694] based on the experimen-
tal structure at 1.9 Å resolution by Umena et al.733 and where the positions of the Hydrogen
atoms have been optimized using a semi-empirical model with all other coordinates frozen. All
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structures used in this work can be found in the supporting information of ref. [39].
We also benchmarked the basis set dependence of the BSE@GW calculations using the larger

TZ3P and QZ6P basis sets37 for Chla monomers in section 6.3.2. All BSE@qsGW results shown
there have been obtained with the veryGood auxiliary basis. This allows us to reliably compare
excitation energies obtained with different primary basis sets. TZ3P and QZ6P contain f -
functions for second-row atoms and for such basis sets, the Good auxiliary fit set is generally
insufficient. For monomers, we calculate the lowest 3 eigenstates of (3.194).

For chromophore dimers we calculated the lowest 6 eigenstates of (3.194), using TZP (triple-
ζ + polarization)487 as primary basis set, Good numerical quality and 16 imaginary time and
frequency points each. In all calculations for monomers and dimers we terminate the sequence
of subspace iterations if all eigenvalues are converged within 10−5 Hartree (0.27 meV).

In the BSE@GW calculations of the excited states of the hexamer, we used the TZP basis
set, Basic numerical quality, and 12 imaginary time and frequency points each. We restrict the
basis in which we solve the BSE to the subspace spanned by all particle-hole pairs with transition
energies below 1.5 Hartree. In agreement with earlier BSE@GW studies for such systems,288 we
found this approximation to change the low-lying excitation energies by only around 10-20 meV
compared to calculations including all particle-hole pairs. For instance, changing the cut-off
for the inclusion of the particle-hole states from 1.5 to 2.0 Hartree changes each of the lowest
three excitation energies of monomers by less than 10 meV. This improves numerical stability
of our algorithm and accelerates the convergence of the subspace iterations in the Davidson
algorithm. We perform eight subspace iterations in the Davidson algorithm and calculate the
24 lowest eigenstates of (3.194). This is sufficient to converge the low-lying excited states to
within less than 5 meV. We also calculated the low-lying excited states of the same system using
TD-DFT with the ωB97-X kernel using the same numerical settings. However, in contrast to
our BSE@GW calculations, we calculated the 12 lowest states and converged all eigenvalues to
within 10−6 Hartree.

In all calculations we took into account scalar relativistic effects in the zeroth-order regular
approximation.619–621 The threshold ϵs described in appendix 3.1.3 has been set to 5 × 10−3.
Also, in all KS calculations we set the threshold below which we set eigenvalues of the inverse of
the overlap matrix to zero during he canonical orthonormalization procedure to 5× 10−3. If not
stated otherwise, in all qsGW calculations we first perform a PBE0 calculation with 40 % exact
exchange (PBEH40), which is a good preconditioner for qsGW and leads to fast convergence.248

Aside from numerical inaccuracies, the final results are independent of this choice which we have
verified in ref. [38] and which we will verify also for the case of Chla in the next section. For qsGW ,
we terminate the calculations when the Frobenius norm of the difference between the density
matrices of two subsequent iterations falls below 5 × 10−9.38 We also performed BSE@evGW
calculations based on the LDA and PBEH40 functionals (evGW@LDA, evGW@PBEH40). We
terminate the evGW calculations if the HOMO QP energy difference between two subsequent
iterations falls below 3 meV.

To compare our method to the RSH TD-DFT approach, we also performed calculations using
the CAMY-B3LYP and ωB97-X kernel using the TZP basis set and Good numerical quality. We
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also calculated the electrochromatic shifts due to the presence of the protein environment using
the conductor like screening model (COSMO)[674–676] as implemented in ADF.[677] Following
ref. [711], we set the dielectric constant of the environment to a value of 4.0 in these calculations
which should approximately account for solvent and protein environment.

6.3 Results
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Figure 6.3: Different models of Chla used in this work: a) Model used by Suomivuori et al.711

with ligating Histidine residue. b) Models without Histidine residue but containing all ligands
at the chlorin core and different models for the phytyl chain (M1, M2, and M3, respectively).

6.3.1 Starting-point dependence

As discussed in the previous chapters, its starting point independence is a major advantage
of qsGW over evGW . To verify the starting point independence of our implementation also
for BSE@qsGW calculations, we report here vertical excitation energies (VEE) for qsGW and
evGW for the M2 model in figure 6.3b) with 82 atoms in total for the LDA, PBE, PBEH40,
and HF starting points. We thereby use a tighter convergence criterion of 1 meV for the HOMO
QP energy for evGW than the default value. The results for the Qy excitation are shown in
table 6.2. The qsGW calculations converge to the same HOMO-LUMO gap within an accuracy
of 10 meV within less than 10 iterations. This also results in Qy excitation energies which are
converged within 10 meV. The remaining differences are due to numerical noise in the imaginary
frequency and time grids used in the GW calculations which then translates into uncertainties
in the analytical continuation of the self-energy to the complex plane.37,269 The differences in
the HOMO-LUMO gaps of the evGW calculations are much larger and differ by almost 300
meV between evGW@LDA and evGW@HF, which results in Qy excitations energies differing
by about 80 meV. This is the most extreme case, for starting points other than HF there are
only very small differences between the different evGW results. This has already been observed
in ref. [268]. Since the computational overhead of a qsGW calculation is negligible compared
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to evGW (5.79 vs. 5.67 core hours per iteration) and the number of iterations needed for
convergence is essentially the same, there is little advantage to be gained by using evGW instead
of the more robust qsGW approach.

evGW qsGW
gap Qy [eV] nI t [h] gap Qy [eV] nI t [h]

LDA 4.405 1.764 9 5.67 4.499 1.752 9 5.79
PBE 4.417 1.837 9 - 4.501 1.745 10 -
PBEH40 4.476 1.772 7 - 4.493 1.760 8 -
HF 4.671 1.766 9 - 4.496 1.753 9 -

Table 6.2: HOMO-LUMO gap, Value of the Qy excitation for different starting points, number
of iterations until convergence and time per GW iteration, measured in core hours, for qsGW
and evGW . Calculations were performed on a 2.2 GHz intel Xeon (E5-2650 v4) node (broadwell
architecture) with 24 cores and 128 GB RAM.

6.3.2 Basis Set Errors

BSE@evGW@LDA BSE@qsGW
M1 M2 M1 M2

Qy Qx B Qy Qx B Qy Qx B Qy Qx B

TZP 1.74 1.93 2.68 1.76 1.94 2.71 1.72 1.98 2.84 1.74 2.00 2.86
TZ3P 1.77 1.96 2.72 1.79 1.98 2.76 1.72 1.98 2.84 1.73 1.97 2.84
QZ6P 1.71 1.94 2.64 1.74 1.92 2.68 1.71 1.96 2.80 1.71 1.96 2.84
∆TQ 0.03 -0.01 0.04 0.02 0.02 0.03 0.01 0.02 0.04 0.03 0.04 0.02

Table 6.3: VEEs for M1 and M2 with different basis sets for BSE@qsGW and BSE@evGW@LDA.
The values in the last row denote the differences in VEEs calculated with the TZP487 and QZ6P37

basis sets. All values are in eV.

Next, we investigate the dependence of the Qy excitation energy on the basis set size. For GW
calculations it is well known that individual QP energies converge slowly with respect of the size
of the single-particle basis. In practice, extrapolation techniques are needed to obtain converged
results.545,598,599 For orbital energy differences which are entering the BSE, the situation is much
better since the basis set error for the QP energies usually have the same sign.598 In table 6.3 we
compare the lowest excitation energies calculated with different basis sets for the two different
Chla models M1 and M2 shown in figure 6.3b). For evGW and qsGW the QZ6P VEEs are only
slightly lower than the TZP ones, indicating that they are almost converged also with the smaller
basis set. These errors are certainly smaller then other possible sources of error in our calculations
like shortcomings of BSE@GW or uncertainties in structural parameters. Therefore, to a very
good approximation, we can ignore the basis set incompleteness error in all of the following TZP
calculations.
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6.3.3 Comparison to Experiment and different ab-initio Calculations

Monomers

Next, we assess the accuracy of BSE@qsGW by comparison to experimental gas-phase data for
Chla by Gruber et al.734 In table 6.4 we directly compare VEEs calculated with different computa-
tional methods to the experimental VEE which has recently been extracted from the experimental
spectrum by Sirohiwal et al.717. The domain based local pair-natural orbital414,415 (DLPNO)-
STEOM-CCSD735–737 results are taken from ref. [717], while the BSE@evGW@LDA/6-311++G(2d,2p)
results calculated using MOLGW542 are by Hashemi and Leppert.268 Two different, gas-phase
optimized structures have been used: One has been optimized at the CAM-B3LYP-D3(BJ)/def2-
TZVP level of theory by Sirohival et al.717, while the other has been optimized by Hashemi and
Leppert using B3LYP/def2-TZVP.

Qy Qx B ∆Qy−Qx

exp. (VEE) 1.99 2.30 3.12 0.31
exp. (band max) 1.94 2.23 3.08 0.29

CAM-B3LYP-D3(BJ)/def2-TZVP optimized structure

DLPNO-STEOM-CCSD 1.75 2.24 3.17 0.49
qsGW 1.97 2.29 3.15 0.32
evGW@PBEH40 1.98 2.29 3.15 0.31
evGW@LDA 1.94 2.20 3.01 0.26
CAMY-B3LYP 1.94 2.23 3.08 0.29
ωB97-X 2.10 2.71 3.57 0.61

B3LYP/def2-TZVP optimized structure

BSE@evGW@LDA (ADF/TZP) 1.85 2.09 2.91 0.24
BSE@evGW@LDA (MOLGW/6-311++G(2d,2p)) 1.85 2.13 2.91 0.28

Table 6.4: VEEs for Chla calculated with different quantum chemical methods for two different
gas-phase optimized structures and experimental reference data. All values are in eV.

We performed BSE@evGW@LDA calculations for both structures. Our results for the CAM-
B3LYP-D3(BJ) optimized structure are consistently around 0.1 eV lower than the ones for the
B3LYP optimized structure. This illustrates the large influence of small changes in structural pa-
rameters on the final excitation energies. However, CAM-B3LYP has been shown to describe the
structural features of Cholorpyll monomers very well.717,738 For the B3LYP optimized structure,
we can compare our herein calculated VEEs to the ones from Hashemi and Leppert calculated
on the same level of theory. Except for the Qx excitation energies which are slightly different
(40 meV), we find perfect agreement between both implementations.

All evGW results agree very well with qsGW also for Chla. All BSE@GW results for the
CAM-B3LYP-D3(BJ) optimized structure are in excellent agreement with the experimental val-
ues. For instance, the BSE@qsGW VEEs agree all with the experimental VEEs within 30 meV.
On the other hand, DLPNO-STEOM-CCSD not only severly underestimates the Qy excitation
energy, but it also overestimates the gap between both Q-bands, ∆Qy−Qx , considerably. Con-
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sidering this difference, we note that STEOM-CCSD is not necessarily a reliable reference for
qsGW . In STEOM-CCSD, a much larger number of diagrams is considered in the single- and
two-particle Green’s functions compared to GW .612 QP approximations to GW approximate
the effect of these diagrams instead by neglecting the vertex.142 The diagrams contained in GW
are not a subset of the ones contained in EOM-CCSD but only of the ones contained in EOM-
CCSDT.612 Accounting for excitations to triples (at least to some extent) is known to be of high
importance for the reliable description of charged646 and neutral excitations.709,710,739 Conse-
quently, STEOM-CCSD shows mean signed errors compared to EOM-CCSDT calculations of
around 0.1 eV for a set of medium organic molecules, but errors can be as large as 0.5 eV in
some cases.709 Moreover, apart from the neglect to triple excitations, the DLPNO approxima-
tion can also introduce some artifacts. The pairs which are treated on the CC level are selected
based on an MP2 calculation415 which is not always reliable for systems with strongly screened
electron-electron interactions.112,393

Lastly, TD-DFT with the RSH kernels CAMY-B3LYP and ωB97-X which are typically used
in computational studies of the PSII RC693–695,732 give very different results. CAMY-B3LYP is
actually in excellent agreement with experiment and the BSE@GW calculations, while ωB97-X
gives much too high excitation energies and also massively overestimates the ∆Qy−Qx .

Dimers

Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

exp. (VEE)740 1.95 (estimated)
exp. (band max)740 1.90

B3LYP-D3(BJ)/def2-SVP optimized structurea711

qsGW 1.89 1.92 2.07 2.10 2.83 2.92
evGW@PBEH40 1.92 1.95 2.09 2.11 2.84 2.93
evGW@LDA 1.87 1.88 1.90 1.90 2.72 2.75
CAMY-B3LYP 2.12 2.15 2.29 2.32 2.63 2.76
RVS-LT-SOS-ADC(2)b 2.04 2.06

CAM-B3LYP-D3(BJ)/TZP optimized structurec

qsGW 1.94 1.98 2.25 2.28 2.56 2.68
evGW@PBEH40 1.97 2.02 2.24 2.27 2.58 2.67
evGW@LDA 1.98 1.99 2.16 2.22 2.51 2.64
CAMY-B3LYP 2.12 2.16 2.38 2.43 2.51 2.61
ωB97-X 2.05 2.10 2.63 2.68 3.10 3.27

Table 6.5: The lowest six excitation energies for two different models of the Chla dimer. All
values are in eV.a,b,c

aThe B3LYP-D3(BJ)/def2-SVP structure has been taken from Suomivuori et al.711.
bResults taken from Suomivuori et al.711.

cThe structure of the M3 dimer has been optimized in this work at CAM-B3LYP-D3(BJ)/TZP.

In table 6.5, we show the low-lying excitations of BSE@GW calculations for different models
of PD1-PD2. The first dimer structure has been optimized in the gas phase by Suomivuori et al.
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at the B3LYP-D3/def2-SVP level of theory and consists of two Chla monomers whose structure
is shown in figure 6.3a. This structure lacks most substituents of the Chlorin core present in Chla
(see figure 6.3b which, in principle, complicates comparison of excitation energies to experimental
results. However, these calculations give some indication on the performance of BSE@GW in
comparison to the RVS-LT-SOS-ADC(2) VEEs by Suomivuori et al. Comparison of experimental
band maximum and VEE for a single Chla measured in ref. [734] suggests that the VEE of the
chlorophyll dimer might be around 1.95 eV (50 meV higher than the band maximum).

evGW@LDA evGW@PBEH40
VEE character weight f VEE character weight f

Ω1 1.87 238 → 240 0.49 0.08 1.92 238 → 240 0.28 0.30
237 → 239 0.26

Ω2 1.88 237 → 240 0.22 0.14 1.95 238 → 241 0.41 0.03
237 → 239 0.17 237 → 239 0.34

Ω3 1.90 236 → 239 0.38 0.13 2.09 235 → 239 0.53 0.04
Ω4 1.90 237 → 240 0.37 0.00 2.11 236 → 240 0.49 0.03

235 → 239 0.31
Ω5 2.72 238 → 239 0.51 0.37 2.84 238 → 239 0.56 0.24
Ω6 2.75 237 → 239 0.27 0.14 2.93 237 → 240 0.31 0.20

237 → 242 0.24

Table 6.6: Characterization and comparison of the low-lying excited states of Chla dimer (struc-
ture by Suomivuori et al.711) calculated with BSE@evGW@LDA and BSE@evGW@PBEH40.a
aShown are the excitation energies ΩS (in eV), the dominant coefficients of the corresponding eigenvector and

the associated particle-hole transitions, as well as the oscillator strengths f .

As for the monomer, the BSE@GW results are in excellent agreement with these values while
the RVS-LT-SOS-ADC(2) VEEs are much too high. In contrast to the case of the Chla monomer,
CAMY-B3LYP overestimates the VEEs by far. The VEEs Ω3 and Ω4 of the BSE calculation
based on evGW@LDA are almost 0.2 eV lower than the ones based on evGW@PBEH40, and
in the former calculation, the four lowest excited states are almost degenerate. The character
of these excitations are compared in more detail in table 6.6 with the corresponding KS single-
particle orbitals shown in figure 6.4. Comparison of the most important contributions to the
eigenvector |X,Y⟩T1 already shows that BSE@evGW@LDA predicts the lowest excitation to be
localized on the PD1 fragment, while in the BSE@evGW@PBEH40 calculation it is delocalised
over both monomers with almost equal weights. Using BSE@evGW@LDA, the second excited
state has a large contribution of a particle-hole transition located on PD1, while it is localized
on PD2 using BSE@evGW@PBEH40. Also, the oscillator strengths in table 6.6 show that the
different excitations differ substantially in their brightness. Together with the large difference in
some of the VEEs, this shows that different KS starting points can lead to different excitations,
even when the eigenvalues are updated self-consistently.

In table 6.5, we also show results for a more realistic model of the Chla dimer. Our model
consists of two M3 monomers which includes the first four segments of the phytyl chain in
stacked conformation. In table S1 of the supporting information of ref. [39], we show that the
final excitation energies are however very insensitive to the particular structural model.
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Figure 6.4: Selected valence single-particle KS orbitals for the Chla dimer (structure by
Suomivuori et al.711) calculated using LDA and PBEH40.

The band maximum of ref. [740] which we used as reference has been measured for a charge
tagged dimer. However, as shown in ref. [741] for Chla monomers, the final excitation energies
are insensitive to the type of charge tag and omitting the charge tag entirely only results in a
lowering of the excitation energies of around 30-40 meV.

The excitations have been calculated for a geometry optimized at the CAM-B3LYP/TZP level
of theory. Excitation energies for geometries optimized with different methods can be found in
table S2 of the supporting information of ref. [39]. In accordance with ref. [717] and our results
shown in table 6.4 we found the VEEs to be very sensitive to the choice of the functional chosen
for geometry optimization. For instance, using PBE-D4/TZP lowers the lowest 2 excitation
energies by around 0.1 eV with respect to the CAM-B3LYP-D3(BJ) optimized structure. The
data shown in table S3 in supporting information furthermore demonstrates that VEEs for crystal
structures considerably underestimate the experimental values.

The lowest BSE@qsGW excitation energy of 1.94 meV is again in excellent agreement with
the VEE of 1.95 eV estimated from the band maximum. As explicitly shown in the supporting
information of ref. [39] and as for the monomers in table 6.3, the excitation energies are again
rather insensitive to the basis set. Also notice that the remaining small basis set errors will largely
cancel with the small error from omitting the charge tag. Again, the lowest two BSE@evGW
VEEs are in excellent agreement with the BSE@qsGW one and each other, while there are larger
differences in higher-lying VEEs. As for the monomer, CAMY-B3LYP massively overestimates
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the VEEs compared to experiment.

6.3.4 Six-chromophore model of the PSII RC

VEE f Character weight

Ω1 1.89 0.22
PD2

∗ 0.39
ChlD2

∗ 0.22

Ω3 1.90 0.77
PD2

∗ 0.24
PD1

∗ 0.14
PheoD2

∗ 0.09
PD1

+ - PD2
− 0.09

Ω3 1.91 0.04
ChlD1

∗ 0.30
PD1

∗ 0.24
ChlD1

+ - PheoD1
− 0.08

Ω4 1.92 0.22
PheoD2

∗ 0.39
ChlD2

∗ 0.16
PheoD2

∗ 0.12
ChlD1

∗ 0.09

Ω5 1.94 0.01
ChlD1

∗ 0.23
ChlD2

∗ 0.18
PD1

∗ 0.16
PD2

∗ 0.15

Ω6 1.97 0.20
PheoD1

∗ 0.54
PheoD1

− - ChlD1
+ 0.21

Ω13 2.71 0.00
PD2

+ - ChlD2
− 0.81

PD1
+ - ChlD2

− 0.13

Ω14 2.73 0.00
PD1

+ - ChlD1
− 0.70

PD1
+ - PheoD1

− 0.20

Table 6.7: The lowest BSE@qsGW/TZP excited states of the hexameric chromophore complex
in the RC of PSII.a.
aShown are the excitation energies ΩS (in eV), the dominant coefficients of the corresponding eigenvector and

the associated particle-hole transitions, as well as the oscillator strengths f .

The most complete model of the PSII RC we consider in this work comprises all six chro-
mophores shown in figure 6.2 with 476 atoms in total. Time-resolved spectroscopic experi-
ments714–716 show that the primary electron transfer in the RC occurs from an exciton localized
on ChlD1 to PheoD1, followed by a transfer of the hole to PD1. This would point to the pres-
ence and possible mixing in of low-lying CT states with pronounced ChlD1

+ -PheoD1
- and PD1

+

-PheoD1
- character in calculations of excitation energies. In previous TD-DFT calculations using

RSH kernels for similar multi-chromophoric models, no low-lying CT state which could be related
to this charge separation pathway have been observed.693,732 In recent computational studies,
both Sirohiwal et al.689,732 and Tamura et al.696 demonstrated that the protein environment is
crucial for observing the ChlD1

+ -PheoD1
- CT state at low energies.
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BSE@qsGW BSE@qsGW@PBEH40 TD-DFT@ωB97-X
VEE f VEE f VEE f

Ω1 1.89 0.22 1.94 0.81 1.92 0.33
Ω2 1.90 0.77 1.94 0.32 1.93 0.64
Ω3 1.91 0.04 1.96 0.05 1.94 0.14
Ω4 1.92 0.22 1.97 0.24 1.96 0.18
Ω5 1.94 0.01 1.99 0.15 1.97 0.09
Ω6 1.97 0.20 2.00 0.11 1.98 0.07

Table 6.8: The VEEs and oscillator strengths of the six lowest excited states of the hexameric
complex at different levels of theory. All values are in eV.

The low-lying excitations of the hexameric complex at the BSE@qsGW/TZP level of the-
ory are characterized in table 6.7. In the supporting information of ref. [39] we characterize
these excitations in more detail by visualizing the involved single-particle qsGW orbitals. We
also present results of our own TD-DFT calculations using the ωB97-X kernel as well as for
BSE@evGW@PBEH40/TZP. The excitation energies and the oscillator strengths of the six low-
est excited states using these different methods are compared in table 6.8.

In agreement with past693,732 and our own TD-DFT calculations using the ωB97-X kernel,
only states with local character can be found among the six lowest excitations of the hexamer
using both, BSE@qsGW and BSE@evGW@PBEH40. As shown in table 6.8, also the VEEs
using the different methods agree within 50 meV. In all methods, the low-lying states are linear
combinations of excitonic states involving the frontier orbitals on each chromophore.

At the BSE@qsGW level, the two lowest states with pronounced CT character can be found
at 2.7 eV and these cannot directly be linked to charge separation pathways in PSII which have
been observed experimentally.714–716 Only the third excited state at the BSE@qsGW level of
theory at 1.91 eV contains a contribution from a ChlD1

+ -PheoD1
- particle-hole transition with

a small weight, which is entirely absent in our TD-DFT and BSE@evGW calculations. Future
studies at the BSE@GW level with inclusion of the environment electrostatics are needed to
rationalize how the ChlD1

+ -PheoD1
- CT state is influenced by the protein environment at the

BSE@qsGW level.
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Chapter 7

Conclusions

In this thesis, we have given an overview over MBPT based methods for the description of
many-electron systems and their implementation in the STO based quantum chemistry code
ADF. In chapter 2 we have summarized the theoretical foundations on which these methods are
based, discussed the physical content of the canonical approximations and gave an overview over
their strength and weaknesses for the description of electron interaction effects in finite systems.
Combining theoretical rigor and a thorough discussion of practical aspects, chapter 2 provides
a concise introduction to MBPT with a focus on the treatment of finite systems. The other
chapters of this thesis combine three novel developments:

First, we have implemented the standard methods of MBPT using STOs and with low-order
scaling with system size. These are MP2 and RPA methods for the calculation of correlation
energies, the GW method for of single particle excitations, and the BSE@GW method for exci-
tonic states. The numerical approximations we have thereby introduced have been described in
chapter 3 and their precision has been assessed in chapter 4 via a detailed comparison of GW QP
energies to ones from other quantum chemistry codes implementing the GWA with different basis
set types and also making different choices regarding other technical parameters like frequency
treatment, description of core electrons, the algorithm used to solve the QP equations, and the
numerical treatment of 4-point correlation functions.

We have shown herein that it is possible, though difficult, to reach consensus between these
implementations and ours. In light of the differences in the MBPT implementations, the observed
agreement of QP energies between 55 to 85 meV on average for IPs between STO- def2-GTO-
and plane-wave results is excellent. Reaching the CBS limit is more difficult for EAs than for
IPs. Still, EAs calculated with ADF are in excellent agreement with the plane-wave results
from the WEST code for systems with positive LUMOs, with an overall MAD between both
codes of 160 meV. These deviations mostly stem from large basis set errors for the EAs of small
molecules with bound LUMO with the ADF code. For larger organic molecules, agreement to
def2-GTO results is with a MAD of 93 meV significantly better. Good agreement is also observed
for RPA correlation energies. Since the other methods we have implemented rely on the same

219
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approximations, these results also imply their correct implementation. This close agreement
between different codes is highly important in practice since it allows researchers to interpret the
results of their MBPT calculations, without worrying that they might be skewed by technical
aspects.

Second, we have described an efficient implementation of the qsGW method and assessed its
accuracy for molecular systems. While low-scaling implementations of diagonal approximations
to GW have been presented before, our implementation is the first which also achieves low-
order scaling with system size for qsGW . We have shown that qsGW is an excellent method to
calculate IPs and EAs for a set of medium organic acceptor molecules. With MADs of 0.09 eV
for IPs and 0.14 eV for EAs, qsGW outperforms all other GW methods, previously benchmarked
for this dataset.242 Remarkably, fundamental gaps are underestimated by qsGW compared to
CCSD(T) reference values. This is different from the common situation in extended systems and
can be attributed to the much weaker charge screening in finite systems. Also for a second set
of 40 small molecules where no reference data for EAs was available, qsGW gives excellent IPs.

This allows for the accurate and starting point independent computation of single particle
excitations and - in combination with the BSE@qsGW method - the calculation of excitonic
states for large molecules. The applications we have presented in chapter 6 illustrate this. As
opposed to a recently developed simplified BSE@GW scheme,742 our implementation does not
introduce any empirical approximations to the matrix elements of the BSE Hamiltonian. We
have illustrated the potential of this new implementation by applications to biologically relevant
systems, a six-chromophore model of the photosystem II (PSII) reaction center (RC) and DNA
oligomers. These systems contain several hundreds of atoms and the developments presented in
this work made it possibly for the first time to investigate them on the (BSE@)qsGW level of
theory.

Third, We went beyond the GW approximation and presented approaches based on the
G3W2 contribution to the electronic self-energy which go beyond the canonical approximations.
We have implemented the statically screened G3W2 self-energy and assessed its accuracy for
single-particle excitations. For qsGW , the statically screened G3W2 correction does not lead to
systematic improvements. However, we could show that this contribution to the self-energy is
especially useful to improve over RPA correlation energies and gives the same level of accuracy
as AC-SOSEX for a wide range of different bonding characteristics.

Building on these developments there are various directions of research which might be pur-
sued in the future. An issue which appeared throughout this thesis is the slow convergence of
the values of observables with respect to the single-particle basis. First of all, our STO-type
basis sets are restricted to angular momenta smaller or equal to l = 3 which sets a limit to the
accuracy currently attainable. It would be desirable to obtain results using even larger basis
sets than the ones presented in this thesis. Currently, we are working on interfacing our MBPT
code to the BAND code which uses numerical atomic orbitals. This would allow us to use larger
basis sets of all types with angular momenta larger than l = 3 and would improve the attainable
accuracy for small molecules.

Even more importantly, the slow convergence to the CBS limit is also an obstacle in practical
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applications since calculations at (or even close to) the CBS limit are currently often out of
reach and will most likely not become routine anytime soon for systems with hundreds of atoms.
This is due to the fact that low-order scaling implementations like ours rely on sparsity in the
primary basis and do not scale well with the size of the basis set. Furthermore, the equations
we implemented tend to become numerically more unstable with increasing basis set size. To
overcome this issue, finite basis set corrections599,743,744 hold much promise and it is to hope that
these techniques will be further developed and become more widespread available in the near
future.

It should be noted that one might find ways around these issues in practical applications.
We have for example seen in section 6.1 that basis set errors for large systems can also be
accurately estimated based on results for smaller, chemically closely related systems. Also for
BSE@GW calculations in which only differences in the QP energies are relevant, the situation
is already much better. Our results in section 6.2 confirmed the results of previous studies
which demonstrated that basis set errors for occupied and virtual states usually cancel to a large
extent and that fundamental gaps are often sufficiently converged using relatively small basis
sets.258,263–265,268,613,745

Another issue we have encountered in chapter 6 is that many system of practical interest are
not isolated but are typically embedded in a solvent or in a protein matrix. We have seen in
ref. 6.1 and also in ref. [248] that the effect of the solvent can be accurately modeled by using
a combination of DFT and COSMO. However, this procedure is rather tedious and it would
be highly desirable to take into account environmental effects more directly by combining GW
directly with a polarizable continuum model (PCM). his would require to calculate the dielectric
screening effects due to the environment on the system which is treated on the MBPT. Ap-
proaches to achieve this have already been suggested.746,747 Modelling the effect of the protein
environment is even more challenging since anisotropic effects can not be described via PCMs.
It would therefore be desirable to include the the protein matrix into the MBPT calculations
through explicit point charges along the lines of other BSE@GW implementations.544,748,749 Fi-
nally, we mention approaches based on localized electronic states which allow to decompose
a large system into subsystems. This then allows to calculate the self-energy of a subsystem
including the effect of another system in which the first system is embedded.438,725 Such a de-
composition would be very useful to describe the effect of a solvent on the solute.

Exploring vertex corrections to the self-energy in a more systematic way would be another
interesting direction for further research. Even though we have seen in chapter 5 that the stati-
cally G3W2 correction to the self-energy leads to improvements over GW in certain situations,
our results confirm recent studies319,368,372,383,424 which suggest that QP approximations to GW
are difficult to improve upon diagrammatically. Systematic and reliable improvements over GW
are most likely only possible starting from the fully self-consistent solution of the GW equations.
We have written down all the necessary working equations in section 3.2.2 but haven’t presented
an actual implementation so far.

An scGW implementation would be a necessary first step to systematically investigate some
of the more advanced vertex corrections we have introduced in section 2.4.5. So far, we have
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only evaluated the statically screened G3W2 correction perturbatively but it is straightforward
to calculate this term for the full self-energy as well. We note, that the working equations from
section 3.2.3 assume a basis in which G is diagonal. Evaluating them with an interacting Green’s
function would require a representation in the AO basis387 or, more efficiently,750 in the natural
orbital basis.427,750 Since we have already implemented a solver for the full BSE Hamiltonian
(also see appendix A.4.3 for timings) we could also evaluate the BSE@GW response function
(2.316). This would lead to a statically screened version of Kutepov’s GW + G3W2@BSE
implementation.368,424 Implementing this approach with full frequency dependence would be very
challenging from a computational perspective but potentially highly interesting since it has been
shown to work exceptionally well for solids.368,370–372 Implementing the BSE@GW method with
the dynamical GW kernel eq. (2.315) would also be useful in its own right since the dynamical
BSE@GW approach gives access to double excitations which are not captured within the static
approximation.128
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Appendix

A.1 Zeroth-Order Regular Approximation to the Dirac Equa-
tion

We have derived all of our equations from the non-relativistic Schrödinger equation. Since we
herein mostly focused on molecules containing first- and second-row atoms, this is an excellent
approximation since relativistic effects will be negligible. For molecules containing heavy ele-
ments, for instance Iodine or Silver which are part of the GW100 database, relativistic effects
can not be neglected (see discussion in section 4.1). We have then included relativistic effects
approximately using the scalar zeroth-order regular approximation (ZORA) by van Lenthe et.
al.619–621 which we will shortly introduce here.

The scalar ZORA leads to a modification of the kinetic energy expression in the non-
relativistic Schrödinger equation and therefore to a modified single-particle Schrödinger equation
(2.7). Since only the single-particle part of the equations of chapter 3 is altered by scalar ZORA,
non of the working equations of chapter 3 is affected.

We start from the Dirac equation for a free particle,(
vext(r) cσ⃗ · p⃗
cσ⃗ · p⃗ vext − 2c2

)(
ψL
ψS

)
= E

(
ψL
ψS

)
(A.1)

in which
Ψ =

(
ψL
ψS

)
is the four-component wave function and the two-component wave functions ψL and ψS are
respectively called large and small components. Solving the second equation for ψL and inserting
the result in the first equation allows for the elimination of the small components[

1

2
σ⃗ · p⃗K(E, r)σ⃗ · p⃗+ vext(r)

]
ψL = EψL , (A.2)
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with

K(E, r) =

[
1 +

E − vext(r)

2c2

]−1

.

K can be rewritten as

K(E, r) =

(
1 − vext(r)

2c2

)−1(
1 +

E

2c2 − vext(r)

)−1

Expanding the second factor in this equation and noly retaining terms of zeroth order in vext we
get {

vext +
1

2
(σ⃗ · p⃗)

[
1 − vext(r)

2c2

]−1

(σ⃗ · p⃗)

}
ψL = EψL . (A.3)

Through the relation751 (
σ⃗ · X⃗

)(
σ⃗ · Y⃗

)
= X⃗ · Y⃗ + iσ⃗

(
X⃗ × Y⃗

)
(A.4)

identifying X⃗ with

p⃗×
[
1 − vext(r)

2c2

]−1

and using
1

2

[
1 − vext(r)

2c2

]−1

=
c2

2c2 − vext(r)

we can write the ZORA-Hamiltonian as621

ĥZORA
1 (r) = ĥZORA,SR

1 (r) + ĥZORA,SO
1 (r) , (A.5)

where the first term describes scalar relativistic effects

ĥZORA,SR
1 (r) = vext(r) + p⃗

c2

2c2 − vext(r)
p⃗ (A.6)

and the second one spin-orbit effects,

ĥZORA,SO
1 (r) =

c2

(2c2 − vext(r))2
σ⃗ · (∇vext(r) × p⃗) . (A.7)

One sees that ĥZORA,SR
1 reduced to the non-relativisitc expression (2.4) in the limit c → 0.

Whenever the ZORA is used in a calculation, ĥ1 in eqs. (2.1) and (2.2) needs to be replaced with
ĥZORA,SR
1 .

The inclusion of the second term (A.7) can be very important for the correct description of
electron attachment and removal especially for molecules containing heavier p-block elements.610

The implementation of the GW equations with explicit inclusion of spin-orbit coupling in ADF
is currently in progress.
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A.2 Polarizable Continuum Models

In the practical applications of MBPT of chapter 6 we have been faced with the problem that
the systems we investigated were not isolated. It is then typically not feasible to treat this
environment at the same level of theory unless the subsystem of interest consists of only a few
electrons, as it is for instance the case for small molecules in solution.438 The strategy we pursued
in chapter 6 was to embed our system into a continuum model which approximately describes
the effect of the environment on the many-electron system. This has been done only on the
(TD-)DFT level of theory.

Environment effects can be described on different levels of approximation. A common ap-
proach is to represent the solvent as a homogeneous field with no explicit solvent molecules.752

Using such so-called continuum solvation (CS) models is possibly the computationally most ef-
ficient way to account for solvent effects. We have used models of this type in chapter 6. In CS
models, the solute is enclosed in a cavity inside a dielectric medium with the dielectric constant
ϵ. In a special case, the field outside the cavity is represented as a conductor material (ϵ = ∞),
which is known as the conductor-like screening model (COSMO).674.

The cavity, i.e. the interface between the solute and solvent, is created as an exterior of
atom-centered spheres with the van der Waals atom radii which is segmented into smaller parts
in such a way that a constant charge density is assumed for each segment. The solute then
induces a polarization charge density on the interface to the conductor. The electrostatic energy
of solvation is given by

Es =

∫
drs

∑ ZAns(rs)

|rA − rs|
+

∫ ∫
drdrs

n(r)ns(rs)

|r − rs|
+

∫ ∫
drsdr

′
s

ns(rs)n
′
s(r

′
s)

|rs − r′s|
(A.8)

where the three terms describe respectively the interaction of the surface charges with the nuclear
charge, interaction of the surface charges with the electron density, and self-interaction of the
surface charges, which are approximated by point charges.677

A.3 Starting-point Dependence of GW Calculations

In section 2.4.4, we have discussed the starting point dependence of different approximations to
fully self-consistent GW . Here, we assess this for five different functionals - meta-GGAs, hybrids,
and range-separated hybrids for different approximations, ranging from G0W0 to qsGW . For the
latter method, we also compare the different QP Hamiltonians eqs. (2.341) and (2.342). We have
calculated all IPs in the GW100 database using the TZ2P basis set,1 Good numerical quality and
standard numerical settings otherwise and compared our results to the ones from Berkelbach and
coworkers612 at the EOM-CCSD/def2-TZVP level of theory. As we have already discussed, this
is not necessarily a suitable reference and the basis set incompleteness errors we are introducing
do not allow an unbiased comparison of the accuracy of the approaches. However, we are only

1We have performed these calculations prior to the development of the correlation consistent basis sets.
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Figure A.1: Comparison of G0W0, evGW, evGW0, qsGW and qsGW(HX) for the IPs in the
GW100 database for 5 different starting points, using the TZ2P basis set and Good numerical
quality, with respect to the EOM-CCSD/def2-TZVP reference. All values are in eV.

interested in getting an idea about the starting point dependence for the different levels of self-
consistency. For this purpose, the reference values are not important and only the differences in
the deviations to the reference at each level of self-consistency with different starting points are
relevant. To assess the relative accuracy for each level of self-consistency, our reference is good
enough. Our results are shown in figure A.1.

For G0W0, we observe a tremendous starting point dependence, with MADs ranging from
0.8 eV for the meta-GGA TPSS to less than 0.2 eV for the hybrid M06-2X with 54 % exx. Even
though TPSSH is also a hybrid functional, it does not improve much over TPSS. This is due to
the fact that it only contains 10 % of exact exchange and therefore it significantly overestimates
the screening of the electron-electron interaction.

In qsGW (HX), the starting point dependence is already reduced, even though the correlation
contribution to the self-energy is only updated once. In evGW0, the starting point dependence
is reduced even more. The difference there is only due to the screening which is kept fixed
at the level of G(s). At the evGW level, the starting point dependence is eliminated almost
completely. In fact, the difference in qsGW with different constructions of the QP Hamiltonians
(here referred to as KSF1 and KSF2, respectively) is only marginally smaller.



A.4. TIMINGS 227

The reduced starting point dependence does however not imply an increased accuracy with
respect to EOM-CCSD/def2-TZVP. The accuracy which can be reached with G0W0 is slightly
below 0.2 eV. This is the same at all levels of self-consistency.

A.4 Timings

A.4.1 Asymptotic Scaling of G0W0
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Figure A.2: Wall times in hours for G0W0@PBE/TZ2P calculations on a series of Water clusters
and a linear alkane chain (exclusive the preceding SCF). All calculations have been performed on
2 bw nodes. The exponent of the polynomial describing the asymptotic scaling of the algorithm
is given on the right of each plot.

In this appendix, we briefly comment on the computational time needed to perform MBPT
calculations. In order to analyze the asymptotic scaling of our calculations we presentG0W0@PBE
calculations on series of water clusters2 using the TZ2P basis set, Normal numerical quality, the
Basic and Normal tiers of thresholds and 12 imaginary time and imaginary frequency points.
All calculations presented in this subsection were performed on 2.2 GHz intel Xeon (E5-2650 v4)
nodes (broadwell architecture) with 24 cores and 128 GB RAM each (bw nodes in short). Fig-
ure A.2 shows the wall times for the G0W0-part of the calculations and the exponents of the
polynomials describing the asymptotic scaling of these calculations with increasing system size.
Information on CPU time and asymptotic scaling of key steps of the algorithm for the largest of
these systems are given in figure A.3

The largest water cluster here comprises 432 atoms with 7776 AOs and 36576 ABFs. Using
the Normal threshold tier, the whole G0W0 calculation takes five hours on two nodes. As shown
in figure A.3, the most expensive step is the calculation of Σ, being responsible for about half of

2The structures of the water clusters have been downloaded from the website of the ERGO program,753

http://www.ergoscf.org (visited on may 19th, 2020).

http://www.ergoscf.org
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Figure A.3: Contributions to total G0W0 wall times from different key steps for a series of Water
cluster using the TZ2P basis set. Left bar in each group: Basic threshold quality, right bar in
each group: Normal threshold quality. All calculations have been performed on 2 bw nodes.

the wall time of the whole calculation, followed by the evaluation of P (0). The evaluation of Σ
is also the step which is accelerated most when the thresholds are loosened. This is due to the
contractions eq. (3.93) which are tremendously accelerated when the multipole approximation is
used for an increasing number of atom pairs. Consequently, the asymptotic scaling of this step is
decreased from N2.34 to N2.15. Also the asymptotic scaling of P (0) is reduced considerably (from
N2.19 to N2.05), so that the wall time of the total calculation can be reduced to less than 4 hours.
Note, that the evaluation of W is not affected by changing the thresholds and asymptotically
scales as N3. However, even for the largest water cluster the timings are clearly dominated by
P (0) and Σ and W can not be expected to become a bottleneck even for systems much larger
than the ones considered here.

Water clusters are very compact systems due to their spherical shapes. This takes an ad-
verse effect on the asymptotic scaling properties of our algorithm, compared to low-dimensional
systems, e.g. linear alkane chains as the most extreme example. The timings for a series of
alkane chains is given for comparison in figure A.2 as well. With the same thresholds, the G0W0-
calculation for C160H322 takes with roughly 2.5 hours only half the time as the one for (H2O)144
even though the former system is larger. In fact, P (0) is calculated in less than half an hour
which is less wall time than is required for the calculation of W̃ .

A.4.2 CPU Times for BSE@GW

In this appendix, we briefly comment on the computational effort for different basis sets and
methods to calculate the lowest NΩ roots of the full hexamer with 476 atoms and 1872 correlated
electrons, described in section 6. The computational timings in core hours are given in table A.1.
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Iterations CPU time
Method Basis Nbas NΩ qsGW BSE GW BSE total

qsGW -BSE
TZ3P 11116 12 6 10 3401 3447 7283
TZP 6256 24 6 8 1074 1729 2924

evGW -BSE TZP 6256 24 5 8 826 1969 2917
ωB97-X TZP 6256 12 – 21 – 2675 2846

Table A.1: CPU times (in core hours) to calculate the NΩ lowest roots of the full hexamer with
476 atoms and 1872 correlated electrons with different basis sets and methods. 39884 auxiliary
basis functions have been used in all calculations. All calculations have been performed on an
2.6 GHz AMD Rome 7H12 node with 64 cores and 16 GB RAM per node.

The calculation for the hexamer can be performed in less than 3000 core hours, i.e. in less than
two days on a node with 64 cores. The qsGW part of the calculation is slightly cheaper than the
BSE part. Notice, that the BSE part of the calculation is roughly as expensive as the TD-DFT
calculation with the WB97-X kernel if the timings are normalized by the number of states and
number of subspace iterations in the Davidson algorithm.

Notice, that low-order scaling implementations like ours which rely on sparsity in the primary
basis usually do not scale well with the size of the basis set, as can be seen by comparing the
timings of the qsGW -BSE calculations with different basis sets. We also performed a qsGW
calculation for the full hexamer with more than 11000 basis functions using the TZ3P basis set.
Here, a single qsGW iteration already takes around 540 core hours, which is about three times
more than one iteration using the TZP basis set. While in this work the TZP basis set was
already sufficient to obtain converged results, typically lager basis sets will be required. Finite
basis set correction techniques for many-body perturbation theory might be a promising solution
to circumvent this problem.[599, 743, 744, 754]

A.4.3 Diagonalization of the BSE Hamiltonian

The BSE Hamiltonian can either be diagonalized using the Davidson scheme or by direct solvers
which build the full BSE Hamiltonian and then solve for a selected number of excitonic states or
the full spectrum. In practical applications it is important to know which solver to use for what
matrix dimension. It is important to notice that in our implementation of the BSE@GW method
using the direct solver only eigenvalues and eigenvectors can be obtained but not oscillator
strengths or excitonic life times which are always calculated when the Davidson algorithm is
used.

The time required to build and diagonalize the BSE Hamiltonian is shown in table A.2 for
three rather small systems for which the direct solver is clearly much faster than the Davidson
solver. The main shortcoming of the direct solver is the amount of memory needed to store
the BSE Hamiltionian. The decisive factor for the direct solver is here the size of the basis
of electron-hole transitions in which the BSE Hamiltonian is diagonalized. For C32H18N4 with
a cut-off of 8 Ha, the number of relevant electron-hole transitions is already of the order of
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CPU time [h]
System basis set range [Ha] dim R Storage [GB] N direct Davidson

C6H6 QZ6P full 9210 0.7 3 0.5 7.7
12 0.6 86.4

C14H10 TZ3P full 23876 4.6 3 3.3 4.4
C32H18N4 TZ3P 1.5 16027 2.1 12 4.8 330.1

2.0 22958 4.2 12 8.3
4.0 42235 14.3 12 32.0
8.0 75887 46.1 12 328.0
4.0 42235 14.3 120 32.1

Table A.2: Computational timings (in core hours) for the diagonalization of the BSE Hamiltonian
using different solvers. We solve for different numbers of excitonic states, denoted here by N and
for C32H18N4 we also vary the range of particle-hole transition energies below which we include
these particle hole pairs in the basis for building R (A) (third column). All calculations have
been performed on a single Intel Skylake node with 32 cores and 192 GB of RAM. For C6H6 and
C14H10 we performed all calculations on 8 cores. For C32H18N4 with an energy range of 8 Ha,
we used two full nodes since the BSE Hamiltonian could not be stored in direct memory on a
single node only.

range[Ha]
1.5 2.0 4.0 8.0 full

singlet
3.571 3.567 3.564 3.564 3.565
3.744 3.741 3.738 3.738 3.739
4.002 3.999 3.996 3.996 3.997

triplet
2.899 2.886 2.871 2.868 2.869
3.041 3.020 3.006 3.002 3.001
3.042 3.022 3.008 3.004 3.003

Table A.3: Convergence of the three lowest singlet-singlet and singlet-triplet excitation energies
of C32H18N4 with the size of the particle-hole basis (BSE@@GW@PBE0(40 % exx)/TZ3P). All
values are in eV.

75000 and the BSE Hamiltonian needs almost 50 GB of storage. Since in practice we need to

provide three matrices of this size (A−B), (A+B) as well as |χ(r)
S + χ

(a)
S ⟩, this was already too

large to perform the calculation on a single node (Intel Skylake with 32 cores and 192 GB of
RAM). We then performed the calculation on 2 nodes. This now takes almost as long as with the
Davidson algorithm. However, it should be noted that we have not optimized the communication
between multiple nodes. For this calculation, 80 % of the 328 core hours account for inter-node
communication alone.

Another big advantage of the direct solver is that the timings only increase marginally with
increasing number of excitonic states one solves for. For instance, the CPU time required to
obtain the lowest 12 excitonic singlet and triplet states of C32H18N4 is essentially the same than
for 120 states each. On the other hand, as can be seen for C6H6, for the Davidson algorithm, it
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takes around 9 times longer to obtain 12 singlet and triplet states each instead of three states
each.

As shown in table A.3 this cut-off is however unnecessarily large. Already using a cut-off
of 1.5 Ha (for which the direct solver is about 80 times faster than the Davidson algorithm)
all excitation energies are converged within 40 meV and for a cut-off of 2.0 Ha all excitation
energies are converged within 20 meV. Notice, that the results of both solvers typically differ by
1-2 meV for the same cut-off since the particle-hole exchange term is calculated differently: In
the Davidson routine the so-called ZLMfit scheme is used471 for this term while we use PADF in
the direct solver.

In summary, the Davidson solver should only be used for rather large systems with dim R of
the order of around 5 × 104 where the storage of the full BSE Hamiltonian becomes prohibitive.
Especially for larger basis sets for which the BSE Hamiltonian tends to become more ”dense”,
or when a large number of excitonic states is sought, the direct solver should be preferred. To
obtain generalized susceptibilities, it would be very useful to implement Haydock recursion594

which would potentially allow for treating larger systems than the ones which are currently
feasible for the direct solver.

A.5 Table of Integrals ∫ ∞

b
e−axdx =

e−ab

a
(A.9)∫ b

−∞
e−axdx = −e

−ab

a
(A.10)∫ ∞

0
e−ax cos(bx)dx = 2

a

a2 + b2
(A.11)∫ ∞

0
e−ax sin(bx)dx = 2

b

a2 + b2
(A.12)
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(28) Hermann, J.; Schätzle, Z.; Noé, F. Nat. Chem. 2020, 12, 891–897.

(29) Pfau, D.; Spencer, J. S.; Matthews, A. G.; Foulkes, W. M. Phys. Rev. Res. 2020, 2,
033429.

(30) Harrison, R. J. J. Chem. Phys. 1991, 94, 5021–5031.

(31) Biermann, S.; Aryasetiawan, F.; Georges, A. Phys. Rev. Lett. 2003, 90, 086402.

(32) Dvorak, M.; Rinke, P. Phys. Rev. B 2019, 99, 115134.

(33) Dvorak, M.; Golze, D.; Rinke, P. Phys. Rev. Mater. 2019, 3, 70801.

(34) Kopietz, P., Bosonization of Interacting Fermions in Arbitrary Dimensions; Springer:
Berlin, 2006.

(35) Förster, A.; Franchini, M.; van Lenthe, E.; Visscher, L. J. Chem. Theory Comput. 2020,
16, 875–891.

(36) Förster, A.; Visscher, L. J. Chem. Theory Comput. 2020, 16, 7381–7399.

(37) Förster, A.; Visscher, L. J. Chem. Theory Comput. 2021, 17, 5080–5097.

(38) Förster, A.; Visscher, L. Front. Chem. 2021, 9, 736591.

(39) Förster, A.; Visscher, L. arXiv:2205.08360 2022, 1–53.

(40) Förster, A.; Visscher, L. Phys. Rev. B 2022, 105, 125121.

(41) Förster, A. arXiv:2204.06810 2022, 1–49.

(42) Gell-Mann, M.; Low, F. Phys. Rev. 1951, 84, 350–354.

(43) Feynman, R. P. Phys. Rev. 1949, 76, 749–759.

(44) Dyson, F. J. Phys. Rev. 1949, 75, 1736–1755.

(45) Dyson, F. J. Phys. Rev. 1949, 75, 486–502.

(46) Schwinger, J. Proc. Natl. Acad. Sci. 1951, 37, 452–455.

(47) Schwinger, J. Proc. Natl. Acad. Sci. 1951, 37, 455–459.



BIBLIOGRAPHY 235

(48) Houriet, A.; Kind, A. Helv. Phys. Acta 1949, 22, 319–330.

(49) Wick, G. C. Phys. Rev. 1950, 80, 268–272.

(50) Brueckner, K. A. Phys. Rev. 1955, 100, 36–45.

(51) Goldstone, J. Proc. R. Soc. London. Ser. A. Math. Phys. Sci. 1957, 239, 267–279.

(52) Hubbard, J. Proc. R. Soc. London. Ser. A. Math. Phys. Sci. 1957, 240, 539–560.

(53) Hugenholtz, N. physica 1957, XXIII, 481–532.

(54) Bloch, C. Nucl. Phys. 1958, 6, 329–347.

(55) Farid, B. arXiv:1912.00474v2 2019.

(56) Luttinger, J. M.; Ward, J. C. Phys. Rev. 1960, 118, 1417–1427.

(57) Klein, A. Phys. Rev. 1961, 121, 950–956.

(58) Baym, G.; Kadanoff, L. P. Phys. Rev. 1961, 124, 287–299.

(59) Baym, G. Phys. Rev. 1962, 127, 1391.

(60) Salpeter, E. E.; Bethe, H. A. Phys. Rev. 1951, 84, 1232–1242.

(61) De Dominicis, C.; Martin, P. C. J. Math. Phys. 1964, 5, 31–59.

(62) Coester, F. Nucl. Phys. 1958, 7, 421–424.
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(274) Klimeš, J.; Kresse, G. J. Chem. Phys. 2014, 140, 054516.

(275) Lee, Y.; Kotani, T.; Ke, L. Phys. Rev. B 2020, 101, 241409(R).

(276) Ke, S. H. Phys. Rev. B 2011, 84, 205415.

(277) Gui, X.; Holzer, C.; Klopper, W. J. Chem. Theory Comput. 2018, 14, 2127–2136.

(278) Marom, N.; Moussa, J. E.; Ren, X.; Tkatchenko, A.; Chelikowsky, J. R. Phys. Rev. B -
Condens. Matter Mater. Phys. 2011, 84, 245115.

(279) Migani, A.; Mowbray, D. J.; Iacomino, A.; Zhao, J.; Petek, H.; Rubio, A. J. Am. Chem.
Soc. 2013, 135, 11429–11432.

(280) Migani, A.; Mowbray, D. J.; Zhao, J.; Petek, H.; Rubio, A. J. Chem. Theory Comput.
2014, 10, 2103–2113.

(281) Marom, N.; Körzdörfer, T.; Ren, X.; Tkatchenko, A.; Chelikowsky, J. R. J. Phys. Chem.
Lett. 2014, 5, 2395–2401.

(282) Tal, A.; Chen, W.; Pasquarello, A. Phys. Rev. B 2021, 103, 161104.

(283) Chantis, A. N.; van Schilfgaarde, M.; Kotani, T. Phys. Rev. Lett. 2006, 96, 086405.

(284) Svane, A.; Christensen, N. E.; Gorczyca, I.; van Schilfgaarde, M.; Chantis, A. N.; Kotani,
T. Phys. Rev. B - Condens. Matter Mater. Phys. 2010, 82, 115102.

(285) Bruneval, F. J. Chem. Theory Comput. 2019, 15, 4069–4078.

(286) Bruneval, F. Phys. Rev. B 2019, 99, 041118(R).

(287) Bruneval, F.; Rodriguez-Mayorga, M.; Rinke, P.; Dvorak, M. J. Chem. Theory Comput.
2021, 17, 2126–2136.

(288) Faber, C.; Boulanger, P.; Duchemin, I.; Attaccalite, C.; Blase, X. J. Chem. Phys. 2013,
139, 194308.

(289) Ward, J. C. Phys. Rev. 1950, 78, 182.

(290) Dahlen, N. E.; van Leeuwen, R.; von Barth, U. Phys. Rev. A - At. Mol. Opt. Phys. 2006,
73, 012511.

(291) Langreth, D. C.; Perdew, J. P. Phys. Rev. B 1977, 15, 2884–2901.

(292) Romaniello, P.; Guyot, S.; Reining, L. J. Chem. Phys. 2009, 131, 154111.

(293) Pavlyukh, Y.; Stefanucci, G.; van Leeuwen, R. Phys. Rev. B 2020, 102, 045121.



BIBLIOGRAPHY 245
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(550) Löwdin, P. O. Rev. Mod. Phys. 1967, 39, 259–287.

(551) Kudin, K. N.; Scuseria, G. E. Phys. Rev. B 2000, 61, 16440–16453.

(552) Suhai, S.; Bagus, P. S.; Ladik, J. Chem. Phys. 1982, 68, 467–471.

(553) Kudin, K. N.; Scuseria, G. E.; Cancès, E. J. Chem. Phys. 2002, 116, 8255–8261.

(554) Lehtola, S.; Blockhuys, F.; Van Alsenoy, C. Molecules 2020, 25, 1218.

(555) Schipper, P. R.; Gritsenko, O. V.; Van Gisbergen, S. J.; Baerends, E. J. J. Chem. Phys.
2000, 112, 1344–1352.

(556) De Jong, G. T.; Visscher, L. Theor. Chem. Acc. 2002, 107, 304–308.

(557) Almlöf, J.; Faegri, K.; Korsell, K. J. Comput. Chem. 1982, 3, 385–399.
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(682) Pluhařová, E.; Schroeder, C.; Seidel, R.; Bradforth, S. E.; Winter, B.; Faubel, M.; Slav́ıček,
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Summary

The problem of many interacting electrons is hard to solve. Many-body perturbation theory is
a set of techniques to reduce this problem to one of a single electron moving in an effective,
energy-dependent potential. This potential is also called self-energy and can be represented as
an infinite sum of terms describing the interaction of the single electron with the other electrons.
In practice, one calculates only a few of these terms which are believed to be dominant for certain
interaction patterns.

The self-energy can be used to calculate the single-particle Green’s function whose poles
can be identified with electron addition and removal energies. These can be probed in direct
and inverse photo-emission spectroscopy. It also gives access to the 4-point vertex function
which in turn can be used to calculate the interacting density-density response function whose
poles describes the energies of electron-hole pairs. These can be probed in photo-absorption
spectroscopy. Finally, electron-electron interaction energies can be obtained from the self-energy
as well. Comparing the electron-electron interaction energies of different isomers is for instance
useful to determine which isomer is most stable.

The most important terms in the self-energy are the Hartree contribution, describing the
interaction of the electron with the average charge density produced by the other electrons, as
well as the exchange term, accounting for the Fermionic structure of the wave functions. These
terms already account for the majority of electron-electron interactions. However, for a realistic
description of many-electron systems, additional terms need to be considered. The combined
effect of these terms is called correlation. In a canonical method due to Hedin, the correlation
part of the self-energy is expanded in powers of the screened electron-electron interaction.

The first-order term in this expansion is called GW term and truncating the self-energy after
this term is called GW approximation. The GW approximation is a standard technique which is
computationally feasible for systems with many hundreds of electrons. It rests on the assumption
that the dominant source of electron-electron correlation is the screening of the electron-electron
interaction by the presence of other electrons. This is a good approximation for processes which
are dominated by long-ranged interactions, for instance when an electron is removed from a finite
system. In case short-ranged interactions become important, additional terms, so-called vertex
corrections, need to be considered. The G3W2 term is the next-to-leading order term in the
expansion of the self-energy and it massively improves the description of short-range correlation.

In this thesis, we have implemented these techniques for finite systems and assessed their
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precision and accuracy. Our implementation equips researchers with tools to describe spectro-
scopic properties of relatively large systems with good accuracy. We have demonstrated this via
applications to the ionization of DNA oligomers as well as the low-lying excited states of the
reaction center of photosystem II.

A more detailed summary of the research we have performed including an outlook on future
work can be found in the conclusions of this thesis.



Samenvatting

De interactie tussen meerdere elektronen tegelijk is kwantitatief moeilijk in kaart te brengen.
De veel-deeltjes storingstheorie is een verzameling technieken om dit probleem te herleiden tot
dat van een enkel elektron in een effectieve, energie-afhankelijke potentiaal. Deze potentiaal
wordt ook wel de zelf-energie genoemd en kan worden voorgesteld als een oneindige som van
termen die de interactie van het enkele elektron met de andere elektronen beschrijft. In de
praktijk berekent men slechts een aantal van deze termen, waarbij wordt aangenomen dat zij,
op basis van bepaalde interactiepatronen, de rest in grootte overheersen. De zelf-energie kan
worden gebruikt om de Greense functie voor een enkel deeltje te berekenen. De polen van
deze functie kunnen worden gëınterpreteerd als de elektronenaffiniteit en de ionisatiepotentiaal.
Experimenteel kunnen deze worden onderzocht met directe en inverse foto- emissiespectroscopie.
Het geeft ook toegang tot de 4-punts vertexfunctie die op haar beurt weer kan worden gebruikt
om de gëıntegreerde dichtheid-dichtheid responsfunctie te berekenen. De polen van deze functie
beschrijven de energieën van elektron-gat paren. Deze energieën kunnen worden onderzocht in
foto-absorptie spectroscopie. Tenslotte kunnen ook interactie-energieën tussen elektronen worden
verkregen uit de zelf-energie. Het vergelijken van de elektron-elektron interactie-energieën van
verschillende isomeren is bijvoorbeeld nuttig om te bepalen welk isomeer het meest stabiel is.

De belangrijkste termen in de zelf-energie corresponderen met de zogenaamde Hartree-bijdrage.
Deze beschrijft de interactie van het elektron met de gemiddelde ladingsdichtheid die door de
andere elektronen wordt geproduceerd. Even belangrijk is de uitwisselingsterm, die volgt uit de
fermionische structuur van de golffuncties. Deze termen zijn al goed voor het merendeel van de
elektron-elektroninteracties. Voor een realistische beschrijving van meer-elektron-systemen moet
echter rekening worden gehouden met extra termen. Het gecombineerde effect van deze termen
wordt correlatie genoemd. In een canonieke methode van Hedin wordt het correlatiedeel van de
zelf-energie geëxpandeerd in machten van de afgeschermde elektron-elektroninteractie.

De eerste-orde term in deze uitbreiding wordt de GW -term genoemd en het afkappen van de
zelf-energie na deze term definieert de GW -benadering. De GW -benadering is een standaardtech-
niek die rekentechnisch haalbaar is voor systemen met vele honderden elektronen. Deze berust op
de veronderstelling dat de dominante bron van elektron-elektroncorrelatie de afscherming is van
de elektron- elektron interactie door de aanwezigheid van de andere elektronen. Dit is een goede
benadering voor processen die worden gedomineerd door lange-afstandsinteracties, bijvoorbeeld
wanneer een elektron uit een eindig systeem wordt verwijderd. Indien korte-afstandsinteracties
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belangrijk worden, moet rekening worden gehouden met extra termen, de zogenaamde vertex-
correcties. DeG3W2 term is de opeenvolgende hogere orde term in de expansie van de zelf-energie
en het verbetert de beschrijving van korte-afstand correlatie enorm.

In dit proefschrift hebben we deze technieken gëımplementeerd voor eindige systemen en
hun precisie en nauwkeurigheid beoordeeld. Onze implementatie geeft onderzoekers middelen
om spectroscopische eigenschappen van relatief grote systemen met goede nauwkeurigheid te
beschrijven. We hebben dit aangetoond door de implementatie te gebruiken voor het beschri-
jven van de ionisatie van DNA-oligomeren en het berekenen van de laaggelegen aangeslagen
toestanden van het reactiecentrum van fotosysteem II.

Een meer gedetailleerde samenvatting van onze bevindingen, inclusief een vooruitblik op
toekomstig onderzoek, is te vinden in de conclusies van dit proefschrift.
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