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Abstract

We analyze the impacts of pollution on fishery sector

using a dynamical system approach. The proposed

model presupposes that the economic development

causes emissions that either remediate or accumulate

in the oceans. The model possesses a block structure

where the solutions of the rate equations for the

pollutant and the economic activity act as an input for

the biomass and effort equation. We also account for

distributed delay effects in both the pollution level and

the economic activity level in our modeling framework.

The weight functions in the delay terms are expressed

in terms of exponentially decaying functions, which in

turn enable us to convert the modeling framework to a

higher‐order autonomous dynamical system by means

of a linear chain trick. When both the typical delay

time for the economic activity and the typical delay

time for the pollution level are much smaller than the

biomass time scale, the governing system is analyzed

by means of the theory for singularly perturbed

dynamical systems. Contrary to what is found for

population dynamical systems with absolute delays, we

readily find that the impact of the distributed time lags
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is negligible in the long‐run dynamics in this time‐scale
separation regime.

Recommendations for Resource Managers
• Resource managers should be aware of the dynami-

cal interrelations between fisheries and pollution,

also those that are time delayed.

• Time lags between biological, economic, and envir-

onmental variables are affecting the time paths of

these variables.

• In the long run, the impact from distributed time

lags have a negligible influence on the long‐run
dynamical evolution.

• Neither the past history of economic activities nor

the past history of pollution growth can affect the

fishery dynamics in the long run.

• More empirical and theoretical research are needed

to increase our understanding of the interrelation

between fisheries and pollution.

KEYWORD S

distributed delay systems, geometric perturbation theory,
pollution, slow–fast fishery dynamics

1 | INTRODUCTION

Marine pollution is a widespread problem affecting the ocean health, the health of marine
species, food security, and quality, and it contributes to climate change. As reported by Halpern
et al. (2008), Islam and Tanaka (2004), Jones and Reynolds (1997), Todd et al. (2010), Vikas and
Dwarakish (2015), and Lu et al. (2018), marine pollution is increasing and causes negative
effects on commercial fisheries. A discussion of different forms of emission of pollution into the
marine environment and their potential to be broken down can be found in Watson
et al. (2016).

An interesting and early contribution discussing self‐cleaning abilities of ecosystems can be
found in Haavelmo (1971). Similar analyses of the self‐cleaning models are found in Keeler
et al. (1971), Strøm (1971), d'Arge (1971), and Smith (1972). More recently, similar models have
been analyzed by several authors (see, e.g., Bergland et al., 2020, 2019; Chevé, 2000; El
Ouardighi et al., 2014; Flaaten, 2018; Førsund & Strøm, 1980; Perman et al., 2011; Prieur, 2009;
Tietenberg & Lewis, 2014; Toman & Withagen, 2000; Watson et al., 2016). Bergland et al. (2019)
proposed a model to investigate the impact of pollution with self‐cleaning ability and economic
development on a modified fishery model. The current work extend this model to understand
the impact of bioeconomic time delays.
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In a dynamic analysis of the interaction between pollution and fisheries, possible time
delays are relevant. For the self‐cleaning ability of waste both the present state as well as the
past history are expected to influence the ongoing remediation capacity. Also for the growth of
fish resources it is reasonable to expect that pollution history matters. Furthermore, when it
comes to both fishermen and consumers, their behavior is affected by the present and the
former economic conditions.

Economists have for a long time been engaged in modeling time delays in macro‐ and
microeconomic models to reveal the consequences for the existence and stability of equilibrium
states in economic systems. An early contribution dealing with this problem can be found in
Frisch and Holme (1935). Examples on more recent papers focusing on time delays in
economic models are Keller (2010), Bianca et al. (2013), and Gori et al. (2018). In bioeconomics,
several authors have analyzed the effects of absolute time delays both in single‐population
models and in predator–prey models (see, e.g., Bretschger & Smulders, 2018; Chakraborty
et al., 2011, 2012; Ferrara et al., 2019; Gazi & Bandyopadhyay, 2008; Kar & Chakraborty, 2010;
Martin & Ruan, 2001; Yuan et al., 2016; Q. Zhang et al., 2011; Y. Zhang et al., 2014). These
papers show that the incorporation of absolute time delay effect results in a more complicated
dynamics than what one obtains in standard population dynamical systems without delay. The
incorporation of time delays in bioeconomic models is also found in more detailed discrete time
simulations (see, e.g., Dolder et al., 2020; Gomes et al., 2021). Dolder et al. (2020) assume a
given rate of delay when they simulate the fish population movement in space and time,
whereas Gomes et al. (2021) assume an absolute time delay in the way temperature affects the
biological efficiency for fish species. Notice that such absolute time delays are often motivated
by specific biological mechanisms (e.g., gestation period or reaction time related to for instance
reproductive or consumption behavior). The problem with absolute time delays is that in
economic and biological systems it is not possible to give a precise estimate of the time lags,
however. On the basis of this observation, it is argued that distributed time delay effects provide
more realistic descriptions in economic‐growth models. See, for example, Guerrini et al. (2020;
and some of the references therein).

This serves as a motivation for the present study:
We analyze how a single species open‐access commercial fishery is affected by marine

pollution. Our model which is expressed in terms of a dynamical system is based on the
simplifying assumption that production per capita in the economy grows with an exogenous
given rate, and reaches an exogenous given saturation level in the long run. Furthermore, we
assume that marine emissions are explained by means of this growth. Our objective is not to
explain economic growth, but to analyze the possible consequences of economic growth for
fisheries.

The modeling framework which we will present possesses a block structure: The solutions
of the rate equations for the pollutant and the economic activity act as an input for the biomass
and effort equation. This structure is reflected in the analysis of the existence and stability of
the equilibrium states.

The proposed dynamical model deals with possible impacts of distributed time delays
(instead of absolute time lags) on the fishery concerned. We incorporate these effects by
expressing the pollutant level as a weighted decomposition of the instantaneous pollutant level
and the corresponding time history of this level. The same type of decomposition applies to the
economic activity state. We furthermore assume the weight functions in these delays to be
modeled by means of exponentially decaying functions. This type of time delay modeling
means that all earlier states matter, but the nearest history carries most weight. Similar ideas
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concerning the ways time delays may influence the dynamics are found in Guerrini et al. (2020)
analyzing economic growth. The assumption of exponentially decaying weight functions,
enables us to convert the governing system of equations to a higher‐order autonomous
dynamical system by using the linear chain trick (LCT; Cushing, 2013). The resulting
dynamical system is investigated with respect to existence and stability of equilibrium states.
Moreover, using this conceptual way of treating time delays makes it possible to consider
separation of time scales related to the different variables. More specifically, we expect the
typical timescale for the biomass evolution to be much greater than the typical delay time scales
for the pollutant and economic activity level. In this time‐scale separation regime we show that
the modeling framework becomes a singularly perturbed dynamical system. This system is
analyzed by means of the Fenichel theory for singularly perturbed systems (Fenichel, 1979) and
its generalization to multiple time scales (Cardin & Teixeira, 2017). We explore and illuminate
important features of the modeling framework by means of the outcome of this asymptotic
analysis and numerical simulations and show that the impact of the time history is negligible in
the long run. Also here the block structure of the model plays an important role. As far as we
know, this type of analysis has not been carried out for similar models earlier.

The present paper is organized as follows: In Section 2 we discuss our modeling framework
in detail which is a modified version of Bergland et al. (2019). We transform the original system
to a dimensionless system by means of scaling in Section 3 and introduce the aforementioned
timescale separation regimes from the view point of bioeconomics. Section 4 is devoted to the
analysis of the subsystem describing the economic‐growth and pollution part of the model,
whereas we carry out the analysis of the full model in Section 5. The analysis shows that the
results obtained in Section 4 can be used as input in the full model presented in Section 5.
Section 6 contains concluding remarks and a list of problems for future investigations.
Appendix A contains the proof of the persistency property of the model. In Appendix B we deal
with the application of the well‐known Fenichel theory for one‐parameter singularly perturbed
dynamical systems to the economic‐growth and pollution block of the modeling framework,
whereas the same problem is addressed for the full modeling framework in Appendix C.

2 | MODELING FRAMEWORK

Our model consists of two main parts. One part models economic activity (production per
capita) Y t( ) and stock of pollutant in the marine environment S t( ), whereas the other part
describes a modified fishery model that constitutes the impact of pollution and economic
growth on the fish stock X t( ) and dynamic effort variable E t( ). Without any time lag effects
involved, the actual model reads



 


dX

dt
rX

X βS

K
qXE

dE

dt
k qPX c E

dS

dt
Y ζρ S a b

dY

dt
g Y Y

= 1 −
+

− , = ( − ) ,

= ϱ − ( ; , ), = ( ¯ − )0

(1)

with nonnegative initial conditions X E S Y(0) > 0, (0) > 0, (0) > 0, (0) > 0. The last two
equations in the model (1) account for the assumption that production and consumption
activities are responsible for the emission of harmful substances in the marine environment,
and model the pollution absorptive capacity of the environment. The instantaneous change in

4 of 39 | Natural Resource Modeling BERGLAND ET AL.

 19397445, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/nrm

.12363 by U
niversity O

f L
ife Sciences, W

iley O
nline L

ibrary on [08/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



the production of pollution in the marine ecosystem is proportional to the production per capita
Y with an emission rate ϱ0. The nonmonotonic function ρ represents the remediation capacity
function which is given as

ρ S a b
S a

S b
a b( ; , ) =

+

+
, , > 0.

2 2 (2)

The remediation capacity function ρ which models the pollution absorptive capacity of the
environment, thus depends on the size of the pollutant density. It constitutes a two‐parameter
family of functions parameterized by means of the remediation parameters a and b. Here the
nonnegative function ρ is a twice differential function of S and has a global maximum value at

a unique point S S a b a= = + −max
2 2 . Here we notice that ∕ρ S a b S( ; , ) = 1 2max max.

Furthermore, ρ is a strictly increasing function for ≤ ≤S S0 max and strictly decreasing for
≥S Smax. Notice that the function ρ also satisfies the homogeneity properties, that is,



 


ρ S a b Cρ

S

C

a

C

b

C
C( ; , ) = ˜ ; , for all real . (3)

Hence, when the pollution level S is below the threshold value Smax , the self‐cleaning ability of
the environment will increase with S. However, when exceeding this pollution threshold, the
self‐cleaning ability is expected to decrease and is negligible if pollution concentration in the
marine ecosystem is high enough. A notable feature is that the remediation capacity function
evaluated at Smax is inverse proportional to Smax.

The last equation in the model (1) states that the change in production (and income) per capita
is governed by the economic‐growth function f Y Y Y Y( ; ¯ ) = ¯ − and the economic‐growth rate g,
where the parameter Ȳ is the unique zeros of the economic‐growth function f . Moreover,

→∞Y t Ylim ( ) = ¯t . Notice that the function f satisfies the homogeneity property, that is,







f Y Y Cf

Y

C

Y

C
C( ; ¯ ) = ˜ ;

¯
for all real , (4)

where C is a positive parameter. It is worth mentioning that parameters Ȳ and C have the same
dimension.1 The assumption of modeling an exogenous growth rate seems adequate as the
production from the fishery only is assumed to contribute marginally to the total economic activity
in the society. At the same time, we assume that emissions from fishing activities are insignificant
compared with emissions from overall production and consumption in the economy.

For the other part of the model we assume a modified logistic growth equation for the
development of the fish biomass with the negative term βS− incorporated to account for the
impact of pollution on the fish biomass. The parameter r measures the intrinsic growth rate of
fish biomass and K is the carrying capacity. The coupling parameter β is referred to as the
growth‐retardation parameter. The model next considers the fish harvesting H where the fish
supply from the harvesting follows the Gordon–Schaefer production function H qXE= . The
instantaneous change in the effort variable E is assumed to be the proportion of the time‐
dependent sector profit π PH cE= − , where P is the time‐dependent unit product fish price
and c cost per unit price of fishing effort. The assumptions for the function P that represents the
time‐dependent marginal willingness to pay for fish products, include market
demand–income–mechanisms and negative impact on fish demand due to pollution.

BERGLAND ET AL. Natural Resource Modeling | 5 of 39
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Inspired by the conjecture that the distributed delay framework appears to be more realistic and
meaningful in the biological as well as in the economical context, we incorporate distributed time
delays in the different modeling blocks of the model (1). First, we assume that the prehistory of the
cleaning ability will affect the pollutant level S and should therefore be accounted for in the model
extension. We take this property into account by making the replacement

→ ≤ ≤ ρ S a b pρ S a b p ρ S a b p( ; , ) ( ; , ) + (1 − ) ( ; , ), 0 1 (5)

in the pollution equation of the model (1). Here  S is the temporal mean defined as

≡

≥

∞
∞




 S t α t s S s ds

α t α t dt

( ) ( − ) ( ) ,

( ) 0, ( ) = 1.

t

γ

γ γ

−

0

(6)

Thus, the new pollution equation which accounts for the prehistory of cleaning ability reads

 dS

dt
Y η pρ S a b p ρ S a b= ϱ − [ ( ; , ) + (1 − ) ( ; , )].0 (7)

Next we take into account the impact of the distributed time delay in the saturation term of the
fish biomass equation in (1). We do this by making the extension

≤ ≤


   


dX

dt
rX

X

K
β
ωS ω S

K
qXE ω= 1 − −

+ (1 − )
− , 0 1, (8)

of the biomass equation. Here the positive parameters r , K , and β have the same meaning as in
(1). For a nonzero β the term  

β
ωS ω S

K

+ (1− in (8) thus measures a possible loss in fish biomass
depending upon the accumulated pollution and its corresponding past history. Notice that this
term is a convex combination of the instantaneous effect of the pollution (modeled by means of
S and the time history of the pollution development, represented by the mean value  S ). The
convexity parameter ωmeasures the degree of influence of the distributed time delay effect: For
ω = 1, no such effect is present, whereas for the other extreme case ω = 0 the impact of the
pollution effect on the wild fish population solely depends on the past history.

Regarding the price function P in the model (1), we assume that the price of the fish
product is affected negatively by pollution and positively by economic activity (income per
capita). The time‐dependent marginal willingness to pay function P reads

≥ ≤ ≤ P P a κY κ Y a κ= + ( + (1 − ) ), 0, 0 1.1 2 2 (9)

Here  Y is the temporal mean of the economic activity level Y defined as

≡

≥

∞
∞




 Y t α t s S s ds

α t α t dt

( ) ( − ) ( ) ,

( ) 0, ( ) = 1.

t

μ

μ μ

−

0

(10)
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Moreover, we have assumed that the price function P depends on the pollutant density S and
its corresponding time history  S , that is,

≤ ≤ P A a B νF S B ν F S B ν= − ( ( ; ) + (1 − ) ( ; )), 0 1.1 0 1 0 0 0 (11)

Here F is defined as

≡F x x
x

x x
( ; )

+
0

0

and

≥A B a> 0, 0, > 0.0 0 1

We have imposed the constraint

≤a B A ,1 0 0 (12)

which ensures that the function P1 is positive for all t . Thus we have assumed that distributed
time lags are present in both the pollution level S and the income level Y in a way similar to the
time lag effects in the biomass‐pollution part of the modeling framework when it comes to the
marginal willingness to pay function P.

The case ν = 1 means that the effect of the past pollution history is negligible. To model P1

we tacitly assume that accumulated pollution concentration affects the quality of the fish
products and that it reduces the consumers beliefs in paying higher prices for the fish products.
Therefore we assume that P1 decreases for accumulating harmful substances in the marine
ecosystem and it saturates to level A a B− > 00 1 0 . Here the positive constant A0 measures a
fixed market price for per capita income (Y ). The nonnegative parameters a1 and B0 are
responsible for modeling the consumers beliefs in the fish products. It promotes the willingness
of consumers to pay less prices for such harmful fish products (Chen et al., 2015; Fonner &
Sylvia, 2014; Garzon et al., 2016; Wessells & Anderson, 1995; Whitehead, 2006). Here we also
assume that the history of pollution might affect the demand for fish, by incorporating a
distributed time effect ( ≤ ν0 < 1).

With the assumption that the higher the income per capita, the higher aggregated demand
for fish is, we model per capita economy production or the general income level per capita by
mean of state variable Y . We model the positive influence of income level per capita Y on
consumers demands for fish products that also includes a possible time delay income effect and
an ordinary income impact on fish demand. By inserting the expression (9) for P into the rate
equation for E in the model (1), we end up with the distributed time delay equation

 
 

dE

dt
k A a B νF S B ν F S B

a κY κ Y qX c E

= [( − ( ( ; ) + (1 − ) ( ; ))

+ ( + (1 − ) )) − ]

0 1 0 0 0

2

(13)

for the effort variable E. Regarding the temporal evolution of the economical activity level
(production per capita), we retain the same rate equation as in the model (1), that is, we
assume that

BERGLAND ET AL. Natural Resource Modeling | 7 of 39
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dY

dt
g Y Y= ( ¯ − ) (14)

with an economic‐growth rate g.
By making the additional assumption that the weight functions in the mean values  S and

 Y defined by (6) and (10) are exponentially decaying functions, that is,

≥




α t
t

γe t
( ) =

0, < 0,

, 0γ γt− (15)

and

≥




α t
t

μe t
( ) =

0, < 0,

, 0,μ μt− (16)

the LCT produces the rate equations

   d S

dt
γ S S= ( − ) (17)

and

   d Y

dt
μ Y Y= ( − ) (18)

for the mean values  S and  Y . See Cushing (2013) for a detailed exposition on LCT.
To summarize, the modeling framework consists of the pollution dynamics equation (7),

the fish biomass equation (8), the effort equation (13), and the production and income equation
(14). The rate equation (17) for the mean value of the pollutant density and the rate equation
(18) for the mean value of the economic activity level represent past history in the respective
model variables. Thus our model comprises a 6D autonomous nonlinear dynamical system. The
biological and/or economical interpretation of variables and the parameters of the proposed
model are summarized in Table 1.

3 | GENERAL PROPERTIES OF THE MODEL

3.1 | Scaling and general properties of the model

We start out by observing that the exponentially decaying integral kernels αγ and αμ defined by
(15) and (16) obey the scaling laws

≡ ≡

≥

∕ ∕




α τ r α τr α τ r α τr

ε rγ ε rμ

α t
t

de t

( ) = ( ), ( ) = ( ),

, ,

( ) =
0, < 0,

, 0.

ε γ ε μ

γ μ

d dt

1
−1 −1

1
−1 −1

−1 −1

−

γ μ

(19)
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TABLE 1 Interpretation of variables and parameters associated with the fishery‐pollution models (8), (13),
(7), and (14) and rate equations (17) and (18)

Variables/ Biological/ Measurement

parameters economical interpretation units (dimensions)

t Time T

Y Total production value per capita C

S The harmful substance density (stock of pollutants) M

X Fish population density M

K Carrying capacity of the fish biomass M

H Production volume (harvest) in fishery MT−1

E Effort (capital and labor) input in fishery E

P Market value of fish CM−1

r Intrinsic growth rate for the biomass T−1

β Pollution effect on biomass growth 1

q Fixed harvest efficiency rate E−1 T−1

g Economy growth rate T−1

Ȳ Long‐run production value per capita C

ϱ0 Emission (pollution) rate MC T‐1 ‐1

ζ Remediation (natural absorptive ability) rate T−1

a Remediation capacity parameter M

b Remediation capacity parameter M

a1 Pollution‐demand impact fishery CM−2 T

a2 Income‐demand impact fishery M−1

A0 Potential fish price C M−1

B0 Price‐saturation constant pollution M

c Cost per unit effort CE T−1 −1

p Weight of instantaneous versus delayed remediation capacity 1

ω Weight of instantaneous versus delayed pollution effect on biomass
growth

1

ν Weight of instantaneous versus delayed market pollution effect 1

κ Weight of instantaneous versus delayed market income effect 1

k Friction parameter in effort adjustment EC−1

Note: The fundamental units are T for time (e.g., year, month), M for mass (e.g., tons, kg), E for effort (e.g., employee, capital),
and C for currency (e.g., Euro, Yuan, etc.).

BERGLAND ET AL. Natural Resource Modeling | 9 of 39
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The scaled exponentially decaying kernels ∕α ε1 γ
and ∕α ε1 μ

are normalized functions. Thus they
can be used as weight functions in integrals that define the temporal means  θ and  ψ of θ
and ψ, respectively, that is,

≡

≡

∞
∕

∞
∕




 

 

θ τ α τ s θ s ds

ψ τ α τ s ψ s ds

( ) ( − ) ( ) ,

( ) ( − ) ( ) ,

τ

ε

τ

ε

−
1

−
1

γ

μ

(20)

where the functions  θ and  ψ are defined in Table 2. Notice here that we can define  θ and
 ψ by means of (20) for any normalized integral kernels αγ and αμ that satisfy the scaling laws
(19). We interpret the dimensionless parameters εγ and εμ : ∕T γ= 1γ is the decay time of the
weight function αγ in the temporal mean  S of the pollutant density S, whereas ∕T r= 1r is the
logistic timescale of the biomass X . Thus the ratio εγ is the ratio between these two time scales:

∕ε T T=γ γ r. For εμ we get ∕ε T T=μ μ r , where ∕T μ= 1μ is the decay time of the weight function
αμ in the temporal mean  Y of the economical activity level Y . Thus εγ and εμ parametrize the
temporal delay effects in our modeling framework. These two parameters (and consequently
also the three timescales Tμ, Tγ , and Tr ) will play a crucial role in the forthcoming analysis.

By means of the substitutions defined in Table 2 we readily derive the nondimensional
version of the distributed delay system

        ξ ξ ξ η θ ψ θ ψ η η ξ η θ ψ θ ψ′ = ( , , , , , ), ′ = ( , , , , , ), (21)

        θ ξ η θ ψ θ ψ ψ ξ η θ ψ θ ψ′ = ( , , , , , ), ′ = ( , , , , , ) (22)

consisting of Equations (8), (7), (13), and (14). Here ,  ,, and are the functions defined as

      ξ η θ ψ θ ψ ξ η γ ωθ ω θ( , , , , , ) = 1 − − − ( + (1 − ) ),1 (23)

      
 

ξ η θ ψ θ ψ γ ξ γ ξ νF θ γ ν F θ γ

γ ξ κψ κ ψ γ

( , , , , , ) = − [ ( ; ) + (1 − ) ( ; )]

+ [ + (1 − ) ] − ,
6 7 8 8

9 10
(24)

      ξ η θ ψ θ ψ ψ γ pR θ γ p R θ γ( , , , , , ) = − [ ( ; ) + (1 − ) ( ; )],2 3 3 (25)

    ξ η θ ψ θ ψ γ f ψ γ( , , , , , ) = ˜ ( ; ).4 5 (26)

Here the notation ′means differentation with respect to the time variable τ . Table 2 summarizes
the definitions and the interpretations of all the dimensionless variables and parameters involved
in the nondimensionalization process of our modeling framework. Imposing the homogeneity
assumptions (3) and (4) on the economic‐growth function f and the remediation capacity ρ
we get

f ψ γ C f Cψ Cγ C
ar

( ; ) = ˜( ; ), =
ϱ

,5
−1

5 (27)

≡R θ γ ρ θ γ aρ aθ a b( , ) ˜( ; 1, ) = ( ; , )).3 3 (28)

The nondimensional version of economic‐growth function f defined in (14) is obtained as

10 of 39 | Natural Resource Modeling BERGLAND ET AL.
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f ψ γ γ ψ˜( ; ) = − .5 5 (29)

Similarly when the remediation capacity function ρ is given as (2), we readily find that the
nondimensional remediation capacity function R reads

R θ γ
θ

θ γ
( ; ) =

+ 1

+
.3 2

3
2 (30)

The distributed delay systems (21)–(30) possess the following persistency property: If
γ γ pR γ p R> [ (0, ) + (1 − ) ]5 2 3 max , where ≡R R θ γ( ; )max max 3 is the maximal value of the
function R θ γ( ; )3 , ≥θ 0, then any solution of the systems (21) and (22), which starts within
the region

TABLE 2 Bioeconomic interpretation of the dimensionless variables τ , ξ τ( ), η τ( ), θ τ( ),  θ τ( ), ψ τ( ), and
 ψ τ( ), and the parameters γ i( = 1, 2, …, 10)i , ι, ω, εγ, and εμ in the models (23)–(32)

Variable/parameter definition Interpretation

τ rt= Dimensionless time (time t divided by the logistic time scale r−1)

∕ξ τ X t K( ) = ( ) Dimensionless fish stock population

∕η τ qE t r( ) = ( ) Dimensionless effort variable

∕θ τ S t a( ) = ( ) Dimensionless pollution density

∕

∞
∕

   θ τ S t a

α τ s θ s ds

( ) = ( )

= ( − ) ( )
τ

ε
−

1 γ

Mean value of dimensionless pollution density

∕ψ τ Y t ra( ) = ϱ ( )0 Dimensionless economic activity variable

∕

∞
∕

   ψ τ Y t ra

α τ s θ s ds

( ) = ϱ ( )

= ( − ) ( )
τ

ε

0

−
1 μ

Mean value of dimensionless economic activity variable

∕γ βa K=1 Biomass growth damage rate

∕γ ζ ra=2
2 Relative remediation rate

∕γ b a=3 Remediation capacity parameter

∕γ g r=4 Relative economic‐growth rate

∕γ Y ra= ϱ ¯
5 0 Relative long‐run emission

∕γ kqKA r=6 0 Potential revenue per unit effort in fishery

∕γ ka B qK r=7 1 0 Pollution‐demand impact

∕γ B a=8 0 Demand parameter pollution

∕γ kaqKa= ϱ9 2 0 Income‐demand impact

∕γ kc r=10 Relative unit cost of effort in fishery

∕ι γ γ= 5 2 Emission–remediation ratio

∕ε r γ=γ Relative decay time of mean pollutant density  S
∕ε r μ=μ Relative decay time of mean economical activity  Y

BERGLAND ET AL. Natural Resource Modeling | 11 of 39
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ξ η θ ψ θ ψ ξ η θ θ

ψ γ pR γ p R ψ

Σ = {( , , , , , ) : > 0, > 0, > 0, > 0,

> [ (0, ) + (1 − ) ], > 0},2 3 max
(31)

remains in r for all ≥τ τ*, where ≤τ* 0, that is, Σ is invariant under the solution flow of the
systems (21) and (22). For the sake of completeness we have relegated the details of this proof
to Appendix A (Theorem 1).

The mean values  θ and  ψ given by (20) satisfy in accordance with the LCT the linear
rate equations:

       ε θ θ θ ε ψ ψ ψ′ = − , ′ = −γ μ (32)

if the weight functions αγ and αμ are given as the exponentially decaying functions (15) and
(16), respectively.

The dimensionless parameters γ1, γ2, γ3, γ4, γ5, γ6, γ7, γ8, γ9, and γ10 associated with the
modeling frameworks (21)–(32) are positive. Standard theory for dynamical systems guarantees
that autonomous dynamical systems (21)–(32) are locally wellposed (Arnold, 1988;
Guckenheimer & Holmes, 1983) and that any solution of the dynamical systems (21)–(32)
will be a continuous function of the parameters γ γ, …,1 10. Furthermore, we classify model
parameters into three groups based on their role in the dimensionless modeling framework:

• Group 1: Parameters influencing the economic‐growth and pollution part of the
dimensionless model: γ2, γ3, γ4, and γ5.

• Group 2: Parameters associated with economic growth and the pollution affecting the fishery
part of the dimensionless model: γ1, γ7, γ8, and γ9.

• Group 3: Parameters affecting the fishery part of the dimensionless model: γ6 and γ10.

In the forthcoming analysis we refer to the parameter ≡ι
γ

γ
5

2

as the emission–remediation

ratio. By restoring to the original dimensional parameters we readily find that

ι
γ

γ

Y

ζa
= =

ϱ ¯
.5

2

0
(33)

Notice that the inequality (12) which is a sufficient condition for positive willingness to pay
translates into the condition

≥γ γ .6 7 (34)

We observe that the functions  and  defined by means of (25) and (26), respectively, are
independent of ξ and η. This means that we can view the solutions of the subsystem





 

     
   

           

θ ξ η θ ψ θ ψ ψ γ pR θ γ p R θ γ

ψ ξ η θ ψ θ ψ γ f ψ γ

ε θ ξ η θ ψ θ θ θ ε ψ ξ η θ ψ θ ψ ψ

′= ( , , , , , ) = − [ ( ; ) + (1 − ) ( ; )],

′= ( , , , , , ) = ˜ ( ; ),

′= ( , , , , ) = − , ′ = ( , , , , ) = −γ μ

2 3 3

4 5 (35)

as input functions to the subsystem

        ξ ξ ξ η θ ψ θ ψ η η ξ η θ ψ θ ψ′ = ( , , , , , ), ′ = ( , , , , , ).

12 of 39 | Natural Resource Modeling BERGLAND ET AL.
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We further notice that the component functions , , and  in (35) are independent of the
mean value  ψ . This means that the solution of the subsystem (35) can be determined by first
obtaining the solution to the 3D system







     
   

       

θ ξ η θ ψ θ ψ ψ γ pR ξ η θ γ p R θ γ

ψ ξ η θ ψ θ ψ γ f ψ γ

ε θ ξ η θ ψ θ ψ θ θ

′= ( , , , , , ) = − [ ( , , ; ) + (1 − ) ( ; )],

′= ( , , , , , ) = ˜ ( ; ),

′= ( , , , , , ) = − ,γ

2 3 3

4 5 (36)

and thereafter finding the temporal mean  ψ by solving the linear rate equation

       ε ψ ξ η θ ψ θ ψ ψ ψ′ = ( , , , , , ) = − ,μ (37)

using ψ as an input function. Figure 1 summarizes schematically the relationship between the
different blocks in the present model.

The asymptotic limit →ε i γ μ0 ; = ,i
+ of the systems (21)–(30) is of particular interest from the

viewpoint of bioeconomics: According to the previous discussion of the logistic timescaleTr and the
delay time scalesTμ andTμ, we observe that the parameter regime ≪ε i γ μ0 < 1; = ,i is equivalent
with the time separation regime ≪ ≪T T T T,γ r μ r. This regime can be analyzed directly by means of
the standard theory for singularly perturbed problems (Fenichel, 1979). If we impose the additional
scale separation ∕ ∕ ≪ ⇔ ≪ε ε γ μ T T= 1μ γ μ γ (which can be motivated from viewpoint of
bioeconomics), we end up with the two‐parameter singularly perturbed system. Multiscale singularly
perturbed dynamical systems can be dealt with using a generalization of Fenichel's theory (Cardin &
Teixeira, 2017). In subsequent sections we will deal with these two parameter regimes.

4 | THE ECONOMIC ‐GROWTH AND THE POLLUTION
PART OF THE MODEL

Here we discuss the properties of (35) and examine the impact of Group 1 parameters and delay
weight parameter p on the dynamics of the subsystem (35). We start out by studying the
existence of equilibrium points. An equilibrium point    θ ψ θ ψ= ( , , , )e e e e4 must satisfy

FIGURE 1 Schematic representation of the blocks in the models (21)–(30)

BERGLAND ET AL. Natural Resource Modeling | 13 of 39
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 ψ ψ γ= =e e 5 and  θ θ=e e without any restriction. Hence the equilibrium problem boils down
to a study of the equilibrium states θ γ( , )e 5 of the 2D system

θ ψ γ R θ γ ψ γ f ψ γ′ = − ( ; ), ′ = ˜ ( ; ).2 3 4 5 (38)

We make use of the properties of this system when dealing with the study of the slow–fast
regime ( ≪ε0 < 1i ) of (35) and (36). By utilizing the input parameters ≡ι

γ

γ
5

2

and γ3
2, the

equilibrium condition boils down to the study of the equation

θ

θ γ

γ

γ

+ 1

+
= .

2
3
2

5

2
(39)

We denote the possible solutions of this equation as θe. Let us define a function
∞ → ∞Γ : (0, ) (0, ) such that







ι γ

γ

γ
= Γ =

1

2

1 + + 1
,3

2 3
2

3
2 (40)

and introduce the subsets   , ,non eq,1 eq,2, and  defined as









∈

∈

∈ ≤

∈






































{ }

{ }
{ }

( )

( )

( )

( )

γ ι ι γ

γ ι
γ

ι γ

γ ι ι γ

γ ι ι γ

= , ; > Γ ,

= , ;
1

< < Γ ,

= , ; 0 < Γ ,

= , ; = Γ .

non 3
2 2

3
2

eq,2 3
2 2

3
2 3

2

eq,1 3
2 2

3
2

3
2 2

3
2

(41)

Here the curve  represents the nontransversality condition ( )ι R θ γ= ;e 3
2 and ( )R θ γ′ ; = 0e 3

2 .

Notice that the region non produces no equilibrium points whereas the parameter regioneq,2

produces exactly two equilibrium points. eq,1 is the region which gives rise to one negative
equilibrium point.

Now, let us assume that   ∈ ∪ ∪( )γ ι,3
2

eq,1 eq,1 which means that we are guaranteed the

existence of at least one equilibrium point (and maximum two equilibrium points) of the type
θ γ( , )e 5 of the 2D system (38). The stability problem of (38) can be resolved with the help of the
Jacobian matrix









γ R θ γ

γ
=

− ′( ; ) 1

0 −
.

e
2

2 3

4
(42)

The eigenvalues of the above stability matrix are computed as γ R θ γ− ′( ; )e2 3 and γ− 4. Hence we
conclude that the equilibrium point θ γ( , )e 5 is locally asymptotically stable if R θ γ′( ; ) > 0e 3

whereas it is saddle point if R θ γ′( ; ) < 0e 3 . In the case R θ γ′( ; ) = 0e 3 , the 2D subsystem (38)
experiences a saddle‐node bifurcation at the equilibrium point θ γ( , )e 5 . For R θ γ′( ; ) = 0e 3 , we
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have a unique solution θ θ=e max. Figure 2 shows a numerical example with the phase portrait

of the 2D system (38) in the case when we have two equilibrium points, that is, ∈( )γ ι,3
2

eq,2.

Let us assume  ∈ ∪( )γ ι,3
2

eq,2 which means that we are in a regime for which the

subsystem (36) has at least one positive equilibrium point θ γ θ= ( , , )e e3 5 , where θe satisfies
(39). The Jacobian matrix for the 3D subsystem (36) at 3 is given as

where p( )2 is the 2 × 2‐block matrix given as









pγ R θ γ

γ
=

− ′( ; ) 1

0 −
.p e

2
( ) 2 3

4
(44)

Here and in the sequel we will often make use of the abbreviation ≡R R θ γ′ ′( ; )e e 3 . The
eigenvalues of (43) are given as

λ
ε

γ pR ε γ pR ε R γ ε

λ γ

=−
1

2
[(1 + ′ ) ± (1 + ′ ) − 4 ′ ],

=− < 0.

γ
γ γ γ± 2 2

2
2

1 4

(45)

Thus the spectral properties of p
3
( ) show that equilibrium 3 is asymptotically stable if

R θ γ′( ; ) > 0e 3 and a saddle point if R θ γ′( ; ) < 0e 3 . The transition state R θ γ′( ; ) = 0e 3 corresponds

FIGURE 2 Nullclines of pollution θ (red curve), production variable ψ (black curve), and arrows showing
the direction of the vector field to the system (38) for the input parameters γ γ γ γ ι= = = 1, = 1.1, = 1.12 3 4 5 .
Here the equilibrium point E = (0.11, 1.1)1 (corresponding to R θ γ′( ; ) > 0e 3 ) is locally asymptotically stable and
E = (0.78, 1.1)2 (corresponding to R θ γ′( ; ) < 0e 3 ) is a saddle point.
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to a saddle‐node bifurcation. This means that the weight parameter p does not change the
stability properties as compared with the case p = 1. Thus the stability properties of the 2D
subsystem (38) carry over to the 3D subsystem (36). We notice that =p

2
( =1)

2, where 2 is
given by (42). The system (36) becomes a decoupled system in the case p = 1, in which the
dynamical evolution of the state variables θ and ψ is governed by the 2D system (38), whereas
the mean value  θ can be computed by solving the linear rate equation    ε θ θ θ′ = −γ by
direct integration treating θ as an input function obtained by solving (38).

Similarly, we linearize the 4D subsystem (35) around the equilibrium 4 to resolve the
stability problem. One can easily compute the eigenvalues of the following Jacobian matrix to
examine the stability of subsystem (35) at the equilibrium point θ γ θ γ= ( , , , )e e4 5 5 :

Here we have tacitly assumed that the  ∈ ∪( )γ ι,3
2

eq,2 which means that we are in a

regime for which the subsystem (35) has at least one positive equilibrium state 4. Now by

exploiting our findings for the Jacobian matrix p
3
( ) we can conclude that the weight parameter

∈p (0, 1) does not affect the stability of 4 : The eigenvalues of p
4
( ) are given as

λ
ε

γ pR ε γ pR ε R γ ε

λ γ λ
ε

=−
1

2
[(1 + ′ ) ± (1 + ′ ) − 4 ′ ,

=− < 0, = −
1

< 0

γ
γ γ γ

μ

± 2 2
2

2

3 4 4

(47)

are strictly negative if the positive slope condition R θ γ′( ; ) > 0e 3 is satisfied whereas one of the
eigenvalues is strictly positive if R θ γ′( ; ) < 0e 3 . We also find that one eigenvalue becomes zero if
R θ γ′( ; ) = 0e 3 . Therefore the equilibrium 4 is locally asymptotically stable if R θ γ′( ; ) > 0e 3 ,
whereas it will be a saddle point for the case R θ γ′( ; ) < 0e 3 . Simple computation reveals that
points located on the curve  correspond to a saddle‐node bifurcation. It is worth noting that
also in this case qualitative properties of the subsystem (35) follow the dynamical properties of
the 2D subsystem (38).

In Figure 3 we present numerical results associated with a subsystem (35) which support
the outcome of the present stability analysis. Here we have selected a set of parameter values
γ γ γ p γ= = = 1, = 0.8, = 1.12 3 4 5 and depicted the dynamical evolution of the associated
subsystem variables. In Figure 3a, we observe that the solution starting from the initial data
IC = (0.6, 0.6, 0.3, 0.3)1 quickly converges to the equilibrium point = (0.11, 1.1, 0.11, 1.1)4,1 .
However, the solution starting from initial data IC = (1.2, 0.6, 0.3, 0.3)2 gives rise to a saddle‐
node bifurcation that corresponds to an unstable equilibrium point = (0.78, 1.1, 0.78, 1.1)4,2 .
Here we see that the dynamical variable ψ and its temporal mean  ψ converge to the
equilibrium value ψ = 1.1e . However, the variable θ and its temporal mean  θ increase as time
progresses (see Figure 3b). Obviously these findings are consistent with our theoretical
outcomes. Here a moderate initial production per capita promotes stability. On the other hand,
the accumulated pollution goes unbounded when the initial per capita production is high
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enough. A similar situation is depicted in Figure 3c when initial production per capita exceeds
a certain threshold.

4.1 | Slow–fast analysis

The subsystem (35) shows that the economic activity ψ and the pollution level θ do not depend
on the past history of the economic activities. Therefore we will not include the equation of
temporal mean  ψ when studying the slow–fast progression analysis of the subsystem
associated with the economic activity and the pollution part. A detailed mathematical analysis
of a slow–fast version of the subsystems (35) and (36) is appended in Appendix B.

Here we show that numerical simulations of the dynamics of the slow–fast version of the
subsystem (36) (i.e., the scaled subsystem B2) confirm the mathematical findings in Appendix B.
This is illustrated in Figure 4. Here we have used γ γ γ p ε= = = 1, = 0.8, = 0.01γ2 3 4 , and

(a)

(c)

(b)

FIGURE 3 Numerical illustration of the subsystem (35) with ε = 1.0γ . (a) Small perturbation (IC) in
pollution θ (red curve) and economic activity ψ (violet curve) with its temporal mean converges to stable
equilibrium E = (0.11, 1.1, 0.11, 1.1)ep . (b) Uncontrolled pollution in case of high initial pollution. (c)
Uncontrolled pollution in case of initially high economic activity.
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γ = 1.15 as input parameters. The initial data used in the computations leading to Figure 4 is
given as (0.6, 0.6, 0.3). This simulation suggests that the variable  θ increases very fast
following the dynamics of the layered problem until it reaches the attracting 2D equilibrium
surfacea defined by

 ∈

∈

      
    

θ ψ θ ξ η θ ψ θ ψ

θ ψ θ θ θ

= {( , , ) ( , , , , , ) = 0}

= {( , , ) = }

a 3

3 (48)

of 3. During this initial phase the variables θ and ψ stay almost constant. In the second phase
they approach very slowly the asymptotically stable equilibrium on the slow manifolda as
predicted by the reduced problem. In Figure 4b one can see that ψ (red curve) approaches its
equilibrium value ψ = 1.1e slowly. Moreover, the mean value  θ (yellow curve) rapidly
converges to θ (blue curve) following the dynamics of the fast subsystem on the slow‐manifold
a. However, θ grows unbounded following the dynamics of the differential algebraic equation
(DAE) problem. These numerical simulations suggest that a small singular parameter

≪ε0 < 1γ in (B2) does not destroy the qualitative properties of the subsystem (36).
From a bioeconomic point of view our analysis demonstrates that the bioeconomic time

delay does not harm the stability of the slow–fast subsystem involving the pollution‐economic
part of the proposed model. Numerical simulations suggest that the mean variables    θ ψ( , )

are quickly attracted to equilibrium values θ ψ( , )e e .
To conclude, we observe that the impact of the distributed time delay in the pollutant

density and the economic activity is negligible in the long run in the time‐scale separation
regime ≪T T T,μ γ r, contrary to what is observed in models incorporating absolute time lags
(Bretschger & Smulders, 2018; Chakraborty et al., 2011, 2012; Ferrara et al., 2019; Gazi &
Bandyopadhyay, 2008; Kar & Chakraborty, 2010; Martin & Ruan, 2001; Yuan et al., 2016; Q.
Zhang et al., 2011; Y. Zhang et al., 2014).

(a) (b)

FIGURE 4 Numerical illustration of the subsystem (B2) with ε = 0.01γ . (a) Small perturbation (IC) in the
pollution θ (red curve), the economic activity ψ (violet curve) and pollution temporal mean  θ is attracting. (b)
Uncontrolled pollution in case of initially high economic activity. Moreover, the economic activity ψ stabilizes as
time progresses.
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5 | ANALYSIS OF THE FULL SYSTEM

In this section we first discuss the existence and stability of equilibrium points of the full
systems (21)–(30). If any such equilibrium points exist, then they must be in the form

   ξ η θ ψ θ ψ ξ η θ γ θ γ( , , , , , ) = ( , , , , , ),e e e e5 5 (49)

where θe is a solution of Equation (39). This equation possesses no solutions if ∈( )ι γ, 3
2

non

( ≡ ∕ι γ γ5 2 ), where non is defined by means of (41). Therefore the original nondimensional

systems (21)–(32) has no equilibrium states if ∈( )ι γ, 3
2

non. In the complementary parameter

regime, that is, when   ∈ ∪ ∪( )ι γ, 3
2

eq,1 eq,2 , Equation (39) has at least one solution and

maximum two solutions. This means that   ∈ ∪ ∪( )ι γ, 3
2

eq,1 eq,2 is a necessary condition

for the systems (21)–(32) to have equilibrium states. We keep this condition in mind during the
upcoming analysis of the proposed model.

In Section 5.1 we study the possibility of having equilibrium points of the system located in
the hyperplanes ξ = 0 and η = 0 with the corresponding stability properties, whereas we in
Section 5.2 deal with conditions ensuring the existence of equilibrium points in the first
orthant. In the latter subsection we address the stability of the interior equilibrium points. The
stability assessment of the equilibrium points (49) is inferred from the spectral properties of the
Jacobian matrix. We also illustrate the theoretical findings by means of numerical simulations
in these subsections.

5.1 | Existence and stability of equilibrium points in the hyperplanes
ξ = 0 and η = 0

The equilibrium problem consists of investigating solutions of the system

 ξ ξ η θ γ θ γ η ξ η θ γ θ γ( , , , , , ) = 0, ( , , , , , ) = 0,e e e e e e e e e e5 5 5 5

where the functions  and  are defined by means of (23) and (24), respectively.
Assume that ξ = 0e . We readily find that  η θ γ θ γ γ(0, , , , , ) = − < 0e e e5 5 10 from which it

follows that the only possibility for having an equilibrium point in this case is that η = 0e .
Hence the equilibrium point in the hyperplane ξ = 0 is

Q θ γ θ γ= (0, 0, , , , ).e e0 5 5 (50)

For the purpose of investigating the stability of Q0, we first derive the Jacobian 6 evaluated at
Q0. Simple computation reveals that
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where 0m n× denotes the zero m n× matrix. The eigenvalues of the Jacobian matrix (51) are
given by means of (47) and

λ γ θ λ γ= 1 − , = − < 0e5 1 6 10 (52)

from which we arrive the following conclusions: If θ γ<e 1
−1, then the equilibrium point Q0 is

unstable, regardless of the sign of the slope parameter R θ γ′( ; )e 3 . In the complementary regime
θ γ>e 1

−1, Q0 will be asymptotically stable if R θ γ′( ; ) > 0e 3 and a saddle point if R θ γ′( ; ) < 0e 3 .
The transition states θ γ=e

−1 and R θ γ′( ; ) = 0e 3 represent bifurcation points for which the
stability assessment cannot be based on the linearization procedure.

In Figure 5, we numerically illustrate the stability of the equilibrium point Q0 and try to
examine how the pollution and the economic activity part affect the fishery dynamics. Here we
observe that for a certain set of parameter values and initially low pollution density, the
economic activities and the pollution level are sustained and remain in the vicinity of their
respective equilibrium values (θ ψ,e e ). We also observe the eradication of the fish biomass
together with a vanishing of the harvesting effort consistent with the stability properties of the
equilibrium pointQ0. In the case the pollution goes uncontrolled we notice a rapid extinction of
the fish population and the vanishing of the harvesting effort (see Figure 5b).

Let us next consider the hyperplane η = 0. In this case we either get ξ γ θ= 1 −e e1 or ξ = 0e .
The former value of ξe produces the equilibrium point

Q γ θ θ γ θ γ= (1 − , 0, , , , ).e e e1 1 5 5 (53)

To get a positive ξe we must impose the restriction γ θ < 1e1 . It is important to notice that
Q Q=0 1 if γ θ = 1e1 . Let us consider the regime R γ R θ γ(0; ) < < ( ; )

γ

γ3 max 3
5

2

(corresponding to

∈( )ι γ, 3
2

eq,2) for which we have two positive solutions of Equation (39), θ θ=e l and θ θ=e h

(θ θ<l h ) corresponding to R θ γ′( ; ) > 0l 3 and R θ γ′( ; ) < 0h 3 , respectively. Notice that if ≤γ θ 1h1 ,
we will have ≤γ θ 1l1 Thus we will have the coexistence of two equilibrium points of the type
Q1 for the case ≤γ θ 1h1 and θ θ<l h.

We next compute the Jacobian 6 evaluated at Q1:

Here







γ ωξ γ ω ξ

=
− 0 − (1 − ) 0

0 0 0 0
e e

1
1 1

and

 Q ξ γ γ γ γ F θ γ γ( ) = ( + − ( ; )) −e e1 6 5 9 7 8 10

and ξe is defined in (53). The eigenvalues of the stability matrix (54) are given by (47) and

λ γ θ λ Q= −(1 − ) < 0, = ( ).e3 1 4 1
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Following the spectral properties of submatrix p
4 we are in the position to claim that Q1 is an

asymptotically stable equilibrium if R θ γ′( ; ) > 0e 3 and  Q( ) < 01 . The latter condition is
equivalent with the restriction

ξ
γ

γ γ γ κ γ F θ γ
0 < <

+ − ( ; )e
e

10

6 5 9 7 8
(55)

imposed on ξe since by (59) in Remark 1 the condition

γ γ γ κ γ F θ γ+ − ( ; ) > 0e6 5 9 7 8

always is fulfilled.
Figure 6 demonstrates the impact of the pollution on the stability properties of the

equilibrium point Q1. In Figure 6a we observe that a small perturbation around Q1 does not
harm its stability. Notice that this long‐run evolution of the pollution level makes the fishery
unprofitable, thus resulting in a vanishing of the effort even though the fish stock has not gone
extinct. However, Figure 6b shows that an initially high pollution level also causes the
extinction of the fish biomass. This means that the solution is attracted towards the
equilibrium Q0.

5.2 | Existence and stability of positive equilibrium points

Here we discuss the existence and stability of positive equilibrium points, that is, equilibrium
points of the type (49) for which ξ η θ, , > 0e e e . By using the equilibrium condition

(a) (b)

FIGURE 5 Dynamical behavior of nondimensional systems (21)–(32) in the vicinity of the equilibrium point Q0

in the high biomass damage regime. Input parameters: γ = 3.51 , γ γ γ γ γ γ γ= = 1.1, = 1, = 1.1, = 2, = 1, = 0.5,2 3 4 5 6 7 8

γ γ ε ε= 0.1, = 1, = = 1γ μ9 10 . (a) Initial condition (0.4, 0.4, 0.6, 0.6, 0.6, 0.6) belongs to the attractor basin ofQ0 . The
fishery sector is wiped out and the effort vanishes. (b) Initial condition (0.4, 0.4, 1.2, 0.6, 0.6, 0.6) does not belong to
the attractor basin ofQ0 . The fish stock is depleted very quickly and the pollution grows uncontrolled due to high initial
pollution production. Here ξ represents fish biomass, η is the effort variable, θ measures the concentration of pollution,
and ψ is the economic activity.
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 ξ η γ θ γ ξ γ ξ F θ γ γ ξ ψ γ= 1 − − − = 0, = − ( ; ) + − = 0,e e e e e e e e1 6 7 8 9 10

we express ξe and ηe in terms of θe:

η ξ γ θ ξ
γ

γ γ γ γ F θ γ
= 1 − − , =

+ − ( ; )
.e e e e

e
1

10

6 5 9 7 8
(56)

According to Remark 1 the restrictions

ξ γ θ γ γ γ γ F θ γ0 < < 1 − , + − ( ; ) > 0e e e1 6 5 9 7 8 (57)

will always be fulfilled. This means that we are guaranteed the existence of positive equilibrium
points Qe provided the subsystem (36) has at least one positive equilibrium point.

Remark 1. We notice that the first inequality in (57) is equivalent to the boundedness
condition

X βS K+ <e e (58)

for the equilibrium biomass Xe and the equilibrium pollutant density Se (corresponding
to ξe and θe, respectively) when restoring to the dimensional parameters. The result (58)
shows that Xe is bounded by the carrying capacity K whereas Se is bounded by ∕K β. The
second inequality in (57) is the nondimensional version of the positive marginal
willingness to pay, that is, the condition,

(a) (b)

FIGURE 6 Dynamical behavior of nondimensional systems (21)–(32) in the vicinity of the equilibrium
point Q1 in the high pollution‐demand impact regime. Input data: γ = 2.57 , γ γ γ γ= 3.5, = = 1.1, = 1,1 2 3 4

γ γ γ γ γ ε ε= 1.1, = 2, = 0.5, = 0.1, = 1, = = 1γ μ5 6 8 9 10 . (a) Initial condition (0.4, 0.4, 0.6, 0.6, 0.6, 0.6) (moderate
initial pollution level) belongs to the attractor basin ofQ1. The fish stock ξ is sustainable, whereas the economic
effort η vanishes. (b) Initial condition (0.4, 0.4, 1.2, 0.6, 0.6, 0.6) does not belong to the attractor basin ofQ1. The
fish stock ξ is depleted very quickly, the effort vanishes η, and the pollution θ level grows uncontrolled due to
the high initial pollution level.
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P A a Y a B
S

S B
= + ¯ −

+
> 0.e

e

e
0 2 1 0

0
(59)

By restoring to the dimensional parameters, we find that the equilibrium effort Ee and
the equilibrium population density Xe (corresponding to Equation 56) are given as











E
r

q

c

qKP

β

K
S X

c

qP
= 1 − − , = .e

e
e e

e
(60)

Here Pe is the marginal willingness to pay given as (59), also interpreted as the market
value per unit catch. We notice that the equilibrium biomass Xe and the equilibrium
fishery effort Ee are determined by fish value, cost, harvest efficiency, and growth
parameters in a similar manner as in the standard Gordon–Schaefer model (e.g.,
Clark, 2010; Flaaten, 2018; Hannesson, 1978). For instance, it follows that the special case
with no biomass growth damage (β = 0) our equilibrium (corresponding to the effort and
stock level) is referred to as the bioeconomic equilibrium of the unregulated open‐access
fishery in the standard Gordon–Schaefer model. The cost–value ratio ( c

Pe
) is crucial when

determining the profitability in the fishery, and thereby the equilibrium biomass and the
equilibrium fishery effort. If X X> e, fishing is profitable and the effort increases causing
a reduction of the biomass. As soon as X falls below Xe, fishing becomes unprofitable and
the effort will be withdrawn.

Now to determine the stability of the positive equilibrium point Qe we first derive the
Jacobian matrix 6 evaluated at this point. We readily obtain

where









γ ωξ γ ω ξ

γ ξ νF θ γ γ κξ η γ ξ ν F θ γ γ κ ξ η
=

− 0 − (1 − ) 0

− ′( ; ) − (1 − ) ′( ; ) (1 − )
e

e e

e e e e e e e e

1 1

7 8 9 7 8 9

and

 Q γ γ γ γ F θ γ( ) = + − ( ; ).ξ e e6 5 9 7 8 (62)

The eigenvalues of stability matrix (61) are given by

λ ξ ξ ξ Q= −
1

2
[ ± ( − 4 ( ) ]e
e e e ξ e± (63)

and those eigenvalues which can be extracted from submatrix p
4
( ) , that is, the expressions (47).

From Remark 1 we know that  Q( ) > 0ξ e (see condition 57). We observe that eigenvalues λ e±
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remain negative if the condition ξ Q> 4 ( )e ξ e is satisfied. Combining this condition with (57)
we get the following restriction:







F θ γ

γ
γ γ γ

γ
( ; ) >

1
+ −

2
,e 8

7
6 5 9

10
(64)

which ensures negative values of λ e±. Here the structure of the function F θ γ( ; )e 8 is defined in
(12). Remark 2 gives a detailed bioeconomic interpretation of the condition (64). It is
noteworthy that the condition (64) is interlinked with the stability dynamics of the fisheries and
economic effort part which are automatically satisfied if the condition (57) is satisfied.
Assuming that the condition (64) is fulfilled, the stability assessment of the positive equilibrium
point Qe simplifies the study of the slope of the remediation capacity R evaluated at θe : Qe is a
locally asymptotically stable equilibrium if the positive slope condition R θ γ′( ; ) > 0e 3 holds true.
A saddle‐node bifurcation occurs when R θ γ′( ; ) = 0e 3 .Qe becomes unstable if R θ γ′( ; ) < 0e 3 . We
illustrate this result numerically. To this end, we run simulations for a set of parameters
satisfying the restrictions stated in (56) which ensure the positivity of the equilibrium pointQe.
In Figure 7, one can easily see how an initially high pollutant level may alter the dynamics of a
stable equilibrium point. In Figure 7a, we observe that a small disturbance of the equilibrium
point Qe does not harm the stability of the system. However, an initially high pollutant density
promotes uncontrolled pollution which may harm the stability of the system. It is worth
mentioning that a high initial pollution level may give rise to the bifurcation from the interior
equilibrium point Qe to the fisheries‐effort eradication equilibrium point Q0 (see Figure 7a).

We also signify the effect of Group 3 parameters on the stability of the interior equilibrium
point Qe. We numerically observe that Group 3 parameters have no impact on the equilibrium
value of the state variables θ ψ, . Therefore we only capture the time evolution of state variables
ξ and η in the upcoming simulations.

(a) (b)

FIGURE 7 Dynamical behavior of nondimensional systems (21)–(32) in the vicinity of the equilibrium pointQe.
Parameter values are γ γ γ γ γ γ γ γ γ γ= 0.7, = = 1.1, = 1, = 1.1, = 2, = 1, = 0.5, = 0.1, = 1,1 2 3 4 5 6 7 8 9 10 ε ε= = 1γ μ .
(a) Initial condition (0.4, 0.4, 0.6, 0.6, 0.8, 0.8) representing a moderate initial pollution level belongs to the attractor
basin ofQe. The fish stock ξ and economic effort η are sustained and remain stable for the small perturbation. (b) The
initial condition (0.4, 0.4, 1.2, 0.6, 0.8, 0.8) representing a high initial pollution level results in rapid extinction of the
fish stock ξ and a vanishing economic effort η, whereas the pollution level θ grows unbounded.
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Remark 2. By restoring to the dimensional parameters, we find that the inequality (64)
translates into the boundedness condition

P
qK

rc

k
<

1

2
.e (65)

Here Pe is the marginal willingness to pay defined by means of (59). We notice the
appearance of the market value per unit, in addition to the harvest efficiency (q), the
growth parameters (r and K ), and the friction in effort adjustment (k) in this expression.
We conclude from the above analysis that the equilibrium Qe is asymptotically stable as
long as the market value Pe in the fishery is below this threshold level and for small and
moderate values of the equilibrium pollutant level.

5.3 | Slow–fast analysis

In this subsection we apply geometrical singular perturbation theory to investigate the
dynamics of slow–fast progression in the original system. We discuss different cases depending
on the values of parameters μ γand .

5.3.1 | Case I: ≪T T T~μ γ r

This subsection is devoted to study the slow–fast progression dynamics of the systems (21)–(32) under
the time‐scale separation ≪T T T~μ γ r. This regime can be investigated by means of Fenichel's
theory (Fenichel, 1979) and its generalization to multitime‐scale problems (Cardin & Teixeira, 2017)
for slow–fast systems. The application of this theory to our model is relegated to Appendix C.

Here we focus on how the numerical simulation matches the theoretical findings presented
in Appendix C. To this end we consider the flow of the slow part of the system (35) (i.e., the
subsystem C1) on the 4D critical manifold0 defined by

 ∈       ξ η θ ψ θ ψ θ θ ψ ψ= {( , , , , , ) : = , = }.0
6 (66)

This evolution is governed by the system

ξ ξ ξ η γ θ η η γ ξ γ ξF θ γ γ ξψ γ

θ ψ γ R θ γ ψ γ f ψ γ

′= (1 − − − ), ′ = ( − ( ; ) + − ),

′= − ( ; ), ′ = ˜ ( ; ).

1 6 7 8 9 10

2 3 4 5

(67)

Here we see that the economic activity variable ψ evolves independently of the remaining state
variables as time progresses. Moreover it is always attracted to its equilibrium ψ γ=e 5. We recall
the results obtained in previous sections to determine the stability of equilibrium points of the
system (67): If θ θ=e l be the solution of (39) for which R θ γ′( , ) > 0e 3 , then the interior
equilibrium  ξ η θ γ= ( , , , )l e e l 5 of the system (67) is locally asymptotically stable whereas the
other equilibrium point  ξ η θ γ= ( , , , )h e e h 5 corresponding to the negative slope condition
R θ γ′( , ) < 0e 3 is unstable within the framework of the model (67). Notice that this stability
result is independent of εγ. The mathematical analysis carried out in Appendix C suggests that
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the impact of distributed delay over the long period of time is negligible in the time‐scale
regime ≪T T T~μ γ r.

To illustrate the mathematical observations appended in Appendix C we run numerical
simulations for the same set of parameter values and initial data underlying the computations leading
to Figure 7. We observe a rapid attraction of fast variables  θ and  ψ towards their equilibrium
points. The slow variables evolve very slowly and almost look like constant in this phase (see
Figure 8).

In Figure 9, we present numerical results for the regime ≪ε ε0 < = 1μ γ showing
the temporal evolution of the biomass ξ and the effort variable η by assuming the

(a) (b)

FIGURE 8 Temporal evolution of slow variables of the singularly perturbed system (67). Parameter values
(except ε ε= = 0.01γ μ ) and initial data are the same as in Figure 7a,b. Here ξ represents fish biomass, η is the
effort variable, θ measures the concentration of pollution, and ψ is the economic activity.

(a) (b)

FIGURE 9 Temporal evolution of slow variables of the reduced system (67) on the critical manifoldε .
Parameter values are γ γ γ γ γ γ γ γ γ γ ε ε= 1.1, = = 1.1, = 1, = 1.1, = 2, = 1, = 0.5, = 5, = 1, = = 0.01γ μ1 2 3 4 5 6 7 8 9 10 .
The initial condition is the same as in Figure 7a. Here ξ represents fish biomass, η is the effort variable, θ measures the
concentration of pollution, and ψ is the economic activity.
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pollution‐economic activity block as input information to the fishery part. In Figure 9a we
observe the well‐known oscillations where the profitability in the fishery determines the effort,
and the following harvest volume causes biomass variations. Figure 9 displays the temporal
evolution of the slow variable which is evolved on slow manifold εγ. These simulations
demonstrate how a general trajectory of the system (67) is attracted towards the slow manifold.

5.3.2 | Case II: ≪ ≪T T Tμ γ r

Finally, we study the dynamics of the full systems (21)–(32) in the time‐scale separation regime
≪ ≪T T Tμ γ r . This means that ≪ ⇔ ≪ ≪ε ε r γ μ( )μ γ . We use the slow–fast analysis carried

out in Section 4.1 to conclude that the dynamical evolution decomposed into the three phases
described in that subsection: In the first phase the temporal mean variable associated with
economic activity,  ψ , evolves on the fastest time scale Tμ, with the remaining variables

 ξ η θ ψ θ( , , , , ) being constant. The 5D subspace

 ∈     ξ η θ ψ θ ψ ψ ψ= {( , , , , , ) : = }1
6

of 6 acts as a normally attracting hyperbolic manifold. The dynamical evolution in the next
phase takes place on1 and is governed by the system

 

 

       
       

   

ξ ξ ξ η θ ψ θ ψ η η ξ η θ ψ θ ψ

θ ξ η θ ψ θ ψ ψ ξ η θ ψ θ ψ

ε θ θ θ

′= ( , , , , , ), ′ = ( , , , , , ),

′= ( , , , , , ), ′ = ( , , , , , ),

′= − ,γ

(68)

which is a singularly perturbed system with εγ as a perturbation parameter. As →ε 0γ , the
asymptotic approximation of the dynamical evolution prescribed by (68) decomposes into two phases:
The first phase consists of the evolution of the mean value of the pollution on the intermediate time
scale Tγ with the remaining variables ξ η θ ψ( , , , ) being constant and the 4D subspace

 ∈       ξ η θ ψ θ ψ θ θ ψ ψ= {( , , , , , ) : = , = }2
6

of1 acting as a normally attracting hyperbolic manifold. The final phase consists of the slow
evolution of  ξ η θ ψ= ( , , , ) on the manifold2. The 4D autonomous governing system (67)
acts as the reduced problem on2 for the slow dynamical systems (21)–(30) which is already
discussed in the previous sections. Now we consider following transformations:

∕

       
τ τ ε ς τ ξ τ τ η τ χ τ θ τ

τ ψ τ χ τ θ τ τ ψ τ

˜ = , (˜) = ( ), Φ(˜) = ( ), (˜) = ( ),

Ψ(˜) = ( ), (˜) = ( ), Ψ (˜) = ( ),

γ

and letting ε = 0γ in dynamical systems (21)–(30) we get the intermediate problem on1

   ς χ φ χ χ χ˜ = 0, Φ̃ = 0, ˜ = 0, ˜ = 0, ˜ = − ,

where ˜ denotes the time derivative with respect to the intermediate time variable τ̃ . The other
variables remain constant on this time scale. Similarly, the associated layered problem is given by
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     Λ̇ = 0, ϒ̇ = 0, Θ̇ = 0, Ψ̇ = 0, Θ̇ = 0, Ψ̇ = Ψ − Ψ .

Here ⋅ denotes the time derivative with respect to τ̂ where time variable ∕τ τ εˆ = ˜ μ and other
state variables are transformed similarly as in (B1). Notice that1 and2 are the critical and
two‐critical manifolds on which the intermediate and the reduced problems of systems
(21)–(30) are defined, respectively. Notice that1 and2 are also the equilibrium points of
the layered and the intermediate problem of the systems (21)–(30). By appealing to Theorems
A, B, C, and Corollary 1 in Cardin and Teixeira (2017) we conclude that for small parameters εμ
and εγ, there is an invariant manifold ε ε

2
( , )μ γ under the flow of the systems (21)–(30) which is

the perturbed counterparts of the manifold2 with Hausdorff distance  ε ε( + )μ γ and, it is

diffeomorphic to2. Moreover, the stability property of ε ε
2
( , )μ γ is inherited from the attracting

critical manifold 2. We omit the proof of multitime‐scale convergence results for the
slow–fast systems as these results follow directly from Theorems A, B, and C in Cardin and
Teixeira (2017).

We finally run simulations for the singularly perturbed original systems (21)–(30) in the
parameter regime ≪ε ε0 < < 1μ γ . The outcome of these simulations is summarized in
Figure 10. Here we observe that the mean variables  θ and  ψ converge to the trajectories of θ
and ψ very quickly, respectively. However, the slow variables evolve very slowly on the same
time interval in comparison. These variables remain almost constant in the initial phase (see
magnified view in Figure 10a). However, in the long run the slow variables converge to their
respective equilibrium values. The numerical findings thus agree surprisingly well with the
predictions deduced by means of the theory for singularly perturbed systems, even though
ε ε= 5γ μ in the numerical simulations. We conclude that neither the past history of economic
activities nor the past history of pollution growth will affect the fishery dynamics in the long
run in this time separation regime. Moreover, high initial pollution level gives rise to
uncontrolled pollution growth which in turn promotes unprofitable fisheries and could be the
reason for the extinction of the fish biomass.

(a) (b)

FIGURE 10 Temporal evolution of slow variables of the singularly perturbed systems (21)–(30). The
parameter values (except ε ε= 0.05, = 0.01γ μ ) and the initial data are the same as in Figure 7a,b. Here ξ

represents the fish biomass, η is the effort variable, θ measures the concentration of pollution, ψ is the economic
activity, and τ̂ is the time scale for the equivalent fast system of the original models (21)–(30).
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6 | CONCLUDING REMARKS AND EXTENSIONS

6.1 | Main results

In the present paper we have investigated a conceptual causal bioeconomic model describing
the impact of pollution on a fishery using a dynamical system approach. We have accounted for
distributed time histories in both the pollution level and the economic activity level in this
modeling framework. This means that the fundamental model assumes the form of a
distributed time delay system. The model decomposes into two subsystems. The first subsystem
which describes the interaction between the pollution and the economic activity plays the role
as an input to the second subsystem which is defined as rate equations for the fish stock density
and the effort variables.

The model is converted to a 6D autonomous dynamical system by means of the LCT when
assuming the weight functions in the time delay terms to be exponentially decaying functions
(Cushing, 2013). Existence and stability of equilibrium states are investigated. We also identify
the characteristic time scales for these time lags and investigate the dynamical evolution as a
function of these time scales. When the former time scales are much smaller than the logistic
time scale, the modeling framework becomes a singularly perturbed dynamical system. We
have analyzed this system using Fenichel's theory (Fenichel, 1979) and its generalization to
multiscale problems (Cardin & Teixeira, 2017) together with numerical simulations. On the
basis of this analysis and the simulation results we conclude that the prominent feature to be
observed is that the impact of the distributed time lags is negligible in the long‐run dynamical
evolution, contrary to what is found for population dynamical systems with absolute time lags
(Bretschger & Smulders, 2018; Chakraborty et al., 2011, 2012; Ferrara et al., 2019; Gazi &
Bandyopadhyay, 2008; Kar & Chakraborty, 2010; Martin & Ruan, 2001; Yuan et al., 2016; Q.
Zhang et al., 2011; Y. Zhang et al., 2014). Hence, our model analysis adds to the existing
literature knowledge of how distributed time delays affect short‐ and long‐run development of
stock and effort in an open‐access harvesting model.

6.2 | Possible extensions

Here we will point to possible extensions and modifications of the present modeling framework
which could be topics for future research.

First, in the present paper we have assumed that the emission rate ϱ0 in the pollution
equation is constant, compare Equation (7). A natural extension of this assumption consists of
modeling the emission rate by means of a strictly decreasing, which is bounded from above and
below. The motivation for assuming a decrease in the emission rate as a function of the
pollutant density and the economic activity goes as follows: First, when the production
increases (which implies a higher income in the economy), it seems reasonable to expect that
the individuals' preferences for reducing the pollution become relatively more important. If
such reasoning holds, the environmental policies will become stricter. Second, an increase in
emissions may also lead to an increased willingness to implement stricter environmental
standards to avoid the negative impacts from pollution. However, it is reasonable to believe that
the emission rate remains positive and saturates when assuming such decreasing effects.

Second, we have assumed the time histories to be modeled by means of exponentially
decaying functions. We have argued that this assumption mimics a realistic time history when
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it comes to economic activity and pollution emission. We do not exclude the possibility that
other time histories can be relevant, however. One possible future research topic consists of
assuming that the time histories can be modeled as a Taylor ‐ polynomial multiplied with an
exponentially decaying function. This type of time history can model situations where certain
times in the past carry more weights than others when it comes to the influence of the time
history on the present situation. The LCT is applicable in this case. See Cushing (2013). It will
produce a higher hierarchy of ordinary differential equations (ODEs). Here a detailed
numerical examination of the change in the temporal development of the state variables would
be of interest. One should, however, be aware of that the change to this type of weight function
will not alter the fundamental stability properties of the detected equilibrium states. Notice also
that the time‐scale separation regimes which also in this case can be analyzed by means of
Fenichel's theory for singularly perturbed dynamical systems (and its extension to multiscale
problems) will also lead to the conclusion that the impact of the delay effects on the dynamical
evolution will be negligible in the long run.

The argument for this proceeds in the same way as in Sections 4 and 5. Notice that it is
possible to extend the LCT method to generally distributed time lags as suggested in Ponosov
et al. (2004). However, in this case LCT may produce an infinite dimensional system of ODEs,
so that it may be a mathematical challenge to perform stability analysis, and there is no
guarantee that the properties of the present model would be preserved under such a far‐
reaching generalization. However, if the lag distribution is polynomial‐based, the LCT gives a
finite‐dimensional system, and the stability analysis can be performed in the standard way, as
explained above.

Third, a natural and well‐motivated extension consists of incorporating spatial effects in the
modeling framework. This means to consider effects like local as well as nonlocal
advection–diffusion effects in the description of the biomass evolution as well as in the
pollutant movement. We believe that such spatial effects are not present in the rate equations
for the economic activity and the effort variables. Here we could follow the same line of thought
as in Marciniak‐Czochra et al. (2017) and Heilmann et al. (2018). This means that the modeling
framework assumes the form of an ODE–reaction diffusion coupled model with advection
effects incorporated. The key problem here will be to detect linear instabilities of equilibrium
states as a route to pattern formation. The outcome of this process is expected to be stationary
spatial patterns, standing, and traveling waves, and possibly also chaotic spatiotemporal
patterns. It will thus be of interest to find out if the resulting system permits coherent structures
like stable traveling wave solutions. The role of such structures in the pattern‐forming process
should be examined. Here we should notice that nonlocal diffusion effects incorporated in the
biomass and the pollutant equation in a way analogous to Cheng and Yuan (2017) could result
in the existence of traveling waves. Another interesting problem for further investigation is to
study the proposed model under biomass diffusion as an optimal fisheries management
problem. The main idea is to investigate the effects of optimal control of biomass diffusion
processes in the emergence of spatial heterogeneity through diffusion‐driven instability.
Optimal control in harvesting and diffusion in the emergence of spatial heterogeneity can be
studied based on the footprints of William and Xepapadeas (2010).

Fourth, we will expect that the determination of the maximal remediation capacity as well
as other parameters will be subject to uncertainties, and thus the stochastic processes should be
included in the modeling framework. Hence the modeling framework becomes a system of
stochastic differential equations. Following the thoughts as in Evans (2012) and
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Øksendal (2003), the model can be rewritten as an autonomous dynamical system of first‐order
equations with the stochastic effects accounting for additive noise terms in the system.

In addition to more sophisticated and realistic assumptions regarding the pollution and the
cleaning abilities of the ecosystem, alternative and more reasonable assumptions regarding the
economic behavior and the functioning of the fish market also represent possible model
extensions. For instance, modifications of Verhulst's population growth model and the
Gordon–Schaefer harvest production function which are discussed in Hannesson (1978),
Clark (2010), Flaaten (2018), or Eide (2018), could be incorporated in the model formulation.

Seeking for an overall welfare optimal resource allocation, environmental, and fishery
policies based on the predictions derived from a model like ours would also be an interesting
task for future research.

To sum up, our comments regarding possible extensions may serve as a relevant
background for future studies concerning marine pollution and fishery resources within the
framework of bioeconomic models.
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Solow growth model (Solow, 1956). Our model does not explicitly include factors affecting the level of
economic growth.
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APPENDIX A: PERSISTENCY PROPERTY OF THE SYSTEMS (21)
AND (22)
Regarding persistency of the solutions of the systems (21) and (22), we have the following
result:

Theorem 1. Consider the systems (21) and (22) under the assumptions (23)–(26), where
f̃ and g̃ are defined in (27) and (28), respectively, f satisfies properties (a) and (b) and ρ
satisfies properties (a)–(e) from Section 2.

If γ γ pR γ p R> [ (0, ) + (1 − ) ]5 2 3 max , where ≡R R θ γ( ; )max max 3 is the maximal value of
the function R θ γ( ; )3 , ≥θ 0, then any solution of the systems (21) and (22), which starts
within the region

     
 

ξ η θ ψ θ ψ ξ η θ θ

ψ γ pR γ p R ψ

Σ = {( , , , , , ) : > 0, > 0, > 0, > 0,

> [ (0, ) + (1 − ) ], > 0},2 3 max
(A1)

remains in Σ for all ≥τ τ*, that is, Σ is invariant under the solution flow of the systems (21)
and (22).

Proof. First of all we notice that

1. If the solution ψ τ( ) of the equation ψ γ f ψ γ′ = ˜ ( ; )4 5 , see (36), is positive for some
τ > 00 , then ψ τ( ) remains positive for all ≥τ τ0 ; any solution ψ τ( ) of this equation
approaches the only equilibrium point ψ γ= 5 of this equation if → ∞τ .
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2. If for some τ0 the components ξ and η of the solution of the systems (21) and (22) are
positive, then they remain positive for all ≥τ τ0 even if the other components may be
negative.

The first statement follows from the assumption that f ψ γ˜( ; ) > 05 if ≤ ψ γ0 < and
f ψ γ˜( ; ) < 05 if ψ γ> . Therefore, ψ τ( ) is strictly increasing on the interval ≤ ψ γ0 < and
strictly decreasing on the interval ψ γ> . Thus, γ5 is the global attractor for all solutions
ψ τ( ), which also cannot cross the line ψ = 0.

The second statement follows from the general properties of dynamical systems of the
Lotka–Volterra type, see, for example, Bergland et al. (2019, Appendix B, Lemma 2).

These two facts, together with the observation that the equations for θ and  θ are
independent of ξ , η, and  ψ , make it possible to simplify the problem by only considering
the subsystem (36). For instance, proving the invariance of the region

   θ θ ψ θ θ ψ γ pR γ p RΣ′ = {( , , ) : > 0, > 0, > [ (0, ) + (1 − ) ]}2 3 max (A2)

under the solution flow of the subsystem (36) will justify the statement of Theorem 1.
Let ∈ P θ τ θ τ ψ τ* = ( ( *), ( *), ( *)) Σ for some ≤τ* 0. Assume that there exists τ τ> *1

such that the trajectory, which starts at P* hits the boundary ∂Σ′ of the region Σ′ at τ1 for
the first time. Evidently, the trajectory cannot hit the face

≥ ≥ ψ γ pR γ p R θ θ{ = [ (0, ) + (1 − ) ], 0, 0}2 3 max

of ∂Σ′, because the component ψ τ( ) of the solution monotonically approaches
≥γ γ pR γ p R ψ τ[ (0, ) + (1 − ) ] > ( *)5 2 3 max . Therefore, it must be either the face

≥ ≥ θ θ ψ γ pR γ p R{ = 0, 0, [ (0, ) + (1 − ) ]}2 3 max (A3)

or the face

≥ ≥ θ θ ψ γ pR γ p R{ = 0, 0, [ (0, ) + (1 − ) ]}.2 3 max (A4)

If the trajectory hits the face (A3) at τ τ= 1, then ≤θ τ′( ) 01 , because θ τ( ) = 01 and
θ τ( ) > 0 for τ τ τ* < < 1. On the other hand, ≥ θ τ( ) 01 , and we obtain

≥

 
 

θ τ ψ τ γ pR θ τ γ p R θ τ γ

ψ τ γ pR γ p R θ τ γ

ψ τ γ pR γ p R

′( ) = ( ) − [ ( ( ), ) + (1 − ) ( ( ), )]

= ( ) − [ (0, ) + (1 − ) ( ( ), )]

( ) − [ (0, ) + (1 − ) ] > 0,

1 1 2 1 3 1 3

1 2 3 1 3

1 2 3 max

which contradicts the property ≤θ τ′( ) 01 . Hence, the trajectory never hits the face (A3) of
the boundary ∂Σ′.

Finally, if the trajectory hits the face (A4) at τ τ= 1, then  θ τ′( ) =1

≤ γ θ τ θ τ( ( ) − ( )) 01 1 , because  θ τ( ) = 01 and  θ τ( ) > 0 for τ τ τ* < < 1. Therefore,
≤ ≤  θ τ θ τ0 ( ) ( ) = 01 1 , so that θ τ( ) = 01 , which means that the trajectory hits the face

(A3), which is impossible. Hence the theorem is proved. □
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We conclude this section with two remarks.

1. If p = 1 (no delay in the variable θ), then Theorem 1 converts to Theorem 1 in Bergland
et al. (2019).

2. Under assumptions of Theorem 1, all components of the solution of the systems (21) and
(22) remain positive, once the initial values of all components are positive. This ensures the
property of persistence of the model. However, if the condition (A1) is violated, then the
component θ may become negative after a finite time, so that the model is not persistent.
This is, for example, always the case if p = 1 (no delay in the variable θ), see Bergland
et al. (2019, Appendix B, Lemma 1).

APPENDIX B: SLOW–FAST ANALYSIS OF THE ECONOMIC ‐GROWTH
AND POLLUTION BLOCK OF THE MODELING FRAMEWORK
Following Fenichel (1979) we first rescale the problem (36) by means of the transformation:

∕

   
s τ ε s ξ τ s η τ s θ τ

s ψ τ s θ τ

= , Λ( ) = ( ), ϒ( ) = ( ), Θ( ) = ( ),

Ψ( ) = ( ), Θ ( ) = ( ).

γ
(B1)

Here s is the fast time scale. We readily find that














   
   

     

Θ̇ = ϵ (Λ, ϒ, Θ, Ψ, Θ , Ψ ),

Ψ̇ = ϵ (Λ, ϒ, Θ, Ψ, Θ , Ψ ),

Θ̇ = (Λ, ϒ, Θ, Ψ, Θ , Ψ ),

γ

γ (B2)

where ⋅ denotes the derivative with respect to fast variable s. Letting →ϵ 0γ in (35) and (B2) we
get the following DAE:














   
   

   

θ ξ η θ ψ θ ψ γ pR θ γ p R θ γ

ψ ξ η θ ψ θ ψ γ f ψ γ

ξ η θ ψ θ ψ

′ = ( , , , , ) = − [ ( ; ) + (1 − ) ( ; )],

′ = ( , , , , , ) = ˜ ( ; ),

0 = ( , , , , , )

2 3 3

4 5 (B3)

and the following reduced fast subsystem containing the fast variables only, that is,

    Θ̇ = 0, Ψ̇ = 0, Θ̇ = (Λ, ϒ, Θ, Ψ, Θ Ψ ), (B4)

where Θ and Ψ are regarded as parameters. The system (B4) is also referred to as the layered
system. Both the systems (B3) and (B4) capture some information of the full system, but with
limited validity in phase space and time. However, a global picture of the dynamics can be
retrieved by matching the solutions of both systems. Now we apply the singular perturbation
theory that defines the slow manifold of (B2) as the equilibrium of the fast subsystem (B4). This
manifold is given as the 2D subspacea defined by means of (48).a is also referred to as a
critical manifold or a critical surface. Following Fenichel's theory (Fenichel, 1979) we first check
the hyperbolicity of the critical manifold. Now to have hyperbolicity we derive stability of
equilibrium points of the fast subsystem we have         ξ η θ ψ θ ψ( , , , , , ) = −1θ θ θ= . Therefore
Ma is normally attracting hyperbolic manifold. Hence for a small ε > 0γ , there exists an
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invariant manifoldε
a for the system (B4) which implies the persistence of the slow manifold

a. The slow manifoldε
a
γ
has the same smoothness and stability properties of the critical

manifold a. Therefore for a small sufficiently small ε > 0γ , the flow on perturbed slow
manifoldε

a
γ
is diffeomorphic to the associated flow on the critical manifolda.

Let us discuss the slow–fast dynamics of the limiting slow system (B3) in terms of
dynamical system theory. On the slow surface Ma (defined by Equation 48) the dynamical
evolution of slow variables θ and ψ is governed by means of the 2D subsystem (38). One can
easily verify that the dynamical evolution of slow variables associated with the DAE problem
(B3) on the critical manifold Ma matches the dynamical behavior of the 2D subsystem (38).

We then combine the results obtained for the two limiting systems (B3) and (B4) to
conclude about the properties of the slow–fast subsystem (B2). The above analysis suggests that
accumulating the perturbation parameter εγ from zero to a small finite value does not destroy
the geometric properties which are related to the qualitative dynamics of the layered and the
reduced system. The layered problem captures the fast progression of the dynamic variable  θ
towards (or away from) the slow manifolda whereas the reduced problem (B3) yields a good
approximation of the slow progression of the variables θ and ψ on the attracting critical
manifold a. Figure B1 summarizes the geometrical interpretation of the results discussed
above.

Finally we consider the scenario with the separation of time scales ≪ ≪T T Tμ γ r , which
means that ≪ ≪ε ε 1μ γ , where ∕ ∕ε T T r μ= =μ μ r , ∕ ∕ε T T r γ= =γ γ r . We conveniently express

this time separation in terms of ≡ ≪ε = 1
γ

μ

T

T

μ

γ
from which it follows that ε ε ε=μ γ . The

dynamical evolution decomposes into three phases in this case: In the first phase we have a
rapid attraction of the integral curves of (35) towards the 3D subspaceb of 4 defined as

 ∈

∈

       
     

θ ψ θ ψ ξ η θ ψ θ ψ

θ ψ θ ψ ψ ψ

= {( , , , ) : ( , , , , , ) = 0}

= {( , , , ) : = }

b 4

4

(a) (b)

FIGURE B1 (a) Geometrical interpretation of the one‐dimensional attracting slow manifolda of the layer
system (B4). (b) An invariant manifolda

ϵ implies the persistence of the slow manifolda.
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asymptotically as →ε 0μ . Notice that the other state variables remain constant in this
asymptotic limit. In the second intermediate phase the dynamical evolution will take place on
b. This result follows from the fact that b always is an attracting normally hyperbolic
manifold of the subsystem (35). The dynamical evolution onb is governed by means of the
3D system (B2), which is as shown in the previous paragraph a singularly perturbed system in
its own right with εγ as a perturbation parameter. The outcome of the analysis of this system in
the asymptotic limit →ε 0γ goes as follows: The system (B2) predicts that we have a rapid
attraction described by means of (B4) of the integral curves towards the subspacea ofb of
the mean value  θ in which the remaining state variables θ and ψ are constant, followed by a
temporal evolution ona by means of the 2D system (36).

APPENDIX C: SLOW–FAST ANALYSIS ON THE TIME SCALE
T T T~μ γ r OF THE MODELING FRAMEWORK

Here we assume the time‐scale separation ≪T T T~μ γ r which means that ≫μ γ r~ which
gives ε ε~μ γ. For the sake of simplicity we put ⇔T T μ γ= ( = )μ γ in our calculations. In this case
the system of interest is given as

 

 

       
       

       

ξ ξ ξ η θ ψ θ ψ η η ξ η θ ψ θ ψ

θ ξ η θ ψ θ ψ ψ ξ η θ ψ θ ψ

ε θ θ θ ε ψ ψ ψ

′= ( , , , , , ), ′ = ( , , , , , ),

′= ( , , , , , ), ′ = ( , , , , , ),

′= − , ′ = − ,γ γ

(C1)

where    , , , are defined in (21). Here ′ denotes derivative with respect to τ . We rescale the
system (C1) to the dynamical system

 

 

       
       

       

ε ε

ε ε

Λ̇ = Λ (Λ, ϒ, Θ, Ψ, Θ , Ψ ), ϒ̇ = ϒ (Λ, ϒ, Θ, Ψ, Θ , Ψ ),

Θ̇ = (Λ, ϒ, Θ, Ψ, Θ , Ψ ), Ψ̇ = (Λ, ϒ, Θ, Ψ, Θ , Ψ ),

Θ̇ =Θ − Θ , Ψ̇ = Ψ − Ψ ,

γ γ

γ γ (C2)

where the fast time variable s and the state variables    (Λ, ϒ, Θ, Ψ, Θ , Ψ ) are defined by (B1).
Here ⋅ denotes the derivative with respect to the variable s. Equations (C1) and (C2) are referred
to as the slow and fast systems, respectively. Notice that (C1) is equivalent with (C2) for ε > 0γ .
When letting ε = 0γ in (C1) and (C2) we get the reduced DAEs:

 

 

       
       

   

ξ ξ ξ η θ ψ θ ψ η η ξ η θ ψ θ ψ

θ ξ η θ ψ θ ψ ψ ξ η θ ψ θ ψ

θ θ ψ ψ

′= ( , , , , , ), ′ = ( , , , , , ),

′= ( , , , , , ), ′ = ( , , , , , ),

= , = ,
(C3)

and the layered system

       
Λ̇ = 0, ϒ̇ = 0, Θ̇ = 0, Ψ̇ = 0,

Θ̇ =Θ − Θ , Ψ̇ = Ψ − Ψ .
(C4)

Our main aim is to analyze (C3) and (C4) by applying geometric perturbation theory. We first
observe that the reduced system (C3) predicts that the dynamical evolution takes place in the
four dimensional subspace0 of 6 defined by means of (66).0 is also referred to as the
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slow manifold or critical manifold (Fenichel, 1979). Notice the role of0 : It plays the role as
the equilibrium state of the subsystem

       Θ̇ = Θ − Θ , Ψ̇ = Ψ − Ψ

of (C4). On the fastest time scale, the state variables ξ , η, θ, and ψ are constant, in accordance
with the system (C4). The slow manifold 0 is a normally attracting hyperbolic manifold.
From Fenichel's first theorem it follows that for a small ε > 0γ , there exists a invariant manifold
εγ for the system (C1) which implies the persistence of the slow manifold 0. The slow
manifold εγ has the same smoothness and stability properties of critical manifold 0.
Therefore the flow on the perturbed slow manifold is diffeomorphic to the associated slow flow
on the critical manifold for sufficiently small εγ (Fenichel, 1979).
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