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LAGRANGIAN, EULERIAN AND KANTOROVICH FORMULATIONS OF

MULTI-AGENT OPTIMAL CONTROL PROBLEMS: EQUIVALENCE AND

GAMMA-CONVERGENCE

GIULIA CAVAGNARI, STEFANO LISINI, CARLO ORRIERI, AND GIUSEPPE SAVARÉ

Abstract. This paper is devoted to the study of multi-agent deterministic optimal control
problems. We initially provide a thorough analysis of the Lagrangian, Eulerian and Kantorovich
formulations of the problems, as well as of their relaxations. Then we exhibit some equivalence
results among the various representations and compare the respective value functions. To do it,
we combine techniques and ideas from optimal transportation, control theory, Young measures
and evolution equations in Banach spaces. We further exploit the connections among Lagrangian
and Eulerian descriptions to derive consistency results as the number of particles/agents tends
to infinity. To that purpose we prove an empirical version of the Superposition Principle and
obtain suitable Gamma-convergence results for the controlled systems.
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1. Introduction

In recent years there has been an impressive increase in the analysis of models with interactions
and associated optimal control problems. The motivations and fields of interest are various
and range from statistical mechanics to biology, from crowd dynamics to the description of
economical and financial phenomena, and many others. A lot of different mathematical models
and techniques have been proposed in the literature and it seems impossible to be exhaustive in
accounting here all the developments. We refer to [16, 19, 34, 35] and the references therein for
some of the recent results.

A large part of the literature concentrates the attention on the evolution of populations of
similar individuals where the single agent feels the interaction with the others through an aver-
aged term. In this case, when the number of individuals is very large, an aggregation effect takes
place and the (discrete) collection of agents is usually replaced by its spatial density. This idea
comes from the so called mean field approach in statistical physics where it has been fruitfully
used to develop a limit theory when the number of particles goes to infinity.

Within this framework, optimal control problems, both at the microscopic and macroscopic
levels, are naturally considered, see e.g. [18,21,24,35,39,47]. A first motivation for the introduc-
tion of (centralized) controls is the incompleteness of the concept of self-organization. In fact,
for a population of interacting particles/agents, global coordination or pattern formation is not a
priori guaranteed and the intervention of a central planner on the dynamics could promote these
mechanisms: this leads to the definition of multi-agent control problems. A further motivation is
the analysis of interacting rational agents with similar optimization goals. In this case, the mean
field approach consists in approximating a large number of agents with a single representative
individual, whose aim is to solve a control problem constrained to a field equation (encoding the
averaged behaviour of the population). The mean field term influences both the dynamics and
the cost functional. Whether the representative agent can or cannot influence the mean field
term depends on the model under consideration. The interested reader is referred to the books
[6, 16] for a detailed description of various aspects of mean field models.

In the present paper we study different formulations of multi-agent optimal control problems,
that we denote respectively with Lagrangian, Eulerian and Kantorovich as well as the corre-
sponding limit theory.

As already mentioned above, multi-agent optimal control, also known in literature as cen-
tralized optimal control of Vlasov dynamics, represents non-standard optimal control problems
where each individual is influenced by the averaged behaviour of all the others and the central
planner aims at minimizing a cost functional which depends on the distribution of all the agents.

A large effort has been devoted in the last years to extend results of classical optimal control
theory to the mean field setting, with a particular attention to the measure-formulation of the
problems in Wasserstein spaces. In this direction, let us mention [11,48] for necessary conditions
for optimality in the form of a Pontryagin maximum principle, [21] for a generalized version
of dynamic programming, [10] for the study of differential inclusions and the contribution [39]
for the analysis of necessary and sufficient conditions for optimality in the form of a Hamilton-
Jacobi-Bellman equation in the Wasserstein space.

Lagrangian, Eulerian and Kantorovich refer to different points of view that can be adopted
to study the dynamics of the problems. The Lagrangian and Eulerian terminologies come from
fluid-dynamics and they have been recently adopted in the theory of optimal transport, from
which we also took inspiration for the Kantorovich formulation. In general terms, the Lagrangian
approach consists in labelling each particle and following the corresponding trajectory. The
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Eulerian description, on the other hand, aims at measuring the velocity of particles flowing
at a point at a fixed time. In this paper we introduce a further point of view, that we name
Kantorovich in analogy with the Kantorovich extension of Monge problem (in the same spirit,
see also [1, 3, 5]). The Kantorovich formulation turns out to be fundamental in connecting the
Lagrangian and Eulerian points of view and it is based on the representation of solutions of
the continuity equation provided by the superposition principle (see e.g. [3, Theorem 8.2.1] or
[7, Theorem 5.8]).

Limit theory refers instead to the question of connecting optimal control problems with a finite
number of agents with the infinite dimensional description given by a continuum of players. The
study of interacting particle systems becomes intractable when the population is very large and,
in many circumstances, the connection with a limit (mean field) approximation heavily simplifies
the study. For this reason, many results concerning asymptotic behaviour when the size of the
system grows have been developed in the literature, both from the theoretical and applicative
point of view. Even if mean field approximations are mainly proved in the uncontrolled stochastic
setting, some applications to deterministic models can be found e.g. in [44] and [25]. Concerning
the controlled case, an important effort has been directed to the case of mean field games (see
below for some references) but, to the best of our knowledge, only few rigorous results for
deterministic multi-agent systems can be found in the literature. Let us mention [35], [34] for
Gamma-convergence techniques under different assumptions on the controls and velocity fields,
and [22] for an extension when distance constraints among the agents are imposed.

The analysis we develop here aims at providing a unifying framework for the study of deter-
ministic multi-agent optimal control problems and surely benefits from the connections with the
theory of optimal transport. This is more evident when dealing with a measure-formulation of the
problem, where a non-local continuity equation is guiding the dynamics, or with the Kantorovich
description, where a superposed measure in the space of continuous paths selects the trajectories
of the system. Another source of inspiration is the theory of Young measures, classically used in
control theory, which plays a crucial role in the description of relaxed problems.

Apart from its theoretical interest, we trust the present investigation could serve as a founding
step into a general treatment of optimality conditions in the rapidly-growing context of Wasser-
stein spaces. Within this context a major role is played by the Hamilton-Jacobi-Bellman (HJB)
equations in the space of probability measures, for which different notions of solution has been
already proposed in the literature. We think that the analysis of HJB equation could benefit
from the equivalence results and the limit theory developed here and we leave it to future inves-
tigation . Let us just briefly mention some contributions in this direction: a general analysis in
metric setting can be found in [2, 36], see also [37] for the particular choice of the Wasserstein
space. Viscosity solutions for HJB are studied e.g. in [14, 23] for the case of random differential
games and in [39] for multi-agent systems.

Let us finally report on the stochastic counterpart of the theory (that we do not treat herein)
and make some further comments on the connections with mean field games.

Stochastic counterpart. In the stochastic setting, mean field behaviour of interacting par-
ticles systems is classically referred to as propagation of chaos. The literature on the subject is
far too vast to be discussed here and the interested reader is referred to Sznitman’s Saint-Flour
lectures [53] for a beautiful treatment of the subject and to the references in e.g. [27,45] for some
of the more recent developments.

Concernig stochastic control problems, a rigorous consistency result for controlled McKean-
Vlasov dynamics has been obtained by Lacker in [40] using martingale problems and relaxation.
It is interesting to notice that the result contained in [40] allows also for degenerate diffusion.
Further extensions has been pursued in [27], where a common noise is also introduced, and in
[28] where the state dynamics depends upon the joint distribution of state and control.

For what concerns equivalence results, to the best of our knoledge, the more general study
in the stochastic setting is formulated in [27]. There, the authors prove existence of optimal
controls and show the equivalence at the level of value functions of the so-called strong, weak (in
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a probabilistic sense) and relaxed (Lagrangian) formulations of the stochastic control problems.
Notably, the results contained in [27] extends the ones in [40] to the far more general case of
common noise. Observe also that the equivalence between the weak and strong formulations has
a fundamental role in establishing a dynamic programming principle in [29].

To conclude, let us just remark on a possible application of deterministic consistency results
to the study of limit behaviour of uncontrolled stochastic particle systems. The idea stems from
the link between Gamma-convergence and large deviations developped by Mariani in [43]. If a
consistency result for deterministic control problems is proved in terms of Gamma-convergence,
then it is possible to translate the Γ − lim inf and Γ − lim sup inequalities in corresponding
lower and upper bound estimates for suitable associated stochastic systems. An example of
this technique is contained in [45] (see also [12] for a recent extension) where the limit theory
developed in [34] has been used to prove a large deviations principle for stochastic equations in
the mean-field and small-noise regime.

Connections with MFGs. The theory of Mean Field Games (MFGs), separately introduced
by Lasry and Lions [42] and Huang, Caines, Malhamé [38] aims at describing non-cooperative
indistinguishable players interacting through their empirical distribution. Opposed to Vlasov
control problems, the optimization problem of each agent in mean field games leads to the notion
of Nash equilibrium for the system. Differences and similarities between centralized optimal
control of (McKean)-Vlasov dynamics and equilibria in MFGs are discussed in the literature,
see e.g. [17], [6] and [15]. For what concerns the limit of N -players differential games towards
the MFG system, a fundamental result was obtained in [13] via the so-called Master equation.
Among the various extensions of [13], let us mention the convergence of open and closed-loop
Nash equilibria to MFGs equilibria obtained respectively in [32] and [41]. The case of first-order
MFGs has been taken into account in [33].

We now briefly describe the various formulations of the optimal control problems we deal with
and we present the main results contained in the paper.

To improve the readability of the introduction, we just sketch the essential features of the
problems, omitting the details and heavily simplifying the setting and theorems whenever pos-
sible. Precise statements are given in the forthcoming sections. Throughout the paper we use
interchangeably the terms particles/agents as they differ only in view of the different applications.

Lagrangian formulation (L). The Lagrangian formulation has a probabilistic flavour and it
is built upon a probability space (Ω,B,P) which acts as a parametrization space for the particles.
More precisely, given a finite time horizon T > 0 and a (compact metric) space of control actions
U , the controlled dynamics X : [0, T ]× Ω → R

d is given by

(1.1)

{

Ẋt(ω) = f(Xt(ω), ut(ω), (Xt)♯P), for a.e. t ∈ (0, T )

X|t=0(ω) = X0(ω),

where the dependence of the vector field f on the measure (Xt)♯P models the interaction among
particles and/or the interaction of the mass with the surrounding environment and it is usually
referred to as a mean field interaction.

A natural motivation for the introduction of a parametrization space comes from a large
variety of problems where a finite number of particles/agents are involved. In this case Ω can
be simply interpreted as a set of labels ΩN = {1, . . . , N}, with B

N the associated algebra of
parts and P

N ({ω}) = 1
N , ω = 1, . . . , N , the normalized counting measure. Each particle is

indistinguishable from the others and the interaction enters the system through the empirical
measure µNt = 1

N

∑N
ω=1 δXt(ω), with t ∈ [0, T ].

Given X0 ∈ Lp(Ω;Rd), for p ≥ 1, an admissible pair (X,u) ∈ AL(X0) for the Lagrangian
optimal control problem (L) consists in a measurable control u : [0, T ] × Ω → U and a solution
(in a suitable sense) of (1.1). Associated to the dynamics, the cost functional to be minimized
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has the form

JL(X,u) :=

ˆ

Ω

ˆ T

0
C(Xt(ω), ut(ω), (Xt)♯P) dt dP(ω) +

ˆ

Ω
CT (XT (ω), (XT )♯P) dP(ω),

where the running cost C and the final cost CT are non-local as they could depend on the measures
(X·)♯P and (XT )♯P.

The optimization of the cost functional among admissible pairs leads to the definition of the
so-called value function which, for the Lagrangian problem, can be written as

(1.2) VL(X0) := inf {JL(X,u) : (X,u) ∈ AL(X0)} .

Let us notice that existence of optimal pairs (X,u) (for which the minimum is achieved in (1.2))
is not guaranteed in general. A counterexample for the Lagrangian problem, even in the relaxed
formulation, is given by the Wasserstein barycenter problem with suitable initial distribution
(see Section 8.3 for details). From a probabilistic point of view, the Lagrangian formulation can
be thought as a random optimal control problem in strong formulation, where the randomness is
encoded in the initial distribution of the dynamics. In this context, we do not consider stochastic
perturbation of the dynamics given e.g. from independent Brownian motions and/or common
noise.

Relaxed Lagrangian formulation (RL). A classical generalization of optimal control
problems is the so called relaxed version, where controls are allowed to take values in the space
of probability measures σ : [0, T ]×Ω → P(U). This greatly enlarges the class of admissible pairs
(classical controls can be recovered choosing σ := δu, with u ∈ U) and provides a convexification
of the problem under consideration. Indeed, the controlled trajectories satisfy the linear (in the
control action) dynamics







Ẋt(ω) =

ˆ

U
f(Xt(ω), u, (Xt)♯P) dσt,ω(u), for a.e. t ∈]0, T ]

X|t=0(ω) = X0(ω),

with control σt,ω := σ(t, ω) ∈ P(U). Furthermore, the cost functional takes the form

JRL(X,σ) :=

ˆ

Ω

ˆ T

0

ˆ

U
C(Xt(ω), u, (Xt)♯P) dσt,ω(u) dt dP(ω) +

ˆ

Ω
CT (XT (ω), (XT )♯P) dP(ω),

with associated value function VRL : Lp(Ω;Rd) → [0,+∞) given by

VRL(X0) := inf {JRL(X,σ) : (X,σ) ∈ ARL(X0)} .

Relaxation is a fundamental concept in optimal control theory and has its roots in the theory
of Young measures. In Section 5 of the paper, we provide a detailed analysis of the relaxation
procedure in the context of multi-agent systems, emphasizing its connections with the Lagrangian
problem. Of particular interest is the extension of a suitable version of the chattering theorem,
which permits to approximate the Relaxed Lagrangian formulation with a sequence of (not
relaxed) Lagrangian ones. This readily implies the equality of the respective value functions:
VRL(X0) = VL(X0) for any X0 ∈ Lp(Ω;Rd).

Let us finally notice that the Relaxed Lagrangian formulation is the prototype for the class
of control problems satisfying suitable Convexity Assumptions (see Assumption 3.4 below). In
this particular case, the control space is the convex space of measures P(U), the dynamics is
affine in the controls and the cost functional is convex (actually linear). However, as already
observed before, this relaxation procedure is not sufficient to guarantee existence of minimizers
for a general optimal control problem (see Section 8.3). A further step in this direction is the
introduction of the Eulerian formulation of the problem.

Eulerian formulation (E). To simplify the presentation, here we suppose to directly deal
with relaxed controls, which are represented by a Borel measurable map σ : [0, T ]×R

d → P(U):
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this is fundamental to get existence of minimizers. Then, the evolution of the system is guided
by the following non-local Vlasov equation

{

∂tµt + div (vtµt) = 0, in [0, T ]× R
d

µt=0 = µ0,

where the controlled vector field v depends on the evolving state itself and it is given by vt(x) :=
´

U f(x, u, µt)dσt,x(u). Within this framework, the cost functional takes the form

JE(µ, σ) :=

ˆ T

0

ˆ

Rd

ˆ

U
C(x, u, µt) dσt,x(u) dµt(x) dt+

ˆ

Rd

CT (x, µT ) dµT (x),

and the value function VE : Pp(R
d) → [0,+∞) is given by

VE(µ0) := inf{JE(µ, σ) : (µ, σ) ∈ AE(µ0)}.

In the Eulerian description of the optimal control problem, the system can be described by
a curve of probability measures. This point of view is intimately connected with the theory of
optimal transport from which ideas and techniques are borrowed.

Kantorovich formulation (K). A somewhat intermediate formulation is given by the Kan-
torovich optimal control problem (in analogy to the Kantorovich formulation of the optimal
transport problem). This formulation has its roots in the representation of solutions of the con-
tinuity equation by superposition of continuous curves belonging to ΓT := C([0, T ];Rd). An
admissible pair for the Kantorovich problem is given by (η, σ) where η ∈ P(ΓT ) is a probability
measure on the space of continuous curves, and σ : [0, T ] × ΓT → P(U) is a relaxed control.
Furthermore, given µ0 ∈ P(Rd) with finite p-moment, an admissible measure η has to match
the initial condition in the form (e0)♯η = µ0. Even more important, defining µt := (et)♯η for all
t ∈ [0, T ], η has to be concentrated on the set of absolutely continuous solutions of the differential
equation

γ̇(t) =

ˆ

U
f(γ(t), u, µt)dσt,γ(u), for LT -a.e. t ∈ [0, T ].

This clearly links the Kantorovich formulation with the Eulerian one via the superposition prin-
ciple (see Theorem 2.5). The cost functional associated to the Kantorovich formulation is written
in the form

JK(η, σ) :=

ˆ

ΓT

ˆ T

0

ˆ

U
C(γ(t), u, µt) dσt,γ(u) dt dη(γ) +

ˆ

Rd

CT (x, µT ) dµT (x),

where ΓT act as a parametrization space (as in the Lagrangian framework), but the minimization
involves measures η ∈ P(ΓT ) instead of trajectories, in line with the Kantorovich formulation of
the optimal transportation problem: µt = (et)♯η can be considered as a time dependent family
of marginals of η. The associated value function is given by

VK(µ0) := inf{JK(η, σ) : (η, σ) ∈ AK(µ0)}.

Let us stress that, also in this setting, the choice of relaxed controls is sufficient to prove the
existence of minimizers.

Equivalence results. A natural question is whether the problems introduced above are
somewhat related. One of the aims of the present paper is to prove equivalences among the
various formulations introduced above. At the level of the value functions, we can summarize
the main result in the following theorem (see Theorem 8.2 for a precise statement)

Theorem (equivalence). Let (Ω,B,P) be a Polish space such that P is without atoms. If X0 ∈
Lp(Ω;Rd), then

VL(X0) = VRL(X0) = VE((X0)♯P) = VK((X0)♯P).
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The first step of the proof consists in the approximation of the Lagrangian problem by piecewise
constant controls (see Theorem 4.17). This is possible whenever the probability space (Ω,B,P)
under consideration satisfies a suitable finite approximation property (Definition 4.15), which
surely holds in the Polish framework. Once the piecewise approximation is established, we
are able to formulate a suitable version of the chattering theorem (see Theorem 5.6) where
trajectories, controls and cost functional of the Relaxed Lagrangian formulation are approximated
by the corresponding objects in the Lagrangian setting.

The comparison between the Lagrangian and Eulerian formulations (see Theorems 8.1, 8.2
and Section 8.1) is more delicate and it is achieved by exploiting the Kantorovich description of
the control problem on the space of curves ΓT . The idea is to separately connect the Eulerian
and Kantorovich descriptions (Theorem 7.3) and then the Kantorovich and Lagrangian ones
(Theorem 8.5).

Starting from an admissible pair for the Eulerian problem, the application of the superposition
principle given in Theorem 2.5 easily provides a candidate admissible pair for the Kantorovich
problem paying the same cost (see the proof of Proposition 7.4 for details). Conversely, if a
pair (η, σ) for the Kantorovich problem is given, the Eulerian control action can be obtained by
averaging with respect to a suitable disintegration of the measure η on curves, as it is shown in
the proof of Proposition 7.5.

For what concerns the Kantorovich/Lagrangian comparison, in Lemma 8.4 we firstly interpret
the Kantorovich problem as a Lagrangian one with parametrization space given by ΓT , i.e. the
space of curves, and with trajectories given by the evaluation map. Due to the continuity of
the initial datum (i.e. the evaluation map e0), we then approximate controls with continuous
ones (see Proposition 4.22 for a general result in this direction) and finally we approximate the
obtained Lagrangian problem in ΓT with Lagrangian ones which are set in a generic parametriza-
tion space Ω, not necessarily the space ΓT . A precise description of this technique is contained
in the proof of Theorem 8.5.

An immediate consequence of the equivalence theorem is the equality of the value functions
for different initial data, whenever the respective laws coincide (see Theorem 8.1). In fact, if
µ0 := (X0)♯P = (X ′

0)♯P, then it holds that

VL(X0) = VL(X
′
0)

(

= VE(µ0)
)

.

A further consequence is the continuity of the value functions with respect to the initial data,
see Theorems 8.7 and 8.8 for precise statements.

Equivalence results between Lagrangian, Eulerian and Kantorovich formulations represent a
first step towards a general analysis of optimality conditions for multi-agents control systems. A
second step in this direction is the study of the corresponding limit theory.

Approximation by finite particle systems. We aim to provide a rigorous limit theory
for multi-agent optimal control problems both for the Lagrangian and Eulerian formulations.
To do it, we have to define appropriate discrete versions of the two formulations. The N -
particle Lagrangian control problem LN simply relies on the choice of ΩN = {1, . . . , N} as
parametrization space. On the other hand, a genuine discrete Eulerian problem EN requires
the introduction of a constraint on the number of particles (see Definition 9.1), precisely an
admissible trajectory µ satisfies µt ∈ PN (Rd), where

P
N (Rd) :=

{

µ =
1

N

N
∑

i=1

δxi for some xi ∈ R
d

}

.

The discrete Eulerian and Lagrangian control problems LN and EN turn out to be equivalent
(see Theorem 9.3) in the sense that

(1.3) V
L
N (X0) = V

E
N ((X0)♯P

N ), for any X0 ∈ Lp(ΩN ;Rd).

Note that this is not a direct consequence of the general equivalence result given above, where
the reference probability measure P was required to be without atoms. To prove the equality



LAGRANGIAN, EULERIAN AND KANTOROVICH CONTROL PROBLEMS 8

in (1.3) we derive a discrete formulation of the superposition principle for empirical probability
measures (see Theorem C.1) that we believe might be of interest in itself.

Once the equivalence at the level of N -particle systems is established, we derive Gamma-
convergence results respectively for the Lagrangian and Eulerian problems as the number of
particles diverges (see Propositions 9.9 and 9.13). A major consequence is contained in the
following theorem (see Theorem 9.12 for a detailed description).

Theorem. Let (Ω,B,P) be a Polish space such that P is without atoms. Assume that the Con-
vexity assumption 3.4 holds.

• If X0 ∈ Lp(Ω;Rd) and XN
0 : ΩN → R

d, N ∈ N, satisfy XN
0 → X0 as N → +∞ (see

(9.10)), then

lim
N→+∞

V
L
N (XN

0 ) = VL(X0).

• If µ0 ∈ Pp(R
d) and µN0 ∈ PN (Rd), N ∈ N, satisfy Wp(µ

N
0 , µ0) → 0 as N → +∞, then

lim
N→+∞

V
E

N (µN0 ) = VE(µ0).

• Moreover, if (XN
0 )♯P

N = µN0 it holds that

lim
N→+∞

V
L
N (XN

0 ) = VE(µ0).

Notice that the usual mixed Lagrangian-Eulerian consistency in the third item is a simple
byproduct of the equivalence in (1.3).

Structure of the paper. The paper is organized as follows. In Section 2 we fix the notation
and present some preliminary material. We start by revising some properties of Borel probability
measures and we recall a refined version of the Skorohod representation theorem. We further
provide some material on optimal transport, Wasserstein spaces and we present the classical
superposition principle. Finally, we discuss the disintegration theorem and give some properties
of Young measures.

Section 3 contains our standing hypotheses, divided into two sets: the Basic Assumptions
and the Convexity Assumptions. The first ones require compactness of the metrizable space of
controls and Lipschitz continuity of the velocity field with respect to the state and the mass
distribution. The cost functional has to be continuous and to satisfy a polynomial growth con-
dition. The convexity assumptions impose convexity of the control set and of the cost functional
(with respect to controls). Furthermore, the dynamics has to be affine with respect to the control
actions. The relaxed setting is the guiding example of the convex case.

In Section 4 we present and study the Lagrangian optimal control problem. In particular, we
exhibit two different approximation procedures: the first one by piecewise constant controls and
the second one by continuous controls and trajectories.

The Relaxed Lagrangian problem is defined in Section 5, where its representation as a La-
grangian problem in the lifted space of measures is also discussed. We prove the equivalence
between Lagrangian and Relaxed Lagrangian formulations of the control problem by approxi-
mating relaxed controls with (non-relaxed) ones in the sense of Young convergence. This pro-
cedure, known as chattering theorem, exploits the approximation by piecewise constant controls
developed in the Lagrangian setting.

Section 6 contains the definition and properties of the Eulerian control problem. Under the
convexity Assumptions we are able to prove existence of minimizers for the control problem via
a direct method.

In Section 7 we introduce the Kantorovich problem and we prove its equivalence with the
Eulerian one under the convexity assumptions.

The main equivalence results are contained in Section 8. Exploiting the Kantorovich formula-
tion, we firstly show the equality between value functions of Lagrangian and Eulerian problems
under the Convexity Assumptions. The general case is then obtained by interpreting the Relaxed
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Lagrangian as a (convex) Lagrangian problem in the space of probability measures. As a conse-
quence, we also get the continuity of the value functions, with respect to the initial condition,
for the various formulations. In Subsection 8.3 we discuss the possible non-existence of minimiz-
ers for the Lagrangian and Relaxed Lagrangian problems. This is not guaranteed, if the initial
condition is assigned, even under the Convexity Assumptions. We produce a counterexample to
the existence of minimizers given by the Wasserstein barycenter problem.

Section 9 contains all the material regarding finite particle problems and the respective limit
theory. We define a discrete version of the Eulerian control problem imposing a constraint on
the number of particles. To connect the Eulerian and Lagrangian formulations in the N -particle
case we introduce a Feedback Lagrangian control problem, where control actions are indeed in
feedback form, and we make use of the already mentioned discrete superposition principle. A
Gamma-convergence result both for the Lagrangian and Eulerian formulations is then established
as the number of particles tends to infinity. We finally conclude proving the convergence of the
associated value functions.

The appendix contains various technical tools. In particular, in Appendix C we state and
prove the superposition principle for the evolution of empirical measures.

2. Preliminaries and notations

We list here the main notation.

#A the cardinality of a set A;
iX(·) the identity function on a set X , iX : X → X defined by iX(x) = x;
1A(·) the characteristic function of A ⊂ X ,

1A : X → R defined by 1A(x) = 1 if x ∈ A, 1A(x) = 0 if x ∈ X \A;
(S,B) measurable space S with σ-algebra B;
(S,BS) topological space S with Borel σ-algebra BS ;
M(X ;Y ) the set of measurable functions from the measurable space X

to the measurable space Y ;
B(X ;Y ) the set of Borel measurable functions from the topological space X

to the topological space Y ;
C(X ;Y ) the set of continuous functions from the topological space X

to the topological space Y ;
Cc(X ;Y ) the set of continuous compactly supported functions from the topological space X

to the topological space Y ;
Cb(X ;Y ) the set of continuous bounded functions from the topological space X

to the metric space Y ;
ACp([0, T ];X) the set of absolutely continuous functions from [0, T ] to the metric space X

with metric derivative in Lp([0, T ];R);
ΓT the set of continuous curves from [0, T ] to Rd, i.e., ΓT = C([0, T ];Rd);
et the evaluation map at time t ∈ [0, T ], et : ΓT → Rd defined by et(γ) = γ(t);
P(X) the set of probability measures on the measurable space X ;
PN (Rd) the set of empirical probability measures on Rd defined in (9.2);
mp(µ) the p-th moment of a probability measure µ ∈ P(Rd), defined by

mp(µ) =
(´

Rd |x|
p dµ(x)

)1/p
;

r♯µ the push-forward of the measure µ ∈ P(X) by the measurable map r ∈ M(X ;Y );
µ⊗ ν the product measure of µ ∈ P(X) and ν ∈ P(Y );
πi the i-th projection map πi : X1 × · · · ×XN → Xi defined by πi(x1, . . . , xN ) = xi;
πi,j the (i, j)-th projection map πi,j : X1 × · · · ×XN → Xi ×Xj

defined by πi,j(x1, . . . , xN ) = (xi, xj);
Wp(µ, ν) the p-Wasserstein distance between µ and ν (see Definition 2.2);
Pp(R

d) the metric space of the elements in P(X) with finite p-moment,
endowed with the p-Wasserstein distance;

LT the normalized Lebesgue measure restricted to the interval [0, T ],
i.e. LT := 1

T L [0, T ].
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2.1. Borel probability measures. Let (S,B) be a measurable space. When S is a Polish
topological space, we will implicitely assume that B coincides with the Borel σ-algebra BS of S.
We say that (S,B) is a standard Borel space if it is isomorphic (as a measurable space) to a Borel
subset of a complete and separable metric space; equivalently, one can find a Polish topology τ
on S such that B = B(S,τ).

If (E, B̃) is another measurable space, we denote by M(S;E) the set of measurable functions
from S to E. If S is a topological space we denote with B(S;E) the set of Borel measurable
functions. P(S) is the set of probability measures on S; when S is a Polish space (and B = BS)
we will endow P(S) with the weak (Polish) topology induced by the duality with the continuous
and bounded functions of Cb(S) := Cb(S;R).

Given µ ∈ P(S) and r : S → E a measurable map, we define the push forward of µ through r,

denoted by r♯µ ∈ P(E), by r♯µ(B) := µ(r−1(B)) for all measurable sets B ∈ B̃ (the σ-algebra
on E), or equivalently,

ˆ

S
f(r(x)) dµ(x) =

ˆ

E
f(y) dr♯µ(y),

for every positive, or r♯µ-integrable, function f : E → R.
Given another measurable space Z, µ ∈ P(S), and r : S → E, s : E → Z measurable maps, the
following composition rule holds

(2.1) (s ◦ r)♯µ = s♯(r♯µ).

Moreover, if r : S → E is a continuous map (with respect to suitable Polish topologies in S and
E) then r♯ : P(S) → P(E) is continuous as well.

The following proposition generalizes to some extent the classical Skorohod representation
Theorem, see e.g. [9, Theorem 6.7]. For a (more general) result and the proof we refer to
[8, Theorems 3.1 and 3.2].

Proposition 2.1. Let (Ω,B,P) be a probability space such that P is without atoms and let S be
a Polish space.

(i) If ν ∈ P(S), then there exists a measurable map X : Ω → S such that X♯P = ν.
(ii) If νn, ν ∈ P(S) with νn → ν weakly, then there exist measurable maps Xn,X : Ω → S,

n ∈ N, such that Xn
♯ P = νn, X♯P = ν and Xn(ω) → X(ω) for P-a.e. ω ∈ Ω.

Notice that, when (Ω,B,P) is a standard Borel space, τ a Polish topology on Ω such that
B = B(Ω,τ), then the maps X and Xn in Proposition 2.1 are Borel measurable. A particular and
significant case occurs when we choose (Ω,B,P) = ([0, 1],B,L1), with B the Borel σ-algebra and
L1 the Lebesgue measure restricted to [0, 1].

If m ∈ P(S) and E is a separable Banach space, we denote by Lp
m(S;E) the space of (the

equivalence classes of) m-measurable functions f : S → E such that
´

S ‖f(x)‖p dm(x) < +∞.
Since E is separable, the notions of weak and strong measurability coincide. We will often adopt
the notation Lp(S;E) in place of Lp

m(S;E) when the measure m is clear from the context.
We say that a sequence of measurable functions un ∈ M(S;E) converges in m-measure to u ∈
M(S;E) if

(2.2) ∀ ε > 0, lim
n→+∞

m ({x ∈ S : ‖un(x)− u(x)‖ ≥ ε}) = 0.

If un take values in a compact subset U of E, un ∈ M(S;U), the convergence of un to u ∈ M(S;U)
in m-measure is equivalent to the convergence of un to u in Lp(S;E) for every p ∈ [1,+∞).

Given (S, d) a metric space and p ∈ [1,+∞], we say that a curve γ : [0, T ] → S belongs to
ACp([0, T ];S) if there exists m ∈ Lp(0, T ;R) such that

d(γ(t1), γ(t2)) ≤

ˆ t2

t1

m(s) ds, ∀ t1, t2 ∈ [0, T ], t1 ≤ t2.
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2.2. The Wasserstein metric and the Superposition Principle. We provide a brief collec-
tion of the main notions on optimal transport and Wasserstein distance, addressing the reader
to [3, 51, 55].

Given µ ∈ P(Rd) and p ≥ 1, we define the p-moment of µ by

mp(µ) :=

(
ˆ

Rd

|x|p dµ(x)

)1/p

.

We define Pp(R
d) := {µ ∈ P(Rd) : mp(µ) < +∞}. The set Pp(R

d) can be metrized by the
following distance.

Definition 2.2 (Wasserstein distance). Let p ≥ 1. Given µ1, µ2 ∈ Pp(R
d), we define the

p-Wasserstein distance between µ1 and µ2 by setting

(2.3) Wp(µ1, µ2) :=

(

min

{
ˆ

Rd×Rd

|x1 − x2|
p dγ(x1, x2) : γ ∈ Γ(µ1, µ2)

})1/p

,

where the set of admissible transport plans Γ(µ1, µ2) is given by

Γ(µ1, µ2) :=
{

γ ∈ P(Rd × R
d) : π1♯ γ = µ1, π

2
♯ γ = µ2

}

,

with πi : Rd × R
d → R

d, πi(x1, x2) = xi, the projection operator, i = 1, 2.

By the previous definitions, given a measurable space Ω and P ∈ P(Ω), it follows immediately
that for any Z ∈ Lp(Ω;Rd), we have µ := Z♯P ∈ Pp(R

d) and

(2.4) mp(µ) = ‖Z‖Lp(Ω;Rd),

moreover

(2.5) Wp(Z
1
♯ P, Z

2
♯ P) ≤ ‖Z1 − Z2‖Lp(Ω;Rd), ∀Z1, Z2 ∈ Lp(Ω;Rd).

The space Pp(R
d) endowed with the p-Wasserstein metric Wp is a complete and separable

metric space.

The existence of a minimizer in (2.3) can be proved by the direct method in Calculus of
Variations. When the measure µ1 is absolutely continuous with respect to Lebesgue measure Ld

on R
d, the minimizer γ is unique and it is concentrated on the graph of a map, γ = (iRd , T )♯µ1,

where iRd is the identity map of Rd and T is a minimizer in the Monge transport problem

(2.6) inf

{
ˆ

Rd

|x− S(x)|p dµ1(x) : S♯µ1 = µ2

}

.

The Wasserstein distance has the following characterization, known as Benamou-Brenier formula:

(2.7) W p
p (µ0, µ1) = min

{
ˆ 1

0

ˆ

Rd

|vt(x)|
p dµt(x) dt : (µ, v) ∈ CE, µt=0 = µ0, µt=1 = µ1

}

,

where
CE :=

{

(µ, v) : µ ∈ C([0, T ];Pp(R
d)), v ∈ Lp([0, 1] × R

d;µt ⊗ dt)

such that ∂tµt + div(vtµt) = 0 in the sense of distributions
}

.

Notice that the minimizers are the constant speed geodesics joining µ0 to µ1, i.e. {σt}t∈[0,1] such
that σ0 = µ0, σ1 = µ1 and Wp(σt, σs) = |t− s|Wp(µ0, µ1) for any t, s ∈ [0, 1].

We recall the following definition as in [34, Definition 2.2].

Definition 2.3. We say that ψ : [0,+∞) → [0,+∞) is an admissible function if ψ(0) = 0, ψ is

strictly convex and of class C1 with ψ′(0) = 0, superlinear at +∞, i.e., limr→+∞
ψ(r)

r
= +∞,

and doubling, i.e., there exists A > 0 such that

ψ(2r) ≤ A(1 + ψ(r)) for any r ∈ [0,+∞).
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We observe that an admissible function ψ satisfies

(2.8) rψ′(r) ≤ A(1 + ψ(r)), ∀ r ∈ [0,+∞).

The following result provides equivalent conditions for the convergence in the space Pp(R
d)

and the characterization of compactness.

Proposition 2.4. Let {µn}n∈N ⊆ Pp(R
d) and µ ∈ Pp(R

d), the following assertions are equiv-
alent:

(1) lim
n→∞

Wp(µn, µ) = 0;

(2) µn weakly converges to µ and mp(µn) → mp(µ) as n→ +∞;

(3) lim
n→+∞

ˆ

Rd

ϕ(x) dµn(x) =

ˆ

Rd

ϕ(x) dµ(x),

for every continuous function ϕ : Rd → R s.t. |ϕ(x)| ≤ C(1 + |x|p) for any x ∈ R
d;

(4) µn weakly converges to µ and there exists ψ : [0,+∞) → [0,+∞) admissible, according
to Definition 2.3, such that

(2.9) sup
n∈N

ˆ

Rd

ψ(|x|p) dµn(x) < +∞.

Moreover, a family K ⊂ Pp(R
d) is relatively compact if and only if there exists an admissible

function ψ : [0,+∞) → [0,+∞) such that

(2.10) sup
µ∈K

ˆ

Rd

ψ(|x|p) dµ(x) < +∞.

The proof can be carried on using [3, Lemma 5.1.7, Proposition 7.1.5]. Concerning the impli-
cation (2) to (4), it follows by De la Vallée Poussin and Dunford-Pettis theorems together with
[34, Lemma 2.3] for the admissibility property.

The following representation result for the (absolutely continuous) solutions of the conti-
nuity equation will play a key role in the sequel (see [3, Theorem 8.2.1]). We denote by
ΓT = C([0, T ];Rd) the Banach space of the continuous functions, endowed with the sup norm.
We denote by et : ΓT → R

d the evaluation map at time t ∈ [0, T ] defined by et(γ) := γ(t). We
say that η ∈ P(ΓT ) is concentrated on a set B if η(ΓT \B) = 0.

Theorem 2.5 (Superposition principle). Let p ≥ 1. Let µ = {µt}t∈[0,T ] ∈ C([0, T ];Pp(R
d)) be

a distributional solution of the continuity equation ∂tµt + div(vtµt) = 0 for a Borel vector field
v : [0, T ] × R

d → R
d satisfying

(2.11)

ˆ T

0

ˆ

Rd

|vt(x)|
p dµt(x) dt < +∞.

Then there exists a probability measure η ∈ P(ΓT ) such that

(i) µt = (et)♯η for every t ∈ [0, T ];

(ii) η is concentrated on the set of curves γ ∈ ACp([0, T ];Rd) satisfying

γ̇(t) = vt(γ(t)), for LT -a.e. t ∈ [0, T ].

Conversely, given η ∈ P(ΓT ) satisfying item (ii) and (2.11) with µt := (et)♯η for every t ∈ [0, T ],
then (µ, v) is a distributional solution of ∂tµt + div(vtµt) = 0 .

In Theorem C.1 in Appendix C, we prove a version of the superposition principle in the discrete
setting.
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2.3. Disintegration and Young measures. Let S and S be Polish spaces. We say that a map
x ∈ S 7→ µx ∈ P(S) is a Borel map if x 7→ µx(A) is a Borel map for any open set A ⊂ S.

If x ∈ S 7→ µx ∈ P(S) is a Borel map and λ ∈ P(S) we define the measure µx ⊗ λ ∈ P(S)
by

(µx ⊗ λ)(A) :=

ˆ

S
µx(A) dλ(x)

for any Borel set A ⊂ S. Equivalently
ˆ

S

ϕ(z) d(µx ⊗ λ)(z) :=

ˆ

S

ˆ

S

ϕ(z) dµx(z) dλ(x)

for any bounded Borel function ϕ : S → R.
We state the following disintegration result (see for instance [3, Section 5.3]).

Theorem 2.6 (Disintegration). Let S and S be Polish spaces. Let µ ∈ P(S) and r : S → S a
Borel map. Then there exists a Borel measurable family of probability measures {µx}x∈S ⊂ P(S),
uniquely defined for r♯µ-a.e. x ∈ S, such that µx(S \ r−1(x)) = 0 for r♯µ-a.e. x ∈ S, and
µ = µx ⊗ (r♯µ). In particular, for any bounded Borel map ϕ : S → R we have

(2.12)

ˆ

S

ϕ(z) dµ(z) =

ˆ

S

ˆ

r−1(x)
ϕ(z) dµx(z) d(r♯µ)(x).

Remark 2.7. A typical case is given by S = S × Y , where Y is a Polish space, and r = π1.
Since (π1)−1(x) = {x} × Y for all x ∈ S, we identify each measure µx ∈ P(S × Y ), which
is concentrated in {x} × Y , with a measure µx ∈ P(Y ). With this identification, the formula
(2.12) takes the form

(2.13)

ˆ

S×Y
ϕ(x, y) dµ(x, y) =

ˆ

S

ˆ

Y
ϕ(x, y) dµx(y) d(r♯µ)(x).

Let T and S be Polish spaces, λ ∈ P(T) and E be a Banach space. We say that h : T×S → E
is a Carathéodory function if

for λ-a.e. t ∈ T, x 7→ h(t, x) is continuous,

∀x ∈ S, t 7→ h(t, x) is λ-measurable.

Let us now recall the definition of Young measure (see [7, 20]) and a density result which will
turn out to be a crucial tool in our treatment.

Definition 2.8. Let T and S be Polish spaces and λ ∈ P(T). We say that ν ∈ P(T × S) is a
Young measure on T× S if π1♯ ν = λ. Furthermore given νn, ν ∈ P(T× S) Young measures, we

say that νn
Y
−→ ν as n→ +∞ if

lim
n→+∞

ˆ

T×S
h(τ, u) dνn(τ, u) =

ˆ

T×S
h(τ, u) dν(τ, u),

for any h : T× S → R Carathéodory and bounded.

Remark 2.9. Let T, S be Polish spaces, λ ∈ P(T) and νn, ν Young measures on T × S. Then

νn
Y
−→ ν in the sense of Definition 2.8 if and only if νn → ν weakly. One implication follows

immediately from the definitions, while the other comes from [54, Theorem 7] (see also [20]).
We also recall that weak convergence in P([0, T ] × S) is induced by a distance δ. When S is

compact, we can choose as δ any Wasserstein distance on P([0, T ] × S).

To any Borel map u : T → S we can associate the Young measure ν := (iT, u)♯λ, which is
concentrated on the graph of u. In this case, ν can be written as ν = δu(τ) ⊗ λ and, using the
disintegration Theorem 2.6, we have that ντ = δu(τ) for λ-a.e. τ ∈ T. Given a Young measure
ν, in general the disintegration ντ of ν w.r.t. λ is not of the form δu(τ) on a set of λ positive
measure, for some u : T → S. The following classical Lemma states that the Young measures
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induced by maps are “dense”, in the set of Young measures, provided λ is non atomic. We say
that a measure λ ∈ P(T) is non atomic if λ({τ}) = 0 for any τ ∈ T.

Lemma 2.10 (see [20, Theorem 2.2.3]). Let T and S be Polish spaces and λ ∈ P(T) non atomic.
If ν ∈ P(T × S) is a Young measure, then there exists a sequence of Borel maps un : T → S
such that

νn := (iT, u
n)♯λ

Y
−−−→ ν = ντ ⊗ λ.

Precisely,

(2.14) lim
n→+∞

ˆ

T

h(τ, un(τ)) dλ(τ) =

ˆ

T

ˆ

S
h(τ, u) dντ (u) dλ(τ),

for every h : T× S → R Carathéodory and bounded.

3. Structural assumptions for the dynamics of the optimal control problems

In this section we collect our main structural assumptions on the system S = (U, f,C,CT )
characterizing the dynamics and the cost of the control problems under study, where U is the
space of controls, f is the vector field driving the particles motion, C and CT are the running
and terminal cost functionals.

We fix p ∈ [1,+∞) and denote by dp the following metric on R
d × Pp(R

d):

dp((x, µ), (y, ν)) :=
(

|x− y|p +W p
p (µ, ν)

)1/p
.

Assumption 3.1 (Basic Assumption). We assume that the system S := (U, f,C,CT ) satisfies:

(A.1) U is a compact metrizable space;
(A.2) f : Rd × U × Pp(R

d) → R
d is continuous and Lipschitz continuous w.r.t. the metric dp,

uniformly in u ∈ U . Precisely, there exists L > 0 such that

(3.1) |f(x, u, µ)− f(y, u, ν)| ≤ L dp((x, µ), (y, ν)) ,

for every u ∈ U and (x, µ), (y, ν) ∈ R
d × Pp(R

d).

(A.3) C : Rd × U × Pp(R
d) → [0,+∞) and CT : Rd × Pp(R

d) → [0,+∞) are continuous
functions such that

(3.2)
C(x, u, µ) ≤ D

(

1 + |x|p +mp
p(µ)

)

∀ (x, u, µ) ∈ R
d × U × Pp(R

d)

CT (x, µ) ≤ D
(

1 + |x|p +mp
p(µ)

)

∀ (x, µ) ∈ R
d × Pp(R

d),

for some D > 0.

Remark 3.2. From Assumption 3.1 it holds

(3.3) |f(x, u, µ)| ≤ C (1 + |x|+mp(µ)) , ∀ (x, u, µ) ∈ R
d × U × Pp(R

d),

for some C > 0. Indeed, it is sufficient to choose (y, ν) = (0, δ0) in (3.1) and observe that
f(0, u, δ0) is bounded and Wp(µ, δ0) = mp(µ).

Concerning item (A.1) of Assumption 3.1, let us recall the following result.

Proposition 3.3. If U is compact metrizable space then, for every distance dU inducing the
original topology of U , there exists a separable Banach space V and an isometry j : U → V . In
particular, the image j(U) is a compact subset of V .

Proof. Fix a point u0 ∈ U and consider the Banach space B := {F ∈ Lip(U) : F (u0) = 0}
endowed with the norm

‖F‖B := sup
u,v∈U,u 6=v

|F (u)− F (v)|

dU (u, v)
.

Denoting by B′ the dual space of B, we define the map j : U → B′ by 〈j(u), F 〉B′ ,B := F (u).
By the definition of dual norm, it is immediate to check that

‖j(u) − j(v)‖B′ ≤ dU (u, v), ∀u, v ∈ U
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On the other hand, evaluating 〈j(u)− j(v), F 〉B′ ,B with F (z) := dU (z, u)− dU (u, u0), we obtain
that

‖j(u) − j(v)‖B′ = dU (u, v),

so that j is an isometry from U to j(U) ⊂ B′. We eventually set V := span(j(U))
B′

, which is a
separable Banach space since U , and therefore j(U), is separable. �

When specified, we will assume the following further hypothesis.

Assumption 3.4 (Convexity Assumption). We say that S = (U, f,C,CT ) satisfies the convexity
assumption if S satisfies Assumption 3.1 and

(C.1) U is a compact convex subset of a separable Banach space V ;
(C.2) for any x ∈ R

d and µ ∈ Pp(R
d), the map u 7→ f(x, u, µ) satisfies the affinity condition:

f(x, αu+ (1− α)v, µ) = αf(x, u, µ) + (1− α)f(x, v, µ), ∀u, v ∈ U, ∀α ∈ [0, 1];

(C.3) for any x ∈ R
d and µ ∈ Pp(R

d) the map u 7→ C(x, u, µ) is convex:

C(x, αu+ (1− α)v, µ) ≤ αC(x, u, µ) + (1− α)C(x, v, µ), ∀u, v ∈ U, ∀α ∈ [0, 1].

3.1. The relaxed setting. For later use, we define a so-called relaxation/lifting of S as follows.

Definition 3.5. Given the system S = (U, f,C,CT ) satisfying Assumption 3.1, we define S
′ =

(U ,F ,C ,CT ) as follows:

(i) U := P(U);
(ii) F : Rd × U × Pp(R

d) → R
d with

F (x, σ, µ) :=

ˆ

U
f(x, u, µ) dσ(u);

(iii) C : Rd × U × Pp(R
d) → [0,+∞) with

C (x, σ, µ) :=

ˆ

U
C(x, u, µ) dσ(u).

(iv) CT := CT .

Proposition 3.6. If S = (U, f,C,CT ) satisfies Assumption 3.1, then its relaxation S
′ = (U ,F ,C ,CT ),

given in Definition 3.5, satisfies the Convexity Assumption 3.4. Moreover, defining DU := {δu :
u ∈ U} ⊂ U , the maps F and C restricted to R

d × DU × Pp(R
d) coincide with f and C

respectively.

Proof. The space U := P(U) can be identified with a subset of the dual space B′, where B
is the Banach space B := {F ∈ Lip(U) : F (u0) = 0 for some u0 ∈ U}. The identification is
given associating to σ ∈ P(U) the continuous linear functional F 7→

´

U F (u) dσ(u). With this
identification, the norm in P(U) is given by

‖σ‖ = sup
F∈B,‖F‖B≤1

ˆ

U
F (u) dσ(u).

By the Kantorovich-Rubinstein Theorem (see e.g. [55, Theorem 1.14]) it holds that ‖σ‖ =
W1(σ, δu0) and ‖σ1 − σ2‖ = W1(σ

1, σ2). Hence, the topology on P(U) induced by B′ coincides
with the topology induced by the Wasserstein distance W1. Since U is compact, this coincides
with the topology induced by the weak convergence. By Prokhorov Theorem, P(U) is compact.
Finally, (P(U), ‖ · ‖) is a separable Banach space thanks to the separability of the (complete)
metric space (P(U),W1). The convexity of U , the affinity of F and the convexity of C with
respect to σ easily follows from their definitions. �
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4. Lagrangian optimal control problem

In this section we deal with a (finite-horizon) optimal control problem in Lagrangian formula-
tion. It relies on a system S = (U, f,C,CT ) satisfying Assumptions 3.1 and on a probability space
(Ω,B,P), whose elements act as parameters of the particles. We also fix a final time horizon
T > 0 and we denote with Leb[0,T ] the σ-algebra of Lebesgue measurable sets on [0, T ] and with
LT the normalized Lebesgue measure restricted to [0, T ]. Recall that M([0, T ] × Ω;U) denotes
the set of measurable functions with respect to the product σ-algebra Leb[0,T ] ⊗B.

Definition 4.1 (Lagrangian optimal control problem (L)). Let S := (U, f,C,CT ) satisfy As-
sumption 3.1 and let (Ω,B,P) be a probability space.

Given X0 ∈ L
p(Ω;Rd), we say that (X,u) ∈ AL(X0) if

(i) u ∈ M([0, T ] × Ω;U);
(ii) X ∈ Lp(Ω;ACp([0, T ];Rd)) and for P-a.e. ω ∈ Ω, X(ω) is a solution of the following

Cauchy problem

(4.1)

{

Ẋt(ω) = f(Xt(ω), ut(ω), (Xt)♯P), for LT -a.e. t ∈ (0, T )

X|t=0(ω) = X0(ω),

where Xt : Ω → R
d is defined by Xt(ω) := X(t, ω) for P-a.e. ω ∈ Ω.

We refer to (X,u) ∈ AL(X0) as to an admissible pair, with X a trajectory and u a control.
We define the cost functional JL : Lp(Ω;C([0, T ];Rd))×M([0, T ] × Ω;U) → [0,+∞), by

JL(X,u) :=

ˆ

Ω

ˆ T

0
C(Xt(ω), ut(ω), (Xt)♯P) dt dP(ω) +

ˆ

Ω
CT (XT (ω), (XT )♯P) dP(ω),

and the value function VL : Lp(Ω;Rd) → [0,+∞) by

(4.2) VL(X0) := inf {JL(X,u) : (X,u) ∈ AL(X0)} .

In the following, L(Ω,B,P;S) denotes the Lagrangian problem given in Definition 4.1. We
will frequently shorten the notation to L(Ω,B,P) when the system S is clear from the context.

Remark 4.2. Observe that, thanks to condition (3.2), the functional JL is finite. Moreover,
from Proposition 4.8 below it follows that AL(X0) 6= ∅, for any X0 ∈ Lp(Ω;Rd), and so the
value function VL is well defined. We point out that existence of minimizers for the Lagrangian
problem is not guaranteed in general, even under the Convexity Assumption 3.4. This will be
further discussed in Section 8.3.

Remark 4.3. In view of Proposition A.3 in Appendix A, we will frequently identifyX ∈ Lp(Ω;ACp([0, T ];Rd))
and X ∈ ACp([0, T ];Lp(Ω;Rd)), depending on the convenience.

Let us introduce a suitable equivalence relation among Lagrangian problems when the parametriza-
tion space is varying.

Definition 4.4 (Equivalence of Lagrangian problems). Let S := (U, f,C,CT ) satisfy Assumption
3.1. Let (Ω1,B1,P1) and (Ω2,B2,P2) be probability spaces. We say that L1 := L(Ω1,B1,P1;S)
and L2 := L(Ω2,B2,P2;S) are equivalent (and we write L1 ∼ L2) if

(i) for every X1
0 ∈ Lp(Ω1;R

d) and every (X1, u1) ∈ AL1(X
1
0 ) there exist X2

0 ∈ Lp(Ω2;R
d)

and (X2, u2) ∈ AL2(X
2
0 ) such that

JL1(X
1, u1) = JL2(X

2, u2), VL1(X
1
0 ) = VL2(X

2
0 );

(ii) for every X2
0 ∈ Lp(Ω2;R

d) and every (X2, u2) ∈ AL2(X
2
0 ) there exist X1

0 ∈ Lp(Ω1;R
d)

and (X1, u1) ∈ AL1(X
1
0 ) such that

JL2(X
2, u2) = JL1(X

1, u1), VL2(X
2
0 ) = VL1(X

1
0 ).

Remark 4.5. The relation ∼ of Definition 4.4 is an equivalence relation on the set of Lagrangian
problems {L(Ω,B,P) : (Ω,B,P) probability space}.
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Proposition 4.6. Let S := (U, f,C,CT ) satisfy Assumption 3.1. Let (Ω1,B1,P1) and (Ω2,B2,P2)
be probability spaces. Suppose there exist measurable maps ψ : Ω1 → Ω2 and φ : Ω2 → Ω1 such
that ψ♯P1 = P2, φ♯P2 = P1 and

∀X1
0 ∈ Lp(Ω1;R

d) it holds X1
0 = X1

0 ◦ φ ◦ ψ ;(4.3)

∀X2
0 ∈ Lp(Ω2;R

d) it holds X2
0 = X2

0 ◦ ψ ◦ φ.(4.4)

Then L(Ω1,B1,P1;S) ∼ L(Ω2,B2,P2;S).

Proof. For every (X1, u1) ∈ AL1(X
1
0 ), we define X2 := X1 ◦ φ, and u2(t, ω2) := u1(t, φ(ω2)), for

every (t, ω2) ∈ [0, T ] × Ω2. Using that φ♯P2 = P1, it easily follows that (X2, u2) ∈ AL2(X
1
0 ◦ φ)

and JL1(X
1, u1) = JL2(X

2, u2). Hence, for every X1
0 ∈ Lp(Ω1;R

d), we have

(4.5) VL1(X
1
0 ) ≥ VL2(X

1
0 ◦ φ).

Analogously, for every (X2, u2) ∈ AL2(X
2
0 ), we define X1 := X2◦ψ, and u1(t, ω1) := u2(t, ψ(ω1)),

for every (t, ω1) ∈ [0, T ] × Ω1. So that, from ψ♯P1 = P2 it holds (X1, u1) ∈ AL1(X
2
0 ◦ ψ) and

JL1(X
1, u1) = JL2(X

2, u2). Moreover, for every X2
0 ∈ Lp(Ω2;R

d) we have

(4.6) VL2(X
2
0 ) ≥ VL1(X

2
0 ◦ ψ).

The combination of (4.5) and (4.6) gives

VL2(X
2
0 ) ≥ VL1(X

2
0 ◦ ψ) ≥ VL2(X

2
0 ◦ ψ ◦ φ)

hence, using (4.3) we have

(4.7) VL2(X
2
0 ) = VL1(X

2
0 ◦ ψ).

Thanks to (4.4) and (4.7) we finally get

VL1(X
1
0 ) = VL1(X

1
0 ◦ φ ◦ ψ) = VL2(X

1
0 ◦ φ).

�

Remark 4.7.

(1) Notice that the assumptions of Proposition 4.6 are satisfied if there exists a bijective
function ψ : Ω1 → Ω2 such that ψ and ψ−1 are measurable and ψ♯P1 = P2. Indeed, it
sufficies to choose φ = ψ−1.

(2) Proposition 4.6 still holds when the maps ψ and φ are defined up to sets of null measure,
meaning that

ψ : Ω1 \N1 → Ω2 \N2, φ : Ω2 \N2 → Ω1 \N1

for some N1 ∈ B1 such that P1(N1) = 0 and N2 ∈ B2 such that P2(N2) = 0.

4.1. Basic results. Here we collect some properties of the Lagrangian problem. In particular,
we show existence and uniqueness of solutions, a priori estimates, compactness for the associated
laws and we derive a stability result for trajectories and cost when initial data and control
converge in a suitable sense.

Proposition 4.8 (Existence and uniqueness). Let S := (U, f,C,CT ) satisfy Assumption 3.1
and (Ω,B,P) be a probability space. Let X0 ∈ Lp(Ω;Rd) and u ∈ M([0, T ] × Ω;U) be given.
Then there exists a unique X ∈ Lp(Ω;ACp([0, T ];Rd)) such that (X,u) ∈ AL(X0). Moreover, if
(Xi, ui) ∈ AL(X0), i = 1, 2, and u1 = u2 LT ⊗ P-a.e., then X1 = X2.

Proof. We define Fu : [0, T ] × Lp(Ω;Rd) → Lp(Ω;Rd) by

(4.8) Fu(t, Z)(ω) := f(Z(ω), u(t, ω), Z♯P).

We observe that the continuity of f and the measurability of u imply that Fu is a Carathéodory
function. Moreover, by (3.1) and (2.5), Fu satisfies condition (A.10). Since Fu(t, 0)(ω) =
f(0, ut(ω), δ0), by continuity of f and compactness of U it follows that Fu satisfies (A.11).
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Theorem A.5 with the choice E = Lp(Ω;Rd) and F = Fu yields the existence and uniqueness of
a curve X ∈ ACp([0, T ];Lp(Ω;Rd)) solving

Xt = X0 +

ˆ t

0
Fu(s,Xs) ds, ∀ t ∈ [0, T ].

Thanks to Proposition A.7 we finally get X ∈ Lp(Ω;ACp([0, T ];Rd)) which is the unique solution
of (4.1). The last assertion follows from the equality Fu1(t, Z) = Fu2(t, Z) for LT -a.e. t ∈ [0, T ]
and for every Z ∈ Lp(Ω;Rd). �

Proposition 4.9 (A priori estimates). Let S := (U, f,C,CT ) satisfy Assumption 3.1 and (Ω,B,P)
be a probability space. Let X0 ∈ Lp(Ω;Rd) and (X,u) ∈ AL(X0). Then there exist C and CT

independent of u and X0 such that

(4.9) sup
t∈[0,T ]

‖Xt‖Lp(Ω;Rd) ≤ e2CT
(

‖X0‖Lp(Ω;Rd) + CT
)

,

(4.10) ‖Xt −Xs‖Lp(Ω;Rd) ≤ CT |t− s|
(

1 + ‖X0‖Lp(Ω;Rd)

)

∀ s, t ∈ [0, T ],

(4.11) sup
t∈[0,T ]

|Xt(ω)| ≤ eCT
(

|X0(ω)|+ CT (1 + ‖X0‖Lp(Ω;Rd))
)

, for P-a.e. ω ∈ Ω.

Proof. The estimates (4.9) and (4.10) follows from (A.13) and (A.14) for F = Fu defined in (4.8)
and E = Lp(Ω;Rd) .

In order to prove (4.11) we write (4.1) in integral form

(4.12) Xt(ω) = X0(ω) +

ˆ t

0
f(Xs(ω), u(s, ω), (Xs)♯P) ds, ∀ t ∈ [0, T ] for P-a.e. ω ∈ Ω.

Then by (3.3) we have

|Xt(ω)| =

∣

∣

∣

∣

X0(ω) +

ˆ t

0
f(Xs(ω), u(s, ω), (Xs)♯P) ds

∣

∣

∣

∣

≤ |X0(ω)|+

ˆ t

0
|f(Xs(ω), u(s, ω), (Xs)♯P)|ds

≤ |X0(ω)|+

ˆ t

0
C
(

1 + |Xs(ω)|+ ‖Xs‖Lp(Ω;Rd)

)

ds.

Using (4.9) and Gronwall inequality we obtain (4.11).
�

In the following Lemma, we derive a compactness result for the laws of Lagrangian trajectories,
when the initial data belong to a compact subset of Lp(Ω;Rd).

Lemma 4.10. Let S := (U, f,C,CT ) satisfy Assumption 3.1 and (Ω,B,P) be a probability space.
Let K ⊆ Lp(Ω;Rd) compact. Then the set

(4.13) KK :=
{

µ ∈ AC([0, T ];Pp(R
d)) : µt = (Xt)♯P, (X,u) ∈ AL(X0), X0 ∈ K

}

is relatively compact in C([0, T ];Pp(R
d)).

Proof. Let {µn}n∈N ⊂ KK be a sequence. By definition, there exist (Xn, un) ∈ AL(X
n
0 ), X

n
0 ∈ K

such that µt = (Xt)♯P for all t ∈ [0, T ]. Since supn∈N ‖Xn
0 ‖Lp(Ω;Rd) < +∞, by the estimate (4.11)

there exits a constant C > 0 such that

(4.14) |Xn
t (ω)|

p ≤ C (1 + |Xn
0 (ω)|

p) , ∀n ∈ N, ∀ t ∈ [0, T ], for P-a.e. ω ∈ Ω.
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Since K is compact in Lp(Ω;Rd), there exists an admissible ψ : [0,+∞) → [0,+∞), according
to Definition 2.3, such that

sup
n∈N

ˆ

Ω
ψ(|Xn

0 (ω)|
p) dP(ω) < +∞.

By the doubling and monotonicity property of ψ and (4.14) we have

ψ(|Xn
t (ω)|

p) ≤ C (1 + ψ(|Xn
0 (ω)|

p)) , ∀n ∈ N, ∀ t ∈ [0, T ], for P-a.e. ω ∈ Ω.

and then

sup
t∈[0,T ],n∈N

ˆ

Ω
ψ(|Xn

t (ω)|
p) dP(ω) < +∞,

that can be rewritten as

sup
t∈[0,T ],n∈N

ˆ

Rd

ψ(|x|p) dµnt (x) < +∞.

By Proposition 2.4 there exists a compact K ⊂ Pp(R
d) such that µnt ∈ K for any t ∈ [0, T ]

and n ∈ N.
Moreover, by (4.10) and the boundedness of ‖Xn

0 ‖Lp(Ω;Rd), there exists C > 0 such that

Wp(µ
n
t , µ

n
s ) ≤ ‖Xn

t −Xn
s ‖Lp(Ω;Rd) ≤ C|t− s|, ∀ s, t ∈ [0, T ], ∀n ∈ N.

We can thus apply Ascoli-Arzelà theorem in C([0, T ];Pp(R
d)) to conclude. �

We conclude the subsection proving a first stability result for the Lagrangian problem.

Proposition 4.11 (Stability for L). Let S := (U, f,C,CT ) satisfy Assumption 3.1 and (Ω,B,P)
be a probability space. Let X0 ∈ Lp(Ω;Rd) and (X,u) ∈ AL(X0). Let Xn

0 ∈ Lp(Ω;Rd) be a
sequence such that ‖Xn

0 −X0‖Lp(Ω;Rd) → 0, as n→ +∞. If (Xn, un) ∈ AL(X
n
0 ), for any n ∈ N,

and un → u in LT ⊗ P-measure as n→ +∞, then

(4.15) sup
t∈[0,T ]

‖Xn
t −Xt‖Lp(Ω;Rd) → 0, as n→ +∞,

and

(4.16) JL(X
n, un) → JL(X,u), as n→ +∞.

Proof. In order to prove (4.15) we apply Proposition A.6 with the choice E = Lp(Ω;Rd), F = Fu

and Fn = Fun , defined as in (4.8). We have to check that (A.17) holds. Defining Gn, G :
[0, T ]×Ω → R

d by Gn(t, ω) := Fun(t,Xt)(ω) and G(t, ω) := Fu(t,Xt)(ω), it is sufficient to prove
that Gn → G in Lp([0, T ] × Ω;Rd). Since un converges to u in LT ⊗ P-measure, there exists a
subsequence unk such that unk

t (ω) converges to ut(ω) for LT ⊗ P-a.e. (t, ω) ∈ [0, T ]×Ω. By the
continuity of f , we have that

|Gnk(t, ω)−G(t, ω)| = |Funk (t,Xt)(ω)− Fu(t,Xt)(ω)| → 0

for LT ⊗ P-a.e. (t, ω) ∈ [0, T ]× Ω. Moreover

|Gn(t, ω)−G(t, ω)|p = |Fun(t,Xt)(ω)− Fu(t,Xt)(ω)|
p ≤ C

(

1 + |Xt(ω)|
p + ‖Xt‖

p
Lp(Ω;Rd)

)

.

By dominated convergence we conclude that Gnk → G in Lp([0, T ] × Ω;Rd). Since the limit is
independent of the subsequence, we conclude that

ˆ T

0

ˆ

Ω
|Fun(t,Xt)(ω)− Fu(t,Xt)(ω)|

p dP(ω) dt→ 0.

Let us prove (4.16). For any t ∈ [0, T ], we use the notation µnt := (Xn
t )♯P and µt := (Xt)♯P.

By (4.15) we have

(4.17) sup
t∈[0,T ]

Wp(µ
n
t , µt) → 0, as n→ +∞.
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We focus on the running cost C. Since
∣

∣

∣

∣

ˆ T

0

ˆ

Ω
(C(Xn

t (ω), u
n
t (ω), µ

n
t )− C(Xt(ω), ut(ω), µt)) dP(ω) dt

∣

∣

∣

∣

≤

ˆ T

0

ˆ

Ω
|C(Xn

t (ω), u
n
t (ω), µ

n
t )− C(Xt(ω), ut(ω), µt)| dP(ω) dt,

(4.18)

definingHn,H : [0, T ]×Ω → R
d byHn(t, ω) := C(Xn

t (ω), u
n
t (ω), µ

n
t ) andH(t, ω) := C(Xt(ω), ut(ω), µt),

it is sufficient to prove that Hn → H in L1([0, T ] × Ω;Rd). Since un converges to u in LT ⊗ P-
measure, (4.15) and (4.17) hold, and C is continuous, then there exists a subsequence Hnk such
that Hnk(t, ω) converges to H(t, ω) for LT ⊗ P-a.e. (t, ω) ∈ [0, T ]×Ω. Moreover, by the growth
assumptions (3.2) we have

Hn(t, ω) ≤ C(1 + |Xn
t (ω)|

p + ‖Xn
t ‖

p
Lp(Ω;Rd)

).

By a variant of the dominated convergence Theorem (see Theorem 1.20 in [31]) we conclude that
Hnk → H in L1([0, T ] × Ω;Rd). For the same argument as before we obtain that the whole
sequence Hn → H in L1([0, T ] × Ω;Rd).

The proof that
ˆ

Ω
CT (X

n
T (ω), µ

n
T ) dP(ω) →

ˆ

Ω
CT (XT (ω), µT ) dP(ω), as n→ +∞

follows from the same argument. �

Proposition 4.12 (Upper semicontinuity of the value function). Let S := (U, f,C,CT ) satisfy
Assumption 3.1 and (Ω,B,P) be a probability space. If Xn

0 ,X0 ∈ Lp(Ω;Rd) satisfy ‖Xn
0 −

X0‖Lp(Ω;Rd) → 0 as n→ +∞, then

lim sup
n→+∞

VL(X
n
0 ) ≤ VL(X0).

Proof. Let ε > 0 and (Xε, uε) ∈ AL(X0) such that JL(X
ε, uε) ≤ VL(X0) + ε. By Proposition

4.8, for any n ∈ N there exists Xε,n such that (Xε,n, uε) ∈ AL(X
n
0 ). By Proposition 4.11,

JL(X
ε,n, uε) → JL(X

ε, uε), as n→ +∞. Hence

lim sup
n→+∞

VL(X
n
0 ) ≤ lim sup

n→+∞
JL(X

ε,n, uε) = JL(X
ε, uε) ≤ VL(X0) + ε.

Since ε is arbitrary, we conclude. �

4.2. Approximation by piecewise constant controls. In this subsection, we approximate
admissible controls for the Lagrangian problem with a sequence of suitable piecewise constant
controls (i.e. measurable with respect to finite algebras of Ω) so that the corresponding trajecto-
ries and costs converge. This is the content of Theorem 4.17. The same result is then rephrased
in the context of finite particle approximations in Proposition 4.18.

Let (Ω, B̄,P) be a probability space with B̄ a finite algebra. It can be shown that B̄ induces
a unique minimal (with respect to the inclusion) partition of Ω, that we denote by

(4.19) P(B̄) = {Ak : k = 1, . . . ,m}.

Given a topological space E, observe that, since B̄ is finite, g ∈ M((Ω, B̄); (E,BE)) if and only
if g is constant on the elements of P.

Let us give the following definition.

Definition 4.13. Let (Ω, B̄,P) be a probability space with B̄ a finite algebra and P(B̄) the
associated unique minimal partition (4.19). Given m := #P(B̄), we define the probability space
(Ωm, S(Ωm),Pm), where Ωm := {1, . . . ,m}, S(Ωm) is the algebra generated by ({1}, . . . {m}) and
P
m({k}) := P(Ak), k = 1, . . . ,m.



LAGRANGIAN, EULERIAN AND KANTOROVICH CONTROL PROBLEMS 21

Proposition 4.14. Let S := (U, f,C,CT ) satisfy Assumption 3.1. Let (Ω, B̄,P) and (Ωm, S(Ωm),Pm)
as in Definition 4.13. Then the Lagrangian problems L

B̄
:= L(Ω, B̄,P) and Lm := L(Ωm, S(Ωm),Pm)

are equivalent in the sense of Definition 4.4.

Proof. Let ψ : Ω → Ωm the function given by

ψ(ω) = k, if ω ∈ Ak, k = 1, . . . ,m

and φ : Ωm → Ω defined by
φ(k) = ωk, k = 1, . . . ,m,

for a fixed ωk ∈ Ak. We prove that the maps ψ and φ satisfy the assumptions of Proposition
4.6. Measurability of the map ψ follows from the fact that ψ−1({k}) = Ak for any k = 1, . . . ,m,
while the measurability of φ is trivial since Ωm is equipped with the algebra S(Ωm). Moreover,
it is immediate to verify that ψ ◦ φ = iΩm , which implies (4.3). We have to verify (4.4): given
X0 ∈ Lp(Ω;Rd), we have that X0 is constant on the elements Ak of the partition P(B̄), hence
it easily follows that X0 = X0 ◦ φ ◦ ψ. Let us verify that ψ♯P = P

m: for any k = 1, . . . ,m, we
have (ψ♯P)({k}) = P(ψ−1({k})) = P(Ak) = P

m({k}). Finally, we verify that φ♯P
m = P: for any

measurable function g : Ω → R, recalling that g is piecewise constant on the elements of P(B̄),
we have

ˆ

Ω
g(ω) d(φ♯P

m)(ω) =

ˆ

Ωm

g(φ(k)) dPm(k) =

m
∑

k=1

g(ωk)P(Ak)

=

ˆ

Ω
g(ω) dP(ω).

�

We recall the notation B[0,T ] for the Borel σ-algebra on [0, T ].

Definition 4.15. [Finite Approximation Property] Let (Ω,B,P) be a probability space. We say
that the family of finite algebras B

n ⊂ B, n ∈ N, satisfies the finite approximation property if
for any Banach space E and any g ∈ L1

P
(Ω;E), there exists a sequence gn : Ω → E such that

(i) gn is B
n-measurable for any n ∈ N;

(ii) gn(Ω) ⊂ co (g(Ω)), where co (g(Ω)) denotes the closed convex hull of g(Ω);
(iii) ‖gn − g‖L1

P
(Ω;E) → 0, as n→ +∞;

(iv) if G : [0, T ] × Ω → E is (B[0,T ] ⊗B)-measurable and gt(·) := G(t, ·) ∈ L1
P
(Ω;E) for any

t ∈ [0, T ], then the maps Gn : [0, T ]×Ω → E defined by Gn(t, ω) := gnt (ω), where gnt is a
sequence associated to gt satisfying items (i),(ii),(iii), are (B[0,T ] ⊗B

n)-measurable for
any n ∈ N.

Proposition 4.16. Let (Ω,B,P) be a standard Borel space.

(1) Then there exists a family of finite algebras B
n ⊂ B, n ∈ N, satisfying the finite approx-

imation property of Definition 4.15.
(2) If P is without atoms, then there exists a family B

n ⊂ B, n ∈ N, satisfying the fi-
nite approximation property of Definition 4.15 such that the associated minimal partition
P(Bn) = {An

k : k = 1, . . . , n} contains exactly n elements and

(4.20) P(An
k) =

1

n
, k = 1, . . . , n.

The proof of Proposition 4.16 is postponed in Appendix D. Results similar to item (1) of
Proposition 4.16 can be found in [52, Theorem 6.1.12], where a martingale approach is employed.

Theorem 4.17 (Approximation by piecewise constant controls for L). Let S := (U, f,C,CT ) sat-
isfy Assumption 3.1 with U a convex compact subset of a separable Banach space V . Let (Ω,B,P)
be a probability space and assume that there exists {Bn}n∈N satisfying the finite approximation
property of Definition 4.15. Let X0 ∈ Lp(Ω;Rd) and (X,u) ∈ AL(X0). If {Xn

0 }n∈N ⊂ Lp(Ω;Rd)
satisfies ‖Xn

0 −X0‖Lp(Ω;Rd) → 0, then there exists a sequence (Xn, un) ∈ AL(X
n
0 ) such that
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(1) un is (B[0,T ] ⊗B
n)-measurable;

(2) un → u in (LT ⊗ P)-measure, as n→ +∞;
(3) supt∈[0,T ] ‖X

n
t −Xt‖Lp(Ω;Rd) → 0, as n→ +∞;

(4) JL(X
n, un) → JL(X,u), as n→ +∞.

Moreover, if Xn
0 is B

n-measurable, n ∈ N, then Xn
t is B

n-measurable for any t ∈ [0, T ].

Proof. For any t ∈ [0, T ], we denote with ut : Ω → U the measurable control function u at time
t. For any n ∈ N and t ∈ [0, T ] let unt : Ω → U be the B

n-measurable approximation of ut
given by Definition 4.15. By the convexity of U and its compactness, from the property (ii) of
Definition 4.15 it follows that unt (Ω) ⊂ U . Defining un(t, ω) := unt (ω), thanks to the property
(iv) of Definition 4.15, we have that un is (B[0,T ]⊗B

n)-measurable. By Proposition 4.8 we have
the existence of Xn with (Xn, un) ∈ AL(X

n
0 ).

From the compactness of U and the dominated convergence theorem it follows that ‖un −
u‖L1([0,T ]×Ω;V ) → 0, as n → +∞. Consequently, (2) holds. Properties (3) and (4) follow by
Proposition 4.11. �

In the following, we reformulate the approximation result of Theorem 4.17 with the language
of particles. Let (Ω,B,P) be a probability space and B

n a finite algebra, n ∈ N. Denote
with P(Bn) := {An

k : k = 1, . . . , k(n)} the associated unique minimal partition and define

(Ωk(n), S(Ωk(n)),Pk(n)) by

(4.21)
Ωk(n) := {1, . . . , k(n)}, S(Ωk(n)) := σ({1}, . . . {k(n)})

P
k(n)({k}) := P(An

k), k = 1, . . . , k(n).

In order to approximate trajectories, controls and costs of a Lagrangian problem L = L(Ω,B,P)

with the respective quantities in Lk(n) = L(Ωk(n), S(Ωk(n)),Pk(n)) we introduce, for every n ∈ N,
the maps ψn, φn and Kn. This is necessary due to the fact that the trajectories are not defined
on the same space.

For every n ∈ N, we denote with ψn, φn the maps

ψn : Ω → Ωk(n), ψn(ω) = k, if ω ∈ An
k , k = 1, . . . , k(n);

φn : Ωk(n) → Ω, φn(k) = ωn
k , k = 1, . . . , k(n), for a fixed ωn

k ∈ An
k .

(4.22)

Moreover, for every n ∈ N, we introduce the map Kn : Lp(Ωk(n);C([0, T ];Rd)) × M([0, T ] ×
Ωk(n);U) → Lp((Ω,Bn,P);C([0, T ];Rd))×M([0, T ] × Ω;U) given by

(4.23)
Kn(Y, v) := (Y ◦ ψn, v̂),

where v̂(t, ω) := v(t, ψn(ω)), ∀ (t, ω) ∈ [0, T ]× Ω.

Proposition 4.18. Let S := (U, f,C,CT ) satisfy Assumption 3.1 with U a convex compact subset
of a separable Banach space V . Let (Ω,B,P) and be a probability space and assume that there
exists {Bn}n∈N satisfying the finite approximation property of Definition 4.15. For every n ∈ N,

let (Ωk(n), S(Ωk(n)),Pk(n)) as in (4.21).
Let X0 ∈ L

p(Ω;Rd) and (X,u) ∈ AL(X0). If Y n
0 ∈ Lp(Ωk(n);Rd), n ∈ N, satisfies

lim
n→+∞

‖Y n
0 ◦ ψn −X0‖Lp(Ω;Rd) = 0,

then there exists a sequence (Y n, vn) ∈ A
L
k(n)(Y n

0 ) such that

(1) Kn(Y n, vn) → (X,u) in C([0, T ];Lp(Ω;Rd))× L1([0, T ]× Ω;V ), as n→ +∞;
(2) J

L
k(n)(Y n, vn) → JL(X,u), as n→ +∞.

Proof. For every n ∈ N, by Proposition 4.14 it holds that LBn ∼ Lk(n) in the sense of Definition
4.4. Thanks to Proposition A.3 we have that X ∈ ACp([0, T ];Lp(Ω;Rd)), hence we conclude
applying Theorem 4.17. Since U is compact, recall that the convergence un → u ∈ L1([0, T ] ×
Ω;V ) is equivalent to the convergence in (LT ⊗ P)-measure. �
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Remark 4.19. If (Ω,B,P) is a standard Borel space, the existence of a sequence of finite algebras
B

n is guaranteed by item (1) in Proposition 4.16. Moreover, if P is without atoms, it is possible
to choose B

n s.t. #B
n = n and satisfying the property (4.20) given in item (2) in Proposition

4.16.
Notice that the assumption P without atoms is necessary to get a sequence of B

n with the
property (4.20). Indeed, if there exists ω0 ∈ Ω such that P({ω0}) = α > 0, then for n ∈ N big
enough the property (4.20) fails.

4.3. Approximation by continuous controls and trajectories. The objective of the sub-
section is twofold. In Proposition 4.21, under continuity assumptions on both the initial datum
and the control, we exhibit a stability result for a Lagrangian problem L(Ω,B,P) when P is
approximated by a sequence of probability measures Pn. Then, in Theorem 4.22 we approximate
admissible controls with continuous controls so that the associated trajectories are continuous as
well and the associated costs converge. These results are useful to prove the equivalence between
Lagrangian and Eulerian optimal control problems (see the proof of Theorem 8.5).

Throughout the section, we assume that

(4.24) (Ω,B,P) standard Borel space, τ a Polish topology on Ω such that B = B(Ω,τ).

In the following regularity result, we prove the existence of a continuous trajectory for the
Lagrangian dynamics whenever both the initial datum and the control are continuous.

Lemma 4.20 (Continuity). Let S := (U, f,C,CT ) satisfy Assumption 3.1 and let (Ω,B,P) satisfy

(4.24). Let X̃0 ∈ C(Ω;Rd) such that X̃0 ∈ Lp(Ω;Rd) and u ∈ C([0, T ] × Ω;U). If (X,u) ∈
AL(X̃0) and µt := (Xt)♯P then there exists a unique X̃ ∈ C([0, T ] × Ω;Rd) satisfying for any
ω ∈ Ω

(4.25)

{

˙̃Xt(ω) = f(X̃t(ω), ut(ω), µt), ∀ t ∈ (0, T )

X̃|t=0(ω) = X̃0(ω).

Moreover, X̃t(ω) = Xt(ω) for every t ∈ [0, T ] and P-a.e. ω ∈ Ω.

Proof. For any ω ∈ Ω, there exists a unique solution X̃(ω) ∈ C1([0, T ];Rd) of (4.25) thanks to

the Lipschitz assumptions on the vector field f . Since u, (µt)t∈[0,T ] and X̃0 are fixed, the solutions

of (4.1) and (4.25) coincide, hence X̃t(ω) = Xt(ω) for any t ∈ [0, T ], for P-a.e. ω ∈ Ω.

Denoting with X̃ : [0, T ] × Ω → R
d the function X̃(t, ω) = X̃t(ω), we prove the continuity

of X̃. We fix (t, ω) ∈ [0, T ] × Ω, and a sequence (tn, ωn) ∈ [0, T ] × Ω converging to (t, ω) as
n→ +∞. By triangular inequality,

|X̃tn(ωn)− X̃t(ω)| ≤ |X̃tn(ωn)− X̃tn(ω)|+ |X̃tn(ω)− X̃t(ω)|.

The second term is estimated by

|X̃tn(ω)− X̃t(ω)| ≤

ˆ tn

t

∣

∣

∣
f(X̃s(ω), us(ω), µs)

∣

∣

∣
ds.

Concerning the first term,

|X̃tn(ωn)− X̃tn(ω)| ≤ |X̃0(ωn)− X̃0(ω)|

+

ˆ tn

0

∣

∣

∣
f(X̃s(ωn), us(ωn), µs)− f(X̃s(ω), us(ωn), µs)

∣

∣

∣
ds

+

ˆ tn

0

∣

∣

∣
f(X̃s(ω), us(ωn), µs)− f(X̃s(ω), us(ω), µs)

∣

∣

∣
ds

≤ |X̃0(ωn)− X̃0(ω)|+ L

ˆ tn

0
|X̃s(ωn)− X̃s(ω)|ds

+

ˆ T

0

∣

∣

∣
f(X̃s(ω), us(ωn), µs)− f(X̃s(ω), us(ω), µs)

∣

∣

∣
ds.
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By Gronwall lemma we have

|X̃tn(ωn)− X̃tn(ω)| ≤ eLT
(

|X̃0(ωn)− X̃0(ω)|+

ˆ T

0
Rs(ωn, ω) ds

)

,

where Rs(ωn, ω) :=
∣

∣

∣
f(X̃s(ω), us(ωn), µs)− f(X̃s(ω), us(ω), µs)

∣

∣

∣
. Collecting the previous in-

equalities we get

|X̃tn(ωn)− X̃t(ω)| ≤ eLT
(

|X̃0(ωn)− X̃0(ω)|+

ˆ T

0
Rs(ωn, ω) ds

)

+

ˆ tn

t

∣

∣

∣
f(X̃s(ω), us(ω), µs)

∣

∣

∣
ds,

By the continuity of X̃0, the growth property (3.3) and the continuity of u we can pass to the
limit in the right hand side and we conclude.

�

Proposition 4.21 (Stability for P). Let S := (U, f,C,CT ) satisfy Assumption 3.1 and (Ω,B,P)

satisfying (4.24). Let P
n,P ∈ P(Ω), n ∈ N, such that P

n → P weakly. Let X̃0 ∈ C(Ω;Rd) and

u ∈ C([0, T ] ×Ω;U) such that X̃0 ∈
[
⋂

n∈N L
p
Pn(Ω;Rd)

]

∩ Lp
P
(Ω;Rd) and

(4.26) ‖X̃0‖Lp
Pn (Ω;Rd) → ‖X̃0‖Lp

P
(Ω;Rd) if n→ +∞.

We denote by Ln := L(Ω,B,Pn) and L := L(Ω,B,P).

Let (X,u) ∈ AL(X̃0) and (Xn, u) ∈ AL
n(X̃0) and denote with X̃, X̃n ∈ C([0, T ] × Ω;Rd) the

corresponding solutions given in Lemma 4.20 associated with P and P
n, respectively. Then

(4.27) sup
(t,ω)∈[0,T ]×Ω

|X̃n
t (ω)− X̃t(ω)| → 0, as n→ +∞,

(4.28) JL
n(Xn, u) −→ JL(X,u), as n→ +∞.

Proof. We denote µnt := (Xn
t )♯P

n and µt := (Xt)♯P.

Since X̃0 : Ω → R
d is continuous, the weak convergence P

n → P implies that µn0 = (X̃0)♯P
n →

µ0 = (X̃0)♯P weakly and (4.26) guarantees mp(µ
n
0 ) → mp(µ0). Consequently, by Proposition 2.4,

it holds Wp(µ
n
0 , µ0) → 0 as n → +∞ and there exists an admissible ψ : [0,+∞) → [0,+∞),

according to Definition 2.3, such that

(4.29) sup
n∈N

ˆ

Rd

ψ(|x|p) dµn0 (x) < +∞.

Using the same argument of the proof of Lemma 4.10, thanks to the estimates (4.11) and (4.10)
there exist µ̃ ∈ C([0, T ];Pp(R

d)) and a (not relabelled) subsequence such that

(4.30) lim
n→+∞

sup
s∈[0,T ]

Wp(µ
n
s , µ̃s) = 0.

We define X̄ ∈ C([0, T ]×Ω;Rd) through the system (4.25) using µ̃t instead of µt, i.e., for any
ω ∈ Ω, t 7→ X̄(t, ω) is the solution of the problem

(4.31)

{

˙̄Xt(ω) = f(X̄t(ω), ut(ω), µ̃t), ∀ t ∈ (0, T )

X̄|t=0(ω) = X̃0(ω).

We show that

(4.32) sup
(t,ω)∈[0,T ]×Ω

|X̃n
t (ω)− X̄t(ω)| → 0, as n→ +∞.
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Indeed, for any ω ∈ Ω and t ∈ [0, T ],

|X̃n
t (ω)− X̄t(ω)| ≤

ˆ t

0

∣

∣

∣
f(X̃n

s (ω), us(ω), µ
n
s )− f(X̄s(ω), us(ω), µ̃s)

∣

∣

∣
ds

≤ L

ˆ t

0

(

|X̃n
s (ω)− X̄s(ω)|+Wp(µ

n
s , µ̃s)

)

ds,

and, by Gronwall inequality, we obtain

|X̃n
t (ω)− X̄t(ω)| ≤ LTeLT sup

s∈[0,T ]
Wp(µ

n
s , µ̃s),

which, by (4.30), proves (4.32).

We have to show that X̄ = X̃ . We first prove that µ̃t = (X̃t)♯P. By the uniform convergence
(4.32), the continuity of X̄t and the weak convergence P

n → P, we obtain that (see [3, Lemma
5.2.1])

ˆ

Ω
φ(X̃n

t (ω)) dP
n(ω) →

ˆ

Ω
φ(X̄t(ω)) dP(ω), ∀φ ∈ Cb(R

d;R).

Since

ˆ

Ω
φ(X̃n

t (ω)) dP
n(ω) =

ˆ

Rd

φ(x) dµnt (x), by the uniqueness of the weak limit we obtain that

µ̃t = (X̄t)♯P. Then, X̄t(ω) satisfies

(4.33)

{

˙̄Xt(ω) = f(X̄t(ω), ut(ω), (X̄t)♯P), ∀ t ∈ (0, T )

X̄|t=0(ω) = X̃0(ω).

By the uniqueness result of Proposition 4.8 and the definition of the Lagrangian problem, we
obtain that X̄t = Xt in Lp

P
(Ω;Rd) for any t ∈ [0, T ]. In particular we have that µ̃t = µt for any

t ∈ [0, T ]. It follows that the systems (4.31) and (4.25) are the same, and then X̄t(ω) = X̃t(ω)
for any (t, ω) ∈ [0, T ]× Ω. Finally, the convergence (4.27) follows by (4.32), because the limit µ̃
given by the compactness is uniquely determined and it is independent of the subsequence.

For what concerns (4.28), we first observe that

JL
n(Xn, u) = JL

n(X̃n, u), JL(X,u) = JL(X̃, u).

We write the running cost as
ˆ

Ω

ˆ T

0
C(X̃n

t (ω), ut(ω), µ
n
t ) dt dP

n(ω)

=

ˆ

Ω

ˆ T

0

(

C(X̃n
t (ω), ut(ω), µ

n
t )− C(X̃t(ω), ut(ω), µt)

)

dt dPn(ω)

+

ˆ

Ω

ˆ T

0
C(X̃t(ω), ut(ω), µt) dt dP

n(ω).

By (4.27) and the continuity of C, we have that
(

C(X̃n
t (ω), ut(ω), µ

n
t )− C(X̃t(ω), ut(ω), µt)

)

→ 0

uniformly on compact sets of [0, T ]× Ω. By the weak convergence of Pn towards P we conclude
that

lim
n→+∞

ˆ

Ω

ˆ T

0

(

C(X̃n
t (ω), ut(ω), µ

n
t )− C(X̃t(ω), ut(ω), µt)

)

dt dPn(ω) = 0.

We have to prove that

(4.34) lim
n→+∞

ˆ

Ω

ˆ T

0
C(X̃t(ω), ut(ω), µt)dt dP

n(ω) =

ˆ

Ω

ˆ T

0
C(X̃t(ω), ut(ω), µt)dt dP(ω).

By (4.29), which can be rewritten as

sup
n∈N

ˆ

Ω
ψ(|X̃0(ω)|

p) dPn(ω) < +∞,
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by estimate (4.11) and the doubling property of ψ we get

sup
t∈[0,T ]

sup
n∈N

ˆ

Ω
ψ(|X̃t(ω)|

p) dPn(ω) < +∞.

By the growth condition (3.2) and the doubling property of ψ we obtain that the map (t, ω) 7→
C(X̃t(ω), ut(ω), µt) is uniformly integrable w.r.t. {LT ⊗Pn}n. Since this map is also continuous,
by [3, Lemma 5.1.7] we obtain (4.34).

Analogously one proves that

lim
n→+∞

ˆ

Ω
CT (X̃

n
T (ω), µ

n
T ) dP

n(ω) =

ˆ

Ω
CT (X̃T (ω), µT ) dP(ω).

�

Proposition 4.22 (Approximation by continuous controls). Let S := (U, f,C,CT ) satisfy As-
sumption 3.1 with U a convex compact subset of a separable Banach space V , and (Ω,B,P)

satisfying (4.24). Let X̃0 ∈ C(Ω;Rd) and u ∈ M([0, T ] × Ω;U) such that X̃0 ∈ Lp(Ω;Rd). If

(X,u) ∈ AL(X̃0) then there exits a sequence (X̃n, un) ∈ AL(X̃0) such that

(1) un ∈ C([0, T ]× Ω;U) and X̃n ∈ C([0, T ]× Ω;Rd) for any n ∈ N;
(2) un(t, ω) → u(t, ω) for (LT ⊗ P)-a.e. (t, ω) ∈ [0, T ]× Ω;

(3) limn→+∞ supt∈[0,T ] |X̃
n
t (ω)−Xt(ω)| = 0 for P-a.e. ω ∈ Ω,

limn→+∞ supt∈[0,T ] ‖X̃
n
t −Xt‖

p
Lp(Ω;Rd)

= 0;

(4) JL(X̃
n, un) → JL(X,u), as n→ +∞.

Proof. Since u ∈ M([0, T ] × Ω;U), by Lusin’s theorem applied to the space [0, T ] × Ω with
the measure LT ⊗ P, there exists a sequence of compact subsets An ⊂ [0, T ] × Ω such that
An ⊂ An+1, LT ⊗ P([0, T ] × Ω \ An) <

1
n for every n ∈ N and u|An : An → U is continuous.

Applying Dugundji’s extension theorem [30, Theorem 4.1] we can extend u|An to a continuous
map un : [0, T ] × Ω → V such that un([0, T ] × Ω) is contained in the closed convex subset U of
V . Moreover, for (LT ⊗ P)-a.e. (t, ω) ∈ [0, T ]×Ω it holds that un(t, ω) → u(t, ω), thanks to the
convergence LT ⊗ P([0, T ]× Ω \ An) → 0 as n→ +∞.

Thanks to Proposition 4.8 and Lemma 4.20, for any n ∈ N there exists a unique X̃n ∈
C([0, T ] × Ω;Rd) such that (X̃n, un) ∈ AL(X̃0). Defining µnt := (X̃n

t )♯P, by Lemma 4.10 there

exists µ̄ ∈ C([0, T ];Pp(R
d)) such that, up to subsequences,

(4.35) sup
t∈[0,T ]

Wp(µ
n
t , µ̄t) → 0, as n→ +∞.

For every ω ∈ Ω we define X̄(ω) as the unique solution to the problem
{

˙̄Xt(ω) = f(X̄t(ω), ut(ω), µ̄t), for a.e. t ∈ (0, T )

X̄|t=0(ω) = X̃0(ω).

Then for any (t, ω) ∈ [0, T ]× Ω it holds

|X̃n
t (ω)− X̄t(ω)| ≤

ˆ t

0

∣

∣

∣
f(X̃n

s (ω), u
n
s (ω), µ

n
s )− f(X̄s(ω), u

n
s (ω), µ̄s)

∣

∣

∣
ds

+

ˆ t

0

∣

∣f(X̄s(ω), u
n
s (ω), µ̄s)− f(X̄s(ω), us(ω), µ̄s)

∣

∣ ds

≤ L

ˆ t

0

(

|X̃n
s (ω)− X̄s(ω)|+Wp(µ

n
s , µ̄s) + Gs,ω(u

n
s (ω), us(ω))

)

ds,

(4.36)

where Gs,ω(u
n
s (ω), us(ω)) :=

∣

∣f(X̄s(ω), u
n
s (ω), µ̄s)− f(X̄s(ω), us(ω), µ̄s)

∣

∣. Since by (3.3) we have

Gs,ω(u
n
s (ω), us(ω)) ≤ C(1 + |X̄s(ω)|+mp(µ̄s)), by the convergence in item (2) we get that

(4.37) lim
n→+∞

ˆ T

0
Gs,ω(u

n
s (ω), us(ω))ds = 0, for P-a.e. ω ∈ Ω.
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By Gronwall inequality, from (4.36) we have

|X̃n
t (ω)− X̄t(ω)| ≤ eLTLT

(

sup
s∈[0,T ]

Wp(µ
n
s , µ̄s) +

ˆ T

0
Gs,ω(u

n
s (ω), us(ω)) ds

)

,(4.38)

which, by (4.35) and (4.37), implies

(4.39) lim
n→+∞

sup
t∈[0,T ]

|X̃n
t (ω)− X̄t(ω)| = 0, for P-a.e. ω ∈ Ω.

From (4.39) we have that µnt weakly converges to (X̄t)♯P and by (4.35) it follows that µ̄t = (X̄t)♯P
for any t ∈ [0, T ]. By the definition of X̄ and µ̄t = (X̄t)♯P and by the uniqueness result of
Proposition 4.8, we obtain that X̄t(ω) = Xt(ω) for P-a.e. ω ∈ Ω and for any t ∈ [0, T ]. The first
convergence in item (3) follows from (4.39), while the second convergence comes from the first
one and Proposition 4.9 through dominated convergence.

Finally, item (4) follows by the same argument as in the proof of Proposition 4.11. �

5. Relaxed Lagrangian optimal control problem

In this Section we define a relaxed version of the Lagrangian problem analyzed in Section 4,
then we study its properties and its relation with the non-relaxed one.

Definition 5.1 (Relaxed Lagrangian optimal control problem (RL)). Let S := (U, f,C,CT )
satisfy Assumption 3.1 and let (Ω,B,P) be a probability space. Given X0 ∈ Lp(Ω;Rd), we say
that (X,σ) ∈ ARL(X0) if

(i) σ ∈ M([0, T ] × Ω;P(U));
(ii) X ∈ Lp(Ω;ACp([0, T ];Rd)) and for P-a.e. ω ∈ Ω, X(ω) is a solution of the following

Cauchy problem

(5.1)







Ẋt(ω) =

ˆ

U
f(Xt(ω), u, (Xt)♯P) dσt,ω(u), for LT -a.e. t ∈]0, T ]

X|t=0(ω) = X0(ω),

where Xt : Ω → R
d is defined by Xt(ω) := X(t, ω) for P-a.e. ω ∈ Ω and σt,ω := σ(t, ω) ∈

P(U).

We refer to (X,u) ∈ ARL(X0) as to an admissible pair, with X a trajectory and σ a relaxed
control.
We define the cost functional JRL : Lp(Ω;C([0, T ];Rd))×M([0, T ] × Ω;P(U)) → [0,+∞), by

JRL(X,σ) :=

ˆ

Ω

ˆ T

0

ˆ

U
C(Xt(ω), u, (Xt)♯P) dσt,ω(u) dt dP(ω) +

ˆ

Ω
CT (XT (ω), (XT )♯P) dP(ω),

and the value function VRL : Lp(Ω;Rd) → [0,+∞) by

(5.2) VRL(X0) := inf {JRL(X,σ) : (X,σ) ∈ ARL(X0)} .

Remark 5.2. By Proposition 3.6 the Relaxed Lagrangian problem RL in S = (U, f,C,CT ) is
a particular Lagrangian convex problem L′ in the lifted space S

′ = (U ,F ,C ,CT ) defined in
Definition 3.5. In particular, the system (5.1) can be rewritten as

{

Ẋt(ω) = F (Xt(ω), σt(ω), (Xt)♯P), for a.e. t ∈ (0, T ]

X|t=0(ω) = X0(ω).

and the cost functional as

JRL(X,σ) :=

ˆ

Ω

ˆ T

0
C (Xt(ω), σ(t, ω), (Xt)♯P) dt dP(ω) +

ˆ

Ω
CT (XT (ω), (XT )♯P) dP(ω).

As a consequence, the results proved for the Lagrangian problem L also apply to the Relaxed
Lagrangian problem RL. We further point out that even in the relaxed Lagrangian setting,
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existence of minimizers is not guaranteed in general (see also Remark 4.2). We refer to Section
8.3 for a detailed discussion and in particular to Remark 8.10.

5.1. Equivalence of L and RL. Chattering result. In this subsection we prove that the
value functions for the Lagrangian and the Relaxed Lagrangian optimal control problems, set
in the same parametrization space (Ω,B,P) and same system S, coincide. Precisely, we aim at
showing the following theorem whose proof is postponed at the end of the section.

Theorem 5.3. Let S := (U, f,C,CT ) satisfy Assumption 3.1 and (Ω,B,P) be a probability space
such that there exists {Bn}n∈N satisfying the finite approximation property of Definition 4.15. If
X0 ∈ Lp(Ω;Rd), then VL(X0) = VRL(X0).

The proof of Theorem 5.3 easily follows from the combination of Theorem 5.6 and Proposition
5.4 given below. Theorem 5.6 is a suitable extension of the classical (in optimal control the-
ory) chattering theorem which permits to approximate relaxed controls with piecewise-constant
controls.

Notice that Theorem 5.3 holds in particular if (Ω,B,P) is a standard Borel space thanks to
Proposition 4.16.

Let us start with the following proposition.

Proposition 5.4. Let S := (U, f,C,CT ) satisfy Assumption 3.1 and (Ω,B,P) be a probability
space. Let X0 ∈ Lp(Ω;Rd). If (X,u) ∈ AL(X0), then, defining σ : [0, T ] × Ω → P(U) by
σ(t, ω) = δu(t,ω) we have (X,σ) ∈ ARL(X0) and JL(X,u) = JRL(X,σ). In particular VRL(X0) ≤
VL(X0).

Proof. The result follows immediately by Proposition 3.6. �

Recall that if B̄ is a finite algebra on Ω and E is a Banach space, a function g : Ω → E is
B̄-measurable if and only if g is constant on the elements of a partition of Ω contained in B̄.

In the following proposition, given a piecewise constant relaxed control we approximate it with
a sequence of piecewise constant (non-relaxed) controls so that the associated trajectories and
costs converge.

Proposition 5.5. Let S := (U, f,C,CT ) satisfy Assumption 3.1 and (Ω,B,P) be a probability
space. Let X0 ∈ Lp(Ω;Rd), B̄ ⊂ B a finite algebra, (X,σ) ∈ ARL(X0) such that σ is (B[0,T ]⊗B̄)-
measurable. Then there exists a sequence {(Xm, um)}m∈N ⊂ AL(X0) such that

(1) um are (B[0,T ] ⊗ B̄)-measurable;

(2) for any ω ∈ Ω, (i[0,T ], u
m(·, ω))♯LT

Y
−→ σω, where σω := σ(t, ω) ⊗ LT ∈ P([0, T ] × U);

(3) supt∈[0,T ] ‖X
m
t −Xt‖Lp(Ω;Rd) → 0 as m→ +∞;

(4) JL(X
m, um) → JRL(X,σ), as m→ +∞.

Moreover, if X0 is B̄-measurable then Xt, X
m
t are B̄-measurable for any m ∈ N and t ∈ [0, T ].

Proof. We fix the minimal (w.r.t. inclusion) partition associated to the finite algebra B̄ that
we denote by P := {Ak : k = 1, . . . n} ⊂ B̄. For any k = 1, . . . n we select ωk ∈ Ak and apply
Lemma 2.10 (with T = [0, T ], S = U and λ = LT ) to the measure ν = σωk

:= σ(t, ωk) ⊗ LT ∈
P([0, T ] × U). This yields a sequence of B[0,T ]-measurable functions umk : [0, T ] → U such that

(i[0,T ], u
m
k (·))♯LT

Y
−→ σωk

.

Thus, we define um : [0, T ] × Ω → U setting um(t, ω) := umk (t) if ω ∈ Ak. By construction, the
function ω 7→ um(t, ω) is constant on Ak, for any k = 1, . . . , n. Furthermore, for any ω ∈ Ω the
maps t 7→ um(t, ω) are B[0,T ]-measurable. The sequence of controls um ∈ M([0, T ] × Ω) readily
satisfies items (1) and (2).

Given um constructed above, by Proposition 4.8 there exists a uniqueXm ∈ Lp(Ω;ACp([0, T ];Rd))
such that (Xm, um) ∈ AL(X0). Thanks to Remark, 4.3 we interpret Xm ∈ ACp([0, T ];Lp(Ω;Rd))
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and define µm ∈ ACp([0, T ];Pp(R
d)) by µmt := (Xm

t )♯P. By Lemma 4.10 there exists a (non

relabeled) subsequence µm and µ̃ ∈ C([0, T ];Pp(R
d)) such that

(5.3) lim
m→∞

sup
t∈[0,T ]

Wp(µ
m
t , µ̃t) = 0.

We define g : [0, T ] × R
d × U → R

d by

g(t, y, u) := f(y, u, µ̃t).

Selecting a representative X0 defined for every ω ∈ Ω, let Y m(ω) ∈ ACp([0, T ];Rd) be the unique
solution of the Cauchy problem

(5.4)

{

Ẏ m
t (ω) = g(t, Y m

t (ω), um(t, ω)), for a.e. t ∈ (0, T )

Y m
|t=0(ω) = X0(ω).

For any ω ∈ Ω, let also Y (ω) ∈ ACp([0, T ];Rd) be the unique solution of the Cauchy problem

(5.5)







Ẏt(ω) =

ˆ

U
g(t, Yt(ω), u) dσt,ω(u), for a.e. t ∈ (0, T )

Y|t=0(ω) = X0(ω).

Hence, by item (2) and assumptions (3.1) and (3.3) we can apply Lemma B.1 to obtain

(5.6) lim
m→+∞

sup
t∈[0,T ]

|Y m
t (ω)− Yt(ω)| = 0, ∀ω ∈ Ω.

Since (Xm, um) ∈ AL(X0), by definition of the Lagrangian problem, for P-a.e. ω ∈ Ω Xm(ω) ∈
ACp([0, T ];Rd) and

(5.7)

{

Ẋm
t (ω) = f(Xm

t (ω), umt (ω), µmt ), for a.e. t ∈ (0, T )

Xm
|t=0(ω) = X0(ω).

Then

|Y m
t (ω)−Xm

t (ω)| ≤

ˆ t

0
|f(Y m

s (ω), um(s, ω), µ̃s)− f(Xm
s (ω), um(s, ω), µms )|ds

≤ L

ˆ t

0
(|Y m

s (ω)−Xm
s (ω)|+Wp(µ̃s, µ

m
s )) ds

≤ L

ˆ t

0
|Y m

s (ω)−Xm
s (ω)| ds+ LT sup

s∈[0,T ]
Wp(µ̃s, µ

m
s ).

By Gronwall inequality we get

(5.8) sup
t∈[0,T ]

|Y m
t (ω)−Xm

t (ω)| ≤ LTeLT sup
s∈[0,T ]

Wp(µ̃s, µ
m
s ).

From (5.8), (5.3) and (5.6) it follows that

(5.9) lim
m→+∞

sup
t∈[0,T ]

|Xm
t (ω)− Yt(ω)| = 0, for P-a.e. ω ∈ Ω.

By (5.9) it follows that µmt = (Xm
t )♯P → (Yt)♯P weakly for any t ∈ [0, T ], and then, by (5.3), it

holds that µ̃t = (Yt)♯P for any t ∈ [0, T ]. Thus, thanks to (5.5) and the definition of g we conclude
that (Y, σ) ∈ ARL(X0). Since (X,σ) ∈ ARL(X0), by the uniqueness result of Propositions 4.8
we have that Y = X and

(5.10) lim
m→+∞

sup
t∈[0,T ]

|Xm
t (ω)−Xt(ω)| = 0, for P-a.e. ω ∈ Ω.

Finally, to prove item (3) it is enough to observe that

(5.11) sup
t∈[0,T ]

‖Xm
t −Xt‖

p
Lp(Ω;Rd)

≤

ˆ

Ω
sup

t∈[0,T ]
|Xm

t (ω)−Xt(ω)|
p dP(ω).

By (5.9), and (4.11) we can pass to the limit in (5.11) by dominated convergence.
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To prove item (4) we write
∣

∣

∣

∣

ˆ

Ω

ˆ T

0
C(Xm

t (ω), umt (ω), µmt ) dt dP(ω)−

ˆ

Ω

ˆ T

0

ˆ

U
C(Xt(ω), u, µt) dσt,ω(u) dt dP(ω)

∣

∣

∣

∣

≤

∣

∣

∣

∣

ˆ

Ω

(
ˆ T

0
C(Xm

t (ω), umt (ω), µmt )− C(Xt(ω), u
m
t (ω), µt) dt

)

dP(ω)

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

ˆ

Ω

(

ˆ T

0
C(Xt(ω), u

m
t (ω), µt) dt−

ˆ

[0,T ]×U
C(Xt(ω), u, µt) dσω(t, u)

)

dP(ω)

∣

∣

∣

∣

∣

.

(5.12)

Since (5.10) holds, for P-a.e. ω ∈ Ω, there exists a compact Kω ⊂ R
d such that Xm

t (ω),Xt(ω) ∈
Kω for any m ∈ N and t ∈ [0, T ]. Analogously, by (5.3) there exists a compact K ⊂ Pp(R

d) such
that µmt , µt ∈ K for any m ∈ N and t ∈ [0, T ]. By Proposition 2.4 there exists an admissible ψ
such that

(5.13) sup
t∈[0,T ]

sup
m∈N

ˆ

Ω
ψ(|Xm

t (ω)|p) dP(ω) = sup
t∈[0,T ]

sup
m∈N

ˆ

Rd

ψ(|x|p) dµmt (x) < +∞.

By the continuity of C there exists a modulus of continuity αω : [0,+∞) → [0,+∞) for the
restriction of C to the compact set Kω × U ×K. Then, for P-a.e. ω ∈ Ω,

sup
t∈[0,T ]

|C(Xm
t (ω), umt (ω), µmt )−C(Xt(ω), u

m
t (ω), µt)| ≤ αω

(

sup
t∈[0,T ]

(|Xm
t (ω)−Xt(ω)|+Wp(µ

m
t , µt))

)

.

Taking into account the previous consideration together with (5.10), (5.3), the growth condition
(3.2) and (5.13), we obtain

∣

∣

∣

∣

ˆ

Ω

(
ˆ T

0
C(Xm

t (ω), umt (ω), µmt )− C(Xt(ω), u
m
t (ω), µt) dt

)

dP(ω)

∣

∣

∣

∣

→ 0.

For the second term in the right hand side of (5.12), for P-a.e. ω ∈ Ω we define hω : [0, T ]×U → R

by hω(t, u) := C(Xt(ω), u, (Xt)♯P). Notice that hω is continuous and bounded in [0, T ]×U , hence
from the Young convergence of item (2) we get

(5.14)

∣

∣

∣

∣

∣

ˆ T

0
hω(t, u

m
t (ω)) dt−

ˆ

[0,T ]×U
hω(t, u) dσω(t, u)

∣

∣

∣

∣

∣

→ 0, for P-a.e. ω ∈ Ω.

From the growth assumptions (3.2) and dominated convergence theorem we obtain that
∣

∣

∣

∣

∣

ˆ

Ω

(

ˆ T

0
C(Xt(ω), u

m
t (ω), µt) dt−

ˆ

[0,T ]×U
C(Xt(ω), u, µt) dσω(t, u)

)

dP(ω)

∣

∣

∣

∣

∣

→ 0.

Finally, thanks to (5.10) and (5.3) we also obtain that

lim
m→+∞

ˆ

Ω
CT (X

m
T (ω), µmT ) dP(ω) =

ˆ

Ω
CT (XT (ω), µT ) dP(ω).

For what concerns the last statement, since X0 is B̄-measurable, (hence constant on the elements
of the partition P), the measurability of Xm

t with respect to the algebra B̄ follows by uniqueness
of solutions to (5.7). The same argument also yields that Xt is B̄-measurable.

�

Combining Theorem 4.17 and Proposition 4.11 applied to the Relaxed Lagrangian problem
RL, with Proposition 5.5, we can prove the following Theorem.

Theorem 5.6 (Chattering). Let S := (U, f,C,CT ) satisfy Assumption 3.1. Let (Ω,B,P) be a
probability space and {Bn}n∈N satisfying the finite approximation property of Definition 4.15.
Let X0 ∈ Lp(Ω;Rd), (X,σ) ∈ ARL(X0) and {Xn

0 }n∈N ⊂ Lp(Ω;Rd), such that

(5.15) ‖Xn
0 −X0‖Lp(Ω;Rd) → 0 as n→ +∞.
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Then there exists a sequence {(X̃n, ũn)}n∈N such that (X̃n, ũn) ∈ AL(X
n
0 ) for every n ∈ N and

the following hold

(1) ũn are (B[0,T ] ⊗B
n)-measurable;

(2) for P-a.e. ω ∈ Ω, (i[0,T ], ũ
n(·, ω))♯LT

Y
−→ σω, as n → +∞, where σω := σ(t, ω) ⊗ LT ∈

P([0, T ] × U);

(3) supt∈[0,T ] ‖X̃
n
t −Xt‖Lp(Ω;Rd) → 0 as n→ +∞;

(4) JL(X̃
n, ũn) → JRL(X,σ), as n→ +∞.

Moreover, if Xn
0 is B

n-measurable, n ∈ N, then X̃n
t is B

n-measurable for any t ∈ [0, T ].

Proof. Let (X,σ) ∈ ARL(X0) and {Xn
0 }n∈N satisfying (5.15). Applying Theorem 4.17 to the

relaxed problem RL (which is a Lagrangian problem in a lifted space as discussed in Remark
5.2), there exists a sequence {(Xn, σn)}n∈N such that (Xn, σn) ∈ ARL(X

n
0 ) for every n ∈ N.

Moreover σn are (B[0,T ] ⊗B
n)-measurable, σn → σ in (LT ⊗ P)-measure and, as a consequence,

we have that σn(t, ω) → σ(t, ω) weakly in P(U) for LT ⊗ P-a.e. (t, ω), up to a non-relabelled
subsequence. Thus, by Remark 2.9, we get (up to a non-relabelled subsequence)

(5.16) σnω := σn(t, ω)⊗ LT
Y
−→ σω, for P-a.e. ω ∈ Ω.

By Proposition 5.5, for any fixed n ∈ N, there exists a sequence {(Y n,m, un,m)}m∈N ⊂ AL(X
n
0 ),

with un,m (B[0,T ] ⊗B
n)-measurable, such that

(i) for any ω ∈ Ω, (i[0,T ], u
n,m(·, ω))♯LT

Y
−→ σnω, as m→ +∞;

(ii) supt∈[0,T ] ‖X
n
t − Y n,m

t ‖Lp(Ω;Rd) → 0, as m→ +∞;

(iii) JL(Y
n,m, un,m) → JRL(X

n, σn), as m→ +∞.

Let us denote by P(Bn) := {An
k , k = 1, . . . , k(n)} the minimal (finite) partition induced by B

n.
Let also σn,mω := (i[0,T ], u

n,m(·, ω))♯LT and observe that the map ω 7→ σn,mω is constant on the
elements of Pn. Then, if we select a representative ωk ∈ An

k for any k = 1, . . . , k(n), from item
(i) it follows that

(5.17) lim
m→+∞

sup
k=1,...,k(n)

δ(σn,mωk
, σnωk

) = lim
m→+∞

sup
ω∈Ω

δ(σn,mω , σnω) = 0,

where δ metrizes the Young convergence in [0, T ]× U . Recall that Young convergence is indeed
equivalent to the weak convergence in [0, T ]× U , see Remark 2.9.

For any n ∈ N, let m(n) be such that

sup
t∈[0,T ]

‖Xn
t − Y

n,m(n)
t ‖Lp(Ω;Rd) <

1

n
,

|JL(Y
n,m(n), un,m(n))− JRL(X

n, σn)| <
1

n

and

sup
ω∈Ω

δ(σn,m(n)
ω , σnω) <

1

n
.

Let us define X̃n := Y n,m(n), the control function ũn := un,m(n) : [0, T ] × Ω → U and σ̃nω :=

σ
n,m(n)
ω = (i[0,T ], ũ

n(·, ω))♯LT . Notice that, by construction, (X̃n, ũn) ∈ AL(X
n
0 ).

Fix now ε > 0. By Theorem 4.17 there exists nε such that

sup
t∈[0,T ]

‖Xn
t −Xt‖Lp(Ω;Rd) < ε, ∀n > nε,

and

|JRL(X
n, σn)− JRL(X,σ)| < ε, ∀n > nε.
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Then, using the definition of X̃n and ũn, for any n > nε it holds

sup
t∈[0,T ]

‖X̃n
t −Xt‖Lp(Ω;Rd) ≤ sup

t∈[0,T ]
‖Y

n,m(n)
t −Xn

t ‖Lp(Ω;Rd)

+ sup
t∈[0,T ]

‖Xn
t −Xt‖Lp(Ω;Rd) <

1

n
+ ε,

and

|JL(X̃
n, ũn)− JRL(X,σ)| ≤ |JL(Y

n,m(n), un,m(n))− JRL(X
n, σn)|

+ |JRL(X
n, σn)− JRL(X,σ)| <

1

n
+ ε.

If we send n→ +∞, items (3) and (4) follow by the arbitrariness of ε > 0.
It remains to show item (2). Fix again ε > 0 and choose ω ∈ Ω for which the convergence in

(5.16) holds. Then, there exists nε(ω) > 0 such that

δ(σnω , σω) < ε, ∀n > nε(ω),

and

δ(σ̃nω , σω) ≤ δ(σ̃nω, σ
n
ω) + δ(σnω, σω) <

1

n
+ ε, ∀n > nε(ω).

Sending n→ +∞ we get item (2). �

6. Eulerian optimal control problem

In this Section we describe the Eulerian formulation of the optimal control problem and we
study its properties under the Convexity Assumption 3.4. In particular, as stated in Theorem
6.8, in this setting we get the existence of minimizers. Recall that B([0, T ]×R

d;U) denotes the
set of Borel measurable functions.

Definition 6.1 (Eulerian optimal control problem (E)). Let S = (U, f,C,CT ) satisfy Assumption
3.1. Given µ0 ∈ Pp(R

d), we say that (µ, u) ∈ AE(µ0) if

(i) u ∈ B([0, T ] × R
d;U);

(ii) µ ∈ ACp([0, T ];Pp(R
d)) is a distributional solution of the Cauchy problem

(6.1)

{

∂tµt + div (vtµt) = 0, in [0, T ]× R
d

µt=0 = µ0,

where v ∈ B([0, T ] × R
d;Rd) is defined by vt(x) := f(x, u(t, x), µt) and µt := µ(t).

We refer to (µ, u) ∈ AE(µ0) as to an admissible pair, with µ a measure trajectory and u a Eulerian
control.
We define the cost functional JE : C([0, T ];Pp(R

d))× B([0, T ] ×Rd;U) → [0,+∞) by

JE(µ, u) :=

ˆ T

0

ˆ

Rd

C(x, u(t, x), µt) dµt(x) dt+

ˆ

Rd

CT (x, µT ) dµT (x),

and the value function VE : Pp(R
d) → [0,+∞) by

VE(µ0) := inf{JE(µ, u) : (µ, u) ∈ AE(µ0)}.

Remark 6.2. Notice that, given u ∈ B([0, T ]×R
d;U), µ ∈ C([0, T ];Pp(R

d)) and setting vt(x) :=
f(x, u(t, x), µt) as in Definition 6.1, we have

ˆ

Rd

|vt(x)|
p dµt(x) =

ˆ

Rd

|f(x, u(t, x), µt)|
p dµt(x)

≤ C̃

(

1 +

ˆ

Rd

|x|p dµt(x)

)

≤ C̄, ∀t ∈ [0, T ]

for some constants C̃, C̄ > 0, thanks to the growth condition (3.3) and since µ ∈ C([0, T ];Pp(R
d)).

In particular, we get v ∈ Lp(0, T ;Lp
µt(R

d;Rd)). Thus, if µ is also a distributional solution of
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(6.1), then µ ∈ ACp([0, T ];Pp(R
d)). Hence, in Definition 6.1(ii) we could have just required

µ ∈ C([0, T ];Pp(R
d)).

Observe also that the functional JE is finite thanks to the growth condition (3.2).

Proposition 6.3. Let µ0 ∈ Pp(R
d). Then AE(µ0) 6= ∅.

Proof. Let us fix u0 ∈ U and define u(t, x) = u0 for any (t, x) ∈ [0, T ] × R
d. Applying

Proposition 4.8 with Ω = R
d, P = µ0, X0(x) = x for any x ∈ R

d and u = u, there exists
X ∈ Lp

µ0(R
d; ACp([0, T ];Rd)) such that (X,u) ∈ AL(X0). Defining µt := (Xt)♯µ0, from the

definition of the Lagrangian problem it holds

(6.2) Xt(x) = x+

ˆ t

0
f(Xs(x), u0, µs) ds, ∀ t ∈ [0, T ] and µ0-a.e. x ∈ R

d,

Furthermore, in view of Proposition A.3 we have that X ∈ ACp([0, T ];Lp
µ0(R

d;Rd)) and from
(2.5) we get Wp(µt, µs) ≤ ‖Xt − Xs‖Lp

µ0
(Rd;Rd) for any t, s ∈ [0, T ]. This readily implies that

µ ∈ ACp([0, T ];Pp(R
d)). If we define vt(x) := f(x, u0, µt), it remains to show that µ is a

distributional solution of (6.1). This is a standard argument, in view of the fact that (6.2)
represents the system of characteristics of (6.1) (see e.g. [3, Lemma 8.1.6]). �

Remark 6.4. Given µ0 ∈ Pp(R
d), general results granting the existence of solutions to the

Cauchy problem (6.1) are provided for instance in [45, Theorem A.2] when u ∈ B([0, T ]×R
d;U)

is also a Carathéodory function.

Definition 6.5. Let U be a subset of a separable Banach space V , and denote with V ′ the dual
of V . Let (µn, un), (µ, u) ∈ C([0, T ];Pp(R

d))×B([0, T ] × R
d;U). We say that (µn, un) converges

to (µ, u) if

• µn converges to µ in C([0, T ];Pp(R
d)),

• for any φ ∈ Cc([0, T ] × R
d;V ′) we have

(6.3) lim
n→+∞

ˆ T

0

ˆ

Rd

〈φ(t, x), un(t, x)〉dµnt (x) dt =

ˆ T

0

ˆ

Rd

〈φ(t, x), u(t, x)〉dµt(x) dt.

Proposition 6.6 (Compactness). Let S = (U, f,C,CT ) satisfy the Convexity Assumption 3.4.
Let µ0, µ

n
0 ∈ Pp(R

d) such that Wp(µ
n
0 , µ0) → 0, as n→ +∞. If (µn, un) ∈ AE(µ

n
0 ), n ∈ N, then

there exist (µ, u) ∈ AE(µ0) and a subsequence (µnk , unk) such that (µnk , unk) converges to (µ, u),
as k → +∞, according to Definition 6.5.

Proof. Let (µn, un) ∈ AE(µ
n
0 ). Since Wp(µ

n
0 , µ0) → 0, by Proposition 2.4 it holds that

(6.4) sup
n∈N

ˆ

Rd

|x|pdµn0 (x) < +∞

and there exists an admissible ψ : [0,+∞) → [0,+∞), in the sense of Definition 2.3, such that

(6.5) sup
n∈N

ˆ

Rd

ψ(|x|p)dµn0 (x) < +∞.

In order to apply Ascoli-Arzelà Theorem to the sequence {µn}n∈N, we show that

(6.6) sup
n∈N

sup
t∈[0,T ]

ˆ

Rd

ψ(|x|p)dµnt (x) < +∞

and there exists a constant C such that

(6.7) W p
p (µ

n
s , µ

n
t ) ≤ C|t− s|, ∀ s, t ∈ [0, T ].

We start by estimating
´

Rd |x|pdµnt (x). We formally use the map x 7→ |x|p as a test func-
tion for the weak formulation of the continuity equation (a rigorous approach would require an
approximation of this map through cut-off functions, see [34, Section 5]). Defining vn(t, x) :=
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f(x, un(t, x), µnt ), using the growth condition on f given in (3.3) and Young inequality we obtain
that

ˆ

Rd

|x|p dµnt (x) ≤

ˆ

Rd

|x|p dµn0 (x) + p

ˆ t

0

ˆ

Rd

|vn(s, x)||x|p−1 dµns (x) ds

≤

ˆ

Rd

|x|p dµn0 (x) + Cp

ˆ t

0

ˆ

Rd

(1 + |x|+mp(µ
n
s )) |x|

p−1 dµns (x) ds

≤

ˆ

Rd

|x|pdµn0 (x) + C̃

ˆ t

0

ˆ

Rd

|x|p dµns (x) ds,

for some C̃ > 0 independent of n and t ∈ [0, T ]. By Gronwall’s inequality and (6.4) we get that

(6.8) sup
n∈N

sup
t∈[0,T ]

ˆ

Rd

|x|pdµnt (x) < +∞.

Formally using the map x 7→ ψ(|x|p) as a test function for the weak formulation of the continuity
equation, by the growth condition on f in (3.3) and the bound (6.8), we have

ˆ

Rd

ψ(|x|p) dµnt (x) ≤

ˆ

Rd

ψ(|x|p) dµn0 (x) +

ˆ t

0

ˆ

Rd

|vn(s, x)||∇(ψ(|x|p))|dµns (x) ds

≤

ˆ

Rd

ψ(|x|p) dµn0 (x) + pC

ˆ t

0

ˆ

Rd

(1 + |x|+mp(µ
n
s )))ψ

′(|x|p)|x|p−1 dµns (x) ds

≤

ˆ

Rd

ψ(|x|p) dµn0 (x) + C1

ˆ t

0

ˆ

Rd

(

|x|p−1 + |x|p
)

ψ′(|x|p) dµns (x) ds

(6.9)

for some C1 > 0 independent of n and t ∈ [0, T ]. Notice that by the monotonicity of ψ′, denoting
by B1 the unitary ball of Rd, we have

ˆ

Rd

|x|p−1ψ′(|x|p) dµns (x) ≤

ˆ

B1

|x|p−1ψ′(|x|p) dµns (x) +

ˆ

Rd\B1

|x|pψ′(|x|p) dµns (x)

≤ ψ′(1) +

ˆ

Rd

|x|pψ′(|x|p) dµns (x).

By the previous inequality and (2.8), from (6.9) we get
ˆ

Rd

ψ(|x|p) dµnt (x) ≤

ˆ

Rd

ψ(|x|p) dµn0 (x) + C2

ˆ t

0

ˆ

Rd

(1 + ψ(|x|p)) dµns (x) ds

for some C2 > 0 independent of n and t ∈ [0, T ]. By Gronwall’s inequality and (6.5) we obtain
(6.6).

Using Benamou-Brenier formula (2.7), the growth condition on f in (3.3), for s, t ∈ [0, T ],
s ≤ t, it holds

W p
p (µ

n
s , µ

n
t ) ≤

ˆ t

s

ˆ

Rd

|vn(r, x)|p dµnr (x)dr

≤ C

ˆ t

s

ˆ

Rd

(1 + |x|+mp(µ
n
r ))

p dµnr (x)dr,

for some C > 0 independent of n, s and t. Using the bound (6.8) we obtain (6.7).
By Ascoli-Arzelà theorem in Pp(R

d) there exists µ ∈ C([0, T ];Pp(R
d)) and a subsequence µn

(not relabeled) such that µn → µ in C([0, T ];Pp(R
d)).

For what concerns the weak compactness of un (in the sense of convergence (6.3)), we denote
by µ̃n = µnt ⊗LT ∈ P([0, T ]×R

d) and µ̃ = µt⊗LT ∈ P([0, T ]×R
d). From the convergence of µn

to µ it follows that µ̃n → µ̃ weakly. Defining γn := (i[0,T ]×Rd , un)♯µ̃
n ∈ P(([0, T ]×R

d)×U), we

observe that π1♯ γ
n = µ̃n ∈ P([0, T ]×R

d) and π2♯ γ
n = un♯ µ̃

n ∈ P(U), where π1 : [0, T ]×R
d×U →

[0, T ]×R
d is the projection on [0, T ]×R

d and π2 : [0, T ]×R
d × U → U is the projection on U .
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Since π1♯ γ
n weakly converges and U is compact, the families {π1♯ γ

n}n∈N and {π2♯ γ
n}n∈N are

tight. Thanks to [3, Lemma 5.2.2] it follows that {γn}n∈N is tight and, by Prokhorov’s Theorem,
there exists γ ∈ P([0, T ] × R

d × U) and a subsequence γn (not relabeled) such that, γn → γ
weakly, as n→ +∞.
Let φ ∈ Cc([0, T ]×R

d;V ′). Recalling that U is compact, using the continuous and bounded test
function (t, x, u) 7→ 〈φ(t, x), u〉, by the weak convergence of γn to γ we have

ˆ T

0

ˆ

Rd

〈φ(t, x), un(t, x)〉dµ̃n(t, x) =

=

ˆ T

0

ˆ

Rd

ˆ

U
〈φ(t, x), u〉dγn(t, x, u) →

ˆ T

0

ˆ

Rd

ˆ

U
〈φ(t, x), u〉dγ(t, x, u),

(6.10)

as n → +∞. Using Theorem 2.6 (specifically Remark 2.7) and observing that π1♯ γ = µ̃, we

disintegrate γ with respect to π1 to get

ˆ T

0

ˆ

Rd

ˆ

U
〈φ(t, x), u〉dγ(t, x, u) =

ˆ T

0

ˆ

Rd

ˆ

U
〈φ(t, x), u〉dγt,x(u) dµ̃(t, x).

We define now u : [0, T ]× R
d → U by

(6.11) u(t, x) :=

ˆ

U
udγt,x(u), ∀ (t, x) ∈ [0, T ] × R

d,

where the integral in (6.11) is a Bochner integral. Since the map (t, x) ∈ [0, T ] × R
d 7→ γt,x ∈

P(U) is a Borel map, then u ∈ B([0, T ]×R
d;U). We call the map u the barycentric projection of

γ with respect to π1♯ γ. Since the Bochner integral commutes with continuous linear functionals,
it holds

ˆ T

0

ˆ

Rd

ˆ

U
〈φ(t, x), u〉dγt,x(u) dµ̃(t, x) =

ˆ T

0

ˆ

Rd

〈φ(t, x), u(t, x)〉dµ̃(t, x).

Using (6.10) we obtain the convergence of un → u in the sense of (6.3).

In order to prove that (µ, u) ∈ AE(µ0) we show that (6.1) is satisfied. Let ϕ ∈ C1
c ([0, T ]×R

d).
Since (µn, un) ∈ AE(µ

n
0 ), for every t ∈ [0, T ] it holds

(6.12)
ˆ

Rd

ϕ(t, x) dµnt (x)−

ˆ

Rd

ϕ(0, x) dµn0 (x) =

ˆ t

0

ˆ

Rd

(∂sϕ(s, x) + vn(s, x) · ∇ϕ(s, x)) dµns (x) ds.

By the convergence µn → µ in C([0, T ];Pp(R
d)) we immediately pass to the limit, as n→ +∞,

in the left hand side of equation (6.12) as well as on the term
´ t
0

´

Rd ∂sϕ(s, x) dµ
n
s (x) ds. Finally,

let us rewrite
ˆ t

0

ˆ

Rd

vn(s, x) · ∇ϕ(s, x) dµns (x) ds

=

ˆ t

0

ˆ

Rd

f(x, un(s, x), µns ) · ∇ϕ(s, x) dµ
n
s (x) ds

=

ˆ

[0,t]×Rd×U
f(x, u, µns ) · ∇ϕ(s, x) dγ

n(s, x, u)

=

ˆ

[0,t]×Rd×U
(f(x, u, µns )− f(x, u, µs)) · ∇ϕ(s, x) dγ

n(s, x, u)

+

ˆ

[0,t]×Rd×U
f(x, u, µs) · ∇ϕ(s, x) dγ

n(s, x, u).
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By (3.1), the first term on the right hand side can be estimated by
∣

∣

∣

∣

∣

ˆ

[0,t]×Rd×U
〈f(x, u, µns )− f(x, u, µs),∇ϕ(s, x)〉dγ

n(s, x, u)

∣

∣

∣

∣

∣

≤ L sup
r∈[0,T ]

Wp(µ
n
r , µr)

ˆ

[0,t]×Rd×U
|∇ϕ(s, x)|dγn(s, x, u)

= L sup
r∈[0,T ]

Wp(µ
n
r , µr)

ˆ

[0,t]×Rd

|∇ϕ(s, x)|dµns (x) ds,

which goes to zero as n→ +∞ by the convergence µn → µ in C([0, T ];Pp(R
d)). Hence

lim
n→+∞

ˆ t

0

ˆ

Rd

vn(s, x) · ∇ϕ(s, x) dµns (x) ds

= lim
n→+∞

ˆ

[0,t]×Rd×U
f(x, u, µs) · ∇ϕ(t, x) dγ

n(s, x, u)

=

ˆ

[0,t]×Rd×U
f(x, u, µs) · ∇ϕ(t, x) dγ(s, x, u),

by the weak convergence of γn to γ. Recall that, by the Convexity Assumption 3.4, for any
(x, s) ∈ R

d × [0, T ] the map u 7→ f(x, u, µs) is affine. Thus, using that γs,x is a probability
measure, we have

ˆ

U
f(x, u, µs) dγs,x(u) = f

(

x,

ˆ

U
udγs,x(u), µs

)

, for µ̃-a.e. (s, x) ∈ [0, T ]× R
d.

Hence we get
ˆ

[0,t]×Rd

ˆ

U
f(x, u, µs) · ∇ϕ(s, x) dγs,x(u) dµ̃(s, x)

=

ˆ

[0,t]×Rd

f

(

x,

ˆ

U
udγs,x(u), µs

)

· ∇ϕ(s, x) dµ̃(s, x)

=

ˆ t

0

ˆ

Rd

f (x, u(s, x), µs) · ∇ϕ(s, x) dµs(x) ds.

Defining v(t, x) := f(x, u(t, x), µt), we have proved that

lim
n→+∞

ˆ t

0

ˆ

Rd

vn(s, x) · ∇ϕ(s, x) dµns (x) ds

=

ˆ t

0

ˆ

Rd

v(s, x) · ∇ϕ(s, x) dµs(x) ds

and this concludes the proof. �

Proposition 6.7 (Lower semicontinuity for convex JE). Let S = (U, f,C,CT ) satisfy the Con-
vexity Assumption 3.4. If (µn, un) converges to (µ, u) according to Definition 6.5, then

(6.13) lim inf
n→+∞

JE(µ
n, un) ≥ JE(µ, u).

Proof. Denoting by µ̃n = µnt ⊗LT ∈ P([0, T ]×R
d) and µ̃ = µt⊗LT ∈ P([0, T ]×R

d), we define
γn := (i[0,T ]×Rd , un)♯µ̃

n ∈ P(([0, T ]×R
d)×U). Reasoning as in the proof of Proposition 6.6, we

obtain that there exists γ ∈ P(([0, T ] × R
d) × U) such that π1♯ γ = µ̃ and, up to subsequences,

γn → γ weakly as n → +∞. Moreover, defining ub by (6.11), up to subsequences, (µn, un)
converges to (µ, ub) according to Definition 6.5. Then,
ˆ T

0

ˆ

Rd

〈φ(t, x), u(t, x)〉dµ̃(t, x) =

ˆ T

0

ˆ

Rd

〈φ(t, x), ub(t, x)〉dµ̃(t, x), ∀φ ∈ Cc([0, T ]× R
d;V ′),
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which implies that ub(t, x) = u(t, x) for µ̃-a.e. (t, x) ∈ [0, T ]× R
d.

Let K ⊂ Pp(R
d) be a compact set containing µnt , µt for any n ∈ N and t ∈ [0, T ]. Then,

for any compact K ⊂ R
d, thanks to the continuity of C, there exists a modulus of continuity

α : [0,+∞) → [0,+∞) for the restriction of C to the compact set K × U ×K so that

sup
(t,x,u)∈[0,T ]×K×U

|C(x, u, µnt )− C(x, u, µt)| ≤ α
(

sup
t∈[0,T ]

Wp(µ
n
t , µt)

)

→ 0 as n→ +∞.

Then, taking into account that C ≥ 0, we get

lim inf
n→+∞

ˆ T

0

ˆ

Rd

C(x, un(t, x), µnt ) dµ
n
t (x) dt

≥ lim inf
n→+∞

ˆ

[0,T ]×K×U
C(x, u, µnt ) dγ

n(t, x, u)

≥

ˆ

[0,T ]×K×U
C(x, u, µt) dγ(t, x, u).

Since K is arbitrary we obtain

(6.14) lim inf
n→+∞

ˆ T

0

ˆ

Rd

C(x, un(t, x), µnt ) dµ
n
t (x) dt ≥

ˆ

[0,T ]×Rd×U
C(x, u, µt) dγ(t, x, u).

Denoting γt,x the disintegration of γ with respect to π1 (as in the proof of Proposition 6.6), the

convexity of the map u 7→ C(x, u, µt) for any (t, x) ∈ [0, T ]× R
d and Jensen’s inequality yield

ˆ

[0,T ]×Rd×U
C(x, u, µt) dγ(t, x, u) =

ˆ T

0

ˆ

Rd

ˆ

U
C(x, u, µt) dγt,x(u) dµt(x) dt

≥

ˆ T

0

ˆ

Rd

C

(

x,

ˆ

U
udγt,x(u), µt

)

dµt(x) dt

=

ˆ T

0

ˆ

Rd

C (x, ub(t, x), µt) dµt(x) dt

=

ˆ T

0

ˆ

Rd

C (x, u(t, x), µt) dµt(x) dt.

By the continuity of CT , using the same argument of the proof of (6.14), we obtain

lim inf
n→+∞

ˆ

Rd
CT (x, µ

n
T ) dµ

n
T (x) ≥

ˆ

Rd
CT (x, µT ) dµT (x).

�

Propositions 6.6 and 6.7 give immediately the existence of optimizers for our optimal control
problem in Eulerian formulation.

Theorem 6.8 (Existence of minimizers for convex E). Let S = (U, f,C,CT ) satisfy the Convexity
Assumption 3.4. If µ0 ∈ Pp(R

d), then there exists (µ, u) ∈ AE(µ0) such that

JE(µ, u) = VE(µ0).

As a consequence, we derive the lower semicontinuity of the value function for the Eulerian
problem.

Proposition 6.9 (Lower semicontinuity of VE). Let S = (U, f,C,CT ) satisfy the Convexity
Assumption 3.4 and µ0 ∈ Pp(R

d). If {µn0}n∈N ⊂ Pp(R
d) is a sequence such that Wp(µ

n
0 , µ0) → 0

as n→ +∞, then

lim inf
n→+∞

VE(µ
n
0 ) ≥ VE(µ0).
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Proof. From Theorem 6.8 there exists a sequence (µn, un) ∈ AE(µ
n
0 ) such that VE(µ

n
0 ) =

JE(µ
n, un). By Proposition 6.6 there exists (µ, u) ∈ AE(µ0) such that, up to subsequences,

(µn, un) converges to (µ, u) according to Definition 6.5. Then, using Proposition 6.7, we have

lim inf
n→+∞

VE(µ
n
0 ) = lim inf

n→+∞
JE(µ

n, un) ≥ JE(µ, u) ≥ VE(µ0).

�

7. Kantorovich optimal control problem and equivalence with the Eulerian

In this section, we provide a further formulation of optimal control problems which we call
Kantorovich formulation in analogy with the terminology used in optimal transport theory.
This formulation acts as a bridge between the Lagrangian and the Eulerian formulations and it
is based on the representation of solutions of the continuity equation by superposition of continu-
ous curves in ΓT = C([0, T ];Rd) (see Theorem 2.5). This formulation turns out to be equivalent
to the Eulerian one and it will be useful in Section 8 to prove the equivalence between the Euler-
ian and the Lagrangian problems.

We recall that, for any t ∈ [0, T ], et : ΓT → R
d denotes the evaluation map et(γ) := γ(t).

Definition 7.1 (Kantorovich optimal control problem (K)). Let S = (U, f,C,CT ) satisfy As-
sumption 3.1. Given µ0 ∈ Pp(R

d), we say that (η, u) ∈ AK(µ0) if

(i) u ∈ B([0, T ] × ΓT ;U);
(ii) η ∈ P(ΓT ), (e0)♯η = µ0 and, defining µt := (et)♯η for all t ∈ [0, T ],

(7.1)

ˆ T

0

ˆ

Rd

|x|p dµt(x) dt < +∞.

η is concentrated on the set of absolutely continuous solutions of the differential equation

γ̇(t) = f(γ(t), u(t, γ), µt), for LT -a.e. t ∈ [0, T ].

We define the cost functional JK : P(ΓT )× B([0, T ] × ΓT ;U) → [0,+∞] by

JK(η, u) :=

ˆ T

0

ˆ

ΓT

C(γ(t), u(t, γ), µt) dη(γ) dt+

ˆ

Rd

CT (x, µT ) dµT (x),

and the value function VK : Pp(R
d) → [0,+∞) by

VK(µ0) := inf{JK(η, u) : (η, u) ∈ AK(µ0)}.

Remark 7.2. We observe that, by the growth condition of f in (3.3) and condition (7.1), η is
actually concentrated on ACp([0, T ];Rd), indeed

ˆ T

0

ˆ

ΓT

|γ̇(t)|p dη(γ) dt ≤

ˆ T

0

ˆ

ΓT

|f(γ(t), u(t, γ), µt)|
p dη(γ) dt

≤ C

ˆ T

0

ˆ

ΓT

|1 + |γ(t)|+mp(µ)|
p dη(γ) dt

≤ C̃
(

1 +

ˆ T

0

ˆ

Rd

|x|p dµt(x)dt
)

.

Hence, by Fubini theorem, for η-a.e. γ ∈ ΓT , γ̇ ∈ Lp([0, T ];Rd).
Moreover, thanks to (7.1) and the growth condition (3.2), JK(η, u) < +∞ for every (η, u) ∈

AK(µ0) (the proof of
´

Rd |x|p dµT (x) < +∞ follows by items (i) and (ii) and the same argument
used to show (6.8) in Proposition 6.6).
Finally, the value function VK is well defined since AK is non empty (see Propostion 7.4).
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The aim of this section is to prove the existence of minimizers for the Kantorovich optimal
control problem under the Convexity Assumptions 3.4 and to show the equivalence with the
Eulerian formulation of the problem described in Section 6. In particular, we get the equality of
the corresponding value functions. This is the content of the following theorem.

Theorem 7.3. Let S = (U, f,C,CT ) satisfy the Convexity Assumption 3.4. If µ0 ∈ Pp(R
d),

then there exist (η, u) ∈ AK(µ0) and (µ, u) ∈ AE(µ0) such that

JK(η, u) = JE(µ, u) = VK(µ0) = VE(µ0).

The proof of Theorem 7.3 follows by the combination of Theorem 6.8 and Propositions 7.4,
7.5 below.

Proposition 7.4. Let S := (U, f,C,CT ) satisfy Assumption 3.1. Let µ0 ∈ Pp(R
d). If (µ, u) ∈

AE(µ0), then there exists (η, u) ∈ AK(µ0) such that JK(η, u) = JE(µ, u). In particular AK(µ0) 6=
∅ and VK(µ0) ≤ VE(µ0).

Proof. Let (µ, u) ∈ AE(µ0). Applying Theorem 2.5 to µ and vt(x) = f(x, u(t, x), µt) we get
η ∈ P(ΓT ) such that (et)♯η = µt for every t ∈ [0, T ] and η is concentrated on the absolutely
continuous solutions of γ̇(t) = vt(γ(t)). Condition (7.1) is automatically satisfied in view of the
fact that (µ, u) ∈ AE(µ0). Then, for every (t, γ) ∈ [0, T ] × ΓT we define u(t, γ) := u(t, γ(t)) so
that u is Borel measurable and we have (η, u) ∈ AK(µ0). Finally, from the evaluation (et)♯η = µt
it holds that JK(η, u) = JE(µ, u). �

Under the Convexity Assumption 3.4 it also holds that VK(µ0) ≥ VE(µ0).

Proposition 7.5. Let S = (U, f,C,CT ) satisfy the Convexity Assumption 3.4. Let µ0 ∈ Pp(R
d).

If (η, u) ∈ AK(µ0), then there exists (µ, u) ∈ AE(µ0) such that JE(µ, u) ≤ JK(η, u). In particular
VK(µ0) ≥ VE(µ0).

Proof. Let (η, u) ∈ AK(µ0). We firstly define µt := (et)♯η, for every t ∈ [0, T ]. We introduce the

continuous evaluation map e : [0, T ]× ΓT → [0, T ]× R
d by setting

e(t, γ) := (t, γ(t)) = (i[0,T ](t), et(γ))

and we denote by (t, x) 7→ η̃t,x the Borel map obtained from the disintegration of LT ⊗ η with

respect to e, see Theorem 2.6. Then we define the function u : [0, T ]× R
d → U by

u(t, x) :=

ˆ

[0,T ]×ΓT

u(t, γ) dη̃t,x(γ).

Notice that u is Borel measurable thanks to the Borel measurability of (t, x) 7→ η̃t,x. The measure
η̃t,x is concentrated on {t} × {γ : γ(t) = x}, so that η̃t,x = δt ⊗ ηt,x, where for any t ∈ [0, T ],
the function x 7→ ηt,x is the Borel map given by the disintegration of η with respect to the
continuous map et. Hence we have also that

(7.2) u(t, x) =

ˆ

ΓT

u(t, γ) dηt,x(γ).

Defining the set A := {(t, γ) ∈ [0, T ]× ΓT : ∃ γ̇(t) and γ̇(t) = f(γ(t), u(t, γ), µt)}, by item (ii)
of Definition 7.1 we have that LT ⊗η(([0, T ]×ΓT )\A) = 0. Then, for LT -a.e. t ∈ [0, T ] we have

γ̇(t) = f(γ(t), u(t, γ), µt), for η-a.e. γ ∈ ΓT .
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Let ϕ ∈ C1
c (R

d;R). For any s, t ∈ [0, T ], s < t, we have

(7.3)

ˆ

Rd

ϕ(x) dµt(x)−

ˆ

Rd

ϕ(x) dµs(x) =

ˆ

ΓT

(ϕ(γ(t)) − ϕ(γ(s))) dη(γ)

=

ˆ

ΓT

ˆ t

s

d

dr
ϕ(γ(r)) dr dη(γ)

=

ˆ

ΓT

ˆ t

s
∇ϕ(γ(r)) · γ̇(r) dr dη(γ)

=

ˆ t

s

ˆ

ΓT

∇ϕ(γ(r)) · f(γ(r), u(r, γ), µr) dη(γ) dr.

Using the growth condition of f in (3.3) we have
∣

∣

∣

∣

ˆ

Rd

ϕ(x) dµt(x)−

ˆ

Rd

ϕ(x) dµs(x)

∣

∣

∣

∣

≤ C‖∇ϕ‖∞

ˆ t

s

ˆ

ΓT

(1 + |γ(r)|+mp(µr)) dη(γ) dr.

By (7.1) the map r 7→
´

ΓT
(1 + |γ(r)| + mp(µr)) dη(γ) belongs to L1(0, T ) and then the map

t 7→
´

Rd ϕ(x) dµt(x) is absolutely continuous.
Thanks to (7.3), for LT -a.e. t ∈ [0, T ] we have

d

dt

ˆ

Rd

ϕ(x) dµt(x) =

ˆ

ΓT

∇ϕ(γ(t)) · f(γ(t), u(t, γ), µt) dη(γ).

Using the affinity of f , the disintegration of η with respect to et, recalling that ηt,x is concentrated
on {γ : γ(t) = x}, and by (7.2) we obtain

ˆ

ΓT

∇ϕ(γ(t)) · f(γ(t), u(t, γ), µt) dη(γ)

=

ˆ

Rd

ˆ

ΓT

∇ϕ(γ(t)) · f(γ(t), u(t, γ), µt) dηt,x(γ) dµt(x)

=

ˆ

Rd

ˆ

ΓT

∇ϕ(x) · f(x, u(t, γ), µt) dηt,x(γ) dµt(x)

=

ˆ

Rd

∇ϕ(x) · f

(

x,

ˆ

ΓT

u(t, γ) dηt,x(γ), µt

)

dµt(x)

=

ˆ

Rd

∇ϕ(x) · f(x, u(t, x), µt) dµt(x).

Then µ satisfies the continuity equation ∂tµt + div(vtµt) = 0 for the vector field vt(x) =
f(x, u(t, x), µt) in the sense of distributions (see e.g. [3, equation 8.1.4]). Since |vt(x)|

p ≤
C̃(1 + |x|p +mp

p(µt)), from (7.1) it follows that t 7→ ‖vt‖Lp
µt (R

d;Rd) belongs to Lp(0, T ) and then

µ ∈ ACp([0, T ];Pp(R
d)). Hence, (µ, u) ∈ AE(µ0).

Finally, by the convexity of C with respect to u and Jensen’s inequality we obtain
ˆ T

0

ˆ

ΓT

C(γ(t), u(t, γ), µt) dη(γ) dt

=

ˆ T

0

ˆ

Rd

ˆ

ΓT

C(x, u(t, γ), µt) dηt,x(γ)dµt(x) dt

≥

ˆ T

0

ˆ

Rd

C

(

x,

ˆ

ΓT

u(t, γ) dηt,x(γ), µt

)

dµt(x) dt

=

ˆ T

0

ˆ

Rd

C (x, u(t, x), µt) dµt(x) dt.

Hence we obtain JK(η, u) ≥ JE(µ, u). �
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8. Equivalence of Eulerian and Lagrangian problems

In this Section we study the equivalence between the Eulerian and Lagrangian formulations
of the optimal control problem. We anticipate here the main results of this section.

Theorem 8.1. Let S = (U, f,C,CT ) satisfy the Convexity Assumption 3.4 and (Ω,B,P) be a
standard Borel space such that P is without atoms. If X0 ∈ Lp(Ω;Rd), then

VL(X0) = VE((X0)♯P).

In particular, given X0,X
′
0 ∈ Lp(Ω;Rd) s.t. (X0)♯P = (X ′

0)♯P, then

VL(X0) = VL(X
′
0).

The proof of Theorem 8.1 follows immediately by Proposition 8.3, Theorem 8.5 and Theorem
7.3.

We stress again that the Convexity Assumption 3.4 is sufficient to prove the existence of a
minimizer for the Eulerian and Kantorovich optimal control problems (see Theorems 6.8 and
7.3). However in general, even assuming the Convexity Assumption 3.4, the Lagrangian optimal
control problem could not have minimizers as we show in Section 8.3.

If we remove the Convexity Assumption 3.4, we can still give the following equivalence result.

Theorem 8.2. Let S = (U, f,C,CT ) satisfy Assumption 3.1 and S
′ = (U ,F ,C ,CT ) as in

Definition 3.5. Let (Ω,B,P) be a standard Borel space such that P is without atoms. Let L,RL
be the Lagrangian and Relaxed Lagrangian problems associated to S. Let also L′,E′ the Lagrangian
and Eulerian problems associated to S

′. If X0 ∈ Lp(Ω;Rd), then

VL(X0) = VRL(X0) = VL
′(X0) = VE

′((X0)♯P) = VK
′((X0)♯P).

The proof of Theorem 8.2 is postponed at the end of Section 8.1.

8.1. Comparison between L, E and K. We start by comparing the Eulerian and Lagrangian
problems under the Convexity Assumption 3.4. Assuming P without atoms, we further exhibit
the equivalence between the associated value functions exploiting the Kantorovich formulation
introduced in Section 7.

The following is a first comparison between the Eulerian and Lagrangian problems.

Proposition 8.3. Let S = (U, f,C,CT ) satisfy the Convexity Assumption 3.4 and (Ω,B,P) be a
probability space. If X0 ∈ Lp(Ω;Rd) and (X,u) ∈ AL(X0), then there exists (µ, u) ∈ AE((X0)♯P)
such that JL(X,u) ≥ JE(µ, u). In particular, VL(X0) ≥ VE((X0)♯P).

Proof. Let (X,u) ∈ AL(X0). We firstly define µt := (Xt)♯P, for every t ∈ [0, T ]. Thanks to

Proposition A.3 in Appendix A, X ∈ ACp([0, T ];Lp(Ω;Rd)) so that µ ∈ ACp([0, T ];Pp(R
d)).

We define σ ∈ P([0, T ] × Ω × U) by σ := δu(t,ω) ⊗ P ⊗ LT and θ ∈ P([0, T ] × R
d × U)

by θ := (i[0,T ],Xt, iU )♯σ. Let π1,2 : [0, T ] × R
d × U → [0, T ] × R

d be the projection map

(t, x, u) 7→ (t, x), observe that π1,2♯ θ = µt ⊗ LT . If we denote θt,x the disintegration of θ with

respect to π1,2, then we have θ = θt,x ⊗ µt ⊗ LT . We define now u : [0, T ] ×R
d → U by

(8.1) u(t, x) :=

ˆ

U
udθt,x(u).

Thanks to Theorem 2.6, the map (t, x) 7→ θt,x is Borel measurable, so that u ∈ B([0, T ]×R
d;U).

The rest of the proof follows the same line of the proof of Proposition 7.5. We write the details
for the reader’s convenience.

Defining the set A := {(t, ω) ∈ [0, T ] × Ω : ∃ Ẋt(ω) and Ẋt(ω) = f(Xt(ω), u(t, ω), µt)}, by
item (ii) of Definition 4.1, we have that LT ⊗ P(([0, T ]×Ω \A) = 0. Then, for LT -a.e. t ∈ [0, T ]
it holds

Ẋt(ω) = f(Xt(ω), u(t, ω), µt), for P-a.e. ω ∈ Ω.
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Let ϕ ∈ C1
c (R

d;R). For any s, t ∈ [0, T ], s < t, we have

(8.2)

ˆ

Rd

ϕ(x) dµt(x)−

ˆ

Rd

ϕ(x) dµs(x) =

ˆ

Ω
(ϕ(Xt(ω))− ϕ(Xs(ω))) dP(ω)

=

ˆ

Ω

ˆ t

s

d

dr
ϕ(Xr(ω)) dr dP(ω)

=

ˆ

Ω

ˆ t

s
∇ϕ(Xr(ω)) · Ẋr(ω) dr dP(ω)

=

ˆ t

s

ˆ

Ω
∇ϕ(Xr(ω)) · f(Xr(ω)), u(r, ω), µr) dP(ω) dr.

Using the growth condition of f in (3.3) we have

∣

∣

∣

∣

ˆ

Rd

ϕ(x) dµt(x)−

ˆ

Rd

ϕ(x) dµs(x)

∣

∣

∣

∣

≤ C‖∇ϕ‖∞

ˆ t

s

ˆ

Ω
(1 + |Xr(ω)|+mp(µr)) dP(ω) dr.

Thanks to (4.9) in Proposition 4.9, it follows that the map r 7→
´

Ω(1 + |Xr(ω)|+mp(µr)) dP(ω)

belongs to L1(0, T ) so that the map t 7→
´

Rd ϕ(x) dµt(x) is absolutely continuous. Then, from
(8.2) it holds that

d

dt

ˆ

Rd

ϕ(x) dµt(x) =

ˆ

Ω
∇ϕ(Xt(ω)) · f(Xt(ω)), u(t, ω), µt) dP(ω), for LT -a.e.t ∈ [0, T ].

For LT -a.e. t ∈ [0, T ], we denote now σt ∈ P(Ω×U) and θt ∈ P(Rd ×U) the disintegrations
of σ and θ with respect to the projection maps π1Ω : [0, T ]×Ω×U → [0, T ], π1

Rd : [0, T ]×R
d×U →

[0, T ], respectively. It can be shown that θt = (Xt, iU )♯σt = θt,x ⊗ µt, for LT -a.e. t ∈ [0, T ].
Using the affinity of f , and the definition of u in (8.1) we obtain

ˆ

Ω
∇ϕ(Xt(ω)) · f(Xt(ω)), u(t, ω), µt) dP(ω)

=

ˆ

Ω×U
∇ϕ(Xt(ω)) · f(Xt(ω), u, µt) dσt(ω, u)

=

ˆ

Rd×U
∇ϕ(x) · f(x, u, µt) dθt(x, u)

=

ˆ

Rd

∇ϕ(x) ·

ˆ

U
f(x, u, µt) dθt,x(u) dµt(x)

=

ˆ

Rd

∇ϕ(x) · f

(

x,

ˆ

U
udθt,x(u), µt

)

dµt(x)

=

ˆ

Rd

∇ϕ(x) · f(x, u(t, x), µt) dµt(x).

Then µ satisfies the continuity equation ∂tµt + div(vtµt) = 0 for the vector field vt(x) :=
f(x, u(t, x), µt) in the sense of distributions (see e.g. [3, equation (8.1.4)]). Since |vt(x)|

p ≤
C̃(1 + |x|p + mp

p(µt)), from (4.9) it follows that t 7→ ‖vt‖Lp
µt (R

d;Rd) belongs to Lp(0, T ) and

µ ∈ ACp([0, T ];Pp(R
d)). Hence, (µ, u) ∈ AE(µ0).
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Finally, by the convexity of C with respect to u and Jensen’s inequality we obtain
ˆ T

0

ˆ

Ω
C(Xt(ω), ut(ω), µt) dP(ω) dt

=

ˆ T

0

ˆ

Ω×U
C(Xt(ω), u, µt) dσt(ω, u) dt

=

ˆ T

0

ˆ

Rd×U
C(x, u, µt) dθt(x, u) dt

=

ˆ T

0

ˆ

Rd

ˆ

U
C(x, u, µt) dθt,x(u) dµt(x) dt

≥

ˆ T

0

ˆ

Rd

C

(

x,

ˆ

U
udθt,x(u), µt

)

dµt(x)dt

=

ˆ T

0

ˆ

Rd

C (x, u(t, x), µt) dµt(x) dt.

This readily implies that JL(X,u) ≥ JE(µ, u). �

In the next Lemma, we are given an admissible pair (η, u) for the Kantorovich problem.
Considering the evaluation map Zt(γ) = γ(t), we associate to (η, u) the pair (Z, u) which is
admissible for the Lagrangian problem with parametrization space (ΓT ,BΓT

,η) and with the
same cost as (η, u).

Lemma 8.4. Let S = (U, f,C,CT ) satisfy Assumption 3.1. Denote with Z(t, γ) := et(γ), for
every t ∈ [0, T ] and γ ∈ ΓT . If µ0 ∈ Pp(R

d), (η, u) ∈ AK(µ0) and we denote with Lη =
L(ΓT ,BΓT

,η), then (Z, u) ∈ ALη
(e0). Moreover,

JLη
(Z, u) = JK(η, u).

Proof. Let (η, u) ∈ AK(µ0) and denote by Lη = L(ΓT ,BΓT
,η). Denoting with Z : [0, T ]×ΓT →

R
d the map defined by Z(t, γ) := γ(t) = et(γ), let us show that (Z, u) ∈ ALη

(e0). Since

Z(0, γ)♯η = µ0 ∈ Pp(R
d) then e0 = Z(0, ·) ∈ Lp

η(ΓT ). By item (i) in Definition 7.1 we have

u ∈ B([0, T ] × ΓT ;U). Thanks to (7.1) it readily follows that Z ∈ Lp
η(ΓT ;L

p(0, T ;Rd)) and
from Remark 7.2 we actually have that Z ∈ Lp

η(ΓT ; AC
p([0, T ];Rd)). Moreover, from item (ii)

of Definition 7.1, for η-a.e. γ ∈ ΓT , we have

Ż(t, γ) = f(Z(t, γ), u(t, γ), Z(t, ·)♯η) for LT -a.e.t ∈ [0, T ].

Hence (Z, u) ∈ ALη
(e0) and, by definition of Z, JLη

(Z, u) = JK(η, u).
�

When the parametrization space (Ω,B,P) is fixed a priori, an interesting first comparison
between the Kantorovich and Lagrangian problems is given below.

Theorem 8.5. Let S = (U, f,C,CT ) satisfy Assumption 3.1 with U convex compact subset of a
separable Banach space V . Let (Ω,B,P) be a standard Borel space such that P is without atoms.
If µ0 ∈ Pp(R

d) and (η, u) ∈ AK(µ0), then for every X0 ∈ Lp(Ω;Rd) with (X0)♯P = µ0 there
exits a sequence (Xn, un) ∈ AL(X0) such that

(8.3) lim
n→+∞

JL(X
n, un) = JK(η, u).

Moreover, for every µ0 ∈ Pp(R
d) and every X0 ∈ Lp(Ω;Rd) with (X0)♯P = µ0 it holds

(8.4) VK(µ0) ≥ VL(X0).

Proof. Step 1. Let (η, u) ∈ AK(µ0). We denote by Lη := L(ΓT ,BΓT
,η). Defining Z(t, γ) :=

γ(t) = et(γ), by Lemma 8.4 it holds that (Z, u) ∈ ALη
(e0) and

(8.5) JLη
(Z, u) = JK(η, u).
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Thanks to the continuity of the evaluation map e0 : ΓT → R
d, we apply Proposition 4.22 for the

problem Lη in the Polish space (ΓT ,BΓT
,η). Then there exists a sequence (Z̄m, ūm) ∈ ALη

(e0)

such that Z̄m : [0, T ]× ΓT → R
d and ūm : [0, T ]× ΓT → U are continuous and

(8.6) lim
m→+∞

JLη
(Z̄m, ūm) = JLη

(Z, u).

Step 2. Let (Ω,B,P) be a standard Borel space such that P is without atoms and τ be a
Polish topology on Ω such that B = B(Ω,τ). Denote with L = L(Ω,B(Ω,τ),P) the Lagrangian

problem for the system S. Let X0 ∈ Lp(Ω;Rd) with (X0)♯P = µ0. Given Z̄ ∈ C([0, T ]× ΓT ;R
d)

and ū ∈ C([0, T ] × ΓT ;U) such that (Z̄, ū) ∈ ALη
(e0), let us prove that there exists a sequence

(X̃n, ũn) ∈ AL(X0) such that

(8.7) lim
n→+∞

JL(X̃
n, ũn) = JLη

(Z̄, ū).

We define the sets

• Γ̃ :=
{

(x, γ) ∈ R
d × ΓT : x = γ(0) = e0(γ)

}

;
• Γ0 := {γ ∈ ΓT : γ(0) = e0(γ) = 0} ,

and the continuous maps

• r : Γ̃ → R
d × Γ0, r(x, γ) := (x, γ − x), where γ − x is the curve t 7→ γ(t) − x. Notice

that r admits a left inverse r−1 : Rd × Γ0 → Γ̃, r−1(x, γ0) = (x, γ0 + x), that obviously
satisfies r−1 ◦ r = iΓ̃;

• s : Ω× R
d × Γ0 → Ω× Γ̃, s(ω, x, γ0) = (ω, x, γ0 + x). Observe that s = (iΩ, r

−1).

Let us consider the couplings

ρ := (iΩ,X0)♯P ∈ P(Ω × R
d), η̃ := (e0, iΓT

)♯η ∈ P(Γ̃), η̂ := r♯η̃ ∈ P(Rd × Γ0).

Notice that π2♯ ρ = π1♯ η̃ = π1♯ η̂ = µ0.

We define a measure σ̂ ∈ P(Ω×R
d×Γ0) satisfying π1,2♯ σ̂ = ρ and π2,3♯ σ̂ = η̂. Since P is without

atoms and π1♯ ρ = P then also ρ ∈ P(Ω × R
d) is without atoms. Applying Lemma 2.10 with

T = Ω×R
d, S = Γ0, λ = ρ and ν = σ̂, there exists a sequence of Borel maps ŵn : Ω× R

d → Γ0

such that

(8.8) σ̂n := (iΩ×Rd , ŵn)♯ρ
Y
−→ σ̂, as n→ +∞.

Define wn : Ω × R
d → ΓT by wn(ω, x) := ŵn(ω, x) + x and note that s(ω, x, ŵn(ω, x)) =

(ω, x,wn(ω, x)). Thanks to the continuity of s, then s♯ is weakly continuous. From Remark 2.9,
by the composition rule (2.1) and (8.8), we have that

(8.9) σ̃n := s♯σ̂n = (iΩ×Rd , wn)♯ρ
Y
−→ s♯σ̂ =: σ̃ ∈ P(Ω× R

d × ΓT ), as n→ +∞.

From (2.1), a direct computation shows

π1,2♯ σ̃ = ρ,

η̃ = r−1
♯ η̂ =

(

r−1 ◦ π2,3
)

♯
σ̂ =

(

r−1 ◦ π2,3 ◦ s−1
)

♯
σ̃ = π2,3♯ σ̃.

We define η
n := π3♯ σ̃n ∈ P(ΓT ). Observing that π3♯ σ̃ = η, by (8.9) we have η

n → η weakly

in P(ΓT ). Notice also that (e0)♯η
n = (e0 ◦wn ◦ (iΩ,X0))♯P = (X0)♯P = µ0 and (e0)♯η = µ0. For

every n ∈ N, denote by Lηn := L(ΓT ,BΓT
,ηn) the Lagrangian problem for the system S. Since

e0, ū are continuous, we can apply Proposition 4.21 in the probability space (ΓT ,BΓT
,η), with

η
n,η ∈ P(ΓT ) and initial datum e0. Thus if (Zn, ū) ∈ ALηn (e0), we have that

(8.10) lim
n→+∞

JLηn (Z
n, ū) = JLη

(Z̄, ū).

Finally, for any n ∈ N, we define the pair (X̃n, ũn) by

X̃n : [0, T ]× Ω → R
d, X̃n(t, ω) := Zn(t, wn(ω,X0(ω)));

ũn : [0, T ] ×Ω → U, ũn(t, ω) := ū(t, wn(ω,X0(ω))).
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Observe that X̃n(0, ω) = Zn(0, wn(ω,X0(ω))) = e0(wn(ω,X0(ω))) = X0(ω). Moreover, thanks
to the composition rule (2.1) we have π3♯ σ̃n = (wn)♯ρ so that

(X̃n
t )♯P = (Zn

t ◦ wn ◦ (iΩ,X0))♯P = (Zn
t )♯η

n.

By construction we have (X̃n, ũn) ∈ AL(X0) and it is immediate to verify that

JL(X̃
n, ũn) = JLηn (Z

n, ū).

Then, by (8.10) we obtain (8.7).
Step 3. We apply Step 2 to the sequence (Z̄m, ūm) constructed in Step 1. Fix m ∈ N, then

there exists a sequence (X̃m,n, ũm,n)n∈N such that (X̃m,n, ũm,n) ∈ AL(X0) for every n ∈ N and

lim
n→+∞

JL(X̃
m,n, ũm,n) = JLη

(Z̄m, ūm), ∀m ∈ N.

Thanks to (8.6), by a simple diagonal argument we can select a (not relabelled) sequence
(Xn, un) ∈ AL(X0) satisfying

lim
n→+∞

JL(X
n, un) = JLη

(Z, u),

where (Z, u) are defined in Step 1. From (8.5) we finally get (8.3).
Step 4. By (8.3) and the definition of VL, for any ε > 0 there exists nε > 0 such that for

n ≥ nε
VL(X0) ≤ JL(X

n, un) ≤ JK(η, u) + ε.

From the arbitrariness of ε > 0 we have

VL(X0) ≤ JK(η, u), ∀ (η, u) ∈ AK(µ0),

hence the required inequality. �

Remark 8.6. Under the Convexity Assumption 3.4, if (η, u) ∈ AK(µ0) is an optimal pair, then
(Z, u) given by Lemma 8.4 is optimal for the Lagrangian problem Lη. This is a consequence of
Theorem 7.3, Proposition 8.3 and of (8.4) in Theorem 8.5.

We conclude the section with the proof of Theorem 8.2.

Proof of Theorem 8.2. Thanks to Proposition 3.6 and Remark 5.2 the relaxed Lagrangian prob-
lem RL in S coincides with L′ in S

′. Precisely, for every X0 ∈ Lp(Ω;Rd) it holds ARL(X0) =
AL

′(X0). Moreover, JRL(X,σ) = JL
′(X,σ) for every (X,σ) ∈ ARL(X0) = AL

′(X0). Hence,
VRL(X0) = VL

′(X0). The equality VL(X0) = VRL(X0) follows from Theorem 5.3. Finally,
Theorem 8.1 yields VL

′(X0) = VE
′((X0)♯P) = VK

′((X0)♯P). �

8.2. Continuity of VE, VK and VL. Here, we prove continuity results for the value functions
of the various proposed formulations.

Theorem 8.7 (Continuity of VE and VK). Let S = (U, f,C,CT ) satisfy the Convexity Assumption
3.4. If µ0 ∈ Pp(R

d) and {µn0}n∈N ⊂ Pp(R
d) is a sequence such that Wp(µ

n
0 , µ0) → 0 as

n→ +∞, then
lim

n→+∞
VE(µ

n
0 ) = VE(µ0), lim

n→+∞
VK(µn0 ) = VK(µ0).

Proof. Let µn0 converge to µ0 in Pp(R
d). By Proposition 2.1 with S = R

d, there exist X0,X
n
0 ∈

B([0, 1];Rd) such that (X0)♯L1 = µ0, (Xn
0 )♯L1 = µn0 and Xn

0 (ω) → X0(ω) for L1-a.e. ω ∈
[0, 1]. Since µn0 , µ0 ∈ Pp(R

d) we have Xn
0 ,X0 ∈ Lp([0, 1];Rd). Moreover by the convergence

Wp(µ
n
0 , µ0) → 0 and Proposition 2.4 there exists ψ : [0,+∞) → [0,+∞) admissible (according

to Definition 2.3) such that

(8.11) sup
n∈N

ˆ

[0,1]
ψ(|Xn

0 (t)|
p) dL1(t) = sup

n∈N

ˆ

Rd

ψ(|x|p) dµn0 (x) < +∞.

Thanks to Vitali theorem we get

‖Xn
0 −X0‖Lp([0,1];Rd) → 0 as n→ +∞.
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Applying Proposition 4.12 to the Lagrangian problem in S with (Ω,B,P) = ([0, 1],B[0,1],L1) we
get lim supn→+∞ VL(X

n
0 ) ≤ VL(X0). Theorem 8.1 yields

lim sup
n→+∞

VE(µ
n
0 ) = lim sup

n→+∞
VL(X

n
0 ) ≤ VL(X0) = VE(µ0).

By Proposition 6.9 we get limn→+∞ VE(µ
n
0 ) = VE(µ0). Finally, the continuity of VK follows by

Theorem 7.3 and the continuity of VE. �

Theorem 8.8 (Continuity of VL). Let S = (U, f,C,CT ) satisfy Assumption 3.1 and (Ω,B,P) be a
standard Borel space such that P is without atoms. If X0 ∈ Lp(Ω;Rd) and {Xn

0 }n∈N ⊂ Lp(Ω;Rd)
is a sequence such that ‖Xn

0 −X0‖Lp(Ω;Rd) → 0 as n→ +∞, then

lim
n→+∞

VL(X
n
0 ) = VL(X0).

Proof. From Theorem 8.2 we have VL(X
n
0 ) = VE

′((Xn
0 )♯P) and VL(X0) = VE

′((X0)♯P). The
application of Theorem 8.7 to E′ in S

′ = (U ,F ,C ,CT ) (see Definition 3.5) concludes the
proof. �

8.3. A counterexample: Non-existence of minimizers for L. In the previous sections we
have shown that, under the Convexity Assumption 3.4, the Eulerian and Kantorovich problems
always admit a minimizer, see Theorems 6.8, 7.3. This is not always true in the Lagrangian
setting. Existence of minimizers has been shown in Remark 8.6 in the very particular case
L = Lη, where η is optimal for a Kantorovich problem. In general, for a given parametrization
space (Ω,B,P), the choice of the initial condition is relevant as highlighted in the following.

Theorem 8.9. Let S = (U, f,C,CT ) satisfy the Convexity Assumption 3.4 and (Ω,B,P) be a
standard Borel space such that P is without atoms. If µ0 ∈ Pp(R

d) then there exists X0 ∈
Lp(Ω;Rd) with (X0)♯P = µ0 and (X,u) ∈ AL(X0) such that

(8.12) JL(X,u) = VL(X0) = VE(µ0).

Proof. Let µ0 ∈ Pp(R
d), by Theorem 7.3 there exists (η, ū) ∈ AK(µ0) such that JK(η, ū) =

VK(µ0). Fix τ a Polish topology on Ω such that B = B(Ω,τ). Since P is without atoms, thanks
to Proposition 2.1 there exists a Borel map ψ : Ω → ΓT such that ψ♯P = η. For every t ∈ [0, T ]
we define Xt := et ◦ ψ and the Borel map u(t, ω) := ū(t, ψ(ω)). Using the same techniques
as in the proof of Lemma 8.4 we deduce that (X,u) ∈ AL(X0) (where X0 := e0 ◦ ψ) and
JL(X,u) = JK(η, ū). By Theorems 8.1 and 7.3 we finally get (8.12). �

In general, if the initial condition X0 is assigned a priori, existence of minimizers for the
Lagrangian problem is not guaranteed. We consider the Wasserstein barycenter problem, for
which we study the Eulerian and Lagrangian formulations. In particular, we exhibit an initial
datum X0 whose corresponding Lagrangian problem does not admit minimizers. We stress that
the system under consideration satisfies the Convexity Assumption 3.4.

8.3.1. Wasserstein barycenter problem: Eulerian formulation. We consider the setting S = (U, f,C,CT )

as follows: let U := BR(0) ⊂ R
d, for some R > 0 sufficiently large, T = 1 and p = 2. We fix

ν ∈ P(Rd) with compact support. We consider the velocity field f : Rd × U × P2(R
d) → R

d,
the cost functions C : Rd×U ×P2(R

d) → [0,+∞) and CT : Rd×P2(R
d) → [0,+∞) defined by

f(x, u, µ) = u, C(x, u, µ) = |u|2, CT (x, µ) =W 2
2 (µ, ν).

In this setting, the cost functional has the form

JE(µ, u) =

ˆ 1

0

ˆ

Rd

|u(t, x)|2dµt(x)dt+W 2
2 (µ1, ν).

For any µ0 ∈ P2(R
d), the associated value function is given by

(8.13) VE(µ0) := inf
(µ,u)∈AE(µ0)

JE(µ, u),

and recall that by Theorem 6.8 the infimum in (8.13) is actually a minimum.
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Let us now fix µ0 ∈ P(Rd) with compact support and characterize the value function and the
corresponding minimizers. By the Benamou-Brenier formula (2.7), we have the lower bound

inf
(µ,u)∈AE(µ0)

(
ˆ 1

0

ˆ

Rd

|u(t, x)|2dµt(x)dt+W 2
2 (µ1, ν)

)

≥ inf
µ1∈P2(Rd)

[

W 2
2 (µ0, µ1) +W 2

2 (µ1, ν)
]

.

(8.14)

Using the triangle inequality, it is easy to prove that

(8.15) W 2
2 (µ0, µ1) +W 2

2 (µ1, ν) ≥
1

2
W 2

2 (µ0, ν), ∀µ1 ∈ P2(R
d),

and, for any constant speed Wasserstein geodesic {σt}t∈[0,1] such that σ0 = µ0 and σ1 = ν, the
measure µ1 = σ1/2 realizes the equality in (8.15). Since the supports of µ0 and ν are compact,
then the support of σ1/2 is compact and, denoting by {µt}t∈[0,1] a Wasserstein geodesic joining
µ0 to σ1/2, we also have that a vector field u realizing the equality

(8.16)

ˆ 1

0

ˆ

Rd

|u(t, x)|2dµt(x)dt =W 2
2 (µ0, σ1/2)

is bounded (see e.g. [51, Section 5.4]). Then, using u satisfying (8.16) and choosing R sufficiently
large, we obtain the equality in (8.14). The value of the minimum is

(8.17) VE(µ0) =W 2
2 (µ0, σ1/2) +W 2

2 (σ1/2, ν) =
1

2
W 2

2 (µ0, ν).

Notice that the minimizer (µ, u) is not unique a priori. If at least one of the measures ν and
µ0 is absolutely continuous with respect to Ld, then the geodesic {σt}t∈[0,1] is unique and the

map η 7→W 2
2 (η, ν) is strictly convex. In this case σ1/2 is the unique minimizer of the functional

η 7→ W 2
2 (µ0, η) +W 2

2 (η, ν) and the pair (µ, u), with µt := σt/2 for all t ∈ [0, 1], is the (unique)
minimizer for the Eulerian problem.

8.3.2. Wasserstein barycenter problem: Lagrangian formulation. Let (Ω,B,P) be a standard
Borel space such that P ∈ P(Ω) is without atoms. The Lagrangian cost functional of the
Wasserstein barycenter problem is given by

(8.18) JL(X,u) :=

ˆ 1

0

ˆ

Ω
|ut(ω)|

2dP(ω)dt+W 2
2 ((X1)♯P, ν).

For any X0 ∈ L2(Ω;Rd), the corresponding value function is

VL(X0) = inf
(X,u)∈AL(X0)

JL(X,u).

Since (X,u) ∈ AL(X0) satisfies, for P-a.e. ω ∈ Ω, the system
{

Ẋt(ω) = ut(ω), for L1-a.e. t ∈ (0, 1)
X|t=0(ω) = X0(ω),

we have
ˆ 1

0

ˆ

Ω
|ut(ω)|

2dP(ω)dt ≥

ˆ

Ω

∣

∣

∣

∣

ˆ 1

0
ut(ω)dt

∣

∣

∣

∣

2

dP(ω)

=

ˆ

Ω

∣

∣

∣

∣

ˆ 1

0
Ẋt(ω)dt

∣

∣

∣

∣

2

dP(ω) =

ˆ

Ω
|X1(ω)−X0(ω)|

2 dP(ω)

(8.19)

where we have applied Fubini theorem and Jensen’s inequality. Notice that the inequality in
(8.19) becomes an equality if (X,u) belongs to the restrict admissibility class given by

ĀL(X0) := {(X,u) ∈ AL(X0) : ut(ω) = ū(ω), ∀t ∈ [0, 1], for P-a.e. ω ∈ Ω}.
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Suppose now that µ0 := (X0)♯P has compact support (i.e. X0 bounded), then we can compare
the Lagrangian and Eulerian formulation of the Wasserstein barycenter problem. Indeed, for R
sufficiently large we have

VL(X0) = inf
(X,ū)∈ĀL(X0)

(
ˆ

Ω
|X1(ω)−X0(ω)|

2dP(ω) +W 2
2 ((X1)♯P, ν)

)

= VE(µ0) = min
µ1∈P2(Rd)

(

W 2
2 (µ0, µ1) +W 2

2 (µ1, ν)
)

=
1

2
W 2

2 (µ0, ν).

(8.20)

where the first equality follows by the choice (X, ū) ∈ ĀL(X0), the second equality is given by
Theorem 8.1 and the last two equalities are exactly (8.17).

We now exhibit an example where the infimum for the Lagrangian problem is not a minimum.
Let us consider Ω = [0, 1], P = L1 and fix the dimension d = 2.
We set ν := L2 [0, 1]2, X0 : [0, 1] → R

2 defined by X0(ω) = (1/2, ω). We observe that
µ0 := (X0)♯P = H 1 ({1/2}× [0, 1]). We also notice that X−1

0 : R2 → [0, 1], defined µ0-a.e. has

the form X−1
0 (1/2, ω) = ω.

Since
ˆ

[0,1]
|X1(ω)−X0(ω)|

2 dP(ω) =

ˆ

R2

∣

∣X1(X
−1
0 (x)) − x

∣

∣

2
dµ0(x),

and defining

Bµ0 := {X1 ◦X
−1
0 : X1 = X0 + ū and (X, ū) ∈ ĀL(X0)}

= {Y ∈ L2((R2, µ0);R
2) : |Y (x)− x| ≤ R, for µ0-a.e. x ∈ R

2},
(8.21)

we easily get

VL(X0) = inf
(X,ū)∈ĀL(X0)

JL(X, ū)

= inf
Y ∈Bµ0

[
ˆ

R2

|Y (x)− x|2 dµ0(x) +W 2
2 (Y♯µ0, ν)

]

.
(8.22)

As already observed at the end of subsection 8.3.1, since ν is absolutely continuous with respect
to L2, there exists a unique geodesic {σt}t∈[0,1] joining µ0 to ν. Furthermore, σ1/2 is the unique

minimizer of the functional η 7→W 2
2 (µ0, η)+W

2
2 (η, ν). Then, for R sufficiently large, from (8.20)

and (8.22) we know that

W 2
2 (µ0, σ1/2) +W 2

2 (σ1/2, ν) = inf
Y ∈Bµ0

[
ˆ

Rd

|Y (x)− x|2 dµ0(x) +W 2
2 (Y♯µ0, ν)

]

≤ inf
Y ∈Bµ0

Y♯µ0=σ1/2

ˆ

Rd

|Y (x)− x|2 dµ0(x) +W 2
2 (σ1/2, ν).

(8.23)

On the other hand, since supp(σ1/2) ⊂ [0, 1]2, by [49, Theorem B] we have

(8.24) W 2
2 (µ0, σ1/2) = inf

Y ∈Bµ0
Y♯µ0=σ1/2

ˆ

Rd

|Y (x)− x|2 dµ0(x)

and, consequently, equality holds in (8.23). Moreover the infimum in (8.24) is not attained.
Indeed, the map T : R2 → R

2 defined by T (x1, x2) = (1/2, x2) satisfies T♯ν = µ0 and T = ∇ϕ
for ϕ(x1, x2) =

1
2(x1 + x22), therefore T is the optimal transport map from ν to µ0. The unique

geodesic joining µ0 to ν is σt = (t(x1, x2) + (1 − t)(1/2, x2))♯ν and σ1/2 = (12x1 + 1
4 , x2))♯ν

coincides with the uniform probability measure on [1/4, 3/4] × [0, 1]. The map T is still the
optimal transport map from σ1/2 to µ0 and the unique optimal transport plan between σ1/2 and
µ0 is ((x1, x2), (1/2, x2))♯σ1/2. Then the unique optimal transport plan between µ0 and σ1/2 is
γ := ((1/2, x2), (x1, x2))♯σ1/2. Since γ is not concentrated on the graph of a map, the optimal
transport map from µ0 to σ1/2 does not exist.
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Since (8.24) has not minimizers, then (8.22) cannot have minimizers. Indeed, suppose there
exists a minimizer (X,u) ∈ AL(X0) for JL in (8.22). Then X1 : [0, 1] → R

2 satisfies (X1)♯P =

σ1/2, u = X1 −X0 and Xt = tu+X0. Defining Y = X1 ◦X
−1
0 , we have that Y♯µ0 = σ1/2 so that

Y is a minimizer in (8.24), which is absurd.

Remark 8.10. Notice that existence of minimizers is not guaranteed even for Relaxed Lagrangian
problems. Indeed, the same results obtained for the Wasserstein barycenter problem in S =
(U, f,C,CT ) given in Section 8.3.1, can be easily extended to the lifted system S

′ = (U ,F ,C ,CT )
associated to S (see Definition 3.5).

In the proposed example, the Lagrangian and Eulerian problems L′,E′ associated to S
′ can be

treated as the problems L,E associated to S thanks to the following simple observation: given a
probability measure ρ ∈ P(U), by Jensen’s inequality we have

ˆ

U
|u|2 dρ(u) ≥

∣

∣

∣

∣

ˆ

U
udρ(u)

∣

∣

∣

∣

2

,

and the equality holds if and only if ρ = δu for some u ∈ U . This guarantees that possible control
minimizers for L′,E′ are of the form δu with u non-relaxed control for L,E, respectively. The
corresponding trajectories for L′,E′ with control δu coincide with the ones associated to u for
problems L and E, respectively. Finally, thanks to Remark 5.2, non-existence of minima for L′

corresponds to non-existence of minima for RL.

9. Finite particle systems and Gamma-convergence

To model the evolution of a finite number of particles, we introduce a discrete finite space ΩN

with the corresponding normalized counting measure P
N . In this setting, in order to prove equiv-

alence between Eulerian and Lagrangian problems, we cannot directly apply the results given in
Theorems 8.1 due to the requirement on the probability measure P to be without atoms (see in
particular Theorem 8.5). Hence, we introduce a further formulation of the Lagrangian problem
in the context of feedback controls (see Definition 9.5) and we exploit a discrete formulation of
the superposition principle for which we refer to Theorem C.1.

Furthermore, in Subsections 9.2 and 9.3, we prove a (discrete to continuous) Γ-convergence
result respectively for the Lagrangian and Eulerian cost functionals when the number of particles
goes to infinity.

9.1. Equivalences between N-particles problems. Let (ΩN , S(ΩN ),PN ) given by

(9.1)
ΩN := {1, . . . , N}, S(ΩN ) := σ({1}, . . . {N})),

P
N ({k}) :=

1

N
, k = 1, . . . , N.

We will refer to P
N as the normalized counting measure, which can be written as

P
N =

1

N

N
∑

k=1

δk.

Let us denote with LN = L(ΩN , S(ΩN ),PN ) the Lagrangian problem associated to the probability
space (ΩN , S(ΩN ),PN ). Notice that the functional space Lp(ΩN ;Rd) coincides with the space of
all maps g : ΩN → R

d, which can be identified with (Rd)N .
Differently from the Lagrangian problem LN , where we just need to fix the parametrization

space, the definition of the N -particle Eulerian problem requires the introduction of a further
constraint. Let us firstly define the subspace of P(Rd) given by the discrete measures as

(9.2) P
N (Rd) :=

{

µ =
1

N

N
∑

i=1

δxi for some xi ∈ R
d

}

.
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Definition 9.1 (Discrete Eulerian optimal control problem (EN )). Let S = (U, f,C,CT ) satisfy
Assumption 3.1. Given µ0 ∈ PN (Rd), we say that (µ, u) ∈ A

E
N (µ0), if

(i) (µ, u) ∈ AE(µ0);
(ii) µt ∈ PN (Rd), for every t ∈ [0, T ].

We define the cost functional J
E

N := JE and the value function

V
E

N (µ0) := inf{J
E

N (µ, u) : (µ, u) ∈ A
E

N (µ0)}.

Remark 9.2. Notice that item (ii) in Definition 9.1 does not follow from the requirement µ0 ∈
PN (Rd). Indeed, the control map u in general is not Lipschitz continuous so that uniqueness of
characteristics is not guaranteed.

Observe that, for every N ∈ N, it holds

(9.3) V
E

N (µ0) ≥ VE(µ0), ∀µ0 ∈ P
N (Rd).

The main result of this section is given in the following theorem.

Theorem 9.3. Let S = (U, f,C,CT ) satisfy Assumption 3.1. Let p ≥ 1 and X0 ∈ Lp(ΩN ;Rd).
Then

V
L
N (X0) = V

E
N ((X0)♯P

N ).

The proof is a direct consequence of Propositions 9.4, 9.7 and 9.8 below.

Exploiting the argument contained in [34, Lemma 6.2] we derive a first comparison between
V
L
N (X0) and V

E
N ((X0)♯P

N ).

Proposition 9.4. Let S = (U, f,C,CT ) satisfy Assumption 3.1 and let X0 ∈ Lp(ΩN ;Rd). If
(X,u) ∈ A

L
N (X0), then there exists (µ, u) ∈ A

E
N ((X0)♯P

N ) such that J
L
N (X,u) ≥ J

E
N (µ, u).

Moreover, V
L
N (X0) ≥ V

E
N ((X0)♯P

N ).

Proof. Let (X,u) ∈ A
L
N (X0). Let us define X(t) := {x ∈ R

d : Xt(ω) = x for some ω ∈ ΩN} and

(9.4) J(t, x) := {ω ∈ ΩN : Xt(ω) = x}, for any (t, x) ∈ [0, T ] ×R
d,

and denote by P the collection of partitions P of ΩN . It is clear that the family PX(t) :=
{J(t, x) : x ∈ X(t)} belongs to P. As proved in [34, Lemma 6.2], there exists a finite partition on
Borel sets of the interval [0, T ] of the form {SP : P ∈ P}, where SP := {t ∈ [0, T ] : PX(t) = P}.

Given ω, ω′ ∈ ΩN and a Borel set S ⊂ [0, T ], if Xt(ω) = Xt(ω
′) for any t ∈ S then, by the

absolute continuity of the curves t 7→ Xt(ω) and t 7→ Xt(ω
′), we have Ẋt(ω) = Ẋt(ω

′), for LT -a.e.
t ∈ S.

We define µt := (Xt)♯P
N and we observe that

(9.5) µt =
1

N

∑

x∈X(t)

#J(t, x)δx.

Moreover, defining for any (t, x) ∈ [0, T ] × R
d

ω̄t,x ∈ argmin
ω∈J(t,x)

C(x, u(t, ω), µt),

we set

(9.6) u(t, x) := u(t, ω̄t,x).
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We show that (µ, u) ∈ A
E

N ((X0)♯P
N ). Let us fix ϕ ∈ C1

c (R
d). For LT -a.e. t ∈ [0, T ] it holds

d

dt

ˆ

Rd

ϕ(x) d((Xt)♯P
N )(x) =

ˆ

ΩN

∇ϕ(Xt(ω)) · f(Xt(ω), u(t, ω), µt) dP
N (ω)

=
1

N

N
∑

ω=1

∇ϕ(Xt(ω)) · f(Xt(ω), u(t, ω), µt)

=
1

N

∑

x∈X(t)

∇ϕ(x) ·
∑

ω∈J(t,x)

f(x, u(t, ω), µt).

(9.7)

Since f(x, u(t, ω), µt) = f(x, u(t, x), µt) for every ω ∈ J(t, x), we can rewrite the right hand side
of (9.7) to get

1

N

∑

x∈X(t)

∇ϕ(x) ·
∑

ω∈J(t,x)

f(x, u(t, ω), µt) =
1

N

∑

x∈X(t)

#J(t, x)∇ϕ(x) · f(x, u(t, x), µt)

=

ˆ

Rd

∇ϕ(x) · f(x, u(t, x), µt) dµt(x),

where the last equality is a consequence of (9.5).
For what concerns the cost functional, we have

ˆ T

0

ˆ

Ω
C(Xt(ω), u(t, ω), µt) dP

N (ω) dt

=
1

N

ˆ T

0

∑

x∈X(t)

∑

ω∈J(t,x)

C(x, u(t, ω), µt) dt

≥
1

N

ˆ T

0

∑

x∈X(t)

#J(t, x)C(x, u(t, x), µt) dt

=

ˆ T

0

ˆ

Rd

C(x, u(t, x), µt) dµt(x) dt,

where the inequality comes from the definition of u in (9.6) and the last equality follows from
(9.5). Since

ˆ

ΩN

CT (XT (ω), µT ) dP
N(ω) =

ˆ

Rd

CT (x, µT ) dµT (x),

we conclude that J
L
N (X,u) ≥ J

E
N (µ, u). �

Here we introduce a feedback formulation of the Lagrangian optimal control problem in order
to prove the reverse inequality V

L
N (X0) ≤ V

E
N ((X0)♯P

N ). We firstly show its relation with the
Lagrangian and Eulerian problems in a general context, i.e. where the probability space (Ω,B,P)
is not necessarily the space (ΩN , S(ΩN ),PN ) associated to the N -particles framework.

Definition 9.5 (Feedback Lagrangian optimal control problem (FL)). Let S = (U, f,C,CT )
satisfy Assumption 3.1 and let (Ω,B,P) be a probability space. Given X0 ∈ Lp(Ω;Rd), we say
that (X,u) ∈ AFL(X0) if

(i) u ∈ B([0, T ] × R
d;U);

(ii) X ∈ Lp(Ω;ACp([0, T ];Rd)) and for P-a.e. ω ∈ Ω, X(ω) is a solution of the following
Cauchy problem

(9.8)

{

Ẋt(ω) = f(Xt(ω), ut(Xt(ω)), (Xt)♯P), for LT -a.e. t ∈]0, T ]

X|t=0(ω) = X0(ω),

where Xt : Ω → R
d is defined by Xt(ω) := X(t, ω) for P-a.e. ω ∈ Ω.
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We refer to (X,u) ∈ AFL(X0) as to an admissible pair, with X a trajectory and u a feedback
control.
We define the cost functional JFL : Lp(Ω;C([0, T ];Rd))× B([0, T ] × R

d;U) → [0,+∞) by

JFL(X,u) :=

ˆ

Ω

ˆ T

0
C(Xt(ω), ut(Xt(ω)), (Xt)♯P) dt dP(ω) +

ˆ

Ω
CT (XT (ω), (XT )♯P) dP(ω),

and the corresponding value function VFL : Lp(Ω;Rd) → [0,+∞) by

(9.9) VFL(X0) := inf {JFL(X,u) : (X,u) ∈ AFL(X0)} .

In the following, FL(Ω,B,P) denotes the Feedback Lagrangian problem given in Definition 9.5.

We short the notation to FL when the probability space is clear from the context.

Remark 9.6. Observe that, choosing a constant (feedback) control function u, from Proposition
4.8 it is immediate to prove that AFL(X0) 6= ∅. In general, given u ∈ B([0, T ] × R

d;U), the
existence and uniqueness of solutions to the Cauchy problem (9.8) is not guaranteed.

The following result follows directly from Definitions 4.1, 6.1 and 9.5.

Proposition 9.7. Let S = (U, f,C,CT ) satisfy Assumption 3.1 and (Ω,B,P) be a probability
space. Let X0 ∈ Lp(Ω;Rd). If (X,u) ∈ AFL(X0), then

(i) defining u : [0, T ] × Ω → U by u(t, ω) := u(t,Xt(ω)), we have that (X,u) ∈ AL(X0) and
JFL(X,u) = JL(X,u). In particular it holds VFL(X0) ≥ VL(X0).

(ii) defining µt := (Xt)♯P for any t ∈ [0, T ], we have that (µ, u) ∈ AE((X0)♯P) and JFL(X,u) =
JE(µ, u). In particular it holds VFL(X0) ≥ VE(µ0).

Taking advantage of Proposition 9.7 and of the discrete superposition principle given in Theo-
rem C.1, we have the following equivalence result between FLN := FL(ΩN , S(ΩN ),PN ) and EN

defined in Definition 9.1.

Proposition 9.8. Let S = (U, f,C,CT ) satisfy Assumption 3.1. Let p ≥ 1, X0 ∈ Lp(ΩN ;Rd) and

µ0 := 1
N

∑N
ω=1 δX0(ω) = (X0)♯P

N . If (µ, u) ∈ A
E

N (µ0), then there exists X ∈ C([0, T ];Lp(ΩN ))

such that µt = (Xt)♯P
N for all t ∈ [0, T ], (X,u) ∈ A

FL
N (X0) and J

E
N (µ, u) = J

FL
N (X,u).

Moreover, V
E

N (µ0) = V
FL

N (X0).

Proof. Let (µ, u) ∈ A
E

N (µ0). By the superposition principle given in Theorem C.1 applied to µ
and the vector field v(t, x) = f(x, u(t, x), µt), there exists η ∈ P(ΓT ) such that

η =
1

N

N
∑

ω=1

δγω ,

where γω ∈ ΓT , ω = 1, . . . , N . We define X : [0, T ]×ΩN → R
d by X(t, ω) := γω(t) that satisfies

(X,u) ∈ A
FL

N thanks to (C.4) in Theorem C.1. Hence it readily follows that J
FL

N (X,u) =
J
E

N (µ, u) and V
FL

N (X0) ≤ V
E

N (µ0). By Proposition 9.7 we have that V
FL

N (X0) ≥ V
E

N (µ0)
and we conclude the proof. �

9.2. Finite particle approximation for L. The aim of this section is to approximate a
general Lagrangian problem L = L(Ω,B,P) with finite particle Lagrangian problems LN =
L(ΩN , S(ΩN ),PN ), N ∈ N, where (ΩN , S(ΩN ),PN ) is defined in (9.1). A first result in this
direction has been already obtained in Proposition 4.18 (see also Remark 4.19) in Section 4.2.
Here, we specialize the result in the case of equally distributed masses which is suitable for the
application to a finite particle/agent model.

Recall that if (Ω,B,P) is a standard Borel space and P is without atoms, thanks to item
(ii) in Proposition 4.16 there exists a family of finite algebras B

N ⊂ B, N ∈ N, satisfying the
finite approximation property of Definition 4.15 and P(AN

k ) = 1
N , with k = 1, . . . , N . Recall the

definition of ψN , φN and KN in (4.22) and (4.23), respectively.

A Gamma-convergence result for the functional JL is given in the following proposition.
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Proposition 9.9 (Finite particle approximation for L). Let S = (U, f,C,CT ) satisfy Assumption
3.1. Let (Ω,B,P) be a standard Borel space such that P is without atoms. The following holds:

(i) Suppose that (X,u) ∈ Lp(Ω;ACp([0, T ];Rd))×M([0, T ]×Ω;U) and (XN , uN ) ∈ C([0, T ];Lp(ΩN ;Rd))×
M([0, T ] × ΩN ;U) such that

lim
N→+∞

KN (XN , uN ) = (X,u), in C([0, T ];Lp(Ω;Rd))× L1([0, T ] × Ω;U).

Then
lim

N→+∞
J
L

N (XN , uN ) = JL(X,u).

(ii) Assume that U is a compact convex subset of a separable Banach space V . Suppose that
X0 ∈ Lp(Ω;Rd) and (X,u) ∈ AL(X0). If XN

0 ∈ Lp(ΩN ;Rd) such that

(9.10) lim
N→+∞

‖XN
0 ◦ ψN −X0‖Lp(Ω;Rd) = 0

then there exists a sequence (XN , uN ) ∈ A
L
N (XN

0 ) such that

lim
N→+∞

KN (XN , uN ) = (X,u), in C([0, T ];Lp(Ω;Rd))× L1([0, T ]× Ω;U)

and
lim

N→+∞
J
L

N (XN , uN ) = JL(X,u).

Proof. Thanks to Proposition A.3 it holds that X ∈ C([0, T ];Lp(Ω;Rd)). Item (i) can be proved
exactly by the same technique used in the second part of the proof of Proposition 4.11 ap-
plied to the sequence KN (XN , uN ) and recalling that JL

(

KN (XN , uN )
)

= J
L
N (XN , uN ) (see

Proposition 4.14). Notice that, since U is metrizable and compact the convergence uN → u in
L1([0, T ]×Ω;U) is equivalent to the convergence in (LT ⊗P)-measure. Item (ii), is a direct appli-
cation of Proposition 4.18 to the sequence of finite algebras B

N given in item (ii) of Proposition
4.16. �

Proposition 9.10 (Convergence of the value functions). Let S = (U, f,C,CT ) satisfy Assumption
3.1 with U a compact convex subset of a separable Banach space V . Let (Ω,B,P) be a standard
Borel space such that P is without atoms. If X0 ∈ Lp(Ω;Rd) and XN

0 ∈ Lp(ΩN ;Rd) satisfy

(9.11) lim
N→+∞

‖XN
0 ◦ ψN −X0‖Lp(Ω;Rd) = 0,

then
lim sup
N→+∞

V
L
N (XN

0 ) ≤ VL(X0).

Moreover, if S = (U, f,C,CT ) satisfies the Convexity Assumption 3.4, then

lim inf
N→+∞

V
L
N (XN

0 ) ≥ VL(X0).

In particular, under the Convexity Assumption 3.4,

lim
N→+∞

V
L
N (XN

0 ) = VL(X0).

Proof. By definition of inf, for every ε > 0 there exists (Xε, uε) ∈ AL(X0) such that VL(X0) ≥
JL(Xε, uε) − ε. Moreover from item (ii) in Proposition 9.9 there exists (XN

ε , u
N
ε ) such that

J
L
N (XN

ε , u
N
ε ) → JL(Xε, uε), as N → +∞. Hence

lim sup
N→+∞

V
L
N (XN

0 ) ≤ lim sup
N→+∞

J
L
N (XN

ε , u
N
ε ) = JL(Xε, uε) ≤ VL(X0) + ε.

By the arbitrariness of ε we conclude.
By Proposition 9.4 and (9.3) we get

V
L
N (XN

0 ) ≥ V
E

N (µN0 ) ≥ VE(µ
N
0 ).

In the convex setting, by the lower semicontinuity of the value function VE (see Proposition 6.9)
and by Corollary 8.1 (P is without atoms by assumption) we have the desired convergence. �
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Remark 9.11. A natural choice for XN
0 in Proposition 9.10 is given by XN

0 := X̃N
0 ◦ φN where

X̃N
0 :=

N
∑

k=1

1AN
k

 

AN
k

X0(ω) dP(ω).

For a proof of the convergence (9.11) we refer to Lemma D.3 and Proposition D.1 in Appendix
D.

9.3. Finite particle approximation for E. In this section, we show that the Eulerian problem
E can be approximated by finite particle Eulerian problems EN defined in Definition 9.1. Thanks
to Theorem 9.3, we are able to approximate the Eulerian problem also with a sequence of finite
particle Lagrangian problems LN = L(ΩN , S(ΩN ),PN ), N ∈ N, with (ΩN , S(ΩN ),PN ) as in
(9.1). This is relevant from the point of view of applications. The main result of the section is
stated in the following theorem.

Theorem 9.12 (Convergence of the value functions). Let S = (U, f,C,CT ) satisfy the Convexity
Assumption 3.4. Let µ0 ∈ Pp(R

d) and µN0 ∈ PN (Rd) such that Wp(µ
N
0 , µ0) → 0 as N → +∞,

then

lim
N→+∞

V
E

N (µN0 ) = VE(µ0).

Moreover, for every XN
0 ∈ Lp(ΩN ;Rd) such that (XN

0 )♯P
N = µN0 it holds that

lim
N→+∞

V
L
N (XN

0 ) = VE(µ0).

In order to prove Theorem 9.12, we start with the following proposition.

Proposition 9.13 (Finite particle approximation for E). Let S = (U, f,C,CT ) satisfy the Con-
vexity Assumption 3.4. Let µ0 ∈ Pp(R

d) and µN0 ∈ PN (Rd), N ∈ N, such that

(9.12) lim
N→+∞

Wp(µ
N
0 , µ0) = 0.

If (µ, u) ∈ AE(µ0), then there exists a sequence (µN , uN ) ∈ A
E

N (µN0 ) such that

(1) (µN , uN ) converges to (µ, u) according to Definition 6.5;
(2) lim

N→+∞
J
E

N (µN , uN ) = JE(µ, u).

Proof. Step 1. Let (µ, u) ∈ AE(µ0). In this step we associate to (µ, u) an admissible pair

(X̃, ũ) ∈ AL(X̃0) for the Lagrangian problem L := L([0, 1];B[0,1],L1) such that

(9.13) JL(X̃, ũ) = JE(µ, u).

By Proposition 7.4, there exists (η, u) ∈ AK(µ0) such that u(t, γ) = u(t, γ(t)), (et)♯η = µt
and JK(η, u) = JE(µ, u). Thanks to Lemma 8.4, the map Z : [0, T ] × ΓT → R

d defined by
Z(t, γ) := γ(t) = et(γ) satisfies (Z, u) ∈ ALη

(e0) with Lη := L(ΓT ,BΓT
,η) and

(9.14) JLη
(Z, u) = JK(η, u),

By Proposition 2.1 applied to S = ΓT and ν = η, there exists a Borel map P : [0, 1] → ΓT such
that P♯L1 = η.

We define X̃ : [0, T ] × [0, 1] → R
d by X̃t(ω) := Zt(P (ω)) and ũ : [0, T ] × [0, 1] → U by

ũt(ω) := ut(P (ω)). Notice that

(9.15) (X̃t)♯L1 = (et ◦ P )♯L1 = (et)♯η = µt,

and it is easy to prove that (X̃, ũ) ∈ AL(X̃0). Moreover JL(X̃, ũ) = JLη
(Z, u) and, by (9.14),

we obtain (9.13).
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Step 2. We use the partition of [0, 1] defined in Lemma D.3. We define the piecewise constant

initial data X̃N
0 : [0, 1] → R

d and controls ũN : [0, T ]× [0, 1] → U by

X̃N
0 :=

N
∑

k=1

1INk

 

INk

X̃0(ω) dL1(ω),

ũNt :=

N
∑

k=1

1INk

 

INk

ũt(ω) dL1(ω) , for all t ∈ [0, T ].

From the definition of X̃N
0 and Lemma D.3 we have

(9.16) Wp(µ̃
N
0 , µ0) ≤ ‖X̃N

0 − X̃0‖Lp([0,1];Rd) → 0 as N → +∞,

where

µ̃N0 := (X̃N
0 )♯L1 =

1

N

N
∑

k=1

δx̃N
k
, x̃Nk :=

 

INk

X̃0(ω) dL1(ω) ∈ R
d.

Since µN0 = 1
N

∑N
k=1 δxN

k
, there exists a permutation of indexes σN : {1, . . . , N} → {1, . . . , N}

and a map XN
0 : [0, 1] → R

d defined by XN
0 :=

∑N
k=1 x

N
σN (k)

1INk
such that

(9.17) Wp(µ
N
0 , µ̃

N
0 ) = ‖XN

0 − X̃N
0 ‖Lp([0,1];Rd).

Using (9.12), (9.16) and (9.17) we obtain

‖XN
0 − X̃0‖Lp([0,1];Rd) ≤ ‖XN

0 − X̃N
0 ‖Lp([0,1];Rd) + ‖X̃N

0 − X̃0‖Lp([0,1];Rd)

=Wp(µ
N
0 , µ̃

N
0 ) + ‖X̃N

0 − X̃0‖Lp([0,1];Rd)

≤Wp(µ
N
0 , µ0) +Wp(µ0, µ̃

N
0 ) + ‖X̃N

0 − X̃0‖Lp([0,1];Rd) → 0.

(9.18)

Let (XN , ũN ) ∈ AL(X
N
0 ). By Lemma D.3 and dominated convergence we have that ‖ũN −

ũ‖L1([0,1]×[0,T ];V ) → 0 as N → +∞. Then, by Proposition 4.11, we have

(9.19) sup
t∈[0,T ]

‖XN
t − X̃t‖Lp([0,1];Rd) → 0 as N → +∞

and

(9.20) lim
N→+∞

JL(X
N , ũN ) = JL(X̃, ũ).

We observe that, for any t ∈ [0, T ], XN
t is constant on the elements INk of partition {INk : k =

1, . . . , N} so that it is of the form

XN
t :=

N
∑

k=1

(xNt )k1INk

for some (xNt )k ∈ R
d.

We define µNt := (XN
t )♯L1 ∈ Pp(R

d). From the observation above,

µNt =
1

N

N
∑

k=1

δ(xN
t )k

By (9.19) we obtain that µN → µ in C([0, T ];Pp(R
d)) as N → +∞.

Step 3. For any t ∈ [0, T ] we define ρNt := (XN
t , ũ

N
t )♯L1 ∈ P(Rd × U), and notice that

π1♯ ρ
N
t = µNt . Denoting by ρNt,x ∈ P(U) the disintegration of ρNt w.r.t. π1, we define the Borel

map uN : [0, T ]× R
d → U by

uN (t, x) :=

ˆ

U
udρNt,x(u).
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By the definition of µNt and uN , from item (2) of the Convexity Assumption 3.4, we obtain that
(µN , uN ) ∈ A

E
N (µN0 ). Indeed, given ϕ ∈ C1

c (R
d;R), for LT -a.e. t ∈ [0, T ], we have

d

dt

ˆ

Rd

ϕ(x) dµNt (x) =
d

dt

ˆ

[0,1]
ϕ(XN

t (ω)) dL1(ω)

=

ˆ

[0,1]
∇ϕ(XN

t (ω)) · ẊN
t (ω) dL(ω)

=

ˆ

[0,1]
∇ϕ(XN

t (ω)) · f(XN
t (ω), ũNt (ω), µNt ) dL(ω)

=

ˆ

Rd×U
∇ϕ(x) · f(x, u, µNt ) dρNt (x, u)

=

ˆ

Rd

∇ϕ(x) ·

ˆ

U
f(x, u, µNt ) dρNt,x(u) dµ

N
t (x)

=

ˆ

Rd

∇ϕ(x) · f

(

x,

ˆ

U
udρNt,x(u), µ

N
t

)

dµNt (x)

=

ˆ

Rd

∇ϕ(x) · f
(

x, uN (t, x), µNt
)

dµNt (x).

Let us conclude the proof of the convergence showing that (6.3) holds. For any t ∈ [0, T ],

using (X̃, ũ) introduced in Step 1, we define ρt := (X̃t, ũt)♯L1 ∈ P(Rd×U). By the convergence

(9.19) and the convergence of ũN to ũ, it easily follows that ρN := ρNt ⊗LT weakly converges to
ρ := ρt ⊗LT in P([0, T ] × R

d × U).
Let now φ ∈ Cc([0, T ] × R

d;V ′). Using the definition of ρN and the weak convergence of ρN

to ρ we have that

lim
N→+∞

ˆ T

0

ˆ

Rd

〈φ(t, x), ūN (t, x)〉dµNt (x) dt = lim
N→+∞

ˆ T

0

ˆ

Rd

〈

φ(t, x),

ˆ

U
udρNt,x(u)

〉

dµNt (x) dt

= lim
N→+∞

ˆ T

0

ˆ

Rd

ˆ

U
〈φ(t, x), u〉 dρNt,x(u) dµ

N
t (x) dt

= lim
N→+∞

ˆ

[0,T ]×Rd×U
〈φ(t, x), u〉dρN (t, x, u),

=

ˆ

[0,T ]×Rd×U
〈φ(t, x), u〉dρ(t, x, u),

Using η ∈ P(C([0, T ];Rd)), P : [0, 1] → ΓT and (9.15) introduced in Step 1, recalling that

ρ = (X̃t, ũt)♯L1 ⊗ LT we get

ˆ

[0,T ]×Rd×U
〈φ(t, x), u〉dρ(t, x, u) =

ˆ T

0

ˆ 1

0
〈φ(t, X̃t(ω)), ũt(ω)〉dL1(ω) dt

=

ˆ T

0

ˆ 1

0
〈φ(t, et(P (ω))), ut(P (ω))〉dL1(ω) dt

=

ˆ T

0

ˆ

ΓT

〈φ(t, et(γ)), ut(γ)〉dη(γ) dt

=

ˆ T

0

ˆ

ΓT

〈φ(t, et(γ)), u(t, et(γ))〉dη(γ) dt

=

ˆ T

0

ˆ

Rd

〈φ(t, x), u(t, x)〉dµt(x) dt.
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Step 4. Finally we prove that J
E

N (µN , uN ) → JE(µ, u), as N → +∞.
Using item (3) of the Convexity Assumption 3.4, we have

J
E

N (µN , uN ) =

ˆ T

0

ˆ

Rd

C(x, ūN (t, x), µNt ) dµNt (x) dt+

ˆ

Rd

CT (x, µ
N
T ) dµNT (x)

=

ˆ T

0

ˆ

Rd

C

(

x,

ˆ

U
udρNt,x(u), µ

N
t

)

dµNt (x) dt+

ˆ

[0,1]
CT (X

N
T (ω), µNT ) dL1(ω)

≤

ˆ T

0

ˆ

Rd×U
C(x, u, µNt ) dρNt (x, u) dt+

ˆ

[0,1]
CT (X

N
T (ω), µNT ) dL1(ω)

=

ˆ T

0

ˆ

[0,1]
C(XN

t (ω), ũNt (ω), µNt ) dL1(ω) dt+

ˆ

[0,1]
CT (X

N
T (ω), µNT ) dL1(ω)

= JL(X
N , ũN ).

By the previous inequality, recalling (9.20) and (9.13), we get

lim sup
N→+∞

J
E

N (µN , uN ) ≤ lim sup
N→+∞

JL(X
N , ũN ) = JL(X̃, ũ) = JE(µ, u).

By Proposition 6.7 we conclude. �

We conclude this section with the proof of Theorem 9.12.

Proof of Theorem 9.12. Observe that V
E

N (µN0 ) ≥ VE(µ
N
0 ), then by Proposition 6.9 we obtain

lim inf
N→+∞

V
E

N (µN0 ) ≥ VE(µ0).

Let us prove that lim supN→+∞ V
E

N (µN0 ) ≤ VE(µ0). Fix ε > 0. By definition of VE there
exists (µε, uε) ∈ AE(µ0) such that VE(µ0) ≥ JE(µε, uε) − ε. By Proposition 9.13 there exists
(µNε , u

N
ε ) ∈ A

E
N (µN0 ) such that limN→+∞ J

E
N (µNε , u

N
ε ) = JE(µε, uε). Thus,

lim sup
N→+∞

V
E

N (µN0 ) ≤ lim sup
N→+∞

J
E

N (µNε , u
N
ε ) = JE(µε, uε) ≤ VE(µ0) + ε.

By the arbitrariness of ε we conclude.
Finally, thanks to Theorem 9.3 it holds that V

E
N (µN0 ) = V

L
N (XN

0 ) for every N ∈ N, so that

limN→+∞ V
L
N (XN

0 ) = VE(µ0). �

Appendixes

We organize the material of the appendixes as follows. Appendix A deals with vector-valued
Sobolev spaces and Cauchy problems for ODEs in Banach spaces. A further stability property
of Cauchy problems is then established in Appendix B. In Appendix C we state and prove the
superposition principle for the evolution of empirical measures. Appendix D is devoted to the
proof of Proposition 4.16 where we construct (equipartite) finite algebras satisfying the Finite
Approximation Property of Definition 4.15.

Appendix A. Ordinary differential equations in Banach spaces

Let E be a Banach space with ‖ · ‖ the associated norm. In the following, if u : [0, T ] → E

is a Bochner integrable function, we denote by
´ T
0 u(t) dt its Bochner integral. We recall the

following criterion of integrability: u : [0, T ] → E is Bochner integrable if and only if there exists
a sequence un : [0, T ] → E of simple measurable functions such that limn→+∞ un(t) = u(t) for

LT -a.e. t ∈ [0, T ], and
´ T
0 ‖u(t)‖dt < +∞.

We recall that, if u : [0, T ] → E is Bochner integrable, then

(A.1)

∥

∥

∥

∥

ˆ b

a
u(t) dt

∥

∥

∥

∥

≤

ˆ b

a
‖u(t)‖dt, for any [a, b] ⊆ [0, T ],
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(A.2) lim
h→0

1

h

ˆ t+h

t
‖u(s) − u(t)‖ds = 0, for LT -a.e. t ∈ [0, T ],

and the above limit exists in every point of continuity of u. Moreover, for every continuous linear
operator A : E → Ẽ, with Ẽ a Banach space it holds that

(A.3) A

(
ˆ T

0
u(t) dt

)

=

ˆ T

0
A(u(t)) dt.

For the definition of Bochner integral, properties and related proofs, see for instance [26].
We say that u ∈W 1,p(0, T ;E) if u ∈ Lp(0, T ;E) and there exists g ∈ Lp(0, T ;E) such that

ˆ T

0
ϕ′(t)u(t) dt = −

ˆ T

0
ϕ(t)g(t) dt, ∀ϕ ∈ C∞

c ((0, T );R).

We recall a classical result (see e.g. [4, Theorem 1.17])

Proposition A.1. u ∈ W 1,p(0, T ;E) if and only if there exists ũ ∈ ACp([0, T ];E) such that
ũ(t) = u(t) and ũ is differentiable for LT -a.e. t ∈ [0, T ].

Let now (Ω,B,P) be a probability space with Ω standard Borel. Fix T > 0, let Leb[0,T ] be
the σ-algebra of Lebesgue measurable sets on [0, T ] and LT the normalized Lebesgue measure
restricted to [0, T ]. Consider (ΩT ,BT ,m) the product space with ΩT := [0, T ]×Ω, endowed with
the product σ-algebra BT = Leb[0,T ] ⊗B and probability measure m := LT ⊗ P ∈ P(ΩT ).

Lemma A.2. Let p ≥ 1, and g ∈ Lp
m(ΩT ;R

d) and ĝ a Borel representative of g. Let g̃ the map
defined by g̃(t)(ω) = ĝ(t, ω) for every (t, ω) ∈ ΩT . Then g̃ ∈ L1(0, T ;Lp(Ω;Rd)) and, denoting

by G :=
´ T
0 g̃(t) dt, it holds

(A.4) G(ω) =

ˆ T

0
ĝ(t, ω) dt, for P-a.e. ω ∈ Ω.

The proof of the Lemma follows by Fubini’s theorem and the definition of Bochner integral
(notice that (A.4) holds for simple functions).

Proposition A.3. Let y ∈ Lp
m(ΩT ;R

d). The following are equivalent:

(1) There exists g ∈ Lp
m(ΩT ;R

d) such that
ˆ

ΩT

η′(t)φ(ω) y(t, ω) dm(t, ω) = −

ˆ

ΩT

η(t)φ(ω) g(t, ω) dm(t, ω),

for every η ∈ C1
c ((0, T );R) and φ ∈ M(Ω;R) bounded;

(2) y ∈W 1,p(0, T ;Lp
P
(Ω;Rd));

(3) there exists a Borel representative ỹ of y such that ỹ ∈ ACp([0, T ];Lp
P
(Ω;Rd)) and differ-

entiable for LT -a.e. t ∈ [0, T ] (differentiability is redundant for p > 1);
(4) y ∈ Lp

P
(Ω;W 1,p(0, T ;Rd));

(5) there exists a Borel representative ȳ of y such that ȳ ∈ Lp
P
(Ω;ACp([0, T ];Rd)).

Moreover,

(i) If (3) holds, there exists a Borel function g̃ ∈ Lp
m(ΩT ;R

d) such that g̃(t, ·) = ỹ′(t, ·) in
Lp
P
(Ω;Rd), for LT -a.e. t ∈ [0, T ]. Hence, for every t ∈ [0, T ]

(A.5) ỹ(t, ·) = ỹ(0, ·) +

ˆ t

0
g̃(s, ·) ds, in Lp

P
(Ω).

(ii) If (5) holds, there exists a Borel function ḡ ∈ Lp
m(ΩT ;R

d) such that for every ω ∈ Ω,
ḡ(t, ω) = (ȳ(·, ω))′(t), for LT -a.e. t ∈ [0, T ]. Hence, for every ω ∈ Ω it holds

(A.6) ȳ(t, ω) = ȳ(0, ω) +

ˆ t

0
ḡ(s, ω)ds, for every t ∈ [0, T ].

(iii) If one of the five conditions above is satisfied, then g = g̃ = ḡ, m-a.e. in ΩT .
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Proof. (5) ⇒ (4) and (3) ⇔ (2) follow from Proposition A.1. (4) ⇒ (2) follows from the
definition and Fubini’s theorem. (2) ⇒ (1) is a consequence of property (A.3). Finally, the proof
of (1) ⇒ (5) is contained in a more general form in [46, Lemma 4.3].

Items (i)-(ii) are a consequence of the definition of ACp([0, T ];Lp(Ω;Rd)) and ACp([0, T ];Rd),
respectively. To show (iii), denote with y0(ω) the trace of y in t = 0, which is well defined thanks
to (1). Then, y0(ω) = ỹ(0, ω) = ȳ(0, ω) for P-a.e. ω ∈ Ω so that comparing (A.5) and (A.6) it
holds g̃ = ḡ m-a.e. in ΩT , thanks to (A.4). �

A.1. Cauchy problem in Banach spaces. We are interested in a Cauchy problem of this
form

(A.7)

{

żt = F (t, zt), for LT -a.e. t ∈ [0, T ]

zt=0 = z0,

where a Carathéodory function F : [0, T ]× E → E and z0 ∈ E are given. For z : [0, T ] → E we
frequently use the notation zt := z(t).

In the following, we present some classical results concerning the Cauchy problem (A.7) and
we provide a sketch of their proofs.

Proposition A.4. Let F : [0, T ]× E → E be a Carathéodory function such that

(A.8)

ˆ T

0
‖F (t, zt)‖dt < +∞, ∀z ∈ C([0, T ];E).

The following assertions are equivalent:

• z ∈ C([0, T ];E) satisfies

(A.9) zt = z0 +

ˆ t

0
F (s, zs) ds, ∀ t ∈ [0, T ].

• z ∈ AC1([0, T ];E), it is differentiable for LT -a.e. t ∈ [0, T ] and
{

żt = F (t, zt), for LT -a.e. t ∈ [0, T ]

zt=0 = z0.

Since F is a Carathéodory function and the curve t 7→ zt then the map t 7→ F (t, zt) is (strongly)
measurable as a map with values in Lp(Ω;Rd). Notice also that if E satisfies the Radon-Nikodym
property (for instance when E is reflexive) then a.e. differentiability of z in the second item is
redundant.

Theorem A.5. Let F : [0, T ]× E → E be a Carathéodory function such that

(A.10) ‖F (t, z1)− F (t, z2)‖ ≤ L̃‖z1 − z2‖, ∀ (t, z1), (t, z2) ∈ [0, T ] ×E,

for some L̃ > 0, and there exists C0 ≥ 0 such that

(A.11) sup
t∈[0,T ]

‖F (t, 0)‖ ≤ C0 < +∞.

Then, for any z0 ∈ E there exists a unique z ∈ AC∞([0, T ];E) and differentiable for LT -a.e.
t ∈ [0, T ] such that

(A.12)

{

żt = F (t, zt), for LT -a.e. t ∈ [0, T ]

z(0) = z0.

Moreover, the following estimates hold:

(A.13) sup
t∈[0,T ]

‖zt‖ ≤ eL̃T (‖z0‖+ C0T ) ,

(A.14) ‖zt − zs‖ ≤ |t− s|
(

C0 + L̃eL̃T (‖z0‖+ C0T )
)

∀ s, t ∈ [0, T ].
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Proof. We provide only a sketch of the proof.
Assumptions (A.10) and (A.11) yield the following growth property

(A.15) ‖F (t, z)‖ ≤ C0 + L̃‖z‖, ∀ (t, z) ∈ [0, T ]× E.

We define the Banach space (S , ‖ · ‖S ) as follows

S :=

{

z ∈ C([0, T ];E) : ‖z‖S := sup
t∈[0,T ]

e−L̃t‖zt‖ < +∞

}

,

and the operator S : S → S by

S(y)t = z0 +

ˆ t

0
F (s, ys) ds.

By (A.10) and (A.15), using (A.1), it is classical to prove that S is well defined and it is a
contraction. Then, by Banach fixed point Theorem we get the existence and uniqueness of
z ∈ S such that (A.9) holds. The estimates (A.13) and (A.14) follow from (A.9), (A.15), and
Gronwall inequality. Finally, z belongs to AC∞([0, T ];E) thanks to (A.14). �

Proposition A.6. Let F,Fn : [0, T ] × E → E, n ∈ N, be Carathéodory functions satisfying

(A.10),(A.11) with the same constant L̃ and C0. Let z0, z
n
0 ∈ E, z ∈ AC∞([0, T ];E) the solution

of (A.12) and zn ∈ AC∞([0, T ];E) the solutions of
{

żnt = Fn(t, znt ), for LT -a.e. t ∈ [0, T ]

zn(0) = zn0 .

Then

(A.16) sup
t∈[0,T ]

‖znt − zt‖ ≤ eL̃T
(

‖zn0 − z0‖+

ˆ T

0
‖Fn(t, zt)− F (t, zt)‖dt

)

.

In particular, if limn→+∞ ‖zn0 − z0‖ = 0 and

(A.17) lim
n→+∞

ˆ T

0
‖Fn(t, zt)− F (t, zt)‖dt = 0,

then
lim

n→+∞
sup

t∈[0,T ]
‖znt − zt‖ = 0.

Proof. We have

‖znt − zt‖ =

∥

∥

∥

∥

zn0 − z0 +

ˆ t

0
(Fn(s, zns )− F (s, zs)) ds

∥

∥

∥

∥

≤ ‖zn0 − z0‖+

ˆ t

0
‖Fn(s, zns )− F (s, zs))‖ds.

Using (A.10) it holds

‖Fn(s, zns )− F (s, zs))‖

≤ ‖Fn(s, zns )− Fn(s, zs))‖ + ‖Fn(s, zs)− F (s, zs))‖

≤ L̃‖zns − zs‖+ ‖Fn(s, zs)− F (s, zs))‖.

The last two inequalities yield

‖znt − zt‖ ≤ ‖zn0 − z0‖+

ˆ T

0
‖Fn(s, zs)− F (s, zs))‖ds+ L̃

ˆ t

0
‖zns − zs‖ds.

By Gronwall lemma we obtain (A.16). �

Proposition A.7. Let F : [0, T ]×Lp(Ω;Rd) → Lp(Ω;Rd) be a Carathéodory function satisfying
(A.11) Let Y0 ∈ Lp(Ω;Rd). Then the following assertions are equivalent:
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(1) Y ∈ C([0, T ];Lp(Ω;Rd)) and

(A.18) Yt = Y0 +

ˆ t

0
F (s, Ys) ds, ∀ t ∈ [0, T ];

(2) Y ∈ ACp([0, T ];Lp(Ω;Rd)) (if p = 1 it is also differentiable for a.e. t ∈ [0, T ]) and

(A.19)

{

Ẏt = F (t, Yt), for LT -a.e. t ∈ [0, T ]

Yt=0 = Y0;

(3) Y ∈ Lp(Ω;ACp([0, T ];Rd))) and

(A.20) Yt(ω) = Y0(ω) +

ˆ t

0
F (s, Ys)(ω) ds, ∀ t ∈ [0, T ], for P-a.e. ω ∈ Ω,

where Yt : Ω → R
d is defined by Yt(ω) := Y (t, ω) for P-a.e. ω ∈ Ω.

(4) Y ∈ Lp(Ω;ACp([0, T ];Rd))) and for P-a.e. ω ∈ Ω it holds

(A.21)

{

Ẏt(ω) = F (t, Yt)(ω), for LT -a.e. t ∈ [0, T ]

Yt=0(ω) = Y0(ω),

where Yt : Ω → R
d is defined by Yt(ω) := Y (t, ω) for P-a.e. ω ∈ Ω.

Proof. The assertions (1)-(2) and (3)-(4) are equivalent by Proposition A.4. The equivalence
(1)-(3) is a consequence of the equivalences (3)-(5) in Proposition A.3 and items (i)-(ii)-(iii). �

Appendix B. A convergence result for solutions of Cauchy problems

We state and prove the following well known result, for sake of completeness.

Lemma B.1. Let U be a Polish space. Let un : [0, T ] → U be a sequence of LT -measurable

functions such that (i[0,T ], u
n)♯LT

Y
−→ νt ⊗ LT ∈ P([0, T ] × U).

Let g : [0, T ] × (Rd × U) → R
d a Carathéodory function such that

(B.1) |g(t, x1, u)− g(t, x2, u)| ≤ L|x1 − x2|, ∀ (t, x1, u), (t, x2, u) ∈ [0, T ] ×R
d × U,

for some L > 0, and

(B.2) C0 := sup
(t,u)∈[0,T ]×U

|g(t, 0, u)| < +∞.

Given X0 ∈ R
d and n ∈ N, we denote by Xn ∈ AC1([0, T ];Rd) the unique solution of the Cauchy

problem

(B.3)

{

Ẋn
t = g(t,Xn

t , u
n
t ), for a.e. t ∈ (0, T )

Xn(0) = X0,

and by X ∈ AC1([0, T ];Rd) the unique solution of the Cauchy problem

(B.4)







Ẋt =

ˆ

U
g(t,Xt, u) dνt(u), for a.e. t ∈ (0, T )

X(0) = X0.

Then

(B.5) lim
n→+∞

sup
t∈[0,T ]

|Xn
t −Xt| = 0.

Proof. Observe that existence and uniqueness of solutions of Cauchy problems (B.3) and (B.4)
is consequence of the fact that Gn, G : [0, T ] × R

d → R
d, defined by Gn(t, x) := g(t, x, unt ) and
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G(t, x) :=

ˆ

U
g(t, x, u) dνt(u), are Charathéodory and L-Lipschitz continuous w.r.t. x ∈ R

d.

Moreover, by (B.1) and (B.2) it holds

(B.6) |g(t, x, u)| ≤ C0 + L|x|, ∀ (t, x, u) ∈ [0, T ]× R
d × U.

We define Y n ∈ C([0, T ];Rd) by

(B.7) Y n
t := X0 +

ˆ t

0
g(s,Xs, u

n
s ) ds.

From the convergence (i[0,T ], u
n)♯LT

Y
−→ ν ∈ P([0, T ] × U) it follows that

(B.8) lim
n→+∞

Y n
t = X0 +

ˆ t

0

ˆ

U
g(s,Xs, u) dνs(u) ds = Xt, ∀ t ∈ [0, T ].

Denoting by C := sups∈[0,T ] |Xs|, from (B.2) and (B.1) it is simple to prove that

(B.9) |Y n
t | ≤ (|X0|+ (C0 + LC)T ), ∀t ∈ [0, T ]

and

(B.10) |Y n
t − Y n

s | ≤ |t− s|(C0 + LC)T, ∀t, s ∈ [0, T ].

By (B.9) and (B.10), Ascoli-Arzelà theorem and (B.8) imply that

(B.11) lim
n→+∞

sup
t∈[0,T ]

|Y n
t −Xt| = 0.

Since

|Xn
t −Xt| ≤ |Xn

t − Y n
t |+ |Y n

t −Xt| ≤

ˆ t

0
|g(s,Xn

s , u
n
s )− g(s,Xs, u

n
s )| ds+ |Y n

t −Xt|

≤ L

ˆ t

0
|Xn

s −Xs|ds+ sup
s∈[0,T ]

|Y n
s −Xs|,

by Gronwall inequality we have that

(B.12) |Xn
t −Xt| ≤ eLt sup

s∈[0,T ]
|Y n

s −Xs|.

The convergence (B.5) follows from (B.12) and (B.11). �

Appendix C. An empirical Superposition Principle

In this appendix, we give a refined version of the Superposition Principle (see Theorem 2.5 for
the classical result) in the case of trajectories of the form µt ∈ PN (Rd) for any t ∈ [0, T ], where
PN (Rd) is the space of empirical probability measures

P
N (Rd) :=

{

µ =
1

N

N
∑

i=1

δxi for some xi ∈ R
d

}

.

The novelty consists in proving that if µt ∈ PN (Rd) for every t ∈ [0, T ], then there exists
representative η ∈ PN (ΓT ). This result has been used to prove Proposition 9.8 and Corollary
9.3.

Theorem C.1. Let N ∈ N and µ ∈ AC([0, T ];P1(R
d)) such that µt ∈ PN (Rd) for every

t ∈ [0, T ].

(1) There exists a unique (up to LT ⊗µt-negligible sets) Borel vector field v : [0, T ]×R
d → R

d

satisfying

(C.1)

ˆ T

0

ˆ

Rd

|vt(x)|dµt(x) dt < +∞,
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such that µ is a distributional solution of the continuity equation

(C.2) ∂tµt + div(vtµt) = 0, in [0, T ] × R
d.

(2) There exists η ∈ PN (ΓT ) of the form

(C.3) η =
1

N

N
∑

i=1

δγi ,

such that (et)♯η = µt for every t ∈ [0, T ] and for any i = 1, . . . , N , γi ∈ AC([0, T ];Rd)
solves the differential equation

(C.4) γ̇i(t) = vt(γi(t)) for LT -a.e. t ∈ [0, T ].

Proof. Let us recall that the metric derivative |µ′| of the absolutely continuous curve µ, given by

|µ′|(t) := lim
s→t

W1(µt, µs)

|t− s|
, for a.e. t ∈ [0, T ],

belongs to L1(0, T ) and satisfies

(C.5) W1(µt1 , µt2) ≤

ˆ t2

t1

|µ′|(t) dt, for any 0 ≤ t1 ≤ t2 ≤ T.

in particular there exists ψ : [0,+∞) → [0,+∞) increasing, convex and superlinear at +∞ such
that

(C.6)

ˆ T

0
ψ
(

|µ′|(t)
)

dt < +∞.

First of all we prove the existence of η ∈ P(ΓT ) such that (et)♯η = µt for all t ∈ [0, T ] and η
is of the form (C.3) for some γi ∈ ΓT , i = 1, . . . , N .

Let M ∈ N and consider the diadic discretization of the interval [0, T ], with time step τM =
T 2−M . Since µt ∈ PN (Rd) for every t ∈ [0, T ], there exists xi(t) ∈ R

d, i = 1, . . . , N , such that

µt =
1

N

N
∑

i=1

δxi(t), ∀ t ∈ [0, T ].

For n = 0, . . . , 2M and i = 1, . . . , N , we set xnM,i := xi(nτM ), and µnM := µnτM . For n =

1, . . . , 2M , let ̺n−1,n
M ∈ Γo(µ

n−1
M , µnM ) be an optimal plan for the 1-Wasserstein distance. Since

µn−1
M and µnM belong to PN (Rd), then ̺n−1,n

M is of the form

(C.7) ̺n−1,n
M =

1

N

N
∑

i=1

δxn−1
M,i

⊗ δxn
M,σn

M
(i)
,

for some permutation σnM of {1, . . . , N}. Let us define σ0,nM := σnM ◦σn−1
M ◦· · ·◦σ1M and σ0,0M (i) = i

for i = 1, . . . , N .
For i = 1, . . . , N we define the curves γM,i ∈ ΓT by linear time interpolation as

γM,i(t) :=
nτM − t

τM
xn−1

M,σ0,n−1
M (i)

+
t− (n − 1)τM

τM
xn
M,σ0,n

M (i)
, for t ∈ [(n− 1)τM , nτM ],

n = 1, . . . , 2M .
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We claim that, for any k = 1, . . . , N , the sequence {γM,k}M∈N uniformly converges to a curve

γk ∈ AC([0, T ];Rd). Indeed,

ˆ T

0
ψ
( 1

N
|γ̇M,k(t)|

)

dt ≤

ˆ T

0
ψ
( 1

N

N
∑

i=1

|γ̇M,i(t)|
)

dt

=
2M
∑

n=1

τM ψ
( 1

N

N
∑

i=1

∣

∣

∣

∣

xn
M,σ0,n

M (i)
− xn−1

M,σ0,n−1
M (i)

∣

∣

∣

∣

τM

)

=

2M
∑

n=1

τM ψ
( 1

τM

ˆ

Rd×Rd

|x− y|d̺n−1,n
M (x, y)

)

=

2M
∑

n=1

τM ψ
( 1

τM
W1(µ

n−1
M , µnM )

)

≤
2M
∑

n=1

τM ψ
( 1

τM

ˆ nτM

(n−1)τM

|µ′|(t) dt
)

≤
2M
∑

n=1

ˆ nτM

(n−1)τM

ψ(|µ′|(t)) dt =

ˆ T

0
ψ(|µ′|(t)) dt,

(C.8)

where we employed the definition of the optimal plan in (C.7), (C.5), Jensen’s inequality, and
(C.6).
Since γM,k(0) = xk(0) for any M ∈ N, and (C.8) and (C.6) hold, by Ascoli-Arzelá Theorem

the sequence {γM,k}M∈N is compact in C([0, T ];Rd). Furthermore, by (C.8) and the lower
semicontinuity of the functional

γ 7→

ˆ T

0
ψ

(

1

N
|γ̇(t)|

)

dt

w.r.t. weak convergence in AC([0, T ];Rd), we get γk ∈ AC([0, T ];Rd). Moreover, if t = n0τM0

for some M0 ∈ N and n0 ∈ {0, 1, . . . , 2M0}, then γM,k(t) is constant for any M ∈ N, M > M0

and the claim is proved.

Defining

(C.9) ηM :=
1

N

N
∑

i=1

δγM,i
, η :=

1

N

N
∑

i=1

δγi ,

from the convergence of γM,i to γi it follows that ηM weakly converges to η as M → +∞.

Moreover, if t = n0τM0 for some M0 ∈ N and n0 ∈ {0, 1, . . . , 2M0}, then (et)♯ηM = µt for any
M ∈ N, M > M0. Then, by the continuity of t 7→ µt and of t 7→ (et)♯η, we conclude that

(et)♯η = µt and µt =
1
N

∑N
i=1 δγi(t) for all t ∈ [0, T ].

It remains to define a vector field v such that (C.4) and (C.2) hold, also showing that v is
uniquely characterized by (C.2).

Since γi ∈ AC([0, T ];Rd) for any i = 1, . . . , N , the Borel set A := {t ∈ [0, T ] : ∃ k ∈
{1, . . . , N} such that γk is not differentiable at t} is LT -negligible. Moreover, the sets

(C.10) Ni,k := {t ∈ [0, T ] \A : γi(t) = γk(t), γ̇i(t) 6= γ̇k(t)}

satisfy LT (Ni,k) = 0 for any i, k ∈ {1, . . . , N}. We define Ñ :=
(

⋃

i,k∈{1,...,N}Ni,k

)

⋃

A noticing

that LT (Ñ) = 0 so that LT ⊗µt(Ñ ×R
d) = 0, and S := {(t, γi(t)) : t ∈ [0, T ], i ∈ {1, . . . , N}} =
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supp(µt ⊗LT ). We can thus define a Borel vector field v : [0, T ]× R
d → R

d by

v(t, x) :=

{

0 if t ∈ Ñ or (t, x) ∈
(

[0, T ] × R
d
)

\ S,

γ̇i(t) if x = γi(t) for t ∈ [0, T ] \ Ñ and some i ∈ {1, . . . , N},

so that γ̇i(t) = vt(γi(t)) for every t ∈ [0, T ] \ Ñ . It is then easy to check that (C.1) and (C.2)
hold.

Let us eventually check that (C.2) uniquely characterizes v(t0, x0) for every (t0, x0) ∈ S \(Ñ ×
R
d). Notice that for every ϕ ∈ C∞

c (Rd) we have

(C.11)
d

dt

ˆ

Rd

ϕdµt

∣

∣

∣

t=t0
=

1

N

N
∑

i=1

∇ϕ(γi(t0)) · γ̇i(t0) =
1

N

N
∑

i=1

∇ϕ(γi(t0)) · v(t0, γi(t0)).

Setting K := {k ∈ {1, . . . , N} : γk(t0) 6= x0} and r0 := min{|γk(t0)− x0| : k ∈ K} > 0, for every
ξ ∈ R

d we can find a test function ϕ ∈ C∞
c (Rd) such that suppϕ ⊂ Br0(x0) and ∇ϕ(x0) = ξ:

(C.11) then yields

(C.12)
d

dt

ˆ

Rd

ϕdµt

∣

∣

∣

t=t0
=

n

N
ξ · v(t0, x0) where n := N −#K.

Since ξ is arbitrary, (C.12) uniquely characterizes v(t0, x0) in terms of µ. �

Appendix D. Finite Partitions

In this section we provide a proof of Proposition 4.16. For sake of clarity, we divide the
statement of Proposition 4.16 in three separate lemmas of independent interest.

Given a standard Borel space (Ω,B,P), in Lemma D.2 we construct a family of algebras B
n,

n ∈ N, satisfying the finite approximation property of Definition 4.15. Then we fix (Ω,B,P) =
([0, 1],B,L1), where B is the Borel σ-algebra and L1 the Lebesgue measure restricted to the
interval [0, 1]. With this choice of parametrization space, in Lemma D.3 we show that the family
of algebras BN associated to the uniform partition of [0, 1] with elements’ size 1/N satisfies the
finite approximation property. Finally, we combine the previous results in Lemma D.4, where
we consider a general standard Borel space (Ω,B,P) and P is without atoms. This is possible
thanks to the following fundamental result on Borel equivalence of Probability spaces (see e.g.
[50, Chapter 15, Theorem 9]).

Proposition D.1. Let Ω be a Polish space and P ∈ P(Ω) without atoms. Then there exist a
Borel set Ω0 ⊂ Ω such that P(Ω0) = 0, a Borel set I0 ⊂ [0, 1] such that L1(I0) = 0 and a bijective
function ψ : Ω \ Ω0 → [0, 1] \ I0 such that ψ and ψ−1 are Borel, ψ♯P = L1 and (ψ−1)♯L1 = P.

The first part of Proposition 4.16 is restated in the following Lemma.

Lemma D.2 (Proposition 4.16, part 1). Let (Ω,B,P) be a standard Borel space. Then there
exists a family of finite algebras B

n ⊂ B, n ∈ N, satisfying the finite approximation property of
Definition 4.15.

Proof. Since (Ω,B,P) is standard Borel we can choose a Polish topology τ such that B = B(Ω,τ),

then there exists a countable basis A = {Bi : i ∈ N} of its topology. Then B(Ω,τ) = σ({Bi : i ∈

N}). We define B
1 := σ(B1) and B

n := σ({Bn} ∪ B
n−1). It follows from the definition that

B
n ⊂ B

n+1 for any n ∈ N and B(Ω,τ) = σ
(
⋃+∞

n=1 B
n
)

.
For any n ∈ N, the finite algebra B

n induces a minimal (with respect to the inclusion) partition
of Ω, denoted by Pn = {An

k : k = 1, . . . , k(n)} ⊂ B
n. Then for any An+1

k ∈ Pn+1 there exists

h ∈ N such that An
h ∈ Pn and An+1

k ⊂ An
h.

We define the sequence of linear operators Pn : L1(Ω;E) → L1(Ω;E) defined by

Png :=

k(n)
∑

k=1

1An
k

 

An
k

g(ω) dP(ω),
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with the convention that
ffl

An
k
g(ω) dP(ω) = 0 if P(An

k) = 0.

It is simple to prove that

(D.1) ‖Png‖L1
P
(Ω;E) ≤ ‖g‖L1

P
(Ω;E), ∀ g ∈ L1

P(Ω;E).

Given a Borel function g : Ω → E such that g ∈ L1
P
(Ω;E), we define gn := Png and we prove

that the properties of Definition 4.15 hold.
Property (i) is obvious since gn is constant on the elements of the partition Pn ⊂ B

n.
Property (ii) follows from the fact that (see for instance [26, Corollary 8, p. 48])

 

A
g(ω) dP(ω) ∈ co (g(A)) , ∀A ∈ B(Ω,τ) : P(A) > 0.

In order to prove property (iii) we start with the particular case g = a1A for a given Borel
set A and a given a ∈ E. Since (Ω, τ) is Polish, for any ε > 0 there exists an open set Aε and
a compact set Kε such that Kε ⊂ A ⊂ Aε and P(Aε \ Kε) < ε. Since Aε is union of elements
of the basis A, there exists a finite covering of Kε of the form {Bj : j ∈ J} ⊂ A, for a suitable
finite J ⊂ N, such that ∪j∈JB

j ⊂ Aε. Since

Png − g = a

k(n)
∑

k=1

P(An
k ∩A)

P(An
k)

1An
k
− a1A,

by setting nε := max J , it holds that

‖Png − g‖L1
P
(Ω;E) ≤ ‖a1Aε − a1A‖L1

P
(Ω;E) ≤ ‖a‖E P(Aε \A) < ‖a‖E ε , ∀ n ≥ nε .

Since Pn is linear, then (iii) holds for any g simple function. In the general case, take g ∈
L1
P
(Ω;E) and ε > 0, and let gε : Ω → E be a simple function such that ‖g − gε‖L1

P
(Ω;E) < ε.

Observing that

‖Png − g‖L1
P
(Ω;E) ≤ ‖Png − Pngε‖L1

P
(Ω;E) + ‖Pngε − gε‖L1

P
(Ω;E) + ‖gε − g‖L1

P
(Ω;E),

by (D.1) and property (iii) applied to gε it holds that lim supn→+∞ ‖Png − g‖L1
P
(Ω;E) ≤ 2ε and

we conclude.
Finally, property (iv) follows from the measurability of G, Fubini Theorem and the definition

of Pn. �

Consider now the Polish space ([0, 1],B,L1).

Lemma D.3 (Proposition 4.16, part 2). For any N ∈ N we define INk := [(k − 1)/N, k/N),

k = 1, . . . , N − 1, INN := [(N − 1)/N, 1]. If E is a Banach space, g ∈ L1([0, 1];E) and

gN :=

N
∑

k=1

1INk

 

INk

g(s) ds,

then

(D.2) lim
N→+∞

‖gN − g‖L1([0,1];E) = 0.

Moreover, the family of finite algebras BN := σ({INk : k = 1, . . . , N}), N ∈ N, satisfies the finite
approximation property of Definition 4.15.
Finally, if g ∈ Lp([0, 1];E), for some p ∈ (1,+∞), then limN→+∞ ‖gN − g‖Lp([0,1];E) = 0.

Proof. For any x ∈ [0, 1] and N ∈ N, there exists a unique k(x,N) such that x ∈ INk(x,N). From

the definition of INk it follows that INk(x,N) ⊂ B1/N (x). Since

gN (x)− g(x) =
N
∑

k=1

1INk
(x)

 

INk

(g(s) − g(x)) ds,
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then

‖gN (x)− g(x)‖E ≤ 2

 

B1/N (x)
‖g(s)− g(x)‖E ds.

By the Bochner version of the Lebesgue differentiation Theorem (see for instance [26, Theorem
9, p. 49]) we obtain that limN→+∞ ‖gN (x)− g(x)‖E = 0 for L1-a.e. x ∈ [0, 1].

Since
´ 1
0 ‖g(x)‖E dx < +∞ there exists a convex, increasing, superlinear function ψ : [0,+∞) →

[0,+∞) such that
´ 1
0 ψ (‖g(x)‖E) dx < +∞. Since

‖gN (x)‖E ≤ 2

 

B1/N (x)
‖g(s)‖E ds,

by Jensen’s inequality,
ˆ 1

0
ψ
(

‖gN (x)‖E
)

dx ≤ 2

ˆ 1

0
ψ

(

 

B1/N (x)
‖g(s)‖E ds

)

dx

≤ 2

ˆ 1

0

 

B1/N (x)
ψ (‖g(s)‖E) ds dx

= N

ˆ 1

0

ˆ 1

0
1(x−1/N,x+1/N)(s)ψ (‖g(s)‖E) ds dx

= N

ˆ 1

0

ˆ 1

0
1(s−1/N,s+1/N)(x)ψ (‖g(s)‖E) ds dx

≤ 2

ˆ 1

0
ψ (‖g(s)‖E) ds < +∞,

which implies the equi-integrability of the sequence ‖gN‖E . Then (D.2) holds.
The finite approximation property for BN follows as in the proof of Lemma D.2. The final

assertion is a consequence of the equi-integrability of the sequence ‖gN‖pE . �

Lemma D.4 (Proposition 4.16, part 3). Let (Ω,B,P) be a standard Borel space and P without
atoms. Then there exists a family B

N ⊂ B, N ∈ N, satisfying the finite approximation property
of Definition 4.15 such that the associated minimal partition PN = {AN

k : k = 1, . . . , N} contains

exactly N elements and P(AN
k ) = 1

N , for k = 1, . . . , N .

Proof. Let τ be a Polish topology on Ω such that B = B(Ω,τ). Let also Ω0, I0, ψ, ψ−1 be given by

Proposition D.1. Using the notation of Lemma D.3 we define the sets AN
1 := ψ−1(IN1 \ I0) ∪ Ω0

and AN
k := ψ−1(INk \ I0) for k = 2, . . . , N .

It is immediate to prove that P(AN
j ) = 1

N for j = 1, . . . , N and {AN
1 , . . . , A

N
N} is a partition of

Ω. Moreover, given a Banach space E and g ∈ L1
P
(Ω;E), we denote by g̃ := g◦ψ−1 ∈ L1([0, 1];E).

Denoting by g̃N the sequence given by Lemma D.3 applied to g̃, we define gN := g̃N ◦ψ and the
finite approximation property for (Ω,B(Ω,τ),P) follows by Lemma D.3.

�
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