
Equilibria of nonatomic anonymous games�

Simone Cerreia-Vioglioa, Fabio Maccheronia, David Schmeidlerb

aUniversità Bocconi and Igier, bTel Aviv University

May 2022

Abstract

We de�ne a new notion of equilibrium for nonatomic anonymous games,

termed "-estimated equilibrium, and prove its existence for any positive ". This

notion encompasses and brings to nonatomic games recent concepts of equilib-

rium such as self-con�rming, peer-con�rming, and Berk-Nash. This augmented

scope is our main motivation. Our approach also resolves some conceptual prob-

lems present in Schmeidler (1973), pointed out by Shapley.
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1 Introduction

The original framework of Schmeidler. Games with a continuum of anony-

mous players were introduced by Schmeidler in [32] where he also proved the existence

of pure-strategy Nash equilibria for these games.1 At the time, there were models of

markets and cooperative games with in�nitely many players, but not of noncooper-

ative games. In [32], the players�space is modelled to be the unit interval endowed

with the Borel �-algebra and the Lebesgue measure, where there is a �nite set of

actions and each player chooses an action from this set. The utility of each player

depends on the distribution of actions across all players and the action he chooses.

The interpretation is that the same game is repeated in each period. The payo¤, in

utils, is received at the end of the period. At the same time, because of the anonymity

assumption, the strategic complications of repeated games are meaningless here. A

paradigmatic example is that of daily commuters driving downtown (or back home)

and having to choose a bridge (or tunnel) to enter the city. Thus, in each period they

play a one-shot game, analyzed in [32]. Here, the metaphysical assumption of correctly

guessing what other players will do, required for playing a Nash equilibrium strategy

in one-shot games, is mitigated by two factors. The �rst is minor: each player has to

guess correctly the distribution of the strategy (the same guess for all). The second is

major: there is regularity in the daily tra¢ c of commuters. Schmeidler [32] formalizes

these intuitions. The limitations of this model are discussed below.

Our motivations. The goal of our paper is to generalize the above �nding in

several directions. We are motivated by three main observations:

(i) In recent years, alternative, and perhaps more realistic, notions of equilibrium

have been developed for noncooperative games with �nitely many players. At

the same time, these notions have not been considered for nonatomic anony-

mous games. In particular, we have in mind equilibrium concepts which allow

for beliefs to be not necessarily correct, but nonetheless consistent with the in-

formation possessed by each player whether it is endogenously or exogenously

generated. Thus, our goal is to bring these more realistic notions of equilibrium

1Theorem 1 in [32] is a special case of the last theorem of Schmeidler�s Ph.D. dissertation in

mathematics titled �Games with a continuum of players� ; submitted and approved in 1969, at the

Hebrew University in Jerusalem. The problem was inspired by the moonlighting job of the author as

a member of a team advising on Tel Aviv transportation.
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to nonatomic anonymous games which model exactly situations where individu-

als are negligible and are not fully aware of the strategic environment surrounding

them. This renders sophisticated strategic reasoning, such as Nash equilibrium

(and any of its re�nements) or rationalizability, less plausible.2

(ii) In a personal conversation with Schmeidler (in the early 1970s), Shapley pointed

out a problem with the modelling of a nonatomic population of players as the unit

interval with the Lebesgue measure on Borel sets. As in some mathematical sense

there are more nonmeasurable sets than measurable sets in the unit interval, the

game, that is the payo¤ function, may not be de�ned out of equilibrium. In

a similar vein, as later formalized in a general equilibrium framework, Dubey

and Shapley [11] raise another issue with the measurability assumption. The

measurability of a strategy pro�le (and similarly of the pro�le of utilities, which

is a common assumption) yields its �near�continuity.3 This in turn clashes with

the noncooperative idea of strictly independent decision-making, since �close

players�tend to play �close strategies�.

(iii) In modelling a large population of players in which each agent �has the same

negligible weight�, Schmeidler opted for the in�nite set of points in the unit

interval endowed with the Lebesgue measure. At the same time, as noted by

Aumann [3], in analyzing economies with a continuum of traders, �the choice of

the unit interval as a model for the set of [players] is of no particular signi�cance.

A planar or spatial region would have done just as well. In technical terms, [the

players�space] can be any measure space without atoms.�Thus, for example,

one could alternatively model the players�space as the set of natural numbers

endowed with a natural density. Our goal is to take Aumann�s remark verbatim

and not commit to any particular speci�cation of the players� space in order

to see how much of our analysis can be carried out in a general space without

atoms. More formally, we suggest using Savage�s structure of nonatomic @�nitely

additive@ probabilities de�ned on the power set of the space of players (Section

2).

2We are not after proving any sort of �translation principle�, that is, a principle for which any

equilibrium notion developed for a �nite-players framework easily translates, in terms of existence,

to a nonatomic setting.
3This intuition is based on Lusin�s Theorem which states that for each " > 0 each measurable

function is continuous when restricted to a suitable compact set which has a measure of at least 1� "
(see, e.g., Aliprantis and Border [1, Theorem 12.8]).
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Our contributions. Our second and third motivation bring us to model the

players�space as a set T endowed with a nonatomic @(�nitely additive)@ probabil-

ity � de�ned on all subsets T . Using a measure over the power set takes care of

both Shapley�s and Aumann�s comments. In particular, by considering the power

set, we allow for the most permissive measurable structure possible, since any pro�le

of strategies or utilities becomes automatically measurable. Measuring the subsets of

players/coalitions according to a nonatomic probability on the power set is consistent

with Savage�s [31] approach and equivalent to having a qualitative probability on the

players� space, satisfying axiom P6�. However, modelling the players� space in this

generality implies that Nash equilibria might fail to exist (see Example 1 based on

Khan, Qiao, Rath, and Sun [19]).

This naturally brings us to look at "-equilibria and to our �rst motivation. We in-

troduce a concept of approximate equilibrium for nonatomic anonymous games, which

we call "-estimated equilibrium. This notion of "-equilibrium encompasses several

approximate equilibrium concepts: "-self-con�rming ("-SCE), "-peer-con�rming ("-

PCE), and "-Berk�Nash ("-BNE). These equilibria and their "-versions are formally

de�ned and discussed in the relevant sections, Sections 3.1, 3.2, and 3.3 (see also the

related literature below). They were mostly developed for �nite games and, inter alia,

in this paper we extend them to nonatomic games. Nevertheless, the principles behind

their de�nitions in a �nite-players framework naturally translate to a nonatomic setup.

The common thread behind "-SCE, "-PCE, and "-BNE in an anonymous nonatomic

game is the following scheme, which is also the basis for our "-estimated equilibria:

1. Every player best-responds to his beliefs (optimality);

2. The belief of every player is consistent with what he can observe ("-discrepancy).4

Where these types of equilibrium di¤er is how point 2 is formalized, since point 1 is

translated in the same way for all of them. In particular, in SCE, each player receives a

message which is a function of the action he takes and the distribution of actions of the

other players. In equilibrium, almost every player best-responds to a distribution that

generates a message which is "-close to the message generated by the true distribution

of the actions. In PCE, the message each player receives is the distribution of the

actions conditional on a subset of players: his peers. Thus, almost all the players

best-respond to a distribution which is "-close to the true distribution of actions of

4More precisely, we require points 1 and 2 to hold for every player except a null set of them (see

also point 1 of Remark 1).
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their peers, not of all the players. In both "-SCE and "-PCE the distributions to which

players best-respond are "-close in terms of observables to the true one; thus they are

endogenously generated. By contrast, in BNE, each player t entertains an exogenous

set of possible distributions of actions, denoted by Qt, that he believes are accurate in

describing other players�behavior. Moreover, he is not willing to depart from Qt. So

in equilibrium, almost every player best-responds to a distribution which is "-close to

the best estimate in Qt of the true distribution of actions, according to a statistical

measure.

Our notion of "-estimated equilibrium provides a framework where we can account

for all the three di¤erent features described above: that is, the distribution of actions

used by each player in equilibrium is "-close, whether in statistical terms or proper

distance, to the set of all distributions which are compatible with the true one. This

latter set can be exogenously determined as in BNE or endogenously generated as in

SCE or PCE.

In Theorem 1, under mild assumptions, we prove that "-estimated equilibria al-

ways exist. As particular cases, we obtain the existence of self-con�rming "-equilibria

(Corollary 1), peer-con�rming "-equilibria (Corollary 3), and Berk�Nash "-equilibria

(Corollary 4). Despite the fact that standard Nash equilibria might fail to exist, we

prove that "-Nash equilibria do exist (Corollary 2). Finally, mimicking the notion of

rationalizable self-con�rming equilibrium (see Rubinstein and Wolinsky [29]), we also

propose a de�nition of rationalizable estimated equilibrium and discuss its existence

(Remark 1).

Related literature. The seminal contribution of Aumann [3] (in a general equi-

librium framework), followed by Schmeidler [32] (in a game-theoretic framework), ini-

tiated a large literature where the negligibility of agents is modelled via a nonatomic

probability players�space (see, e.g., Khan and Sun [23] for a survey).5 We will next dis-

cuss the relevant literature by connecting it to our three main motivations/contributions.

(i) Our de�nition of "-estimated equilibrium seems to be new. At the same time, it

5Many subsequent papers extended Schmeidler�s results to more general players�spaces, but where

� is always assumed to be countably additive and A is allowed to be in�nite: see, e.g., Balder [5],

Khan and Sun [21], Khan, Rath, and Sun [20], Rath [27], and the references therein. The scope of this

type of results is analyzed in Carmona and Podczeck [9]. Finally, in the same setting of Schmeidler

[32], Jara-Moroni [16] extends the notion of rationalizability to nonatomic anonymous games while

Rath [28] investigates the issue of existence of perfect, proper, and persistent equilibria, being all of

them re�nements of Nash equilibrium.
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encompasses three types of equilibrium: self-con�rming (SCE), peer-con�rming

(PCE), and Berk�Nash (BNE) which were developed almost exclusively for

games with �nitely many players, respectively, by Battigalli [6] as well as Fuden-

berg and Levine [14] (SCE), Lipnowski and Sadler [24] (PCE), and Esponda and

Pouzo [12] (BNE). SCE and BNE were also studied for population games, where

the latter can be seen as a very special form of nonatomic games. Moreover,

we also consider "-versions of the above three concepts of equilibrium. In dis-

cussing "-SCE of course, two approaches are available. The �rst assumes that:

a) players best-respond to their beliefs, but b) beliefs are only "-consistent with

evidence. The second requires that: a�) players "-best-respond to their beliefs,

but b�) beliefs are perfectly consistent. For games with �nitely many players,

the �rst approach was introduced by Battigalli [6] and Kalai and Lehrer [17]

and [18], while the second was proposed for pure equilibria by Azrieli [4]. For

nonatomic games, other than population games, the �rst approach seems to be

unexplored, while the second was studied by Azrieli [4]. Using the same setting

as Schmeidler, that is, assuming that the players�space is the unit interval with

the Lebesgue measure, Azrieli shows that self-con�rming equilibria exist (that

is, when " = 0), but when utility depends on the entire pro�le of strategies and

the message feedback is the distribution of actions.6 Moreover, in trying to ob-

tain the nonatomic games of Schmeidler as a limit of �nite-players games which

become arbitrarily large, he shows that self-con�rming "-equilibria eventually

exist.7 Finally, Azrieli limits his analysis to the case where there is nonmanipu-

lable information also known as own-action independence of feedback. Loosely

speaking, this is the case when the feedback each player receives does not depend

on the action taken by the player. This rules out several interesting cases.

In our work, we opt for a de�nition of "-SCE which requires rational optimization

on the players�side, but allows them to entertain "-consistent beliefs. We do not

assume own-action independence. The assumption of " being strictly positive is

due to two reasons: one mathematical and one conceptual. Mathematically, by

considering players�spaces which involve �nitely additive measures �, one can

show that self-con�rming equilibria might fail to exist (Example 1). Concep-

tually, we take the point of view of Kalai and Lehrer [17] and [18]: we impose

rational behavior on players, but allow for slightly inconsistent beliefs. The latter

assumption can be justi�ed by interpreting the belief of each player as the be-

6In our speci�cation, this would collaps to a Nash equilibrium.
7For a related concept and result see also Section 5 of Fudenberg and Kamada [13].
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lief entertained after many rounds of play, so that learning yields approximately

correct predictions about observables. At the limit, beliefs would be perfectly

consistent with observations, but before that they might be just "-consistent.

(ii) The issue of measurability in nonatomic economies and games has been raised

and dealt with by several authors in the past. Khan and Sun [22] proposed to

replace the unit interval with the Lebesgue measure with a generic Loeb space.

In this way, players (resp., coalitions) are represented as hyperreals (resp., sets

of hyperreals). Their approach is mathematically very elegant, but very di¤erent

from ours. Ours is conceptually simpler: we simply remove any measurability

constraint by replacing the Borel �-algebra with the power set. This comes at a

cost: the loss of countable additivity of �. This not only complicates the technical

analysis, but generates a conceptual loss. In fact, in an independent paper, Khan,

Qiao, Rath, and Sun [19] show that the existence of Nash equilibria for any game

with players�space (T; T ; �) is equivalent to the countable additivity of �. Since
the existence of Nash equilibria cannot be guaranteed with mere �nite additivity,

they study the existence of "-Nash equilibria, thus overlapping our Corollary 2.

(iii) The issue of modelling the players�space as a continuum or as a discrete space

has also been discussed by Al-Najjar [2], who considers as competing models

the continuum space [0; 1] versus a dense countable grid of [0; 1]. This paper

also shares some of the motivation coming from the Dubey-Shapley�s remark on

measurability (see Dubey and Shapley [11] as well as Khan and Sun [22]). Thus,

in trying to build a link between these two conceptually equivalent approaches

countable additivity is necessarily lost, as in our case. The main results of Al-

Najjar [2] show that, under suitable conditions, the two approaches to modelling

the players�space, that is, a continuum versus a discrete dense grid, are equiv-

alent. In order to achieve this result, Al-Najjar shows that all his Nash-type

equilibria, for his class of discrete games, can be puri�ed. Compared to our

work, Al-Najjar is not concerned with any other form of equilibrium other than

Nash equilibria. Moreover, he establishes the existence of a form of "-equilibrium

for those discrete nonatomic games that arise as limits of proper sequences of

�nite-players games. Example 2 shows that for our more general class of games

these "-equilibria are not always guaranteed to exist.

We conclude by mentioning one more work. One of the important papers on

nonatomic games which introduces a novel approach is Mas-Colell [26]. His approach is
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based on distributions of strategies,8 which allows for not considering strategy pro�les.

In this way, issues of measurability can be partially overridden in the proofs. It is an

alternative framework which permits the discussion of players�negligibility. In this

framework though, Shapley�s observation would still apply and the assumption of

countable additivity still seems to be playing a major role. Finally, we are not aware

of re�nements of and variations on this distributional concept of equilibrium.

Roadmap. In Sections 2 and 3, we formally introduce nonatomic players�spaces,

nonatomic games with estimation feedback, and the de�nition of "-estimated equilib-

rium whose existence is proven in Theorem 1. In Sections 3.1, 3.2, and 3.3, as a

by-product, we obtain the existence of self-con�rming, Nash, peer-con�rming, and

Berk�Nash "-equilibria. Proofs are relegated to the appendices. In particular, in Ap-

pendix A.1, Lemma 1 generalizes Theorem 7 of Khan and Sun [21] which deals with

the set of distributions induced by all the selections of a correspondence. In Appendix

A.2, we provide a brief summary of how the main proofs are carried out and prove all

the results contained in the main text.

2 Nonatomic players�spaces

A players�space is a pair (T; �) where T is a set of players and � is a (�nitely additive)

probability on the power set of T .9 When T = N, a fundamental class of probabilities
that are not countably additive are natural densities, that is, probabilities � such that

� (E) = lim
k!1

jE \ f1; :::; kgj
k

whenever the limit exists. As is well known, there are many natural densities and all

of them satisfy the following property:

Strong continuity (Savage�s nonatomicity) For each " > 0 there exists a �nite

partition fF1; F2; :::; Fkg of T such that � (Fi) < " for all i = 1; :::; k.

Under strong continuity, any singleton (i.e., any single player) has measure 0 and

for each F � T and � 2 (0; 1) there exists E � F such that � (E) = �� (F ).10 This
8This reformulation is connected to the distributional approach for Bayesian games with a con-

tinuum of types (see [26, Remarks 3 and 4]).
9Recall that � is a �nitely additive probability if and only if � is a positive �nitely additive set

function such that � (T ) = 1.
10@See Bhaskara Rao and Bhaskara Rao [7, Theorem 5.1.6 and Remark 5.1.7]. In this literature,

natural densities are called density measures or density charges. Maharam [25, Example 2.1 and

Theorem 2] shows that natural densities are strongly continuous.@
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is the class of probabilities introduced by Savage [31] @(and which we will consider

throughout the paper)@ when he solved De Finetti�s open problem on the represen-

tation of qualitative probabilities (see also Samet and Schmeidler [30]). @Spaces that

admit ��ner and �ner partitions�, for example T = [0; 1], always admit a strongly

continuous probability on the power set of T (see Bhaskara Rao and Bhaskara Rao [7,

Theorem 5.3.2]).@

3 Nonatomic games and their equilibria

Nonatomic games are games where each single player has no in�uence on the strate-

gic interaction, but only the aggregate behavior of �large�sets of players can change

the players� payo¤s. Nonatomic games are anonymous if each player�s utility only

depends on the action taken by the player and the actions�distribution of the oppo-

nents, rather than the entire actions�pro�le. In other words, the payo¤ of each player

does not depend @on@ who is playing what, but rather it depends on the players�

fraction taking every single action. Formally, a nonatomic (anonymous) game is a

triplet G = ((T; �) ; A; u) where (T; �) is the players�space, A is the space of players�

actions/strategies and u is their pro�le of utilities.11 Below, we discuss in detail these

mathematical objects and their interpretations.

� A = f1; :::; ng is the set of pure strategies/actions.

� � =
�
x 2 Rn+ j

Pn
i=1 xi = 1

	
is the n�1 dimensional simplex. We denote by d�

the distance on� induced by the Euclidean norm. This set represents all possible

distributions of players�strategies. Note that an element in � can actually take

two possible interpretations. In fact, given a player t and an element of �, this

element can either be interpreted as a subjective belief of player t (in this case,

we often denote it by �t) or be interpreted as an objective distribution of players�

strategies (in this case, we typically denote it by x).

� u = (ut)t2T is a pro�le of functions ut : A �� ! R. For each t in T , ut (a; �t)
represents the ex-ante utility of player t, when he chooses strategy a, if his belief

about the distribution of opponents�strategies is �t.

11In the paper, given a generic set B, we use the term pro�le to refer to a function from the set of

players T to B. We will denote a pro�le by either b : T ! B or by b = (bt)t2T . The latter notation

will allow us, with a small abuse, to treat (bt)t2T also as a set.
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As mentioned in the Introduction, nonatomic games were �rst studied by Schmei-

dler [32]. In this paper, we consider a class of games which we term nonatomic games

with estimation feedback. It has a richer structure and nonatomic games can be seen

as a speci�c parametrization.

Formally, a nonatomic game with estimation feedback is a quintetG = ((T; �); A; u; (�; �); f)

where ((T; �) ; A; u) is a nonatomic game de�ned as above, (�; �) is a neighborhood

structure, and f is a pro�le of estimation feedback functions which discipline the be-

liefs�formation of agents in equilibrium. Formally, we have that:

� (�; �) is a neighborhood structure if and only if � = fTjgmj=1 is a �nite cover of
T whose elements have strictly positive measure and � is a function from T to

f1; :::;mg. In particular, each Tj is a nonempty subset of T such that � (Tj) > 0
and [mj=1Tj = T . An important example of �nite covers are �nite partitions of

the players�space. We interpret an element of �, Tj, as the j-th subpopulation

of T and for each t 2 T the value � (t) will denote which subpopulation player t
observes.12

� f = (ft)t2T is a pro�le of (estimation) feedback functions ft : A����! [0;1).
Each ft is assumed to be such that for each y 2 � there exists xy 2 � for which
it holds that

ft (a; xy; y) = 0 8a 2 A (1)

For each t in T , ft (a; �t; x) represents a measure of consistency between the belief

�t (entertained by player t) about the players�actions within the subpopulation

observed by t and the actual distribution of players� strategies x within that

same subpopulation, with the idea that the larger ft (a; �t; x) is the greater is

the discrepancy between the player�s belief and the subpopulation actions�distri-

bution. In line with this interpretation, property (1) says that for each possible

true model x there exists a belief �t such that this discrepancy is minimal, no

matter what action a is chosen by player t.13 To better understand (1), we next

state a stronger property which implies (1) and has a more immediate interpre-

tation. In all our speci�cations, with the exception of (11), it will be satis�ed:

12Despite being a natural requirement, we can dispense with the assumption that t 2 T�(t). In
other words, we do not need to assume that any player t belongs to the subpopulation he observes.
13In other words, the functions ft can be seen as general action-dependent statistical distances (see,

e.g., Example 4). In this view, the minimum value taken by each ft is set to be 0, in order to capture

the idea of minimal distance/maximal proximity.
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for each t 2 T and for each a 2 A

x = y =) ft (a; x; y) = 0 (2)

In words, this latter property says that discrepancy is minimal provided the belief

�t is indeed correct, that is �t = x.14 Under (1) or (2), we deliberately allow for

the possibility that ft (a; �t; x) = 0, but �t 6= x: a belief might be consistent with

evidence, but still incorrect.

Finally, we need three extra mathematical objects:

� � = AT is the set of all functions � from T to A. Each � 2 � represents a

strategy pro�le in which the generic player t chooses strategy � (t).

� Given j 2 f1; :::;mg, �j denotes the probability on the power set of T de�ned
by

�j (E) =
� (E \ Tj)
� (Tj)

8E � T

In other words, �j is the players�conditional measure in the subpopulation j.

Note that if � is strongly continuous, so is each �j.

� Given � 2 � and j 2 f1; :::;mg, �j� 2 � is the distribution of � on A in the j-th
subpopulation, that is,

�j� =
�
�j (ft 2 Tj j �(t) = ag)

�
a2A

The vector �j� represents the true distribution of players�pure strategies in the

j-th subpopulation,15 when they all play according to �. When � is trivial, that

is, � = fTg, then � contains only one element and � = �1. In this case, we

write �� in place of �1�. Similarly, the vector �� represents the true distribution

of players�pure strategies in the entire population.

We can now introduce our most general concept of equilibrium. It provides a

unifying structure for the notions of equilibrium that feature players best responding to

14Note that (2) implies (1). Fix t 2 T . For each y 2 �, set xy = y. By (2), it follows that

ft (a; xy; y) = 0 for all a 2 A.
15By de�nition of �j�, note that

�j� =
�
�j (ft 2 T j �(t) = ag)

�
a2A

for all j 2 f1; :::;mg.
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beliefs that are possibly wrong, but are nonetheless consistent with their probabilistic

information. In the next three sections, we discuss three particular and important

speci�cations (see also the Introduction).

De�nition 1 Let " � 0. An "-estimated equilibrium (in pure strategies) for the

nonatomic game with estimation feedback G = ((T; �) ; A; u; (�; �) ; f) is a strategy

pro�le � 2 � such that there exists a pro�le of beliefs � 2 �T satisfying

�

 (
t 2 T

����� ut (� (t) ; � (t)) � ut (a; � (t)) 8a 2 A
ft

�
� (t) ; � (t) ; �

�(t)
�

�
� "

)!
= 1 (3)

We restrict our attention to pure strategies which do not require players to delib-

erately randomize. When agents really play a game, they cannot typically commit to

a randomization device.16 We are ready to state our main result.

Theorem 1 Let G = ((T; �) ; A; u; (�; �) ; f) be a nonatomic game with estimation

feedback and " > 0. If � is strongly continuous and f = (ft)t2T is a family of functions

which is equicontinuous with respect to the third argument,17 then G has an "-estimated

equilibrium.

Remark 1 Three observations are in order:

1. In proving Theorem 1, we actually show that there exists an "-estimated equi-

librium in which each player best-responds to his "-discrepant belief (cf. also

Remark 4 and Lemma 3), that is, the set in (3) coincides with T and, in par-

ticular, has measure 1. @The assumption " > 0 ensures the �openness�of the

inverse image of the best-reply correspondence which in turn allows us to apply

Browder�s Fixed Point Theorem.@

2. As just mentioned, in an "-estimated equilibrium players best-respond to their

"-discrepant beliefs. Mimicking the notion of rationalizable self-con�rming equi-

librium of Rubinstein and Wolinsky [29], we could also require that this is cor-

rectly and commonly believed by all players. This will turn out to be useful in

16From a mathematical point view, the existence of an equilibrium in pure strategies naturally

yields the existence of an equilibrium in mixed strategies.
17We say that f = (ft)t2T is a family of functions which is equicontinuous with respect to the third

argument if and only if for each " > 0 there exists �" > 0 such that

d� (x; y) < �" =) jft (a; 
; x)� ft (a; 
; y)j < " 8t 2 T;8a 2 A;8
 2 �

In other words, the family of functions fft (a; 
; �)gt2T;a2A;
2� from � to [0;1) is equicontinuous.
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discussing peer-con�rming equilibrium (see Section 3.2). In order to do so, we

�rst introduce some notation and then propose a recursive de�nition. Given a

nonempty subset S � �, we denote by �(S) the set of all probabilities over the
power set of S. Consider a player t 2 T . An element ~�t 2 �(S) represents the
belief of the player about which strategy pro�le in S will realize. At the same

time, given our assumption of anonymity and the neighborhood structure, what

is relevant for t is merely the distribution of players�strategies ��t, induced by
~�t, within the subpopulation observed.18 With this, given �; " � 0, we can de�ne
recursively the following sequence of sets fSkgk2N0: S0 = � and

Sk+1 =

(
� 2 Sk j9~� 2 �(Sk)T s.t. 8t 2 T

ut
�
� (t) ; �� (t)

�
� ut

�
a; �� (t)

�
� � 8a 2 A

ft

�
� (t) ; �� (t) ; �

�(t)
�

�
� "

)

We say that � 2 � is a rationalizable (�; ")-estimated equilibrium (in pure strate-
gies) for the nonatomic game with estimation feedbackG = ((T; �) ; A; u; (�; �) ; f)

if and only if � 2 \k2N0Sk. In words, in a rationalizable (�; ")-estimated equi-
librium, players �-best-respond to their "-discrepant beliefs and this is correctly

and commonly believed by all players. By setting " = � = 0, our de�nition

reduces to a version for nonatomic anonymous games of the equilibrium notion

of Rubinstein and Wolinsky [29]. We discuss existence in the next point.

3. Let G = ((T; �) ; A; u; (�; �) ; f) be a nonatomic game with estimation feedback,

� > 0, and " � 0. If � is strongly continuous, u = (ut)t2T is a family of functions
which is equicontinuous with respect to the second argument,19 and each ft

satis�es condition (2), then G has a rationalizable (�; ")-estimated equilibrium.20

N
18Formally, we have that

��t =

�Z
S

��(t)
��
t 2 T�(t) j �(t) = a

	�
d~�t

�
a2A

or, more succinctly, ��t =
R
S
�
�(t)
� d~�t.

19We say that u = (ut)t2T is a family of functions which is equicontinuous with respect to the

second argument if and only if for each " > 0 there exists �" > 0 such that

d� (x; y) < �" =) jut (a; x)� ut (a; y)j < " 8t 2 T;8a 2 A

20In light of point 1 and, given the equicontinuity of u (cf. the proof of Corollary 2), we can prove

that there exists a strategy pro�le � 2 � such that

ut

�
� (t) ; ��(t)�

�
� ut

�
a; ��(t)�

�
� � 8a 2 A;8t 2 T
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3.1 Self-con�rming and Nash equilibria

An interesting class of nonatomic games with estimation feedback arises when the

feedback function of player t is generated by a message function mt : A � � ! M ,

where M is a metric space with distance d.21 For each t in T , mt (a; x) represents the

message player t receives when he chooses strategy a and the distribution of players�

strategies is x. In games with �nitely many players, typically the message function

mt depends on the action chosen by the player and the pro�le of actions chosen by

the opponents. Nevertheless, given our underlying assumption of anonymity, it seems

natural to replace the latter with the actions�distribution in the population.

With this in mind, the next type of equilibrium models a situation in which the

belief �t adopted by each agent t in equilibrium is consistent/con�rmed with/by the

message received. More formally, �t is such that the expected message mt (� (t) ; �t)

is "-close to the received message mt (� (t) ; ��).

We de�ne a nonatomic game with message feedback to be a quartetG = ((T; �) ; A; u;m)

where ((T; �) ; A; u) is a nonatomic game and m = (mt)t2T is a pro�le of message

functions. Note that a nonatomic game with message feedback can be mapped into a

nonatomic game with estimation feedback. In fact, it is enough to consider (�; �) to

be trivial, that is � = fTg, and set the pro�le of feedback functions to be such that:22

ft (a; x; y) = d (mt (a; x) ;mt (a; y)) 8t 2 T;8a 2 A;8x; y 2 � (4)

It can be seen immediately that each ft satis�es (2), and thus (1). We can de�ne our

concept of self-con�rming "-equilibrium which we discuss below.

De�nition 2 Let " � 0. A self-con�rming "-equilibrium (in pure strategies) for the

nonatomic game with message feedback G = ((T; �) ; A; u;m) is a strategy pro�le � 2 �

Set ~� 2 �(S0)T = �(�)T to be such that ~� (t) coincides with the Dirac at � for all t 2 T . It follows
that �� (t) = ��(t)� for all t 2 T . Given that each ft satis�es (2), we have that ft

�
� (t) ; �� (t) ; �

�(t)
�

�
=

0 � " for all t 2 T . This yields that � 2 S1. By induction, we can conclude that � 2 Sk for all k 2 N0,
proving that � is a rationalizable (�; ")-estimated equilibrium. The complete proof is available upon

request.
21To simplify notation, we assume that the message space is the same for all players. This is

without loss of generality. We could have equivalently assumed that each player has his own message

spaceMt, and in the proofs embed this set into a larger common message spaceM . Our assumptions

of equicontinuity on the message functions mt (cf. Corollary 1) would seamlessly pass through the

embedding as well.
22In this case, note that � can only take one value.
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such that there exists a pro�le of beliefs � 2 �T satisfying

�

 (
t 2 T

����� ut (� (t) ; � (t)) � ut (a; � (t)) 8a 2 A
d (mt (� (t) ; � (t)) ;mt (� (t) ; ��)) � "

)!
= 1 (5)

In words, a strategy pro�le � 2 � is a self-con�rming "-equilibrium ("-SCE) if and
only if

1. Almost all players best-respond to their beliefs (optimality);

2. Beliefs are not signi�cantly refuted by what they can observe ("-con�rmation).

As noted in the Introduction, self-con�rming equilibria were introduced for games

with �nitely many players by Battigalli [6] and Fudenberg and Levine [14], and also

"-con�rmation was introduced by Battigalli [6] and Kalai and Lehrer [17] and [18]. To

the best of our knowledge, the above de�nition of "-equilibrium seems to be novel for

nonatomic games and also natural (cf. the related literature section). Furthermore,

it encompasses the notions of self-con�rming equilibrium and "-Nash equilibrium (a

fortiori, Nash equilibrium). To see this, we begin by observing that if " = 0 and

mt : A��! � is such that

mt (a; x) = x 8t 2 T;8a 2 A;8x 2 � (6)

that is, (M;d) = (�; d�) and feedback is (statistically) perfect, then (5) becomes

� (ft 2 T j ut (� (t) ; ��) � ut (a; ��) 8a 2 Ag) = 1

which means that � is a Nash equilibrium. In this case, beliefs are not only per-

fectly consistent with observations but also correct. Maintaining the perfect feedback

assumption (6), but allowing for " > 0, (5) becomes

�

 (
t 2 T

����� ut (� (t) ; � (t)) � ut (a; � (t)) 8a 2 A
d� (� (t) ; ��) � "

)!
= 1

Under a suitable assumption of continuity of u (see Corollary 2 and its proof), we can

show that � is an "-Nash equilibrium for some suitable "̂ > 0, that is,

� (ft 2 T j ut (� (t) ; ��) � ut (a; ��)� "̂ 8a 2 Ag) = 1

The intuition is simple: if beliefs are �close�to the true distribution, players are not

far from objective maximization.
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Finally, if we remove perfect feedback but maintain " = 0, (5) becomes

�

 (
t 2 T

����� ut (� (t) ; � (t)) � ut (a; � (t)) 8a 2 A
mt (� (t) ; � (t)) = mt (� (t) ; ��)

)!
= 1

which is arguably the nonatomic anonymous games counterpart of the de�nition of

self-con�rming equilibrium (SCE).

Starting with "-estimated equilibria, most of our analysis deals with the case in

which " > 0. There are two reasons why we do so. First, conceptually, " > 0 allows

beliefs to be only imperfectly con�rmed, mirroring the fact that players�observations

might be noisy and learning slow. Second, self-con�rming equilibria and Nash equilib-

ria might not exist, as the following examples show. In a nutshell, Example 1 provides

an instance where Nash and SCE equilibria do not exist, but their "-versions do. Ex-

ample 2 provides an instance where "-uniform Nash equilibria à la Al-Najjar [2] do

not exist, but standard "-Nash equilibria do.

Example 1 The next example builds on Khan, Qiao, Rath, and Sun [19].23 Consider
T = N and let � be a natural density. Consider two strategies, that is, A = f1; 2g.
Assume that for each t 2 T

ut (a; x) =

(
1
t
� x1 a = 1

x1 � 1
t
a = 2

8x 2 �

Let mt = ut for all t 2 T . This amounts to the standard assumption of mere payo¤

observability. Assume that � 2 � is an SCE, that is, there exists � 2 �T such that

� (ft 2 T j ut (� (t) ; ��) = ut (� (t) ; � (t)) � ut (a; � (t)) 8a 2 Ag) = 1

For ease of notation, set �� = x and de�ne the set of �optimizing�players by

O = ft 2 T j ut (� (t) ; ��) = ut (� (t) ; � (t)) � ut (a; � (t)) 8a 2 Ag

We have two cases:

1. x1 > 0. Since � is a natural density and O has mass 1, then O is in�nite. Thus,

there exists �t 2 N such that 2
t
� x1 < 0 for all t 2 O \ f1; :::; �tgc. Consider

23The example of Khan, Qiao, Rath, and Sun [19] seems to be the �rst one in the literature to

exhibit a well-behaved nonatomic game which does not have any Nash equilibrium, be it pure or

mixed.
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t 2 O \ f1; :::; �tgc 6= ?. By contradiction, assume that � (t) = 1. The SCE

conditions imply that

1

t
� x1 =

1

t
� � (t)1 � � (t)1 �

1

t

yielding that 0 � � (t)1 � 2
t
� x1 < 0, a contradiction. Since t was arbitrarily

chosen inO\f1; :::; �tgc, it follows that � (t) = 2 for all t 2 O\f1; :::; �tgc. Since � is
a natural density andO andO\f1; :::; �tgc di¤er by a �nite set � (O \ f1; :::; �tgc) =
1, we have that �� = x is such that x2 = 1, a contradiction with 0 = 1 � x2 =

x1 > 0.

2. x1 = 0. Consider t 2 O. By contradiction, assume that � (t) = 2. The SCE

conditions imply that

x1 �
1

t
= � (t)1 �

1

t
� 1

t
� � (t)1

yielding that 0 = x1 = � (t)1 and 0 � 2
t
> 0, a contradiction. Since t was

arbitrarily chosen in O, � (t) = 1 for all t 2 O, yielding that �� = x is such that

x1 = 1, a contradiction with x1 = 0.

To sum up, we have just shown that the nonatomic game with message feedback

above does not have any self-con�rming equilibrium and, in particular, any Nash

equilibrium.24 This happens despite the fact that the pro�le of message functions is

extremely well-behaved being m = (mt)t2T equicontinuous with respect to the second

argument (cf. Corollary 1).25 At the same time, consider " > 0. Let �t 2 N be such
24Two extra observations are in order:

a. In the nonatomic game above, SCE equilibria and Nash equilibria coincide. This is by chance,

as the next point shows.

b. Khan, Qiao, Rath, and Sun [19] consider T = N and let � be a natural density. They assume
A = f1; 2g and û to be such that for each t 2 T

ût (a; x) =

(
1
t � x1 a = 1

0 a = 2
8x 2 �

With similar arguments, they prove that the nonatomic game ((T; �) ; A; û) does not have any Nash

equilibrium. At the same time, if we consider the augmented nonatomic game with message feedback

((T; �) ; A; û;m) where mt = ût for all t 2 T , then we can show that there exists an SCE equilibrium.
In fact, if � 2 � is such that � (t) = 2 for all t 2 T , by setting � 2 �T such that � (t)1 = 1 for all
t 2 T , we obtain the result.
25Indeed, note that for each " > 0 we can set �" = " and get

d� (x; y) < " =) jmt (a; x)�mt (a; y)j = jx1 � y1j � d� (x; y) < " 8t 2 T;8a 2 A
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that min f1; "g > 1
t
for all t 2 N such that t > �t. Set �" = min f1; "g. Consider a

strategy pro�le � 2 � and a belief pro�le � 2 �T such that � (t) = 2 and � (t)1 =
�"+ 1

t

2
2
�
1
t
; �"
�
� (0; 1) for all t 2 N such that t > �t. Since f1; :::; �tg is �nite and � is a

natural density, we have that �� = x is such that x2 = 1, that is, x1 = 0. It follows

that for each t 2 f1; :::; �tgc

jmt (� (t) ; � (t))�mt (� (t) ; ��)j =
���� �"+ 1

t

2
� 1
t
� x1 +

1

t

���� = �"+ 1
t

2
< �" � "

and

ut (� (t) ; � (t)) = � (t)1 �
1

t
=
�"� 1

t

2
> 0 >

1

t
� � (t)1 = ut (1; � (t))

Since f1; :::; �tgc has mass 1, we can conclude that � 2 � is an "-SCE. N

Example 2 Al-Najjar [2] (cf. the Introduction) also deals with the lack of countable
additivity and studies the following equilibrium: a strategy � 2 � is an Al-Najjar

equilibrium (in pure strategies) if and only if for each " > 0

� (ft 2 T j ut (� (t) ; ��) � ut (a; ��)� " 8a 2 Ag) > 1� " (7)

We next show that also these equilibria might fail to exist. In what follows, it will

often be useful to set

O" = ft 2 T j ut (� (t) ; ��) � ut (a; ��)� " 8a 2 Ag

Two observations are in order. First, compared to the "-Nash equilibria we study

(Corollary 2), the key di¤erence is that, in our case, � might depend on the given ",

while in Al-Najjar�s case, � must work with any ". In particular, one can easily show

that:26 � 2 � is an Al-Najjar equilibrium if and only if for each " > 0

� (ft 2 T j ut (� (t) ; ��) � ut (a; ��)� " 8a 2 Ag) = 1

Second, by taking the intersection of the sets O1=n, this allows us to conclude easily

that an Al-Najjar equilibrium is a Nash equilibrium, provided � is countably additive.

26It is easy to see that if 0 < " < "0, then O" � O"0 , thus

� (O"0) � � (O") > 1� " 8"0 > 0;8" 2 (0; "0)

yielding that � (O"0) = 1 for all "0 > 0.
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We consider the nonatomic game ((T; �) ; A; ~u) where (T; �) and A are as in Example

1 and for each t 2 T

~ut (a; x) =

8>>><>>>:
1
t
� x1 a = 1 and x1 > 0

x1 � 1
t
a = 2 and x1 > 0

1 a = 1 and x1 = 0
1
t

a = 2 and x1 = 0

8x 2 �

Assume that � 2 � satis�es (7). For ease of notation, set �� = x. As before, we have

two cases:

1. x1 > 0. Fix " > 0. Since � is a natural density, the set O" has mass 1, and

� (ft 2 T j � (t) = 1g) > 0, we have that O"\ft 2 T j � (t) = 1g is in�nite. Since
" was arbitrarily chosen, this implies that we can construct a strictly increasing

sequence ftkgk2N � N such that tk 2 O1=k \ ft 2 T j � (t) = 1g for all k 2 N.
Since tk 2 O1=k, � (tk) = 1, and x1 > 0, we have that for each k 2 N

1

tk
� x1 � x1 �

1

tk
� 1

k
=) 0 < x1 �

1

tk
+
1

2k

By passing to the limit, we obtain that 0 < x1 � 0, a contradiction.

2. x1 = 0. Fix " > 0. Since � is a natural density, the set O" has mass 1, and

� (ft 2 T j � (t) = 2g) > 0, we have that O"\ft 2 T j � (t) = 2g is in�nite. Since
" was arbitrarily chosen, this implies that we can construct a strictly increasing

sequence ftkgk2N � N such that tk 2 O1=k \ ft 2 T j � (t) = 2g for all k 2 N.
Since tk 2 O1=k, � (tk) = 2, and x1 = 0, we have that for each k 2 N

1

tk
� 1� 1

k

By passing to the limit, we obtain that 0 � 1, a contradiction.

To sum up, we have just shown that the nonatomic game ((T; �) ; A; ~u) does not have

any equilibrium as de�ned in (7). At the same time, it is not hard to see that this

game admits an "-Nash equilibrium for every " > 0. One way to observe this is

to consider the augmented game ((T; �) ; A; ~u;m) in which each player has perfect

statistical feedback: that is

mt (a; x) = x 8t 2 T; 8a 2 A;8x 2 �

Since m = (mt)t2T is equicontinuous with respect to the second argument (cf. Corol-

lary 1), we have that for each " > 0 there exists an "-SCE. Given " 2 (0; 1),
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it can immediately be proved that a strategy pro�le � is an "-SCE if and only if

� (ft 2 T j � (t) = 1g) 2
�
0; "=

p
2
�
. Given our choice of m, following the intuition

that �if beliefs are close to the true distribution, players are not far from objec-

tive maximization�, we can prove that, given " 2 (0; 1), if � is an "
2
p
2
-SCE and

� (ft 2 T j � (t) = 1g) > 0, then � is an "-Nash equilibrium. In other words, ((T; �) ; A; ~u)
does not have any equilibrium as de�ned in (7), but for each " > 0 it has an "-Nash

equilibrium.27 N

We are ready to state the main results of this section.

Corollary 1 Let G = ((T; �) ; A; u;m) be a nonatomic game with message feedback

and " > 0. If � is strongly continuous and m = (mt)t2T is a family of functions which

is equicontinuous with respect to the second argument,28 then G has an "-SCE.

In particular, under the assumption of payo¤ observability, that is, mt (a; x) =

ut (a; x) for all t 2 T; a 2 A; x 2 �, Corollary 1 yields that if � is strongly continuous
and u = (ut)t2T is a family of functions which is equicontinuous with respect to the

second argument, then there exists an "-SCE strategy pro�le � 2 � such that

�

 (
t 2 T

����� ut (� (t) ; � (t)) � ut (a; � (t)) 8a 2 A
jut (� (t) ; � (t))� ut (� (t) ; ��)j � "

)!
= 1

where � 2 �T . In this case, the objective observed payo¤ substantially matches the

expected one. Building on Corollary 1 and following a similar intuition, we also obtain

the existence of "-Nash equilibria.

Corollary 2 Let G = ((T; �) ; A; u) be a nonatomic game and " > 0. If � is strongly
continuous and u = (ut)t2T is a family of functions which is equicontinuous with

respect to the second argument,29 then G has an "-Nash equilibrium, that is, there

exists a strategy pro�le � 2 � such that

� (ft 2 T j ut (� (t) ; ��) � ut (a; ��)� " 8a 2 Ag) = 1
27Since � is strongly continuous, note that, given " 2 (0; 1), we can always �nd � 2 � such that

� (ft 2 T j � (t) = 1g) 2 (0; "=4]. In other words, in light of the above characterization, we can always
�nd a strategy pro�le � which is an "

2
p
2
-SCE such that � (ft 2 T j � (t) = 1g) > 0.

28We say that m = (mt)t2T is a family of functions which is equicontinuous with respect to the

second argument if and only if for each " > 0 there exists �" > 0 such that

d� (x; y) < �" =) d (mt (a; x) ;mt (a; y)) < " 8t 2 T;8a 2 A

29See Footnote 19.
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At this point, the reader might wonder how restrictive are our assumptions of

equicontinuity.30 At �rst sight, it might appear that the degree of similarity among

players, imposed by a measurable structure as in the original framework of Schmeidler,

is here replaced by equicontinuity. The following example should clarify that this is

far from being the case.

Example 3 Assume that players have expected-utility like preferences, namely, for
each t 2 T

ut (a; x) =
X
b2A

vt (a; b)xb 8a 2 A;8x 2 �

where vt : A � A ! R. As is well known, each vt can be normalized to be taking
values in [0; 1], without altering the player�s preferences. In light of this, an immediate

application of the Cauchy-Schwarz inequality yields that

jut (a; x)� ut (a; y)j �
p
nd� (x; y) 8t 2 T; 8a 2 A

proving that u = (ut)t2T is a family of functions which is equicontinuous with respect

to the second argument. Thus, preferences can be extremely di¤erent within the above

class and yet satisfy equicontinuity. N

As mentioned in the Introduction, Khan, Qiao, Rath, and Sun [19] showed that in

the absence of countable additivity the existence of Nash equilibria is not guaranteed.

They also reported an independent result of existence of an "-Nash equilibrium. Their

de�nition is weaker than ours. In their case, a strategy pro�le � 2 � is an "-equilibrium
if and only if

� (ft 2 T j ut (� (t) ; ��) � ut (a; ��)� " 8a 2 Ag) � 1� "

3.2 Peer-con�rming equilibria

Lipnowski and Sadler [24] propose a notion of equilibrium in which players best-

respond to beliefs which are required to be correct only when it comes to the behavior

of opponents who belong to the same neighborhood. Moreover, they further require

that this is correctly and commonly believed by players. Formally, the collection of

neighborhoods is a partition of the players in terms of the connected components of

an underlying undirected network. They study games with �nitely many players. For

simultaneous-move games, peer-con�rming equilibrium is an example of rationalizable

30See also the discussion following Corollary 3.
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self-con�rming equilibrium (see also Rubinstein andWolinsky [29] as well as Fudenberg

and Kamada [13]). In what follows, we dispense with the assumption of correct and

common belief. This seems reasonable since nonatomic anonymous games model ex-

actly situations where individuals are negligible and are not fully aware of the strategic

environment surrounding them, rendering sophisticated strategic reasoning less plausi-

ble. At the same time, our notion of rationalizable (�; ")-estimated equilibrium allows

us to o¤er a more faithful translation to our setting of peer-con�rming equilibrium

(see Remark 2). Moreover, given anonymity we require that players�observations are

only about the actions�distributions in the subpopulation they face.

We de�ne a nonatomic game with a neighborhood structure to be a quartet G =

((T; �) ; A; u; (�; �)) where ((T; �) ; A; u) is a nonatomic game and (�; �) is a neigh-

borhood structure. Note that a nonatomic game with a neighborhood structure can be

mapped into a nonatomic game with estimation feedback. In fact, it is enough to set

the pro�le of feedback functions to be such that

ft (a; x; y) = d� (x; y) 8t 2 T; 8a 2 A;8x; y 2 � (8)

It can be seen immediately that each ft satis�es (2), and thus (1). We can de�ne the

version of peer-con�rming "-equilibrium that we analyze below.

De�nition 3 Let " � 0. A peer-con�rming "-equilibrium (in pure strategies) for the

nonatomic game with a neighborhood structure G = ((T; �) ; A; u; (�; �)) is a strategy

pro�le � 2 � such that there exists a pro�le of beliefs � 2 �T satisfying

�

 (
t 2 T

����� ut (� (t) ; � (t)) � ut (a; � (t)) 8a 2 A
d�

�
� (t) ; �

�(t)
�

�
� "

)!
= 1 (9)

In words, a strategy pro�le � 2 � is a peer-con�rming "-equilibrium ("-PCE) if

and only if

1. Almost all players best-respond to their beliefs (optimality);

2. Beliefs are almost correct in terms of the subpopulation observed ("-neighborhood

con�rmation).

Corollary 3 Let G = ((T; �) ; A; u; (�; �)) be a nonatomic game with a neighborhood
structure and " > 0. If � is strongly continuous, then G has an "-PCE.
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It is important to note how the corollary above does not require any extra prop-

erty of continuity. For, in such a case feedback is perfect, when restricted to each

subpopulation, and action independent, automatically satisfying the requirement of

equicontinuity in Theorem 1. Conceptually, this con�rms that, in contrast with mea-

surability assumptions, our properties of equicontinuity do not impose automatically

that �close players�have similar preferences/behavior (cf. Example 3).

Remark 2 Two observations are in order:

1. @In the de�nition of "-PCE, we implicitly imposed some extra structure on

players�beliefs. In particular, we imposed that players�beliefs about the dis-

tribution of actions in the population are the same used for their neighbor-

hoods. A priori, we could allow for players to have a belief which is given by

a pair
�
�at ; �

b
t

�
where �at is the belief over the neighborhood of player t and �

b
t

is the belief over the complement. The belief entering the utility would then be

�
�
T�(t)

�
�at +

�
1� �

�
T�(t)

��
�bt and the consistency condition would be required

with respect to �at . This would be more in the spirit of Lipnowski and Sadler

[24], while our current formulation requires that �at = �bt for all t 2 T . Clearly,
existence would automatically follow from the result above.@ More in general,

we could allow for the possibility that each player t has a belief ~�t over the entire

space of players�strategy pro�les � (cf. point 2 of Remark 1) and require that

only the restriction to the subpopulation observed, in terms of actions�distrib-

ution, that is ��t, is "-con�rmed. This would allow for modelling explicitly the

possibility that players, in equilibrium, possibly entertain wrong beliefs about

players not in their neighborhood. Given our nonatomic structure and Corollary

3, we could obtain an existence result also for this more general notion.

2. Consider a rationalizable (�; ")-estimated equilibrium as de�ned in point 2 of Re-

mark 1 where the pro�le of feedback functions is set to be as in (8). Given this

speci�cation, in a rationalizable (�; ")-estimated equilibrium, all players �-best-

respond to their beliefs which are almost correct in terms of the subpopulation

observed. Moreover, this is correctly and commonly believed by all players. By

setting " = � = 0, our de�nition provides a more faithful formal translation

to nonatomic anonymous games of the equilibrium notion studied by Lipnowski

and Sadler [24]. By point 3 of Remark 1, given a nonatomic game with a neigh-

borhood structure G = ((T; �) ; A; u; (�; �)) as well as � > 0 and " � 0, if � is
strongly continuous and u = (ut)t2T is a family of functions which is equicon-
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tinuous with respect to the second argument, then G has a rationalizable (�; ")-

estimated equilibrium. N

3.3 Berk�Nash equilibria

Esponda and Pouzo [12] propose a notion of equilibrium that allows for players�beliefs

to be possibly misspeci�ed (see also Remark 3 below). It is a di¤erent way, compared

to self-con�rming equilibria, to allow for potentially incorrect beliefs in equilibrium.

They term their notion of equilibrium Berk�Nash. Berk�Nash equilibria are based

on the assumption that each player has a set of probabilistic models over the payo¤-

relevant features, in our case Qt � �o for all t 2 T ,31 and:

1. All players best-respond to their beliefs (optimality);

2. Each player�s belief is restricted to be the best �t (in terms of Kullback�Leibler

distance) among the set of beliefs he considers possible.

In our setup, this would mean that each player t has a (possibly misspeci�ed) set

of models Qt � �o. A strategy pro�le � 2 � is a Berk�Nash equilibrium if and only if
there exists a pro�le of beliefs � 2 �T such that the set of all players that satisfy the

following two conditions has full measure:32

1. ut (� (t) ; � (t)) � ut (a; � (t)) for all a 2 A;

2. � (t) 2 argminz2QtK (��jjz) (where K is the Kullback�Leibler distance).

In what follows, we o¤er a more general version for nonatomic games of the above

equilibrium. In order to do so, we de�ne a nonatomic game with model misspeci�cation

to be a quintet G = ((T; �) ; A; u;Q; D) where

a. ((T; �) ; A; u) is a nonatomic game;

31As usual, �o denotes the set

fx 2 � j xi > 0 8i 2 f1; :::; ngg

In other words, �o is the relative interior of �.
32Compared to Esponda and Pouzo [12], we do not assume that players�are expected utility and

have a prior � over argminz2Qt
K (��jjz). In other words, players are only allowed to consider

degenerate priors. A priori, this makes it more di¢ cult to obtain an existence result. Moreover, we

are also not considering any extra form of feedback (see point 1 of Remark 3 below).
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b. Q = (Qt)t2T is a pro�le of sets of actions�distributions, that is, Qt is a nonempty,

compact, and convex subset of �o for all t 2 T ;

c. D : � � �o ! [0;1) is a statistical divergence, that is, a jointly convex and
continuous function such that for each x; y 2 �o

x = y () D (xjjy) = 0: (10)

The next example describes a class of widely used statistical divergences.

Example 4 The most classic statistical divergences are �-divergences which have the
form

D� (xjjz) =
nX
i=1

zi�

�
xi
zi

�
where � is a positive, continuous, strictly convex function on R+ such that � (1) = 0.
For example, for � (s) = s log s � s + 1,33 D� is the Kullback�Leibler distance, for

� (s) = (s� 1)2 =2,D� is the �2-distance, and for � (s) = (
p
s� 1)2,D� is the Hellinger

distance. In all these speci�cations, D� satis�es (10) and it is jointly convex and

continuous. N

Note that a nonatomic game with model misspeci�cation can be mapped into a

nonatomic game with estimation feedback. In fact, it is enough to consider (�; �) to

be trivial, that is � = fTg, and set the pro�le of feedback functions to be such that:34

ft (a; x; y) = d�
�
x; argminz2Qt D (yjjz)

�
8t 2 T; 8a 2 A;8x; y 2 � (11)

It is not hard to show that each ft satis�es (1), but might fail to satisfy (2). We can

de�ne our version of Berk�Nash "-equilibrium which we discuss below.

De�nition 4 Let " � 0. A Berk�Nash "-equilibrium (in pure strategies) for the

nonatomic game with model misspeci�cation G = ((T; �) ; A; u;Q; D) is a strategy
pro�le � 2 � such that there exists a pro�le of beliefs � 2 �T satisfying

�

 (
t 2 T

����� ut (� (t) ; � (t)) � ut (a; � (t)) 8a 2 A
d�
�
� (t) ; argminz2Qt D (��jjz)

�
� "

)!
= 1 (12)

33Here, it is assumed implicitly that � (0) = 1 which is obtained by taking the limit for s! 0.
34In this case, note that � can only take one value. Moreover, when x 2 � and Y is a nonempty

subset of �, d� (x; Y ) denotes the distance of x from the set Y , that is,

d� (x; Y ) = inf
y2Y

d� (x; y)

In our case, Y = argminz2Qt
D (yjjz).

24



Note that a strategy pro�le � 2 � is a Berk�Nash "-equilibrium ("-BNE) if and

only if

1. Almost all players best-respond to their beliefs (optimality);

2. Beliefs are "-close to the set of probabilistic models which are the best �t in the

primitive set Qt of the realized distribution ("-�t).

Although prima facie they might appear similar, the notion of "-BNE is concep-

tually and formally very di¤erent from that of "-SCE.35 The next result proves that,

under suitable conditions, the former type of equilibria always exists. To do so, we

need a last piece of notation. Given � > 0, we denote

�� = fx 2 � j xi � � 8i 2 f1; ::; ngg

In words, �� is the set of all actions�distributions which are uniformly bounded away

from zero by �.

Corollary 4 Let G = ((T; �) ; A; u;Q; D) be a nonatomic game with model misspec-
i�cation and " > 0. If � is strongly continuous, D is strictly convex in the second

argument, and there exists � > 0 such that Qt � �� for all t 2 T , then G has an

"-BNE.

Remark 3 Four observations are in order:

1. Unlike Esponda and Pouzo [12] original formulation, in our de�nition each

player�s set of actions�distributions Qt does not depend on the action played.

Conceptually, this amounts to assume that there is perfect statistical feedback. If

we were to impose that eachQt was also function of the action, that is a 7! Qt (a),

the feedback function in (11) would fail to satisfy property (1).

2. In De�nition 4, we allow each player�s equilibrium belief � (t) to be possibly

outside the set Qt. This could be interpreted as allowing for the possibility that

each player fears model misspeci�cation and willingly considers probability mod-

els that are outside his posited set Qt (see Cerreia-Vioglio, Hansen, Maccheroni,

and Marinacci [10]). At the same time, we could have considered the following

35The two equilibrium notions are distinct, but share some overlap (see Esponda and Pouzo [12]).
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more stringent de�nition of "-BNE where this is not allowed. In this case, � 2 �
would be an "-BNE if and only if there exists a pro�le of beliefs � 2 �T satisfying

�

 (
t 2 T

����� ut (� (t) ; � (t)) � ut (a; � (t)) 8a 2 A
d�
�
� (t) ; argminz2Qt D (��jjz)

�
� " and � (t) 2 Qt

)!
= 1

Under the same exact assumptions of Corollary 4, we can show that also these

"-equilibria exist.

3. Our results do not directly apply to the case in which D is the Kullback�Leibler

distance K. In fact, in this case, K (xjj�) might fail to be strictly convex.36 At
the same time, any perturbation � > 0 of a statistical divergence D, that is

D+�d2�, is a statistical divergence and satis�es the condition of strict convexity

in Corollary 4.

4. The assumption �there exists � > 0 such that Qt � �� for all t 2 T�is equivalent
to the condition �each Q that belongs to the Hausdor¤ distance closure of Q is

a subset of �o�. In other words, it is an assumption of relative compactness. N

A Appendix

In what follows, we �rst provide the proofs of the results in the main text and then

conclude with one of the authors explaining the origin of nonatomic games. We begin

with Appendix A.1 where we discuss a result which is key in proving Theorem 1.

Appendix A.2 contains the remaining proofs. In a nutshell, this latter section is divided

into two parts. First, we deal with the proof of existence of "-estimated equilibria.

Second, we prove the existence of "-SCE, "-NE, "-PCE, and "-BNE by showing that

they are all particular cases or consequence of the existence of "-estimated equilibria.

In the appendix, the vector space we use is the Cartesian product of m copies of

Rn, that is (Rn)m, where n is given by the cardinality of the space of actions A andm is

given by the cardinality of the neighborhood structure (�; �). We denote the elements

of (Rn)m by bold letters, that is x and y, while xj will be the vector in Rn which is
the j-th component of x. If m = 1, then we denote x and y simply by x and y. We

endow (Rn)m with the topology induced by the norm kxk = maxj2f1;:::;mg kxjk2 where
k k2 is the Euclidean norm. Finally, we denote the Cartesian product of m copies of

� by �m. Note that �m is a nonempty, convex, and compact subset of (Rn)m and we
endow it with the distance induced by k k.
36In fact, K (xjj�) is strictly convex if x 2 �o, but it might fail to be so if x 2 �n�o.
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A.1 A key general result

The next lemma uses the terminology of Bhaskara Rao and Bhaskara Rao [7]. Before

discussing it, we need a piece of notation which will turn out to be useful in our later

analysis. If T and A are two generic nonempty sets and � : T � A is a (nonempty

valued) correspondence, we denote by Sel (�) the set of all selections of �, that is,

the set of all functions 
 : T ! A such that 
 (t) 2 � (t) for all t 2 T . Just for this

section, T is an arbitrary �-algebra of subsets of T .37 Finally, given a T -measurable
map 
 : T ! A and a probability � : T ! [0; 1], recall that

�
 = (� (ft 2 T j 
(t) = ag))a2A

Lemma 1 Let (T; T ) be a measurable space, A a �nite set with n elements, and

� = (�1; :::; �m) a vector of strongly continuous probabilities on T . If � : T � A is a

correspondence, then�
�
 =

�
�1
; :::; �

m



�
j 
 2 Sel (�) and 
 is T -measurable

	
is a convex subset of �m.

Proof. If �; 
 2 Sel (�) and are T -measurable, for each � 2 (0; 1), we want to

construct  2 Sel (�) which is T -measurable and such that � = ��� + (1� �)�
.

Set Sij = ��1 (i) \ 
�1 (j) for all i; j 2 A. Then fSijgi;j2A forms a partition of
T (with possibly some empty elements) and all its elements belong to T , because
��1 (i) ; 
�1 (j) 2 T for all i; j 2 A.
Since �1; :::; �m are strongly continuous and T is a �-algebra, for any i; j 2 A,

there are Tij; Uij 2 T such that Sij = Tij t Uij,38 � (Tij) = �� (Sij), and � (Uij) =

(1� �)� (Sij). This is trivial if Sij is empty, else set

Tij = T \ Sij
�kij (S) = �k (S) 8S 2 Tij;8k = 1; :::;m

and notice that �1ij; :::; �
m
ij are strongly continuous, positive, and bounded charges on

the �-algebra Tij. By Bhaskara Rao and Bhaskara Rao [7, Theorem 11.4.9], the set

R (�ij) =
��
�1ij (S) ; :::; �

m
ij (S)

�
j S 2 Tij

	
37In the rest of the paper, T is the power set.
38t denotes the disjoint union.
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is convex inRm. Moreover, both 0 =
�
�1ij (?) ; :::; �mij (?)

�
and �ij (Sij) =

�
�1ij (Sij) ; :::; �

m
ij (Sij)

�
belong to R (�ij). By convexity of the latter, there exists Tij 2 Tij such that �ij (Tij) =
��ij (Sij). But then Tij; Uij = Sij n Tij 2 T , Sij = Tij t Uij, � (Tij) = �ij (Tij) =

��ij (Sij) = �� (Sij), and � (Uij) = (1� �)� (Sij) by additivity of �.

The function  : T ! A de�ned by

 (t) =

(
� (t) = i if t 2 Tij

 (t) = j if t 2 Uij

is well de�ned and  (t) 2 f� (t) ; 
 (t)g � � (t) for all t 2 T , so that  2 Sel (�). For
each k 2 A,

 �1 (k) = ft 2 T j  (t) = kg =
(
t 2
 G
i;j2A

Tij

!
t
 G
i;j2A

Uij

!
j  (t) = k

)

=

 G
i;j2A

ft 2 Tij j  (t) = kg
!
t
 G
i;j2A

ft 2 Uij j  (t) = kg
!

=

 G
i;j2A

ft 2 Tij j � (t) = kg
!
t
 G
i;j2A

ft 2 Uij j 
 (t) = kg
!

but, for all t 2 Tij, � (t) = i, then

� if i = k, ft 2 Tij j � (t) = kg = Tij,

� else i 6= k and ft 2 Tij j � (t) = kg = ?,

thus
G
i;j2A

ft 2 Tij j � (t) = kg =
G

i;j2Aji=k

Tij =
G
j2A

Tkj; analogously, for all t 2 Uij,


 (t) = j; then

� if j = k, ft 2 Uij j 
 (t) = kg = Uij,

� else j 6= k and ft 2 Uij j 
 (t) = kg = ?,

thus
G
i;j2A

ft 2 Uij j 
 (t) = kg =
G

i;j2Ajj=k

Uij =
G
i2A
Uik; therefore,

 �1 (k) =

 G
j2A

Tkj

!
t
 G
i2A
Uik

!
2 T
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As a consequence,  is T -measurable and, for each k 2 A, and for each l = 1; :::;m,

�l
�
 �1 (k)

�
=
X
j2A

�l (Tkj) +
X
i2A

�l (Uik) =
X
j2A

��l (Skj) +
X
i2A

(1� �)�l (Sik)

= ��l

 G
j2A

Skj

!
+ (1� �)�l

 G
i2A
Sik

!

= ��l

 G
j2A

�
��1 (k) \ 
�1 (j)

�!
+ (1� �)�l

 G
i2A

�
��1 (i) \ 
�1 (k)

�!

= ��l

 
��1 (k) \

G
j2A


�1 (j)

!
+ (1� �)�l

 

�1 (k) \

G
i2A
��1 (i)

!
= ��l

�
��1 (k) \ T

�
+ (1� �)�l

�

�1 (k) \ T

�
= ��l

�
��1 (k)

�
+ (1� �)�l

�

�1 (k)

�
thus �l = ��l� + (1� �)�l
. Since this is true for each l = 1; :::;m, then � =

��� + (1� �)�
, as wanted. �

Building on this lemma, Gilboa, Maccheroni, Marinacci, and Schmeidler [15] prove

that, when m = 1, f�
 j 
 2 Sel (�) and 
 is T -measurableg is indeed the core of the
belief function

Bel (I) = � (ft 2 T j � (t) � Ig) 8I � A

and they characterize its extreme points à la Shapley [33].

A.2 Proofs and related material

In what follows and up to the proof of Corollary 1, we consider a nonatomic game

with estimation feedback G = ((T; �) ; A; u; (�; �) ; f). Recall that � is a collection

of nonempty subsets of T , fTjgmj=1, such that � (Tj) > 0 for all j 2 f1; :::;mg and
T = [mj=1Tj. The proof of existence of "-estimated equilibria rests on two key ideas
which we formally develop below:

1. We �rst consider di¤erent correspondences and study their properties. This

study culminates with the correspondence gBR" : �
m � �m de�ned in (14)

below. All of these correspondences are basically "-consistent/con�rmed best-

reply correspondences. To �x ideas, for the case � = fTg and m = 1, in words,

given x 2 � and y 2 gBR" (x), y is a possible distribution of strategies in the
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population, which arises if the players�distribution of actions was x and players

best-responded to it using a belief which was "-consistent with respect to x.

2. We then show that gBR" has a �xed point by using Browder�s Fixed Point The-

orem. This will give us the equilibrium in pure strategies that we are after.

Consider " > 0. First, let BR" : T ��m � A be de�ned by

BR" (t;x)

=
�
b 2 A j 9�t 2 � s.t. ft

�
b; �t; x�(t)

�
< " and ut (b; �t) � ut (a; �t) 8a 2 A

	
for all (t;x) 2 T � �m. Clearly, BR" (t;x) is the set of all pure strategies which

are a best-reply of player t to some belief �t where �t is "-consistent when assuming

the true distribution restricted to the subpopulation T�(t) is x�(t). One can derive

several related �"-consistent best-reply� correspondences from this basic one. For

each x 2 �m, denote the x-section BR" (�;x) : T � A of BR" by BRx
" . Next, let

�" : �
m � � be de�ned as �"(x) = Sel (BRx

" ) for all x 2 �m where Sel (BRx
" ) is the

set of all selections of BRx
" . Thus, for a strategy pro�le � 2 �, we have that

[� 2 �" (x)]
() [8t 2 T; �(t) 2 BRx

" (t)]

() [8t 2 T; �(t) 2 BR" (t;x)]

()
�
8t 2 T 9�t 2 � s.t. ft

�
� (t) ; �t; x�(t)

�
< " and ut (�(t); �t) � ut (a; �t) 8a 2 A

�
Remark 4 If there exists x 2 �m such that � 2 �" (x) and x�(t) = �

�(t)
� for all t 2 T ,

then � is an "-estimated equilibrium. In fact, we have

1. For each t 2 T there exists �t 2 � such that ft
�
� (t) ; �t; x�(t)

�
< " and

ut (�(t); �t) � ut (a; �t) for all a 2 A;

2. We can de�ne � : T ! � by � (t) = �t for all t 2 T .

This implies that for each t 2 T

a) ut (�(t); � (t)) � ut (a; � (t)) for all a 2 A (optimality);

b) ft
�
� (t) ; � (t) ; �

�(t)
�

�
< " (strict "-consistency),

30



that is,

(
t 2 T

����� ut (� (t) ; � (t)) � ut (a; � (t)) 8a 2 A
ft

�
� (t) ; � (t) ; �

�(t)
�

�
< "

)
= T . In particular, it

holds that

�

 (
t 2 T

����� ut (� (t) ; � (t)) � ut (a; � (t)) 8a 2 A
ft

�
� (t) ; � (t) ; �

�(t)
�

�
� "

)!
= 1

N

Next, consider the correspondence B" : �
m � � de�ned by

B" (x) =

(
� 2 � j 9� 2 �T s.t.

ut (�(t); � (t)) � ut (a; � (t)) 8a 2 A;8t 2 T
supt2T ft

�
� (t) ; � (t) ; x�(t)

�
< "

)
8x 2 �m

Lemma 2 B" (x) =
S
�2(0;")�� (x) � �" (x) for all x 2 �m.

Proof. Fix x 2 �m. Consider � 2
S
�2(0;")�� (x). It follows that � 2 �� (x) for some

� 2 (0; "). This implies that � 2 � and � (t) 2 BR�(t;x) for all t 2 T , that is, for each
t 2 T there exists �t 2 � such that ft

�
� (t) ; �t; x�(t)

�
< � and ut (�(t); �t) � ut (a; �t)

for all a 2 A. In particular, if we de�ne � 2 �T as � (t) = �t for all t 2 T , we have

that ut (�(t); � (t)) � ut (a; � (t)) for all a 2 A and for all t 2 T , and

sup
t2T

ft
�
� (t) ; � (t) ; x�(t)

�
� � < "

yielding that � 2 B" (x). Conversely, if � 2 B" (x), then there exists � 2 �T such

that

sup
t2T

ft
�
� (t) ; � (t) ; x�(t)

�
< " (13)

and ut (�(t); � (t)) � ut (a; � (t)) for all a 2 A and for all t 2 T . It follows that

there exists �� 2 (0; ") such that (13) holds with �� in place of ". This implies that
� 2 ��� (x) �

S
�2(0;")�� (x).

Obviously, if 0 < � < �0, then BR� (t;x) � BR�0 (t;x) for all t 2 T and for all

x 2 �m and, in particular, �� (x) � ��0 (x). This implies that
S
�2(0;")�� (x) � �" (x).

�

Remark 4 above will be useful to justify the following last correspondence: gBR" :

�m � �m de�ned by

gBR" (x) =
�
y 2 �m j 9� 2 B" (x) s.t. �j� = yj 8j 2 f1; :::;mg

	
8x 2 �m (14)
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In other words, gBR" (x) is the collection of actions�distributions y = (yj)
m
j=1 on the

subpopulations of players, which can be induced by the �-optimal choice of strategies

� where beliefs � = (�t)t2T are close enough in terms of feedback to x = (xj)
m
j=1. Note

that

gBR" (x) =
n�
�j�
�m
j=1

j � 2 B" (x)
o
=

8<:��j��mj=1 j � 2 [
�2(0;")

�� (x)

9=; (15)

=
[

�2(0;")

n�
�j�
�m
j=1

j � 2 �� (x)
o
=

[
�2(0;")

n�
�j�
�m
j=1

j � 2 Sel
�
BRx

�

�o
(16)

An immediate implication of the de�nition in (14) is the next result.

Lemma 3 If x 2 gBR"(x), then there exists an "-estimated equilibrium � such that

�j� = xj for all j 2 f1; ::;mg.

Proof. By Lemma 2 and the de�nition of gBR", if x 2 gBR"(x), then there exists

� 2 B" (x) � �" (x) such that �j� = xj for all j 2 f1; :::;mg. Remark 4 yields that �
is an "-estimated equilibrium. �

Lemma 4 If � is strongly continuous, then gBR"(x) is nonempty and convex for all

x 2 �m.

Proof. Fix x 2 �m and � 2 (0; "). Since f satis�es (1), recall that

8t 2 T;8z 2 �;9
t;z 2 � s.t. 8a 2 A ft (a; 
t;z; z) = 0 (17)

Since x is given, de�ne � 2 �T to be such that � (t) = 
t;x�(t) for all t 2 T . Note that
� (t) 2 � satis�es ft

�
a; � (t) ; x�(t)

�
= 0 < � for all a 2 A and for all t 2 T . Since A

is �nite, for each t 2 T choose � (t) 2 A such that ut (� (t) ; � (t)) � ut (a; � (t)) for all

a 2 A. This de�nes a function � : T ! A, that is � 2 �, such that � 2 �� (x). By
Lemma 2, we have that � 2 B" (x) and (�j�)

m
j=1 2gBR" (x). Convexity is a consequence

of the following two observations:

1. By Lemma 1 and since each �j is strongly continuous, recall that f(�j�)
m
j=1 j � 2

Sel
�
BRx

�

�
g is a convex subset of �m for all � 2 (0; ").

2. By (16), we have that

gBR" (x) =
[

�2(0;")

n�
�j�
�m
j=1

j � 2 Sel
�
BRx

�

�o
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It follows that gBR" (x) is the union of a chain of convex sets,39 proving convexity.

�

For the next result recall that a) d� is the distance on � induced by the Euclidean

norm; b) we say that f = (ft)t2T is a family of functions which is equicontinuous with

respect to the third argument if and only if for each " > 0 there exists �" > 0 such

that

d� (x; y) < �" =) jft (a; 
; x)� ft (a; 
; y)j < " 8t 2 T;8a 2 A;8
 2 �

The intuition behind the proof of the next lemma is that if a strategy � was �-optimal

and � was "-consistent, given x, small perturbations of x do not disrupt optimality

and "-consistency.

Lemma 5 If f = (ft)t2T is a family of functions which is equicontinuous with respect

to the third argument, then gBR�1
" (y) is open for all y 2 �m.

Proof. Fix y 2 �m. Recall that gBR�1
" (y) =

n
x 2 �m j y 2gBR" (x)

o
. Note that

x 2gBR�1
" (y) () y 2gBR" (x)

and gBR�1
" (y) is open if and only if �for each �x such that y 2gBR" (�x), there exists a

ball in �m of radius � and center �x such that y 2gBR" (x) for all x 2 B� (�x)�.

Now arbitrarily choose �x such that y 2 gBR"(�x). By de�nition of gBR"(�x), there

exist � 2 B" (�x) � � and � 2 �T such that

1. �j� = yj for all j 2 f1; :::;mg;

2. supt2T ft
�
� (t) ; � (t) ; �x�(t)

�
< ";

3. ut (�(t); � (t)) � ut (a; � (t)) for all a 2 A and for all t 2 T .

By point 2, there exists �" 2 (0; ") such that

sup
t2T

ft
�
� (t) ; � (t) ; �x�(t)

�
< �" < "

39Recall that if 0 < � < �0, then

BR� (t;x) � BR�0 (t;x) 8t 2 T;8x 2 �m

This implies that Sel
�
BRx

�

�
= �� (x) � ��0 (x) = Sel

�
BRx

�0
�
for all x 2 �m.
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Let "̂ 2
�
0; "��"

2

�
. Since f = (ft)t2T is a family of functions which is equicontinuous

with respect to the third argument, there exists �"̂ > 0 such that

d� (x; y) < �"̂ =) jft (a; 
; x)� ft (a; 
; y)j < "̂ 8t 2 T; 8a 2 A;8
 2 �

For each x 2 B�"̂ (�x) note that d� (xj; �xj) < �"̂ for all j 2 f1; :::;mg. This implies that
for each t 2 T and for each x 2 B�"̂ (�x)��ft �� (t) ; � (t) ; x�(t)�� ft

�
� (t) ; � (t) ; �x�(t)

��� < "̂

Since ft � 0 for all t 2 T , it follows that for each t 2 T and for each x 2 B�"̂ (�x)

ft
�
� (t) ; � (t) ; x�(t)

�
=
��ft �� (t) ; � (t) ; x�(t)���

�
��ft �� (t) ; � (t) ; �x�(t)���+ ��ft �� (t) ; � (t) ; x�(t)�� ft

�
� (t) ; � (t) ; �x�(t)

���
= ft

�
� (t) ; � (t) ; �x�(t)

�
+
��ft �� (t) ; � (t) ; x�(t)�� ft

�
� (t) ; � (t) ; �x�(t)

���
< �"+ "̂

This implies that

sup
t2T

ft
�
� (t) ; � (t) ; x�(t)

�
� �"+ "̂ <

�"+ "

2
< " 8x 2 B�"̂ (�x)

In other words, for each x 2 B�"̂ (�x) we have that � 2 � is such that the same � 2 �T

of above satis�es points 2 and 3, but with x in place of �x. This yields that � 2 B" (x)

for all x 2 B�"̂ (�x). Since y = (yj)
m
j=1 = (�

j
�)
m
j=1, we obtain that y 2 gBR" (x) for all

x 2 B�"̂ (�x), proving the statement. �

Proof of Theorem 1. By Lemma 3, it is enough to show that gBR" : �
m � �m has

a �xed point. Clearly, �m � (Rn)m is nonempty, compact, and convex. By Lemmas
4 and 5, gBR" has nonempty and convex values and gBR�1

" (y) is open for all y 2 �m.

By Browder�s Fixed Point Theorem for correspondences (see Theorem 1 of Browder

[8]), gBR" has a �xed point. �

We next prove the remaining results of the main text.

Proof of Corollary 1. It is enough to observe that a nonatomic game with message
feedback can be mapped into a nonatomic game with estimation feedback where f is

de�ned as in (4) and � = fT1g.40 With this identi�cation, an "-estimated equilibrium
is a self-con�rming "-equilibrium. By Theorem 1, it is then enough to show that

40Thus, m = 1, T1 = T , and � (t) = 1 for all t 2 T .
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f = (ft)t2T is a family of functions which is equicontinuous with respect to the third

argument. Since m = (mt)t2T is a family of functions which is equicontinuous with

respect to the second argument, we have that for each " > 0 there exists �" > 0 such

that

d� (x; y) < �" =) d (mt (a; x) ;mt (a; y)) < " 8t 2 T; 8a 2 A (18)

Since for each t 2 T we have that ft (a; x; y) = d (mt (a; x) ;mt (a; y)) for all a 2 A and
for all x; y 2 �, observe that

jft (a; 
; x)� ft (a; 
; y)j = jd (mt (a; 
) ;mt (a; x))� d (mt (a; 
) ;mt (a; y))j
� d (mt (a; x) ;mt (a; y)) 8t 2 T;8a 2 A;8x; y; 
 2 �

By (18), we can conclude that for each " > 0 there exists �" > 0 such that

d� (x; y) < �" =)
jft (a; 
; x)� ft (a; 
; y)j � d (mt (a; x) ;mt (a; y)) < " 8t 2 T; 8a 2 A;8
 2 �

proving equicontinuity with respect to the third argument of f . �

Proof of Corollary 2. Consider the nonatomic game G = ((T; �) ; A; u) and " > 0.
Since u = (ut)t2T is a family of functions which is equicontinuous with respect to the

second argument, we have that for each "̂ > 0 there exists �"̂ > 0 such that

d� (x; y) < �"̂ =) jut (a; x)� ut (a; y)j < "̂ 8t 2 T; 8a 2 A (19)

Consider the pro�le m = (mt)t2T of message functions such that each mt : A��! �

is de�ned to be such that

mt (a; x) = x 8a 2 A;8x 2 �

Note that in this case (M;d) = (�; d�). Clearly, m = (mt)t2T is a family of functions

which is equicontinuous with respect to the second argument. Given " > 0, consider

�"=2 > 0 as in (19). By Corollary 1, we have that there exists a self-con�rming �"=2=2-

equilibrium � 2 �, that is, there exists � 2 �T such that

1 = �

 (
t 2 T

����� ut (� (t) ; � (t)) � ut (a; � (t)) 8a 2 A
d (mt (� (t) ; � (t)) ;mt (� (t) ; ��)) � �"=2=2

)!

= �

 (
t 2 T

����� ut (� (t) ; � (t)) � ut (a; � (t)) 8a 2 A
d� (� (t) ; ��) � �"=2=2

)!
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De�ne by O the set of �optimizing�players

O =

(
t 2 T

����� ut (� (t) ; � (t)) � ut (a; � (t)) 8a 2 A
d� (� (t) ; ��) � �"=2=2

)

Since u satis�es (19), note that if t 2 O, then we have that d� (� (t) ; ��) � �"=2=2 <

�"=2 which implies that for each a 2 A

jut (� (t) ; � (t))� ut (� (t) ; ��)j <
"

2
and jut (a; � (t))� ut (a; ��)j <

"

2

Since t 2 O, we can conclude that

ut (� (t) ; ��) > ut (� (t) ; � (t))�
"

2
� ut (a; � (t))�

"

2

> ut (a; ��)�
"

2
� "

2
= ut (a; ��)� " 8a 2 A

Since t was arbitrarily chosen in O, we have that

O � ft 2 T j ut (� (t) ; ��) � ut (a; ��)� " 8a 2 Ag

Since O has mass 1, it follows that � 2 � is an "-Nash equilibrium. �

Proof of Corollary 3. It is enough to observe that a nonatomic game with a neighbor-
hood structure can be mapped into a nonatomic game with estimation feedback where

f is de�ned as in (8). With this identi�cation, an "-estimated equilibrium is a peer-

con�rming "-equilibrium. By Theorem 1, it is then enough to show that f = (ft)t2T
is a family of functions which is equicontinuous with respect to the third argument.

But, note that

jft (a; 
; x)� ft (a; 
; y)j = jd� (
; x)� d� (
; y)j � d� (x; y) 8t 2 T;8a 2 A;8
 2 �

trivially proving equicontinuity with respect to the third argument of f . �

We conclude by proving Corollary 4. But, before doing so, we need to make

an intermediate observation. Consider a statistical divergence D. Recall that D :

� � �o ! [0;1) is a jointly convex and continuous function. Denote by K the

collection of all nonempty compact sets of �. We endow K with the Hausdor¤distance
(see, e.g., Aliprantis and Border [1, Chapter 3, Sections 16 and 17]). We denote by �Q
a compact set of K such that each Q 2 �Q is a nonempty, convex, and compact subset

of �o. Given x 2 � and Q 2 �Q, consider the minimization problem

minD (xjjy) sub to y 2 Q
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De�ne � : �� �Q� � to be the solution correspondence of this minimization problem,

that is, for each x 2 � and for each Q 2 �Q,

� (x;Q) =

�
z 2 � : z 2 Q and D (xjjz) = min

y2Q
D (xjjy)

�
By Berge�s maximum theorem, note that � is upper hemicontinuous when � � �Q is

endowed with the product topology. In particular, if D is strictly convex with respect

to the second argument, � is single-valued, that is, � is a continuous function. Finally,

de�ne the map g : ���� �Q ! [0;1) by

g (�; x;Q) = d� (�; � (x;Q)) 8�; x 2 �;8Q 2 �Q

Since � is a continuous function, it follows that g is continuous when � � � � �Q is

endowed with the product topology. By Aliprantis and Border [1, Corollary 3.31] and

since ���� �Q is a compact metric space, g is uniformly continuous.

Proof of Corollary 4. Set �Q = clQ. By point 4 of Remark 3, note that �Q is a

compact subset of K such that each Q 2 �Q is a nonempty, convex, and compact subset
of �o. For each t 2 T de�ne ft : A����! [0;1) by

ft (a; 
; x) = g (
; x;Qt) 8a 2 A;8
; x 2 � (20)

It is then enough to observe that a nonatomic game withmodel misspeci�cation can be

mapped into a nonatomic game with estimation feedback where f is de�ned as in (20)

and � = fT1g.41 With this identi�cation, an "-estimated equilibrium is an "-BNE. By
Theorem 1, it is then enough to show that f = (ft)t2T is a family of functions which

is equicontinuous with respect to the third argument. Since g is uniformly continuous,

the statement is trivially true. �

The proof of the last two points of Remark 3 is routine. Thus, we conclude by only

proving point 2.

Proof of point 2 of Remark 3. Set �Q = clQ. Note that �Q is a compact subset of

K such that each Q 2 �Q is a nonempty, convex, and compact subset of �o. For each

t 2 T de�ne ft : A����! [0;1) as in the proof of Corollary 4, that is,

ft (a; 
; x) = g (
; x;Qt) 8t 2 T;8a 2 A;8
; x 2 �
41Thus, m = 1, T1 = T , and � (t) = 1 for all t 2 T .
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Since g is continuous and ���� �Q is compact, observe that g � 0 takes a maximum
value M � 0. De�ne the pro�le of feedback functions ~f to be such that for each t 2 T

~ft (a; 
; x) =

(
ft (a; 
; x) 
 2 Qt

M + 1 
 62 Qt

8a 2 A;8
; x 2 �

Note that each ~ft satis�es (1). By the proof of Corollary 4, f = (ft)t2T is a family of

functions which is equicontinuous with respect to the third argument. It follows that

for each " > 0 there exists �" > 0 such that

d� (x; y) < �" =) jft (a; 
; x)� ft (a; 
; y)j < " 8t 2 T;8a 2 A;8
 2 �

Consider x; y 2 � such that d� (x; y) < �" and consider t 2 T , a 2 A, and 
 2 �. We
have two cases, either 
 2 Qt or 
 62 Qt. In the �rst case,

��� ~ft (a; 
; x)� ~ft (a; 
; y)
��� =

jft (a; 
; x)� ft (a; 
; y)j < ", while in the second case
��� ~ft (a; 
; x)� ~ft (a; 
; y)

��� =
jM + 1� (M + 1)j = 0 < ". Since t, a, and 
 were chosen arbitrarily, it follows

that ~f =
�
~ft

�
t2T

is a family of functions which is equicontinuous with respect to the

third argument. Next, we can consider the nonatomic game with estimation feedback�
(T; �) ; A; u; (�; �) ; ~f

�
, where � = fT1g.42 By Theorem 1, we have that for each

~" > 0 there exists an ~"-estimated equilibrium � for this game, that is, there exists

� 2 �T such that

�

 (
t 2 T

����� ut (� (t) ; � (t)) � ut (a; � (t)) 8a 2 A
~ft (� (t) ; � (t) ; ��) � ~"

)!
= 1

If given " > 0 we de�ne ~" = minfM+1;"g
2

> 0, since ~" < M + 1; ", then we have that(
t 2 T

����� ut (� (t) ; � (t)) � ut (a; � (t)) 8a 2 A
~ft (� (t) ; � (t) ; ��) � ~"

)

�
(
t 2 T

����� ut (� (t) ; � (t)) � ut (a; � (t)) 8a 2 A
ft (� (t) ; � (t) ; ��) � ~" and � (t) 2 Qt

)

�
(
t 2 T

����� ut (� (t) ; � (t)) � ut (a; � (t)) 8a 2 A
d�
�
� (t) ; argminz2Qt D (��jjz)

�
� ~" and � (t) 2 Qt

)

�
(
t 2 T

����� ut (� (t) ; � (t)) � ut (a; � (t)) 8a 2 A
d�
�
� (t) ; argminz2Qt D (��jjz)

�
� " and � (t) 2 Qt

)
yielding the statement. �
42Thus, m = 1, T1 = T , and � (t) = 1 for all t 2 T .
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A.3 A comment by David Schmeidler: How I arrived at the
congestion model

@During the late sixties while working on my PhD thesis I found that the research/teaching

assistant grant did not satisfy my material needs and soon found a moonlighting job

as a member of a team advising on transportation. There I was exposed (mainly in

the Tel Aviv area) to the daily tra¢ c commuters congestion (and bottlenecks), and

to the fact that transportation experts techniques were restricted to optimization and

almost all were unaware of noncooperative equilibria and disregarded the possibilities

of ine¢ cient equilibria. It occurred to me that a model with a nonatomic continuum

of players and �nitely many pure strategies may describe the daily commuter�s game.

At the time there were cooperative games and general equilibrium models with such a

set of players, but no noncooperative games with in�nitely many players. I needed a

fourth paper to complete my thesis so I constructed the model. It had to be submitted

in Hebrew so this was the �rst and last research work I wrote in Hebrew. I translated

the previously completed three papers and submitted my thesis. It was approved be-

fore the summer of 1969. I translated this work into English and submitted it for

publication during 1970/71. The only di¤erence between the English and the Hebrew

version was that the latter was slightly more general. In the latter there was a �nite

set of linear functionals instead of the unique expectation functional in the published

version.43 Finally, when teaching noncooperative games to math students or gradu-

ates, the congestion example was most helpful and made the Nash or Harsanyi-Nash

equilibrium a less metaphysical concept.@
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