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In modern deep learning, there is a recent and growing literature on the interplay between large-width asymptotic
properties of deep Gaussian neural networks (NNs), i.e. deep NNs with Gaussian-distributed weights, and Gaus-
sian stochastic processes (SPs). Such an interplay has proved to be critical in Bayesian inference under Gaussian
SP priors, kernel regression for infinitely wide deep NNs trained via gradient descent, and information propagation
within infinitely wide NNs. Motivated by empirical analyses that show the potential of replacing Gaussian distribu-
tions with Stable distributions for the NN’s weights, in this paper we present a rigorous analysis of the large-width
asymptotic behaviour of (fully connected) feed-forward deep Stable NNs, i.e. deep NNs with Stable-distributed
weights. We show that as the width goes to infinity jointly over the NN’s layers, i.e. the “joint growth” setting, a
rescaled deep Stable NN converges weakly to a Stable SP whose distribution is characterized recursively through
the NN’s layers. Because of the non-triangular structure of the NN, this is a non-standard asymptotic problem, to
which we propose an inductive approach of independent interest. Then, we establish sup-norm convergence rates
of the rescaled deep Stable NN to the Stable SP, under the “joint growth” and a “sequential growth” of the width
over the NN’s layers. Such a result provides the difference between the “joint growth” and the “sequential growth”
settings, showing that the former leads to a slower rate than the latter, depending on the depth of the layer and
the number of inputs of the NN. Our work extends some recent results on infinitely wide limits for deep Gaussian
NNs to the more general deep Stable NNs, providing the first result on convergence rates in the “joint growth”
setting.
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1. Introduction

Modern neural networks (NNs) feature a large number of layers (depth) and units per layer (width), and
they have achieved a remarkable performance across numerous domains of practical interest [25]. In
such a context, there is a recent and growing literature that investigates the interplay between the large-
width asymptotic behaviour of deep Gaussian NNs, i.e. deep NNs with Gaussian-distributed weights,
and Gaussian stochastic processes (SPs). See [32, 41, 12, 20, 17, 27, 31, 35, 3, 4, 42, 43, 1, 2, 13,
24, 5], and references therein, for a comprehensive account on large-width asymptotic properties of
deep Gaussian NNs, and generalizations thereof. Intuitively, the prototypical interplay between deep
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Gaussian NNs and Gaussian SPs may be stated as follows: as the NN’s width goes to infinity jointly
over the NN’s layers, a suitable rescaled deep Gaussian NN converges weakly to a Gaussian SP whose
characteristic (covariance) kernel is defined recursively through the NN’s layers. To be more rigorous,
we consider the popular class of (fully connected) feed-forward Gaussian NNs with depthD ≥ 1, width
n≥ 1 and k ≥ 1 input-signals of dimension I ≥ 1, though analogous results hold true for more general
architectures, such as the popular convolutional NNs. In particular, we denote by N(µ,σ2) a Gaussian
distribution with mean µ ∈ R and variance σ2 ∈ R+, and by Nk(µ,Σ) a k-dimensional Gaussian
distribution with mean vector µ ∈ Rk and covariance matrix Σ ∈ Rk × Rk. In the following theorem
we recall the main result of [31], which deals with the infinitely wide limit of a (fully connected)
feed-forward deep Gaussian NN. We refer to [42] and [43] for analogous results under more general
architectures, e.g. convolutional NNs and their generalizations, and more general classes of activation
functions.

Theorem 1.1 (Deep Gaussian NNs [31]). For any I ≥ 1 and k ≥ 1 let X be a I × k (input-signal)
matrix, with xj being the j-th row vector of X, and for anyD ≥ 1 and n≥ 1 let: i) (W(1), . . . ,W(D))

be a collection of i.i.d. random (weight) matrices, such that W(1) = (w
(1)
i,j )1≤i≤n,1≤j≤I and

W(l) = (w
(l)
i,j )1≤i≤n,1≤j≤n for 2 ≤ l ≤D, where the w(l)

i,j ’s are i.i.d. as N(0, σ2
w) for l = 1, . . . ,D;

ii) (b(1), . . . ,b(D)) be a collection of i.i.d. random (bias) vectors, such that b(l) = (b
(l)
1 , . . . , b

(l)
n )

where the b(l)i ’s are i.i.d. as N(0, σ2
b ) for l = 1, . . . ,D; iii) (W(1), . . . ,W(D)) be independent of

(b(1), . . . ,b(D)). Moreover, for some a, b≥ 0, let φ : R→R be a continuous activation function such
that

|φ(s)| ≤ a+ b|s| (1.1)

for every s ∈ R, and consider the NN (f
(l)
i (X, n))1≤i≤n,1≤l≤D of depth D and width n defined as

follows

f
(1)
i (X) =

I∑
j=1

w
(1)
i,j xj + b

(1)
i 1T

and

f
(l)
i (X, n) =

1√
n

n∑
j=1

w
(l)
i,j (φ ◦ f

(l−1)
j (X, n)) + b

(l)
i 1T ,

with f (1)
i (X, n) := f

(1)
i (X), where 1 is the k-dimensional unit (column) vector, and ◦ denotes the

element-wise application. For any l= 1, . . . ,D, if (f
(l)
i (X, n))i≥1 is the sequence obtained by extend-

ing (W(1), . . . ,W(D)) and (b(1), . . . ,b(D)) to infinite i.i.d. arrays, then as n→+∞ jointly over the
first l layers

(f
(l)
i (X, n))i≥1

w−→ (f
(l)
i (X))i≥1,

where (f
(l)
i (X))i≥1 is distributed as ⊗i≥1Nk(0,Σ(l)), with the covariance matrix Σ(l) having the

(u, v)-th entry

Σ
(1)
u,v = σ2

b + σ2
w〈xu,xv〉
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and

Σ
(l)
u,v = σ2

b + σ2
wE

(f,g)∼N2

((
0
0

)
,

(
Σ

(l−1)
u,u Σ

(l−1)
u,v

Σ
(l−1)
v,u Σ

(l−1)
v,v

))[φ(f)φ(g)].

Then, the limiting SP (f
(l)
i (X))i≥1, as a process indexed by X, is a Gaussian SP with parameter or

kernel Σ.

Theorem 1.1 generalizes an early result of [32], which provides the infinitely wide limit under the
assumption that the width n goes to infinity sequentially over the NN’s layers, i.e. n→+∞ one layer
at a time. Under the “sequential growth” setting, the study of large-width asymptotics reduces to an
application of Lindeberg-Lévy central limit theorem. Instead, assuming a “joint growth” of the width
over the NN’s layers, i.e. n→ +∞ simultaneously over the first l ≥ 1 layers, makes Theorem 1.1 a
non-standard asymptotic problem, whose solution is obtained by adapting a central limit theorem for
triangular arrays to the non-triangular structure of the NN [8]. Theorem 1.1 has been exploited in many
directions: i) Bayesian inference for Gaussian SPs arising from infinitely wide NNs [27, 17]; ii) kernel
regression for infinitely wide NNs trained with gradient descent through the neural tangent kernel
[22, 28, 4]; iii) statistical analysis of infinitely wide NNs as functions of the depth via information
propagation [36, 39, 19]. It has been shown a substantial gap, in terms of empirical performance,
between deep NNs and their corresponding infinitely wide Gaussian SPs, at least on some benchmarks
applications. Such a gap is prominent in the case of convolutional NNs, while for the fully-connected
NNs object of this study infinitely wide Gaussian SPs prove competitive [26]. Moreover, it is known to
be a difficult task to avoid undesirable empirical properties arising in deep NNs. Given that, there is an
increasing interest in extending the class of Gaussian SPs arising as infinitely wide limits of deep NNs,
as a way forward to reduce such a performance gap and to avoid, or slow down, common pathological
behaviors.

1.1. Our contributions

In this paper, we study SPs arising as infinitely wide limits of deep Stable NNs, i.e. deep NNs with
Stable-distributed weights [38]. Stable distributions form a broad class of heavy tails or infinite variance
distributions indexed by a parameter α ∈ (0,2], and they are arguably the most natural generalization of
the Gaussian distribution. The works [32] and [12] first discussed the use of the Stable distribution for
initializing deep NNs, leaving as an open problem the rigorous study of large-width asymptotic prop-
erties of deep Stable NNs. Empirical analyses in [32] show the following large-width phenomenon:
while the contribution of Gaussian weights vanishes in the infinitely wide limit, Stable weights retain a
non-negligible contribution, allowing them to represent “hidden features”. This phenomenon suggests
a more flexible behaviour of NN’s weights with heavy tails, which results in infinitely wide SPs with
a different behaviour than Gaussian SPs. In a classification setting, deep NNs trained with stochastic
gradient descent result in heavy-tailed distributions for the weights, as a consequence of the training
dynamics [14, 16, 21]. In such a setting, empirical analyses in [16] show that the use of NN’s weights
that are Stable-distributed leads to a higher classification accuracy, as it results in different path prop-
erties. See Figure 1 for (function) samples realized by wide fully-connected NNs whose weights are
distributed as Stable distributions with decreasing α, i.e. distributions with increasingly heavy tails.
Recently, [29] investigated the use of deep Stable NNs for image inverse problems when images con-
tain sharp edges. Within this setting, the abrupt jumps allowed by the NN function mapping for lower
values of α result in a better matching prior for the problem of interest, and in superior performance in
terms of inference.
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Figure 1. Samples of a fully-connected Stable NN mapping [0,1]2 to R, with a tanh activation function andD = 2
hidden layers of width n= 1024, for different values of the parameter α: i) α= 2.0 (Gaussian distribution) top-
left; ii) α= 1.5 top-right; iii) α= 1.0 (Cauchy distribution) bottom-left; iv) α= 0.5 (Lévy distribution) bottom-
right.

Motivated by the recent interest in deep Stable NNs, we present a rigorous analysis of the large-width
asymptotic behaviour of (fully connected) feed-forward deep Stable NNs, with depth D ≥ 1, width
n ≥ 1 and k ≥ 1 input-signals of dimension I ≥ 1. We denote by St(α,σ) the symmetric centered
Stable distribution with stability parameter α ∈ (0,2) and scale parameter σ, and by Stk(α,Γ) the
symmetric centered k-dimensional Stable distribution with stability parameter α ∈ (0,2) and scale
(finite) spectral measure Γ on the unit sphere Sk−1 in Rk. We refer to [38, Chapter 1,2] for a detailed
account of Stable distributions. The case α = 2 is the Gaussian distribution, which is excluded from
our analysis. The next theorem states our first main result, which extends Theorem 1.1 to deep Stable
NNs. A preliminary version of the theorem appeared in [14], though with a non-rigorous statement and
proof.

Theorem 1.2 (Deep Stable NNs). For any I ≥ 1 and k ≥ 1 let X be a I × k (input-signal) ma-
trix, with xj being the j-th row of X, and for any D ≥ 1 and n ≥ 1 let: i) (W(1), . . . ,W(D))

be a collection of i.i.d. random (weight) matrices, such that W(1) = (w
(1)
i,j )1≤i≤n,1≤j≤I and

W(l) = (w
(l)
i,j )1≤i≤n,1≤j≤n for 2 ≤ l ≤D, where the w(l)

i,j ’s are i.i.d. as St(α,σw) for l = 1, . . . ,D;

ii) (b(1), . . . ,b(D)) be a collection of i.i.d. random (bias) vectors, such that b(l) = (b
(l)
1 , . . . , b

(l)
n )

where the b(l)i ’s are i.i.d. as St(α,σb) for l = 1, . . . ,D; iii) (W(1), . . . ,W(D)) be independent of
(b(1), . . . ,b(D)). Moreover, for some a, b, β > 0, with β < 1, let φ : R→R be a continuous activation
function such that

|φ(s)| ≤ a+ b|s|β (1.2)
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for every s ∈ R, and consider the NN (f
(l)
i (X, n))1≤i≤n,1≤l≤D of depth D and width n defined as

follows

f
(1)
i (X) =

I∑
j=1

w
(1)
i,j xj + b

(1)
i 1T

and

f
(l)
i (X, n) =

1

n1/α

n∑
j=1

w
(l)
i,j (φ ◦ f

(l−1)
j (X, n)) + b

(l)
i 1T

with f (1)
i (X, n) := f

(1)
i (X), where 1 is the k-dimensional unit (column) vector, and ◦ denotes the

element-wise application. For any l= 1, . . . ,D, if (f
(l)
i (X, n))i≥1 is the sequence obtained by extend-

ing (W(1), . . . ,W(D)) and (b(1), . . . ,b(D)) to infinite i.i.d. arrays, then as n→+∞ jointly over the
first l layers

(f
(l)
i (X, n))i≥1

w−→ (f
(l)
i (X))i≥1,

where (f
(l)
i (X))i≥1 is distributed as ⊗i≥1Stk(α,Γ(l)), with α ∈ (0,2), with the spectral measure Γ(l)

being defined as

Γ(1) = ||σb1T ||αζ 1T

||1T ||
+ σαw

I∑
j=1

||xj ||αζ xj
||xj ||

and

Γ(l) = ||σb1T ||αζ 1T

||1T ||
+

∫
||σw(φ ◦ f)||αζ φ◦f

||φ◦f ||
q(l−1)(df), (1.3)

with || · || being the Euclidean norm in Rk, where ζh/||h|| = 2−1(δh/||h|| + δ−h/||h||)I(||h||> 0) with

δ being the Dirac measure and I being the indicator function, where q(l−1) denotes the distribution
of f (l−1)

i (X). Then, the limiting SP (f
(l)
i (X))i≥1, as a process indexed by X, is a Stable SP with

parameter (α,Γ).

Critical to Theorem 1.2 is the assumption (1.2), which being stronger than (1.1) restricts the class of
activation functions that lead to nontrivial infinitely wide limits. Such a restricted class, however, still
includes popular activation functions, e.g. logistic, hyperbolic tangent and Gaussian. See [9] and [15]
for infinitely wide limits of shallow Stable NNs with linear activation functions. As for Theorem 1.1,
the non-triangular structure of the NN and the “joint growth” of the width over the NN’s layers make
Theorem 1.2 a non-standard asymptotic problem, with the additional challenge of dealing with heavy
tails distributions. The proof of Theorem 1.2 relies on the exchangeability of (f

(l)
i (X, n))i≥1 and,

through de Finetti representation theorem, it exploits an inductive argument for the de Finetti measures
over the NN’s layers; this is a novel approach of independent interest. Under the “sequential growth”
of the width over the NN’s layers, the proof of Theorem 1.2 reduces to an application of a generalized
central limit theorem [18], which leads to the same limiting SP. Consistency or compatibility of the
finite-dimensional distributions of the limiting Stable SP is also proved. As a refinement of Theorem
1.2, our second main result establishes sup-norm convergence rates of the rescaled deep Stable NN
f

(l)
i (X, n) to the Stable SP, in both the “joint growth” setting and the “sequential growth” setting.
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In particular, such a result shows that the “joint growth” leads to a slower rate than the “sequential
growth”, depending on the depth of the layer and k. This is the first result on converge rates in the
“joint growth” setting, providing the difference between the “sequential growth” and the “joint growth”
settings.

1.2. Organization of the paper

The paper is structured as follows. In Section 2 we prove Theorem 1.2 and show consistency or com-
patibility of the finite-dimensional distributions of the limiting Stable SP, whereas in Section 3 we
establish sup-norm convergence of the deep Stable NNs to the Stable SP under the “joint growth” and
the “sequential growth” of the width over the NN’s layers. Section 4 contains a discussion of our results
with respect to Bayesian inference, neural tangent kernel analysis via gradient descent and large-depth
limits.

2. Proof of Theorem 1.2

Random variables are defined on a probability space (Ω,G,P), and we denote expectation by E; in-
equalities between conditional probabilities and between expectations must be interpreted as P-a.s. For
every l ≥ 1 and n ≥ 1 we denote by Gn,l the sigma algebra generated by {(f (l′)

i (X,m))i≥1 : m ≤
n and l′ ≤ l}, by Gn,0 the trivial sigma algebra. Let En,l and Pn,l be the conditional expectation and
the conditional distribution, respectively, given Gn,l. For fixed n, Gn,l′ ⊂ Gn,l whenever l′ < l. For
fixed l, (Gn,l)n≥0 is a filtration. We denote by G∞,l the limit sigma-algebra, that is the sigma-algebra
generated by ∪n≥0Gn,l. The conditional expectation, given G∞,l, is denoted by E∞,l. If S ∼ St(α,σ)
then for t > 0

E(exp{itS}) = exp{−σα|t|α} .

If S is a k-dimensional (row) random vector such that S∼ Stk(α,Γ), then for a k-dimensional (column)
vector t

E(exp{iSt}) = exp

{
−
∫
Sk−1

|st|αΓ(ds)

}
.

If 1r is a k-dimensional (column) vector with all zeroes except a 1 at the r-th component, then the
(1-dimensional) r-th element of S is distributed as an α-Stable distribution with stability α ∈ (0,2)
and scale

σ =

(∫
Sk−1

|s1r|αΓ(ds)

)1/α

.

Throughout this section, we most deal with k-dimensional α-Stable distributions with discrete spectral
measure, that is Γ(·) =

∑
1≤i≤n γiδsi with n ∈N, γi ∈R and si ∈ Sk−1, for i= 1, . . . , n [38, Chapter

2].
We start the proof by determining the distributions of the k-dimensional (row) random vectors

f
(1)
i (X) and f (l)

i (X, n) | {f (l−1)
j (X, n)}j=1,...,n for l = 2, . . . ,D. We denote by f (l)

i,r (X, n) the r-th

component of f (l)
i (X, n), that is f (l)

i,r (X, n) = f
(l)
i (X, n)1r. If t is a k-dimensional (column) vector,

then

ϕ
f

(1)
i (X)

(t) = E[eif (1)
i (X)t]
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= E

exp

i

 I∑
j=1

w
(1)
i,j xj + b

(1)
i 1T

 t



= exp

{
−σαb ||1

T ||α
∣∣∣∣∣ 1T

||1T ||
t

∣∣∣∣∣
α}

exp

−σαw
I∑
j=1

||xj ||α
∣∣∣∣ xj
||xj ||

t

∣∣∣∣α


= exp

−
∫
Sk−1

|st|α
||σb1T ||αζ 1T

||1T ||
+

I∑
j=1

||σwxj ||αζ xj
||xj ||

 (ds)

 .

Therefore, f (1)
i (X)∼ Stk(α,Γ(1)), where

Γ(1) = ||σb1T ||αζ 1T

||1T ||
+

I∑
j=1

||σwxj ||αζ xj
||xj ||

. (2.1)

If f (1)
i,r (X) is the r-th component of the random vector f (1)

i (X), then f (1)
i,r (X)∼ St(α,σ(1)(r)) with

σ(1)(r) =
(∫

Sk−1 |s1r|αΓ(1)(ds)
)1/α

[38, Chapter 2]. Along similar lines, for each l = 2, . . . ,D we
write

ϕ
f

(l)
i (X,n) | {f (l−1)

j (X,n)}j=1,...,n
(t)

= E[eif (l)
i (X,n)t | {f (l−1)

j (X, n)}j=1,...,n]

= E

exp

i

 1

n1/α

n∑
j=1

w
(l)
i,j (φ ◦ f

(l−1)
j (X, n)) + b

(l)
i 1T

 t
 | {f (l−1)

j (X, n)}j=1,...,n


= exp

{
−σαb ||1

T ||α
∣∣∣∣∣ 1T

||1T ||
t

∣∣∣∣∣
α}

exp

−σαwn
n∑
j=1

||φ ◦ f (l−1)
j (X, n)||α

∣∣∣∣∣∣ φ ◦ f (l−1)
j (X, n)

||φ ◦ f (l−1)
j (X, n)||

t

∣∣∣∣∣∣
α

= exp

−
∫
Sk−1

|st|α

||σb1T ||αζ 1T

||1T ||
+

1

n

n∑
j=1

||σw(φ ◦ f (l−1)
j (X, n))||αζ

φ◦f(l−1)
j

(X,n)

||φ◦f(l−1)
j

(X,n)||

 (ds)

 .

Therefore, f (l)
i (X, n) | {f (l−1)

j (X, n)}j=1,...,n ∼ Stk(α,Γ
(l)
n ), where

Γ
(l)
n = ||σb1T ||αζ 1T

||1T ||
+

1

n

n∑
j=1

||σw(φ ◦ f (l−1)
j (X, n))||αζ

φ◦f(l−1)
j

(X,n)

||φ◦f(l−1)
j

(X,n)||

. (2.2)

Then, f (l)
i,r (X, n) | {f (l−1)

j (X, n)}j=1,...,n ∼ St(α,σ(l)
n (r)) with σ(l)

n (r) =
(∫

Sk−1 |s1r|αΓ
(l)
n (ds)

)1/α

[38, Chapter 2].
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Hereafter, we establish the infinitely wide limit of the (f
(l)
i (X, n))i≥1. The proof exploits the ex-

changeability of (f
(l)
i (X, n))i≥1 and an inductive argument, over the NN’s layers, for the directing

(de Finetti) random probability measure of (f
(l)
i (X, n))i≥1. For l = 1, by definition, the random vec-

tors (f
(1)
i (X, n))i≥1 are i.i.d. according to the probability measure p(1)

n = Stk(α,Γ(1)), where Γ(1)

is defined in (2.1). Then, as n→ +∞, p(1)
n converges weakly to q(1) = Stk(α,Γ(1)). For l > 1, the

random vectors (f
(l)
i (X, n))i≥1 are conditionally i.i.d. given (f

(l−1)
j (X, n))j=1,...,n, with (random)

probability measure p(l)
n = Stk(α,Γ

(l)
n ), where Γ

(l)
n is defined in (2.2). Given (f

(l−1)
j (X, n))j=1,...,n,

the sequence (f
(l)
i (X, n))i≥1 is conditionally independent of {(f (l′)

j (X,m))j≥1 : m ≤ n, l′ ≤ l −

1, (j, l′,m) 6∈ {1, . . . , n} × {l − 1} × {n}}. It follows that (f
(l)
i (X, n))i≥1 are conditionally i.i.d.,

given Gn,l−1, with (random) probability measure p(l)
n . Before stating the induction hypothesis, we give

a preliminary result.

Lemma 2.1. Let ε > 0 be such that α + ε < 2 and (α + ε)β < α. Then, for each l = 1, . . . ,D and
every n≥ 1 ∫

||φ ◦ f ||α+εp
(l)
n (df)<+∞.

Proof. Since α < 2 and β < 1, then there exists ε > 0 that satisfies the conditions in the statement.
Moreover, since p(l)

n is an α-stable distribution and since (α+ ε)β < α, then
∫
|f1r|(α+ε)βp

(l)
n (df)<

+∞. The thesis follows by noticing that, since α+ ε < 2, then there exist c, d ∈R+ such that it holds
true

||φ ◦ f ||α+ε ≤
k∑
r=1

|φ(f1r)|α+ε ≤
k∑
r=1

(a+ b|f1r|β)α+ε ≤ c+ d

k∑
r=1

|f1r|(α+ε)β .

Now, we present the induction hypothesis over the NN’s layers, which is critical to prove Theorem
1.2. In particular, it is assumed that, for every index l′ < l and for ε as specified in Lemma 2.1, as
n→+∞

p
(l′)
n

a.s.−→ q(l′) in the weak topology, (2.3)∫
||φ ◦ f ||α+εp

(l′)
n (df)

a.s.−→
∫
||φ ◦ f ||α+εq(l′)(df) (2.4)

and ∫
|(φ ◦ f)t|αp(l′)

n (df)
a.s.−→
∫
|(φ ◦ f)t|αq(l′)(df) for every t ∈Rk, (2.5)

with q(l′) being the Stk(α,Γ(l′)) and with Γ(l′) being specified by the recurrence relation (1.3), with
Γ(1) being defined in (2.1). Note that the both the integrals that appear in Equation (2.4) and Equation
(2.5) are finite by Lemma 2.1 and since |(φ ◦ f)t| ≤ ||t|| ||φ ◦ f ||. The induction hypothesis is trivially

true for l′ = 1 since p(1)
n = q(1). Note that, according to the induction hypothesis, as n→ +∞, p(l′)

n

has a deterministic limit at Stk(α,Γ(l′)), for every l′ < l. The proof of Theorem 1.2 is presented in
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three steps. First, it is shown that (2.3), (2.4) and (2.5) hold true for l′ = l. Then for each i≥ 1 we show
that

f
(l)
i (X, n)

w−→ f
(l)
i (X) (2.6)

as n→ +∞, where f (l)
i (X) is distributed as Stk(α,Γ(l)), with Γ(l) being defined in (1.3). Then, as

n→ +∞, the weak convergence of (f
(l)
i (X, n))i≥1 to (f

(l)
i (X))i≥1 follows directly by combining

(2.6) with some standard arguments that exploit the finite-dimensional projections of (f
(l)
i (X, n))i≥1

[6].

2.1. Induction step

We start by proving the induction hypothesis given by the combination of Equation (2.3), Equation
(2.4) and Equation (2.5). In particular, let t be a k-dimensional (column) vector, then we can write the
following:

En,l−2[eif (l)
i (X,n)t] (2.7)

= En,l−2

[
exp

{
−
∫
Sk−1

|st|αΓ
(l)
n (ds)

}]

= En,l−2

[
exp

{
−
∫
Sk−1

|st|α
(
||σb1T ||αζ 1T

||1T ||

)
(ds)

}]

×En,l−2

exp

−
∫
Sk−1

|st|α

 1

n

n∑
j=1

||σw(φ ◦ f (l−1)
j (X, n))||αζ

φ◦f(l−1)
j

(X,n)

||φ◦f(l−1)
j

(X,n)||

 (ds)




= exp

{
−
∫
Sk−1

|st|α
(
||σb1T ||αζ 1T

||1T ||

)
(ds)

}

×
(∫

exp

{
−
∫
Sk−1

|st|α
(

1

n
||σw(φ ◦ f)||αζ φ◦f

||φ◦f ||

)
(ds)

}
p

(l−1)
n (df)

)n
.

Then (2.3), with l′ = l, follows by combining the conditional characteristic function (2.7) with the
following lemma.

Lemma 2.2. If (2.3), (2.4) and (2.5) hold for every l′ ≤ l− 1, then∫
||φ ◦ f ||α

[
1− exp

{
−
∫
Sk−1

|st|α
(

1

n
||σw(φ ◦ f)||αζ φ◦f

||φ◦f ||

)
(ds)

}]
p

(l−1)
n (df)

a.s.−→ 0,

as n→+∞.

Proof. Let ε > 0 be as specified in (2.4), i.e. as specified in Lemma 2.1, and also let p= (α+ ε)/α and
q = (α+ ε)/ε. Then, it holds that 1/p+ 1/q = 1. Accordingly, by means of Hölder inequality we can
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write that∫
||φ ◦ f ||α

[
1− exp

{
−
∫
Sk−1

|st|α
(

1

n
||σw(φ ◦ f)||αζ φ◦f

||φ◦f ||

)
(ds)

}]
p

(l−1)
n (df)

≤
(∫
||φ ◦ f ||αpp(l−1)

n (df)

)1/p

×
(∫ [

1− exp

{
−
∫
Sk−1

|st|α
(

1

n
||σw(φ ◦ f)||αζ φ◦f

||φ◦f ||

)
(ds)

}]q
p

(l−1)
n (df)

)1/q

.

Note that we defined p = (α+ ε)/α and q = (α+ ε)/ε, i.e. we set q > 1. Accordingly, we can write
that (∫

||φ ◦ f ||αpp(l−1)
n (df)

)1/p

×
(∫ [

1− exp

{
−
∫
Sk−1

|st|α
(

1

n
||σw(φ ◦ f)||αζ φ◦f

||φ◦f ||

)
(ds)

}]q
p

(l−1)
n (df)

)1/q

≤
(∫
||φ ◦ f ||α+εp

(l−1)
n (df)

)1/p

×
(∫ [

1− exp

{
−
∫
Sk−1

|st|α
(

1

n
||σw(φ ◦ f)||αζ φ◦f

||φ◦f ||

)
(ds)

}]
p

(l−1)
n (df)

)1/q

≤
(∫
||φ ◦ f ||α+εp

(l−1)
n (df)

)1/p

×
(∫ [∫

Sk−1
|st|α

(
1

n
||σw(φ ◦ f)||αζ φ◦f

||φ◦f ||

)
(ds)

]
p

(l−1)
n (df)

)1/q

≤
(∫
||φ ◦ f ||α+εp

(l−1)
n (df)

)1/p( ||t||α
n

∫
||σw(φ ◦ f)||αp(l−1)

n (df)

)1/q
a.s.−→ 0,

as n→+∞, by (2.4).

We prove Equation (2.3) by combining the conditional characteristic function (2.7) with (2.3), (2.4)
and (2.5) for l′ = l− 1, and then by Lemma 2.1 and Lemma 2.2. By combining (2.7) with Lemma 2.1,
we write

En,l−2[eif (l)
i (X,n)t]

= exp

{
−
∫
Sk−1

|st|α
(
||σb1T ||αζ 1T

||1T ||

)
(ds)

}

×
(∫

exp

{
−
∫
Sk−1

|st|α
(

1

n
||σw(φ ◦ f)||αζ φ◦f

||φ◦f ||

)
(ds)

}
p

(l−1)
n (df)

)n
.
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Now, by means of a direct application of Lagrange theorem, there exists a random variable θn ∈ [0,1]
such that

exp

{
−
∫
Sk−1

|st|α
(

1

n
||σw(φ ◦ f)||αζ φ◦f

||φ◦f ||

)
(ds)

}
= 1−

∫
Sk−1

|st|α
(

1

n
||σw(φ ◦ f)||αζ φ◦f

||φ◦f ||

)
(ds)

× exp

{
−θn

∫
Sk−1

|st|α
(

1

n
||σw(φ ◦ f)||αζ φ◦f

||φ◦f ||

)
(ds)

}
= 1−

∫
Sk−1

|st|α
(

1

n
||σw(φ ◦ f)||αζ φ◦f

||φ◦f ||

)
(ds)

+

∫
Sk−1

|st|α
(

1

n
||σw(φ ◦ f)||αζ φ◦f

||φ◦f ||

)
(ds)

×
(

1− exp

{
−θn

∫
Sk−1

|st|α
(

1

n
||σw(φ ◦ f)||αζ φ◦f

||φ◦f ||

)
(ds)

})
.

Now, since by Lemma 2.2,

0≤
∫ ∫

Sk−1
|st|α

(
||σw(φ ◦ f)||αζ φ◦f

||φ◦f ||

)
(ds)

×
[
1− exp

{
−θn

∫
Sk−1

|st|α
(

1

n
||σw(φ ◦ f)||αζ φ◦f

||φ◦f ||

)
(ds)

}]
p

(l−1)
n (df)

≤ ||t||ασαw
∫
||φ ◦ f ||α

[
1− exp

{
−
∫
Sk−1

|st|α
(

1

n
||σw(φ ◦ f)||αζ φ◦f

||φ◦f ||

)
(ds)

}]
p

(l−1)
n (df)

a.s.−→ 0,

as n→∞, then

En,l−2[eif (l)
i (X,n)t]

= exp

{
−
∫
Sk−1

|st|α
(
||σb1T ||αζ 1T

||1T ||

)
(ds)

}(
1− 1

n

∫
σαw|(φ ◦ f)t|αp(l−1)

n (df) + o

(
1

n

))n
a.s.−→ exp

{
−
∫
Sk−1

|st|α
(
||σb1T ||αζ 1T

||1T ||

)
(ds)

}
exp

{
−
∫
σαw|(φ ◦ f)t|αp(l−1)

n (df)

}
,

as n→∞, by (2.5), Lemma 2.2, and since e−x = limn→+∞(1− xn/n)n, as xn→ x ∈ (0,+∞). By
[7, Theorem 2],

En,l−1[eif (l)
i (X,n)t] = En,l−1[En,l−2[eif (l)

i (X,n)t]]

a.s.−→ E∞,l−1

[
exp

{
−
∫
Sk−1

|st|α
(
||σb1T ||αζ 1T

||1T ||

)
(ds)

}

× exp

{
−
∫ ∫

Sk−1
|st|α

(
||σw(φ ◦ f)||αζ φ◦f

||φ◦f ||

)
(ds)q(l−1)(df)

}]
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= exp

{
−
∫
Sk−1

|st|α
(
||σb1T ||αζ 1T

||1T ||

)
(ds)

}

× exp

{
−
∫ ∫

Sk−1
|st|α

(
||σw(φ ◦ f)||αζ φ◦f

||φ◦f ||

)
(ds)q(l−1)(df)

}
(2.8)

as n→ +∞, where the last equality holds true since q(l−1) is deterministic. Therefore, n→∞, p(l)
n

converges a.s. in the weak topology to q(l) = Stk(α,Γ(l)), thus proving the induction step for (2.3),
where we set

Γ(l) = ||σb1T ||αζ 1T

||1T ||
+

∫
||σw(φ ◦ f)||αζ φ◦f

||φ◦f ||
q(l−1)(df).

Now, we prove that Equation (2.4) holds true for l′ = l. The proof is based on a uniform integrability
argument. Since p(l)

n converges a.s. to q(l), with respect to the weak topology, then, for every r =
1, . . . , k,(∫

Sk−1
|s1r|αΓ

(l)
n (ds)

)1/α

= σ
(l)
n (r)

a.s.−→ σ(l)(r) :=

(∫
Sk−1

|s1r|αΓ(l)(ds)

)1/α

.

Denoting by Sα,1 a random variable distributed according to St(α,1), we can write, for every r =
1, . . . , k,∫

|f1r|(α+ε)βp
(l)
n (df) = E[S

(α+ε)β
α,1 ](σ

(l)
n (r))(α+ε)β a.s.−→ E[S

(α+ε)β
α,1 ](σ(l)(r))(α+ε)β <+∞.

It follows that, for every r = 1, . . . , k, the functional |f1r|(α+ε)β is a.s. uniformly integrable with
respect to p(l)

n , that is

sup
n

∫
{|f1r|(α+ε)β>a}

|f1r|(α+ε)βp
(l)
n (df)

a.s.−→ 0 as a→∞.

To prove it, fix ω ∈ Ω such that p(l)
n (ω) converges weakly to q(l), as n→ +∞, and let (f̃

(ω)
n )n≥1

and f̃ (ω) be random vectors defined on a probability space (Ω̃, F̃ , P̃) with distribution (p
(l)
n (ω))n≥1

and q(l), respectively. Then, under P̃, the sequence (|f̃ (ω)
n 1r|(α+ε)β)n≥1 converges in distribution, as

n→+∞, to |f̃ (ω)1r|(α+ε)β and also

Ẽ(|f̃ (ω)
n 1r|(α+ε)β) =

∫
|f1r|(α+ε)βp

(l)
n (ω)(df)

→
∫
|f1r|(α+ε)βq(l)(df) = Ẽ(|f̃ (ω)1r|(α+ε)β)<+∞.

By uniform integrability,

sup
n

∫
{|f1r|(α+ε)β>a}

|f1r|(α+ε)βp
(l)
n (ω)(df) = sup

n
Ẽ
[
|f̃ (ω)
n 1r|(α+ε)βI(a,∞)(|f̃

(ω)
n 1r|(α+ε)β)

]
→ 0,
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as a→∞. Thus, |f1r|(α+ε)β is a.s. uniformly integrable with respect to p(l)
n , for r = 1, . . . , k. Since

for some c, d ∈R+

||φ ◦ f ||α+ε ≤
k∑
r=1

|φ(f1r)|α+ε ≤
k∑
r=1

(a+ b|f1r|β)α+ε ≤ c+ d

k∑
r=1

|f1r|(α+ε)β ,

then ||φ ◦ f ||α+ε is a.s. uniformly integrable with respect to p
(l)
n . Since p(l)

n converges a.s.to q(l),
then

∫
||φ ◦ f ||α+εp

(l)
n (df) converges a.s. to

∫
||φ ◦ f ||α+εq(l)(df). This proves the induction step

for (2.4). Finally, we prove that Equation (2.5) holds true for l′ = l. In particular, we observe that
|(φ ◦ f)t| ≤ ||t|| ||φ ◦ f ||. Then, |(φ ◦ f)t|α is also a.s. uniformly integrable with respect to p

(l)
n .

Equation (2.5) with l′ = l follows from this and (2.3) with l′ = l. This completes the proof of the
induction hypothesis.

2.2. Weak convergence of f (l)
i (X, n)

We prove Equation (2.6). In particular, by means of (2.8) and dominated convergence theorem, which

is applied to the sequence (En,l−2[eif
(l)
i (X,n)t])n≥1 of uniformly bounded random variables, we can

write

E[eif (l)
i (X,n)t]

→ E

[
exp

{
−
∫
Sk−1

|st|α
(
||σb1T ||αζ 1T

||1T ||

)
(ds)

}
exp

{
−
∫
σαw|(φ ◦ f)t|αq(l−1)(df)

}]

= exp

{
−
∫
Sk−1

|st|α
(
||σb1T ||αζ 1T

||1T ||

)
(ds)

}

× exp

{
−
∫ ∫

Sk−1
|st|α

(
||σw(φ ◦ f)||αζ φ◦f

||φ◦f ||

)
(ds)q(l−1)(df)

}
.

That is, f (l)
i (X, n) converges weakly, as n→ +∞, to f (l)

i (X) distributed as Stk(α,Γ(l)), for each
i≥ 1, where

Γ(l) = ||σb1T ||αζ 1T

||1T ||
+

∫
||σw(φ ◦ f)||αζ φ◦f

||φ◦f ||
q(l−1)(df),

with q(l−1) being the distribution of f (l−1)
i (X), for l = 2, . . . ,D. This result completes the proof of

(2.6).

2.3. Weak convergence of (f (l)
i (X, n))i≥1

By Cramér-Wold theorem [6] the convergence of (f
(l)
i (X, n))i≥1 to some limit is equivalent to con-

vergence on all possible linear projections of (f
(l)
i (X, n))i≥1 to the corresponding real-valued random
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variable. Let L ⊂ N and let {pi}i∈L such that pi ∈ (0,1) and
∑
i∈L pi = 1. Then, we consider the

linear projection

T (l)(L, p,X, n) =
∑
i∈L

pi[f
(l)
i (X, n)− b(l)i 1T ]

=
∑
i∈L

pi

 1

n1/α

n∑
j=1

w
(l)
i,j (φ ◦ f

(l−1)
j (X, n))


=

1

n1/α

n∑
j=1

∑
i∈L

piw
(l)
i,j (φ ◦ f

(l−1)
j (X, n)) =

1

n1/α

n∑
j=1

γ
(l)
j (L, p,X, n),

where we set γ(l)
j (L, p,X, n) =

∑
i∈L piw

(l)
i,j (φ ◦ f

(l−1)
j (X, n)) for j = 1, . . . , n. Then, we can write

that

ϕ
T (l)(L,p,X,n) | {f (l−1)

j (X,n)}j≥1
(t)

= E[eiT (l)(L,p,X,n)t | {f (l−1)
j (X, n)}j≥1]

= E

exp


 1

n1/α

n∑
j=1

∑
i∈L

piw
(l)
i,j (φ ◦ f

(l−1)
j (X, n))

 (it)

 | {f (l−1)
j (X, n)}j≥1


=

n∏
j=1

∏
i∈L

E
[
exp

{
1

n1/α
piw

(l)
i,j (φ ◦ f

(l−1)
j (X, n))(it) | {f (l−1)

j (X, n)}j≥1

}]

=

n∏
j=1

∏
i∈L

e−
pαi σ

α
w

n
|(φ◦f (l−1)

j (X,n))t|α

= exp

−
∫
Sk−1

|st|α

 1

n

n∑
j=1

∑
i∈L
||piσw(φ ◦ f (l−1)

j (X, n))||αζ
φ◦f(l−1)

j
(X,n)

||φ◦f(l−1)
j

(X,n)||

 (ds)

 .

That is,

T (l)(L, p,X, n) | {f (l−1)
j (X, n)}j≥1

d
= S

α,Γ
(l)
n,L
,

where S
α,Γ

(l)
n

is a random vector with symmetric α-stable distribution and spectral measure of the
form

Γ
(l)
n,L =

1

n

n∑
j=1

∑
i∈L
||piσw(φ ◦ f (l−1)

j (X, n))||αζ
φ◦f(l−1)

j
(X,n)

||φ◦f(l−1)
j

(X,n)||

.
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Along lines similar to the proof of the large n asymptotics for the i-th coordinate fi(X, n), we can
show that

E[eT
(l)(L,p,X,n)(it)]→ exp

{
−
∫ ∫

Sk−1
|st|α

(∑
i∈L
||piσw(φ ◦ f)||αζ φ◦f

||φ◦f ||

)
(ds)q(l−1)(df)

}

as n → +∞. That is, the linear projection T (l)(L, p,X, n) converges weakly, as n → +∞, to
T (l)(L, p,X) =

∑
i∈L pi[f

(l)
i (X) − b(l)i 1T ] where the f (l)

i (X) are i.i.d. according to Stk(α,Γ(l)),
where we set

Γ(l) = ||σb1T ||αζ 1T

||1T ||
+

∫
||σw(φ ◦ f)||αζ φ◦f

||φ◦f ||
q(l−1)(df),

with q(l−1) being the distribution of f (l−1)
i (X), for any l= 2, . . . ,D. Therefore, by means of Cramér-

Wold theorem, (f
(l)
i (X, n))i≥1 converges weakly, as n→+∞, to the Stable SP (f

(l)
i (X, n))i≥1, as a

process indexed by X, whose distribution is ⊗i≥1Stk(α,Γ(l)). This completes the proof of Theorem
1.2

As a complement to the proof of Theorem 1.2, we show the consistency or compatibility of the
finite-dimensional distributions of the Stable SP (f

(l)
i (X))i≥1. In particular, proceeding by induction,

we write

ϕ
f

(1)
i (X)

(t) = exp

−σαb |1T t|α −
I∑
j=1

σαw|xjt|α


and, for l > 1,

ϕ
f

(l)
i (X)

(t) = exp

{
−σαb |1

T t|α −
∫
σαw|(φ ◦ f)t|αq(l−1)(df)

}
.

Now, we define Xr̂ = [x1, . . . ,xr−1,xr+1, . . . ,xk], tr̂ = [t1, . . . , tr−1, tr+1, . . . , tk]T , and xjr̂ =

[xj1, . . . , xj,r−1, xj,r+1, . . . , xjk]. Moreover, for every l = 1, . . . ,D, we define a measure q(l)
r̂ as fol-

lows

q
(l)
r̂ (df1, . . . dfr−1, dfr+1, . . . , dfk) =

∫
fr∈R

q(l)(df1, . . . , dfk).

Then

ϕ
f

(1)
i (X)

(t1, . . . , tr−1,0, tr+1, . . . , tk)

= exp

−σαb |1T tr̂|α −
I∑
j=1

σαw|xjr̂tr̂|α
= ϕ

f
(1)
i (Xr̂)

(tr̂).

Therefore, the consistency of the finite-dimensional distributions holds for l= 1. Now suppose that the
consistency holds true for every l′ < l. In particular, f (l−1)

i (Xr̂) has distribution q(l−1)
r̂ . Then, we can

write that

ϕ
f

(l)
i (X)

(t1, . . . , tr−1,0, tr+1, . . . , tk)
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= exp

{
−σαb |1

T tr̂|α −
∫
σαw|(φ ◦ f)tr̂|αq

(l−1)
r (df)

}
= ϕ

f
(l)
i (Xr̂)

(tr̂),

which proves consistency or compatibility of the finite dimensional distributions for l′ = l of the Stable
SP (f

(l)
i (X))i≥1.

3. Sup-norm convergence rates

In this section, we refine Theorem 1.2 by establishing sup-norm convergence rates of the deep Stable
NN (f

(l)
i (X, n))i≥1 to the Stable SP (f

(l)
i (X))i≥1, under both the setting of “sequential growth” and

“joint growth” of the width over the NN’s layers. Throughout this section we make the following
assumptions:

φ is continuous, strictly monotone and bounded (3.1)

and

{1,x1, . . . ,xI} spans Rk. (3.2)

3.1. The “joint growth” setting

The “joint growth” setting consists in assuming that, for any l = 1, . . . ,D, the width n→ +∞ si-
multaneously over the first l ≥ 1 layers. We recall from Section 2 that f (1)

i (X) ∼ Stk(α,Γ(1)) and

f
(l)
i (X, n) | Gn,l−1 ∼ St(α,Γ(l)

n ) for any l = 2, . . . ,D, where Γ(1) and Γ
(l)
n are defined in (2.1) and

(2.2), respectively. In particular, Γ(1) and Γ(l) are finite random measures with (random) total masses
given by

Γ(1)(Sk−1) = σαb k
α/2 + σαw

I∑
j=1

||xj ||α

and

Γ
(l)
n (Sk−1) = σαb k

α/2 +
σαw
n

n∑
j=1

||φ ◦ f (l−1)
j (X, n)||α,

for l = 2, . . . ,D, respectively. We recall from Theorem 1.2 that f (l)
i (X) ∼ Stk(α,Γ(l)) for l =

1, . . . ,D, where Γ(l) is a finite measure displayed in (1.3). Under the assumption (3.1), it holds that

φ := sup
s
|φ(s)|<+∞

and

max(Γ
(l)
n (Sk−1),Γ(l)(Sk−1)≤ γ̄ := σαb k

α/2 + σαwφ̄
αkα/2 (3.3)

for l = 2, . . . ,D. Such a condition, together with the following lemma, allows to give an explicit uni-
form bound for the tails of the Stable distributions that are involved in the definition of the deep Stable
NN.
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Lemma 3.1 ([10]). Let S be a k-dimensional random vector distributed as a symmetric centered
α-stable distribution with spectral measure Γ. If

c(α) =


2α/2−1π1/2(1+tan2(πα/2))1/4 cos(πα/4)

α/2
∫+∞
0 u−1−α/2 sin2 udu

α 6= 1

23/2π−1/2 α= 1,

then P[|S|>R]≤ ε for every ε > 0 whenever R is such that Rα/2 ≥ c(α)kΓ(Sk−1)1/α/ε.

To establish sup-norm convergence rates, it is useful to consider linear transformations of the random
vectors f (l)

i (X, n) and f (l)
i (X) [38, Chapter 2]. In particular, if u is a k-dimensional (column) vector

then

i) f (1)
i (X)u∼ St(α, (γ(1)(u))1/α), where

γ(1)(u) = σαb |1
Tu|α + σαw

I∑
j=1

|xju|α;

ii) f (l)
i (X, n)u | Gn,l−1 ∼ St(α, (γ(l)

n (u))1/α), where

γ
(l)
n (u) = σαb |1

Tu|α +
σαw
n

n∑
j=1

|(φ ◦ f (l−1)
j (X, n))u|α;

iii) f (l)
i (X)u∼ St(α, (γ(1)(u))1/α), where

γ(l)(u) = σαb |1
Tu|α + σαwE[|(φ ◦ f (l−1)

j (X))u|α].

We denote by λk−1 the Lebesgue measure on Sk−1. The next lemmas are critical to establish sup-norm

convergence rates, as they show that the distributions f (l)
i (X, n) and f (l)

i (X) are absolutely continuous

with respect to the Lebesgue measure. The next two lemmas deal with the distribution of f (l)
i (X).

Lemma 3.2 ([34]). Let S1 and S2 be k-dimensional random vectors distributed as symmetric α-
stable distributions with spectral measures Γ1 and Γ2, satisfying

γ := min

(
inf

s∈Sk−1
γ1(s), inf

s∈Sk−1
γ2(s)

)
> 0.

respectively. Then, the corresponding density functions g1 and g2 exist and are such that

||g1 − g2||∞ ≤
kΓ(k/α)

α(2π)kγk+1

∫
Sk−1

|(γ1(u))1/α − (γ2(u))1/α|du.

Lemma 3.3. Under (3.1) and (3.2), for every l= 1, . . . ,D,

inf
u∈Sk−1

γ(l)(u)> 0, (3.4)

and the distribution of f (l)
i (X) is absolutely continuous with respect to the Lebesgue measure.
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Proof. If infu∈Sk−1 γ(l)(u)> 0, then absolute continuity of the distribution of f (l)
i (X) follows from

Lemma 3.2. Since u 7→ γ(l)(u) are continuous on Sk−1, the minimum is attained. Thus, it is sufficient
to show that

γ(l)(u) 6= 0 for every u ∈ Sk−1. (3.5)

We prove (3.5) by induction on the NN’s layers. If there exists a vector u ∈ Sk−1 such that γ(1)(u) = 0,
then it holds that 1Tu = 0 and xiu = 0 for every i. On the other hand, since {1T ,x1, . . . ,xI} spans
Rk, then there exists a0, . . . , aI such that uT = a01

T +
∑I
i=1 aixi. Thus uTu = 0 which contradicts

u ∈ Sk−1. Thus (3.4) holds true for l = 1 and the distribution of f (1)
i (X) is absolutely continuous.

Now suppose that (3.4) holds true so that the distribution of f (l)
i (X) is absolutely continuous. Since φ

is continuous and strictly increasing, then the distribution of φ ◦ f (l)
i (X) is also absolutely continuous.

Thus, for every u ∈ Sk−1, P[(φ ◦ f (l)
i (X))u = 0] = 0, which implies that E[|(φ ◦ f (l)

i (X))u|α] > 0.
Thus, γ(l+1)(u)> 0 for every u ∈ Sk−1.

By Lemma 3.3, P[f
(l)
i (X) ∈ · ] is absolutely continuous with respect to the Lebesgue measure,

for l = 1, . . . ,D, and we denote by g(l) its density function. The next three lemmas deal with the
distribution of f (l)

i (X, n).

Lemma 3.4. Under (3.1) and (3.2), for every l= 2, . . . ,D and every u ∈ Sk−1, as n→+∞

γ
(l)
n (u)

a.s.−→ γ(l)(u).

Proof. Under (3.1) the assumptions of Theorem 1.2 hold true. Its proof shows that, for every l, the
conditional distribution of f (l)

i (X, n), given Gn,l−1 is Stk(α,Γ
(l)
n ) and converges a.s. in the weak

topology, to the law of f (l)
i (X), which is Stk(α,Γ(l)). As a consequence, by ii) and iii) above, for

every u ∈ Sk−1,

(γ
(l)
n (u))1/α a.s.−→ (γ(l)(u))1/α.

Since the function x→ xα is continuous, the thesis follows.

Lemma 3.5. For every l= 2, . . . ,D and every u ∈ Sk−1

lim inf
n→+∞

γ
(l)
n (u)>

γ(l)(u)

2
a.s.

Proof. The proof is a direct consequence of Lemma 3.3 and Lemma 3.4.

Lemma 3.6. Let γ(l) = infu∈Sk−1 γ(l)(u). Then, under (3.1) and (3.2), for every l = 2, . . . ,D it
holds that

lim inf
n

inf
u∈Sk−1

γ
(l)
n (u)>

γ(l)

4
a.s.

Proof. We start by defining r = min(1,γ(l)/(4 max(α,1)σαwφ̄
αkα/2)). Since Sk−1 is compact, then

there exist m ∈ N and u1, . . . ,um in Sk−1 such that: for every u ∈ Sk−1 there exists h ∈ {1, . . . ,m}
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such that ||u− uh||min(α,1) < r. Now, let Nh = {ω ∈ Ω : lim infn γ
(l)
n (uh) ≤ γ(l)(uh)/2} for h =

1, . . . ,m. Then, P[∪hNh] = 0 and for every ω ∈ (∪hNh)c it holds that

lim inf
n

γ
(l)
n (uh)(ω)>

γ(l)

2

for every h = 1, . . . ,m. Now, fix ω ∈ (∪hNh)c and let u ∈ Sk−1. Moreover, let h be such that ||u−
uh||min(α,1) < r. Then, if α≤ 1, for every n, we can write

|γ(l)
n (u)(ω)− γ(l)

n (uh)(ω)| ≤

∣∣∣∣∣∣σ
α
w

n

n∑
j=1

(
|(φ ◦ f (l−1)

j (X, n))u|α − |(φ ◦ f (l−1)
j (X, n))uh|α

)∣∣∣∣∣∣
≤ σαw

n

n∑
j=1

|(φ ◦ f (l−1)
j (X, n)(u− uh)|α ≤ σαwφ̄αkα/2||u− uh||α

<
γ(l)

4
.

On the other hand, if α > 1 then by the Lagrange theorem there exists u(h,n) = θ(h,n)u + (1 −
θ(h,n))uh, with θ(h,n) ∈ [0,1], such that we can write

|γ(l)
n (u)(ω)− γ(l)

n (uh)(ω)|

≤

∣∣∣∣∣∣σ
α
w

n

n∑
j=1

(
|(φ ◦ f (l−1)

j (X, n))u|α − |(φ ◦ f (l−1)
j (X, n))uh|α

)∣∣∣∣∣∣
≤ σαw

n

n∑
j=1

α|(φ ◦ f (l−1)
j (X, n))u(h,n)|α−1|(φ ◦ f (l−1)

j (X, n))(u− uh)|

≤ σαw
n

n∑
j=1

α||φ ◦ f (l−1)
j (X, n)||α||u− uh|| ≤ σαwαφ̄αkα/2||u− uh||<

γ(l)

4
.

Thus

lim inf
n

γ(l)(u)≥ lim inf γ
(l)
n (uh)−

γ(l)

4
>
γ(l)

4
.

We define the setN = {ω ∈Ω : lim infn infu∈Sk−1 γ
(l)
n (u)≤ γ(l)/4}. Then, it holds that P[N ] = 0

and for every ω ∈Nc there exists n0 = n0(ω) such that

inf
u∈Sk−1

γ
(l)
n (u)(ω)> γ(l)/4 for every n≥ n0.

From Lemma 3.2, for every ω ∈Nc, Pn,l−1[f
(l)
i (X, n) ∈ · ](ω) is absolutely continuous with respect

to the Lebesgue measure, for n ≥ n0(ω). We denote by g(l)(n) a version of the (random) density
function of Pn,l−1[f

(l)
i (X, n) ∈ · ], with respect to the Lebesgue measure. We can extend the definition
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of g(l)(n) to every n and every ω. The next theorem establishes the convergence rate of (f
(l)
i (X, n))i≥1

to (f
(l)
i (X))i≥1.

Theorem 3.1 (The “joint growth” setting). Under the assumptions (3.1) and (3.2), we denote by
g(l)(n) and g(l) the versions of the density functions of the distributions Pn,l−1[f

(l)
i (X, n) ∈ · ]

and P[fj(X) ∈ · ], respectively, with respect to the Lebesgue measure. If δ2 < 1/2 and for every
l= 3, . . . ,D

δl <
δl−1

1 + 2k/α
. (3.6)

then, as n→+∞,

nδl ||g(l)(n)− g(l)||∞
p−→ 0.

Proof. We restrict to the set Nc = {ω ∈ Ω : lim infn infu∈Sk−1 γ
(l)
n (u) > γ(l)/4}. Similarly to the

proof of Theorem 1.2, we consider induction over the NN’s layers l = 1, . . . ,D. In particular, by
Lemma 3.2 it holds that

nδl ||g(l)(n)− g(l)||∞ ≤ c1nδl
∫
Sk−1

|(γ(l)
n (u))1/α − (γ(l)(u))1/α|du,

with c1 = kΓ(k/α)/(α(2π)kγk+1). Since for n large enough, the measures γ(l)
n (u)du and γ(l)(u)du

are bounded by (3.3) and bounded away from zero by Lemma 3.3 and Lemma 3.6, proving that
nδl
∫
Sk−1 |(γ(l)

n (u))1/α − (γ(l)(u))1/α|du converges in probability to zero is equivalent to proving

that nδl
∫
Sk−1 |γ(l)

n (u)− γ(l)(u)|du converges in probability to zero. In particular, for l = 2, we can
write

nδ2
∫
Sk−1

|γ(2)
n (u)− γ(2)(u)|du≤

∫
Sk−1

∣∣∣∣ 1

n1−δ2

n∑
j=1

(
|(φ ◦ f (1)

j (X))u|α −E[|(φ ◦ f (1)
j (X))u|α]

)∣∣∣∣du.
By means of [40, Theorem 2],

E

∫
Sk−1

∣∣∣∣ 1

n1−δ2

n∑
j=1

(
|(φ ◦ f (1)

j (X))u|α −E[|(φ ◦ f (1)
j (X))u|α]

)∣∣∣∣2du


=

∫
Sk−1

E

∣∣∣∣ 1

n1−δ2

n∑
j=1

(
|(φ ◦ f (1)

j (X))u|α −E[|(φ ◦ f (1)
j (X))u|α]

)∣∣∣∣2
du

≤ 2
1

n1−2δ2

∫
Sk−1

E
[
|(φ ◦ f (1)

j (X))u|2α
]

du

≤
2kαφ̄2αλk−1(Sk−1)

n1−2δ2
→ 0

as n→ +∞. Now, recall that the convergence in L2 in (Ω × Sk−1,G ⊗ B(Sk−1),P × λk−1), with
B(Sk−1) being the Borel sigma algebra of Sk−1, implies the convergence in L1. Therefore, we can
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write

E

∫
Sk−1

∣∣∣∣ 1

n1−δ2

n∑
j=1

|(φ ◦ f (l)
j (X))u|α −E[|(φ ◦ f (1)

j (X))u|α]

∣∣∣∣du
→ 0

as n→+∞, which implies∫
Sk−1

∣∣∣∣ 1

n1−δ2

n∑
j=1

|(φ ◦ f (1)
j (X))u|α −E[|(φ ◦ f (1)

j (X))u|α]

∣∣∣∣du p−→ 0 (3.7)

as n→ +∞. This completes the proof for l = 2. Now, as the main induction hypothesis, we assume
that

nδl−1 ||g(l−1)(n)− g(l−1)||∞
p−→ 0

as n→+∞, for some l ≥ 3. By (3.6), there exists δ such that 0< δ < α
2k (δl−1 − δl)− δl. Then, we

write

nδl
∫
Sk−1

|γ(l)
n (u)− γ(l)(u)|du (3.8)

≤ nδlσαw
∫
Sk−1

∣∣∣∣ 1n
n∑
j=1

|(φ ◦ f (l−1)
j (X, n))u|α −En,l−2[|(φ ◦ f (l−1)

j (X, n))u|α]

∣∣∣∣du
+ nδlσαw

∫
Sk−1

∣∣∣∣En,l−2(|(φ ◦ f (l−1)
i (X, n))u|α)−E[|(φ ◦ f (l−1)

i (X, n))u|α]

∣∣∣∣du.
We consider the two terms on the right-hand side of (3.8). With regards to the first term, by Theorem 2
in [40],

E

∫
Sk−1

∣∣∣∣∣∣ 1

n1−δl

n∑
j=1

(
|(φ ◦ f (l−1)

j (X, n))u|α −En,l−2[|(φ ◦ f (l−1)
j (X, n))u|α]

)∣∣∣∣∣∣
2

du


= E

∫
Sk−1

En,l−2

[∣∣∣∣ 1

n1−δl

n∑
j=1

(
|(φ ◦ f (l−1)

j (X, n))u|α −En,l−2[|(φ ◦ f (l−1)
j (X, n))u|α]

)∣∣∣∣2
]

du


≤ 2

1

n1−2δl
E
[∫

Sk−1
En,l−2

[
|(φ ◦ f (l−1)

i (X, n))u |2α
]

du

]
≤

2φ̄2αkαλk−1(Sk−1)

n1−2δl
→ 0,

as n→+∞. Since convergence in L2 in (Ω×Sk−1,G⊗B(Sk−1),P×λk−1) implies the convergence
in L1,

E

∫
Sk−1

∣∣∣∣ 1

n1−δl

n∑
j=1

|(φ ◦ f (l−1)
j (X, n))u|α −En,l−2[|(φ ◦ f (l−1)

j (X, n))u|α]

∣∣∣∣du
→ 0,
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as n→+∞, which implies∫
Sk−1

∣∣∣∣ 1

n1−δl

n∑
j=1

|(φ ◦ f (l−1)
j (X, n))u|α −En,l−2[|(φ ◦ f (l−1)

j (X, n))u|α]

∣∣∣∣du p−→ 0 (3.9)

as n→+∞. For the second term on the right-hand side of (3.8), by Lemma 3.1 with R =R(l)(n) =

n2(δl+δ)/α,

nδl
∫
Sk−1

|En,l−2[|(φ ◦ f (l−1)
i (X, n))u|α]−E[|(φ ◦ f (l−1)

i (X, n))u|α]|du

≤ nδl
∫
Sk−1

∣∣∣∣∫
Rk
|(φ ◦ f)u|αg(l−1)(f,n)df −

∫
Rk
|(φ ◦ f)u|αg(l−1)(f)df

∣∣∣∣du
≤ nδl

∫
Sk−1

∫
||f ||≤R(l)(n)

|(φ ◦ f)u|α|g(l−1)(f,n)− g(l−1)(f)|dfdu

+ nδl
∫
Sk−1

∫
||f ||>R(l)(n)

|(φ ◦ f)u|αg(l−1)(f,n)dfdu

+ nδl
∫
Sk−1

∫
||f ||>R(l)(n)

|(φ ◦ f)u|αg(l−1)(f)dfdu

≤ nδl
∫
Sk−1

∫
||f ||≤R(l)(n)

φ̄αkα/2||g(l−1)(n)− g(l−1)||∞dfdu

+ nδl
∫
Sk−1

∫
||f ||>R(l)(n)

φ̄αkα/2g(l−1)(f)dfdu

+ nδl
∫
Sk−1

∫
||f ||>R(l)(n)

φ̄αkα/2g(l−1)(f,n)dfdu

≤ nδlλk−1(Sk−1)

×

(
πk/2

Γ(k/2 + 1)
(R(l)(n))kφ̄αkα/2||g(l−1)(n)− g(l−1)||∞ + 2φ̄αkα/2

c(α)kγ̄1/α

(R(l−1)(n))α/2

)

≤ nδlλk−1(Sk−1)φ̄αkα/2

×

(
n2k(δl+δ)/α−δl−1

πk/2

Γ(k/2 + 1)
nδl−1 ||g(l−1)(n)− g(l−1)||∞ +

γ̄c(α)k

nδl+δ

)
p−→ 0

as n→+∞, since we have 2k(δl + δ)/α− δl−1 + δl < 0. This completes the proof.

Theorem 3.1 provides a refinement of Theorem 1.2 by establishing the sup-norm convergence rate
of a deep Stable NNs to a Stable SPs, in the “joint growth” setting. As in Theorem 1.2, the proof in
the “joint growth” setting requires the use of an induction argument or induction hypothesis over the
NN’s layers l = 1, . . . ,D. In particular, by means of such an induction argument, it is shown how the
convergence rate nδl is affected by the depth of the layer, i.e. l, and by the dimension k ≥ 1 of the input
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That is,

δ2 <
1

2
(3.10)

and for l= 3, . . . ,D

δl <
δl−1

1 + 2k/α
. (3.11)

Then, according to (3.10) and (3.11), the assumption of the “sequential growth” setting implies two
critical effects on the convergence rates: i) for any l = 3, . . . ,D, the deeper the layer l in the NN the
slower the convergence rate; ii) for each fixed l= 3, . . . ,D, the larger the dimension k ≥ 1 of the inuput
the slower the convergence rate. Such a behaviour is completely determined by the assumption of the
“joint growth” setting, and a different behaviour is expected under the assumption of the “sequential
growth” setting.

3.2. The “sequential growth” setting

The “sequential growth” setting consists in assuming that, for any l= 1, . . . ,D, the width n→+∞ one
layer at a time. To deal with such a setting, we consider the deep Stable NN (f̌

(l)
i (X, n))i≥1 defined

as follows

f̌
(1)
i (X) =

I∑
j=1

w
(1)
i,j xj + b

(1)
i 1T

and

f̌
(l)
i (X, n) =

1

n1/α

n∑
j=1

w
(l)
i,j (φ ◦ f̌

(l−1)
j (X)) + b

(l)
i 1T ,

where (f̌
(l−1)
j (X))j≥1 is a sequence of k-dimensional (row) random vectors such that, as n→+∞,

it holds that

(f̌
(l−1)
i (X, n))i≥1

w−→ (f̌
(l−1)
i (X))i≥1.

The distribution of (f̌
(l−1)
i (X))i≥1 coincides with the distribution of the Stable SP (f

(l−1)
i (X))i≥1 in

Theorem 1.2. Under the “sequential growth” setting, the study of convergence rates of (f
(l)
i (X, n))i≥1

to (f
(l)
i (X))i≥1 reduces to the study of convergence rates of (f̌

(l)
i (X, n))i≥1, which is a simpler

problem.
Let Gl denote the sigma algebra generated by {(f̌ (l′)

i (X))i≥1 : l′ ≤ l}, for any l ≥ 1, and let G0

denote the trivial sigma algebra. To establish sup-norm convergence rates, it is useful to consider linear
transformations of the random vectors f̌ (l)

i (X, n) and f̌ (l)
i (X). If u is a k-dimensional (column) vector

then

i) f̌ (1)
i (X)u∼ St(α, (γ̌(1)(u))1/α), where

γ̌(1)(u) = σαb |1
Tu|α + σαw

I∑
j=1

|xju|α;
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ii) f̌ (l)
i (X, n)u | Gl−1 ∼ St(α, (γ̌(l)

n (u))1/α), where

γ̌
(l)
n (u) = σαb |1

Tu|α +
σαw
n

n∑
j=1

|(φ ◦ f̌ (l−1)
j (X))u|α

iii) f̌ (l)
i (X)u∼ St(α, (γ̌(1)(u))1/α), where

γ̌(l)(u) = σαb |1
Tu|α + σαwE[|(φ ◦ f̌ (l−1)

j (X))u|α].

Under (3.1),

max(Γ̌
(l)
n (Sk−1), Γ̌(l)(Sk−1))≤ γ (3.12)

for l= 2, . . . ,D, with γ defined as in (3.3). We denote by El and Pl the conditional expectation and the
conditional distribution, respectively, given Gl, and by λk−1 the Lebesgue measure on Sk−1. Assuming
that (3.1) and (3.2) hold, along lines similar to that of Lemma 3.4, Lemma 3.5 and Lemma 3.6 we have

γ̌(l) := inf
u∈Sk−1

γ̌(l)(u)> 0, (3.13)

and

inf
u∈Sk−1

γ̌
(l)
n (u, ω)> γ̌(l)/4 (3.14)

for every l = 1, . . . ,D, every ω ∈ Ňc with P[Ň ] = 0, and every n≥ n0(ω). By Lemma 3.2, the prob-
ability measure P[f̌

(l)
i (X) ∈ · ] is absolutely continuous with respect to the Lebesgue measure, and

we denote by ǧ(l) its density function. Moreover, for every ω ∈ Ňc, Pl−1[f̌
(l)
i (X, n) ∈ · ](ω) is abso-

lutely continuous with respect to the Lebesgue measure, for n ≥ n0(ω). In particular, we denote by
ǧ(l)(n) a version of the density function of Pn,l−1[f̌

(l)
i (X, n) ∈ · ]. We can extend the definition of

ǧ(l)(n) to every n and every ω. The next theorem establishes the convergence rate of (f̌
(l)
i (X, n))i≥1

to (f̌
(l)
i (X))i≥1.

Theorem 3.2 (The “sequential growth” setting). Under the assumptions (3.1) and (3.2), we denote by
ǧ(l)(n) and ǧ(l) the versions of the random density functions of the distributions Pl−1[f̌

(l)
i (X, n) ∈ · ]

and P[f̌j(X) ∈ · ], respectively, with respect to the Lebesgue measure. For every l = 1, . . . ,D and
ε > 0, as n→+∞

n1/2−ε||ǧ(l)(n)− ǧ(l)||∞
p−→ 0.

Proof. We restrict to the set Ňc = {ω ∈ Ω : lim infn infu∈Sk−1 γ̌
(l)
n (u)(ω) > γ̌(l)/4}. Now, since

lim infn infu∈Sk−1 γ̌
(l)
n (u)> γ̌(l)/4> 0 and infu∈Sk−1 γ̌(l)(u)> 0, for l= 1, . . . ,D, by Lemma 3.2,

it is sufficient to show that

n1/2−ε
∫
Sk−1

|(γ̌(l)
n (u))1/α − (γ̌(l)(u))1/α|du p−→ 0, (3.15)
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as n → +∞. The measures γ̌(l)
n (u)du and γ̌(l)(u)du are bounded by (3.3); moreover, they are

bounded away from zero, as shown in (3.13) and (3.14). Accordingly, (3.15) is equivalent to the fol-
lowing

n1/2−ε
∫
Sk−1

|γ̌(l)
n (u)− γ̌(l)(u)|du p−→ 0, (3.16)

as n→+∞. By ii) and iii) above,

n1/2−ε|γ̌(l)
n (u)− γ̌(l)(u)|= σαw

∣∣∣∣ 1

n1/2+ε

n∑
j=1

(
|(φ ◦ f̌ (l−1)

j (X))u|α −E[|(φ ◦ f̌ (l−1)
j (X))u|α]

)∣∣∣∣.
and by [40, Theorem 2],

E

∫
Sk−1

∣∣∣∣ 1

n1/2+ε

n∑
j=1

(
|(φ ◦ f̌ (l−1)

j (X))u|α −E[|(φ ◦ f̌ (l−1)
j (X))u|α]

)∣∣∣∣2du


=

∫
Sk−1

E

∣∣∣∣ 1

n1/2+ε

n∑
j=1

(
|(φ ◦ f̌ (l−1)

j (X))u|α −E[|(φ ◦ f̌ (l−1)
j (X, n))u|α]

)∣∣∣∣2
du

≤ 2
1

n2ε

∫
Sk−1

E
[
|(φ ◦ f̌ (l−1)

j (X))u |2α
]

du

≤
2φ̄2αkαλk−1(Sk−1)

n2ε
→ 0,

as n→ +∞. Now, the convergence in L2 in (Ω × Sk−1,G ⊗ B(Sk−1),P × λk−1), with B(Sk−1)

being the Borel sigma algebra of Sk−1, implies the convergence in L1. Accordingly, we can write the
following

E

∫
Sk−1

∣∣∣∣ 1

n1/2+ε

n∑
j=1

|(φ ◦ f̌ (l−1)
j (X))u|α −E[|(φ ◦ f̌ (l−1)

j (X))u|α]

∣∣∣∣du
→ 0,

as n→+∞, which implies that∫
Sk−1

∣∣∣∣ 1

n1/2+ε

n∑
j=1

|(φ ◦ f̌ (l−1)
j (X))u|α −E[|(φ ◦ f̌ (l−1)

j (X))u|α]

∣∣∣∣du p−→ 0,

as n→+∞. This completes the proof.

Theorem 3.2 provides an interesting complement to Theorem 3.1, as it highlights a critical difference
between the “joint growth” and the “sequential growth” settings. Differently from the “joint growth”
setting, the “sequential growth” setting does not require the use of an induction argument over the NN’s
layers l = 1, . . . ,D, as in the study of the convergence rate at layer l it is assumed that the layer l− 1
has already reached its limit. In particular, Theorem 3.2 shows how in the “sequential growth” setting
the convergence rate nδl is not affected by the the depth of the layer, i.e. l, or the dimension k ≥ 1 of
the input. That is,

δl <
1

2
(3.17)
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for every l = 1, . . . ,D. According to (3.17), the assumption of the “sequential growth” setting implies
that the convergence rate is constant with respect to the depth of the layer l = 1, . . . ,D and the di-
mension k ≥ 1 of the input. While at the level of the infinitely wide limit in Theorem 1.2 there are no
difference between the “joint growth” and the “sequential growth” settings, as both settings lead to the
same infinitely wide Stable process, our results show how a difference between these settings appears
at the refined level of convergence rate. To the best of our knowledge, our work is the first to provide
a quantitative result on the difference between the “joint growth” setting and the “sequential growth”
setting.

4. Discussion

We discuss the potential of our results with respect to to Bayesian inference, gradient descent via neural
tangent kernels and depth limits, and we present open challenges in large-width asymptotics for deep
Stable NNs.

4.1. Bayesian inference

From Theorem 1.1, we know that infinitely wide deep Gaussian NNs give rise to i.i.d. centered Gaus-
sian SPs at every layer 1 ≤ l ≤ D. Now, assume that we are given a training dataset of ktr distinct
observations ((x1, y1), . . . , (xktr , yktr )) where each xj ∈ RI is a I-dimensional input and yi its cor-
responding scalar output. Then, we are interested in determining the conditional distributions of the
limiting Gaussian SPs over a set of kte test input values given the training dataset, that is the distribu-
tion of

(f
(l)
i (xktr+1), . . . , f

(l)
i (xk)) | (f (l)

i (x1) = y1, . . . , f
(l)
i (xktr ) = yktr ), (4.1)

where k = ktr + kte and we indexed training observations from 1 to ktr, test inputs from ktr + 1 to
k. Theorem 1.1 establishes that the covariance matrices of the limiting Gaussian SPs over all k inputs,
one for each layer 1 ≤ l ≤ D, can be computed via a recursion over such layers. [27] proposes an
efficient quadrature solution that keeps the computational requirements manageable for an arbitrary
activation φ. Once the covariance matrix over all k inputs for a given layer l is available, standard
results on multivariate Guassian vectors establish that the distribution of (4.1) is multivariate Gaussian,
whose mean vector and covariance matrix is obtainable via simple (but potentially costly) algebraic
manipulations [37].

In the context of deep Stable NNs, computing the distribution of (4.1) is a more challenging task with
respect to deep Gaussian NNs. Note that it is possible to approximately simulate from the distribution
of (f

(l)
i (x1), . . . , f

(l)
i (xk)). In particular, since Γ(1) is a discrete measure then exact simulations algo-

rithms are available with a computational cost of O(IK) per sample [33, 38]. Therefore, we generate
M samples f̃ (1)

i , i = 1, . . . ,M , in O(MIK), and use these to approximate f (2) ∼ Stk(α,Γ(2)) with
Stk(α, Γ̃(2)) where

Γ̃(2) = σαb ||1||
αζ 1
||1||

+ σαw
1

M

M∑
j=1

||φ(f̃
(1)
j )||αζ

φ(f̃
(1)
j

)

||φ(f̃
(1)
j

)||

.

We can repeat this procedure by generating (approximate) random samples f̃ (2)
j , with a cost of

O(M2k), that in turn are used to approximate Γ(3) and so on. The sequential discretization of the spec-
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tral measure to perform approximate sampling is not advantageous. Such a procedure can be shown
to be equivalent (in distribution) to sequentially sampling over the layers of the finite NN of width
n=M . In any case, we still have the problem of computing a statistic of (4.1) or sampling from it, to
perform prediction. In general, performing inference with the Stable SPs of Theorem 1.2 remains an
open problem.

4.2. Neural tangent kernel

In Section 4.1 we reviewed how the interplay between deep Gaussian NNs and Gaussian SPs allows to
perform Bayesian inference on the infinitely wide SP. This corresponds to a “weakly-trained” regime,
in the sense that the posterior mean predictions of (4.1) are equivalently obtained by assuming a
quadratic loss function, and then fitting only the final linear layer of the NN with gradient flow, i.e.
gradient descent with infinitesimal learning rate [4]. This result thus establishes an equivalence be-
tween a specific training setting for deep Gaussian NN and a kernel regression. Differently, the works
[22, 28, 4] consider “fully-trained” deep Gaussian NNs, in the sense that all the layers are trained
jointly, still under the same quadratic loss and gradient flow. It is shown that as the width of the NN
goes to infinity, the point predictions are still equivalent to that of a kernel regression, though with
respect to a different kernel, which is referred to as the neural tangent kernel. A key assumption in
the derivation of the neural tangent kernel is that the gradients are not computed with respect to the
standard model parameters, i.e. the weights and biases entering the affine transforms. Instead, they are
re-parametrized gradients which are computed with respect to weights distributed as standard Gaus-
sian distributions, with any scaling (standard deviation) applied as a further multiplication. Recently,
[15] introduced an analogous equivalence in the context of “fully-trained” shallow Stable NNs with a
ReLU activation function, showing that the underlying kernel regression is with respect to an (α/2)-
Stable random kernel. We believe that it would be of interest to study whether the work of [15] can
be extended to the context of deep α-Stable NNs with a general activation function, i.e. linear and
sub-linear.

4.3. Depth limits

In the context of deep Gaussian NNs, information propagation investigates the evolution over depth
of the covariance matrix recursion in Theorem 1.1 [36, 39, 19]. In particular, following the notation
and the assumptions of Theorem 1.1, it is shown that the (σw, σb) positive quadrant is divided into
two regions: i) a stable phase; ii) a chaotic phase. Assuming for simplicity φ = tanh, in the stable
phase the limiting Gaussian SP correlation between any two distinct inputs tends to 1 as the depth
grows unbounded, and the limiting Gaussian SP concentrates on constant functions. Under the same
assumption φ = tanh, in the chaotic phase this correlation converges to a random variable, and the
limiting Gaussian SP is almost everywhere discontinuous. [19] investigates the case where (σw, σb)
is on the curve separating the stable phase from the chaotic phase, which is typically referred to as
the edge of chaos curve. On such a curve, it is shown that the behavior is qualitatively similar to that
of the stable phase, but with a lower rate of convergence with respect to depth. Thus, in all cases, the
distribution of the limiting Gaussian SP eventually collapse to degenerate and inexpressive distributions
as the depth increases.

It would be interesting to investigate the role on the Stable distribution, with α ∈ (0,2], in the edge
of chaos phenomenon. It seems difficult to escape the curse of depth under i.i.d. distributions for the
weights, though it might be the case that Stable distributions, with their not-uniformly-vanishing rele-
vance at unit level [32], allow to slow down the rate of convergence to the limiting regime. For deep
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Gaussian NNs of finite width, a way to avoid the curse of depth is to shrink the distribution of the
NN’s weights as the total number of layers D increases. This idea has been explored in [11], with the
critical result that as D goes to infinity the finite-width NN converges to the solution of a stochastic
differential equation (SDE). We conjecture that, under appropriate scaling, the same approach applied
to a NN whose weights are distributed as Stable distributions would result in converge to the solution
of a Levy-driven stochastic differential equation. A more recent line of research focuses on taking joint
limits in width and depth [30]. Here, the theory is less developed, and a formal result among the lines
of Theorem 1.1 is lacking. However, the partial results that have been obtained so far hint at a class of
limiting SPs that might better capture the properties of finitely-sized NNs. Interestingly such limiting
SPs are not Gaussian SPs. Therefore, it would be of interest to investigate some extensions of Theorem
1.2 under the more flexible scenario where both the width and depth are allowed to grow, possibly at
different rates.
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