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A B S T R A C T

Lung cancer is currently the first leading cause of worldwide cancer deaths since the early stage of lung
cancer detection is still a challenge. In lung diagnosis, nodules sometimes overlap with ribs and tissues on
lung chest radiographic images, which are complex for doctors and radiologists. Dual-energy subtraction (DES)
is a suitable solution to solve those issues. This article will develop an efficient iterative DES for lung chest
radiographic images. Moreover, we propose an automatic algorithm for accurately determining bone and soft-
tissue factors for subtraction. The proposed algorithm for determining the bone and soft-tissue factors is based
on window/level ratio and radiographic histogram analysis. First, we take the image sampling from the original
size 3072 × 3072 to 512 × 512 to reduce the processing time while achieving the bone and soft-tissue factors.
Next, we compute the window/level ratio on the soft-tissue image. Finally, we determine the minimum value
of the ratio to obtain the optimal soft-tissue and bone factors. Our experimental results show that our proposed
algorithm achieves a minimized runtime of 200 ms, outperforming the GE algorithm’s time of 4 s. The runtime
of our DES of 6.066 s is shorter than the Fujifilm algorithm of 10 s while visualizing nodules on soft-tissue
images and obtaining a similar quality of the soft-tissue images compared with the other algorithms. The
academic contributions include the proposed algorithm for determining bone and soft-tissue factors and the
optimized iterative DES algorithm to minimize time and dose consumption.
1. Introduction

According to the World Health Organization (WHO), lung cancer is
currently the first leading cause of worldwide cancer deaths [1]. Lung
cancer was also considered the second most common new cancer case
in 2020. For this reason, the early stage of lung cancer detection is
still a challenge. In lung diagnosis, nodules sometimes overlap with
ribs and tissues on lung chest radiographic images [2–4]; hence, it is
difficult for doctors and radiologists to have an exact diagnosis. Dual-
energy subtraction (DES) is a suitable solution to solve that issue [5,6].
Another advantage of DES is to support radiologists in speeding up the
reading of radiographic images [7,8].

Avinash et al. [9–11] used the difference in X-ray absorption char-
acteristics to take DES images to obtain soft-tissue and bone images
to solve the difficulty in diagnosis. To overcome dark soft-tissue im-
ages, the researchers searched bone and soft-tissue factors based on
maximized salient bones. In that way, the researchers claimed that
the bone and soft-tissue factors were optimal. With that solution, dose
usage was 120% of the standard dose instead of double. However, there
was a limitation of runtime in that method. That method detected the
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soft-tissue factor based on maximized salient bones with 25 steps on a
512 × 512 image in 4 s on a Sun Microsystems Ultra workstation.

Kashani et al. [12] used a subtraction technique similar to the re-
search in [11], but the researchers used a manual DES factor detection
such as a ‘‘two-slice volume’’. It may make a burden for radiologists
and doctors to diagnose. However, that research demonstrated a perfor-
mance advantage of DES imaging compared to traditional radiographic
images.

Kawamura et al. [13] proposed another DES method. The
researchers used an image registration for DES. With a multi-resolution
technique, that method detected motion directions of the heartbeat, the
breathing, and the movement of patients during two exposures, which
caused misregistration artifacts on a subtracted image. As a result, that
method reduced these misregistration artifacts. However, that method
used an extended runtime of up to 10 s for the entire process on an
Intel Core 2 Duo 3.0 GHz PC.

Fukao et al. [14] proposed a new filtering approach to reduce the
dose for patients in the DES process. The researchers claimed that the
dose usage was 150% of the standard dose instead of double. In that
746-8094/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.bspc.2022.104354
Received 7 July 2022; Received in revised form 7 October 2022; Accepted 30 Octo
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
ber 2022

http://www.elsevier.com/locate/bspc
http://www.elsevier.com/locate/bspc
mailto:quan.do@uit.no
mailto:wtseo@drtech.co.kr
mailto:cwshin@drtech.co.kr
https://doi.org/10.1016/j.bspc.2022.104354
https://doi.org/10.1016/j.bspc.2022.104354
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bspc.2022.104354&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Biomedical Signal Processing and Control 80 (2023) 104354Q. Do et al.

r
a
d
S
a
w

2

2

t
p

𝐼

𝐼

w
e
t
w
T
p

T
o
a

l
a

a
p
t
a
o

w
p
e

b
d
t
a
o
r
t
d

[
c
t
a
w

2

i
r
n
t
s
f

𝑁

method, the researchers used iterative filters such as a lowpass filter
to reduce noise and a smoothing filter to separate the noise from the
bone signal components in the bone image. However, that method had
a long runtime for iterative DES since each DES should use different
suitable bone and soft-tissue factors.

Several limitations are observed in these DES methods. First, since
nodules in many lung diagnoses overlap with ribs and tissues on lung
chest radiographic images, we need a DES solution to support doctors’
and radiologists’ exact diagnoses. Second, there is still a need for a
simple algorithm to detect the bone and soft-tissue factors since the
method proposed in [9–11] was too complex. Third, the runtimes for
detecting the bone and soft-tissue factors and the entire DES process
were long, i.e., 4 s for detecting the bone and soft-tissue factors [11],
10 s for the whole DES process [13], and the burden for radiologist
workload by using the manual DES [12].

This article aims to solve all listed limitations of these DES methods
by using our proposed algorithm based on window/level ratio and
digital X-ray radiographic histogram analysis. Besides proposing an
efficient algorithm for detecting the bone and soft-tissue factors in DES,
we also developed a simplified DES process to minimize the runtime.
The contributions of this article are summarized as follows:

• We propose an efficient algorithm for determining the bone and
soft-tissue factors in DES with a minimized runtime of 200 ms.

• We develop a new DES method that simplifies the iterative filter-
ing process with a shorter runtime of 6.066 s.

• With the simplified iterative DES, we minimize the dose to 130%
of the standard dose while visualizing nodules and obtaining a
similar quality of the soft-tissue images compared with the other
algorithms.

• The academic contributions include the efficient proposed al-
gorithm for determining the bone and soft-tissue factors and
optimized iterative DES to minimize time and dose consumption.

The rest of this article is organized as follows. Section 2 presents
elated works, which include detecting bone and soft-tissue factors
nd iterative DES. Section 3 describes our proposed algorithms for
etermining bone and soft-tissue factors and simplified iterative DES.
ection 4 presents experimental results and discusses image quality
ssessment, dose usage, runtime, image quality comparison, and future
ork. Section 5 concludes this article.

. Related works

.1. Detecting bone and soft-tissue factors

Using the difference in X-ray absorption characteristics, we sub-
ract dual-energy images to obtain soft-tissue and bone images called
ower-image division [11].

𝑆 =
𝐼𝐻

(

𝐼𝐿
)𝑘𝑆

, (1)

𝐵 =
𝐼𝐻

(

𝐼𝐿
)𝑘𝐵

, (2)

𝑘𝐵 =
𝑘𝑆 + 1

2
, (3)

here 𝐼𝑆 , 𝐼𝐵 , 𝐼𝐿, 𝐼𝐻 are the soft-tissue, bone, low-energy, and high-
nergy images, respectively; 𝑘𝑆 and 𝑘𝐵 are the soft-tissue and bone fac-
ors. In DES, the bone and soft-tissue factors are two crucial parameters
hich significantly affect the quality of the soft-tissue and bone images.
he bone and soft-tissue factors should be detected automatically in
ractical diagnosis.

DES aims to visualize nodules in the soft-tissue or bone images.
here are several examples of the DES results of GE [15]. In addition,
ther DES results are presented by Fujifilm in [16], Shimadzu in [17],
nd Carestream in [18]. Nodules sometimes overlap ribs and tissues on
2

ung chest radiographic images [15]; hence, it is difficult for doctors
nd radiologists to diagnose accurately without a DES solution.

To optimize the outputs of DES, we have several conditions, such
s the maximized contrast noise ratio (CNR) and the selection of good
airs of low and high energies. To maximize CNR, we set up the X-ray
ube so that the multiplication of high energy in kilovoltage peak (kVp)
nd milli-ampere-second (mAs) should be approximate or equal to that
f low energy as follows:

(𝑘𝑉 𝑝.𝑚𝐴.𝑠)𝐻𝑖𝑔ℎ_𝑒𝑛𝑒𝑟𝑔𝑦 ≅ (𝑘𝑉 𝑝.𝑚𝐴.𝑠)𝐿𝑜𝑤_𝑒𝑛𝑒𝑟𝑔𝑦 , (4)

here 𝑘𝑉 𝑝, 𝑚𝐴, and 𝑠 are kilovoltage peak, milli-ampere, and second
arameters, respectively, for setting the X-ray tube to take high and low
nergy images.

Suppose we apply Eqs. (1) and (2) to obtain the soft-tissue and
one images, the contrast of lung field in the soft-tissue image is
ark and not good enough for diagnosis. That is the first challenge of
he DES problem. In GE’s research [11], the researchers proposed an
utomatic algorithm to search the bone and soft-tissue factors based
n the maximized salient bones to overcome this challenge; however, it
esulted in a long runtime that motivated us to create this article. With
hat solution, the dose usage was 120% of the standard dose instead of
ouble [9].

The soft-tissue factor detection was very long in GE’s research
11]. In addition, the entire process for registration, DES, and image
ontrast enhancement in Fujifilm’s research [13] was also long for real-
ime healthcare applications. Hence, this article proposes an automatic
lgorithm for determining the bone and soft-tissue factors in DES,
hose runtime is much shorter than GE’s and Fujifilm’s algorithms.

.2. Iterative dual-energy subtraction

DES uses high and low-energy exposures. If we try to reduce doses,
t causes image noise. We should optimize the exposure condition to
educe the patient dose and control the image noise. In addition, the
oise in the high- and low-energy images is amplified by subtracting
wo images. In other words, the noise in the soft-tissue image is more
ignificant than in the low and high-energy images. That noise was
ormulated in [14] as follows:

𝑜𝑖𝑠𝑒𝑆 =
√

𝑁𝑜𝑖𝑠𝑒2𝐻∗ +𝑁𝑜𝑖𝑠𝑒2𝐿, (5)

where 𝑁𝑜𝑖𝑠𝑒𝑆 , 𝑁𝑜𝑖𝑠𝑒𝐻∗ , and 𝑁𝑜𝑖𝑠𝑒𝐿 are the noise levels in the sub-
tracted image, in the high-energy image multiplied with the subtraction
factor, and in the low-energy image, respectively.

In [14], the researchers used a low-pass filter to reduce the noise
components. In addition, a smoothing filter separated the noise from
the bone signal components in the bone image. Two types of filters
were iterative until they obtained the final satisfied soft-tissue image.
That was another solution to overcome the dark soft-tissue challenge.

The researchers used various bone and soft-tissue factors to take
subtraction iteratively in that research. In that way, they had contrast
enhancement and noise filtering for the results of DES. In addition, that
solution used a 1.5 times dose of the plain chest. However, the runtime
of Fujifilm’s iterative DES was 10 s [13]. The runtime for DES was long,
which was a limitation of that method.

Our article will simplify the iterative process of DES, which will
optimize the number of filters and iterations. Using that way, we reduce
the noise components and the runtime of the entire DES process.

3. Proposed algorithms

3.1. Proposed algorithm for determining bone and soft-tissue factors

In Section 2.1, we introduced DES using the power-image division.
However, we can take logarithms for both sides of Eqs. (1) and (2)
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to obtain the soft-tissue and bone images called logarithmic image
subtraction as follows:

𝐼𝑆 = 𝑘𝑆 .𝑙𝑜𝑔
(

𝐼𝐻
)

− 𝑙𝑜𝑔
(

𝐼𝐿
)

, (6)

𝐼𝐵 = 𝑘𝐵 .𝑙𝑜𝑔
(

𝐼𝐻
)

− 𝑙𝑜𝑔
(

𝐼𝐿
)

. (7)

If we want to use the logarithmic image subtraction, we obtain a
relationship of 𝑘𝐵 and 𝑘𝑆 for DES as follows:

𝑘𝐵 =
𝑘𝑆 + 0.75

2
. (8)

Eq. (8) is not known from the literature, but it is our research
finding for DES using the logarithmic image subtraction. Through this
equation, we can obtain a bone factor 𝑘𝐵 if we know the soft-tissue
factor 𝑘𝑆 .

We will develop a new efficient iterative DES using histogram
information with optimal bone and soft-tissue factors. We can deter-
mine the anatomical position on the histogram [19,20], as shown in
Fig. 1(a). This figure shows the histogram distribution of pixel values
from an image plate. Since collimators limit a beam of X-rays, the
collimated area has a minor intensity, which means it is close to 0 or
the left-hand side of the image histogram. In contrast, the open area
without collimators, anatomies of humans, or phantoms has the highest
intensity and is on the right-hand side of the image histogram. Finally,
anatomies lie in the middle area because they prevent little X-rays that
reduce the intensity to more minor than the open area.

That distribution is not only suitable for the plate or phantom but
also correct for actual human chest images, as an example shown in
Fig. 1(b) and the histogram of that chest image in Fig. 1(c). On the
human chest image in Fig. 1(b), the mean intensity of collimators (area
I) is 250, the mean intensity of anatomy (area II) equals 300, and
the mean intensity of open area (area III) is 9150. Those intensities
show correctly on the histogram in Fig. 1(c). Hence, we have already
proved that the histogram distribution of phantoms for different areas
in Fig. 1(a) has the same distribution as the human chest image in
Fig. 1(c).

Since our low and high-energy images have no collimator, we
only control the ‘‘Open area’’ position. We propose an algorithm for
determining the bone and soft-tissue factors based on the window/level
ratio and the digital X-ray radiographic image histogram analysis. The
proposed algorithm is presented in the following steps:

Step 1 is pre-processing. We take the image sampling from the
original size 3072 × 3072 to 512 × 512. By sampling the smaller image
size, we can reduce the processing time while achieving our goal of
determining the bone and soft-tissue factors. We substitute 𝑘𝑆 = 0.53
− 0.85 with step = 0.01 into Eq. (6). If 𝑘𝑆 is outside the range, we
may not obtain the soft-tissue image or cannot obtain the subtraction
successfully. By choosing 𝑘𝑆 , we determine a soft-tissue image 𝐼𝑆 for
each 𝑘𝑆 . Then, we determine a histogram of each soft-tissue image.

Step 2: We propose and define Wratio (W – window/level) to
control the quality of the anatomy area on the soft-tissue image as
follows:

𝑊 𝑟𝑎𝑡𝑖𝑜 =
𝑊𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦_𝑚𝑎𝑥

𝑊2 −𝑊1
, (9)

where 𝑊2, 𝑊1, and 𝑊𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦_𝑚𝑎𝑥 are the maximum, minimum, and
pixel values at the maximum intensity frequency, respectively, on the
histogram of the soft-tissue image. Since we rarely use collimators for
lung chest images, the 𝑊 𝑟𝑎𝑡𝑖𝑜 can help us control the anatomy area on
the lung chest images. To simplify matters to understand, we can see
Fig. 1(a) as an example; 𝑊1 is the minimum intensity on the left-hand
side of the figure, 𝑊2 shows the maximum intensity on the right-hand
side of the figure, and 𝑊𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦_𝑚𝑎𝑥 lies at the top of the curve at the
‘Open area’ of the figure.
3

Fig. 1. Demonstration of histogram distribution of pixel values for (a) image plate
(phantom) [19,20]. (b) Actual human chest image: the mean intensity of collimators
(area I) is 250, the mean intensity of anatomy (area II) equals 300, and the mean
intensity of open area (area III) is 9150. (c) Histogram of the human chest image in
(b).

Step 3: We need the anatomy as visible as possible; hence, we need
the minimum 𝑊 𝑟𝑎𝑡𝑖𝑜. That means we determine 𝑊 𝑟𝑎𝑡𝑖𝑜𝑚𝑖𝑛 to obtain
the optimal 𝑘𝑆 as follows:

𝑘𝑆𝑜𝑝𝑡
= 𝑘𝑆𝑊 𝑟𝑎𝑡𝑖𝑜min

. (10)

To simplify matters to understand, we demonstrated two cases:
single 𝑊 𝑟𝑎𝑡𝑖𝑜𝑚𝑖𝑛 and multiple 𝑊 𝑟𝑎𝑡𝑖𝑜𝑚𝑖𝑛 in Fig. 2. After obtaining
𝑊 𝑟𝑎𝑡𝑖𝑜𝑚𝑖𝑛, we get 𝑘𝑆 of 𝑊 𝑟𝑎𝑡𝑖𝑜𝑚𝑖𝑛. That is the optimal 𝑘𝑆 (abbreviation
as 𝑘𝑆𝑜𝑝𝑡

).
The bone factor 𝑘𝐵 is determined by Eq. (8). When 𝑊 𝑟𝑎𝑡𝑖𝑜𝑚𝑖𝑛

happens, we have maximized the anatomy area, which means the
soft-tissue regions are the most apparent. That is also proper for the his-
togram distribution. In addition, when we have a single 𝑊 𝑟𝑎𝑡𝑖𝑜𝑚𝑖𝑛, 𝑘𝑆 is
the single minimum 𝑊 𝑟𝑎𝑡𝑖𝑜 point. When we have multi-𝑊 𝑟𝑎𝑡𝑖𝑜𝑚𝑖𝑛, 𝑘𝑆
is the average of multi-𝑊 𝑟𝑎𝑡𝑖𝑜𝑚𝑖𝑛 points. We can sketch the relationship
between 𝑊 𝑟𝑎𝑡𝑖𝑜 and 𝑘𝑆 , as shown in Fig. 2.

We summarize our proposed algorithm for determining the bone
and soft-tissue factors as presented in Fig. 3. Our proposed algorithm
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Fig. 2. Soft-tissue factor determination based on 𝑊 𝑟𝑎𝑡𝑖𝑜𝑚𝑖𝑛 for (a) single 𝑊 𝑟𝑎𝑡𝑖𝑜𝑚𝑖𝑛 and
(b) multi-𝑊 𝑟𝑎𝑡𝑖𝑜𝑚𝑖𝑛. The 𝑥 coordinate indicates 𝑘𝑆 – soft-tissue factor; the 𝑦 coordinate
presents 𝑊 𝑟𝑎𝑡𝑖𝑜 – window/level ratio.

is fast and straightforward for determining the bone and soft-tissue
factors since we take the image sampling into the 512 × 512 matrix.
We do not need to take segmentation and maximize the likelihood and
the salient bones proposed in the GE’s algorithm [11]. In addition, we
only take three steps, such as preprocessing, computing 𝑊 𝑟𝑎𝑡𝑖𝑜, and
obtaining 𝑘𝑆𝑜𝑝𝑡

, while the GE’s algorithm takes 25 exhausting search
steps. Hence, we can estimate that our proposed algorithm has a much
shorter runtime than GE. This estimation is proved in our experimental
results in Section 4.

3.2. Simplified iterative dual-energy subtraction

We will apply the previously mentioned bone and soft-tissue factors
to a simplified iterative DES where all DES factors are optimal. The
iterative DES algorithm is developed based on Fujifilm’s algorithm for
reducing the dose for patients [14]. Fig. 4 shows a flow chart of our it-
erative DES algorithm. In this figure, the symbol ⊖ presents DES, where
we apply our proposed automatic algorithm for determining bone and
soft-tissue factors in dual-energy subtraction chest radiography; the
symbol ⊕ indicates blending dual-energy images.

Compared with the iterative DES method in [14], we do not use a
lowpass filter for the soft-tissue images in our iterative DES algorithm.
That means we reduce the number of filters to one for one DES process.
In other words, the existing two filters and an iterative DES, which
includes a smoothing filter, is redundant. The lowpass filter is used
for the temporary soft-tissue image; we have a smoothing filter with
a similar function for denoising. In addition, we have several iterations
for several times of denoising. Finally, our experimental results in the
next section will prove the efficiency of this simplification. By reducing
4

Fig. 3. Proposed algorithm for determining bone and soft-tissue factors. 𝑘𝑆 – soft-tissue
factor; 𝑘𝐵 – bone factor; 𝐼𝑆 – soft-tissue image; 𝐼𝐻 – high-energy image; 𝐼𝐿 – low-energy
image; 𝑊 𝑟𝑎𝑡𝑖𝑜 – window/level ratio; 𝑊2, 𝑊1, and 𝑊𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦_𝑚𝑎𝑥 are the maximum,
minimum, and pixel values at the maximum intensity frequency, respectively.

Fig. 4. Simplified iterative dual-energy subtraction (DES) algorithm. ⊕ indicates
blending dual-energy images; ⊖ presents DES.

Fig. 5. Sigmoid curve for blending dual-energy images. 𝐼 – input intensity applied
sigmoid curve.
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the number of filters, we simplify iterative DES, which makes our
simplified iterative DES run faster than the original iterative DES of
Fujifilm.

Since the iterative DES includes contrast enhancement and noise fil-
tering, we use a sigmoid curve to blend dual-energy images to enhance
the contrast of our simplified iterative DES. We blend dual-energy
images as follows:

%𝐵𝑙𝑒𝑛𝑑𝐿 = 𝑜𝑓𝑓𝑠𝑒𝑡 + 1

1 + 𝑒−
𝐼𝐿−𝑐

𝑟

, (11)

where 𝑜𝑓𝑓𝑠𝑒𝑡 ∈ [0, 1], %𝐵𝑙𝑒𝑛𝑑𝐿 is a sigmoid function for enhancing the
contrast of the low-energy image, 𝐼𝐿 is the low-energy intensity, 𝑐 is
the center of the slope, and 𝑟 is the rate of change in the transition
from low to high. Fig. 5 is an example of a sigmoid curve for blending
dual-energy images.

We use a sigmoid curve to enhance the contrast of dual-energy
images. Using the sigmoid curve to blend dual-energy images is a
lookup table (LUT) technique where the input image data are mapped
to the output values, approximating the sigmoid function. The middle
area of the sigmoid curve in Fig. 5 will effectively enhance the contrast
of the central area of the input image’s histogram (anatomy area) in
Fig. 1(a). Finally, we combine low and high-energy images to make a
standard image for enhancing contrast as follows:

𝐼𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 = %𝐵𝑙𝑒𝑛𝑑𝐿.𝐼𝐿 +
(

1 − %𝐵𝑙𝑒𝑛𝑑𝐿
)

.𝐼𝐻 . (12)

Both our proposed algorithm for determining bone and soft-tissue
factors and the simplified iterative DES algorithm are automatic and
non-parametric. Our software program using these algorithms does not
need any user interaction when it runs. Hence, our algorithms are
practical and work well with all patients in clinical evaluations.

4. Experimental results and discussion

Experiments for this article were undertaken on a desktop with Intel
Core i7-6700 3.4 GHz CPU, 16 GB RAM, and a 64-bit system. We
implemented the proposed algorithms in C++. We tested on images of
size 3072 × 3072 with two chest phantoms and nodules made by our
radiologists. We are on developing steps and experimenting with phan-
toms in our laboratory. To avoid many X-ray doses on humans, using
phantoms for research findings and constructing algorithms is the same
as other companies, research institutes, and universities. In a similar
work, GE’s research was also performed using chest phantoms, i.e., in
[9–11]. In addition, the producers tried to make chest phantoms similar
to human chests. In some phantoms, the bones are human. We do not
think there is much difference between phantoms and actual patients.
Since X-rays can go through clothes, if the patients or phantoms do not
keep metals, for example, lead, tungsten, etc., radiographic images of
patients with clothes have no problems in clinical evaluations. We plan
to extend clinical evaluations (trials) when we finish constructing the
algorithms in our laboratory.

We experimented with 220 images in two datasets called 100 mA
and 200 mA. We had 120 low and high-energy images for 100 mA and
100 low and high-energy images for 200 mA. We changed all possible
parameters of the X-ray tube and combined the low and high-energy
images: kVp step equals ten from 60 to 140, mA equals 100 or 200,
and exposure time (s) equals 0.0063 to 0.1. Our radiologists have put
all possible positions of nodules on the lung field and heart cages.

We have 9 variations of kVp and more than 50 variations of mAs
with 100 mA. In addition, we have 6 variations of kVp and more than
50 variations of mAs with 200 mA. So that we have a total of 220
images and 77 DES images. GE’s database in [11] has 6 variations
of kVp and 4 variations of mAs, and Fujifilm’s database in [13] has
31 DES images. Hence, our database is much more extensive than the
two databases in all-level comparison. Our research topic in this article
is DES, not machine learning or pattern recognition, which needs a
lot of images in the database. In other words, our algorithms are not
5

Table 1
Results of soft-tissue image assessment.

Contents Terrible Not accept Accept Good Excellent

Amount 0 0 7 50 20
Percentage (%) 0% 0% 9.09% 64.94% 25.97%

dependent on the number of images in the database. For the listed
reasons, we conclude that our database is big enough to build and test
the DES algorithms.

We will present the details of obtaining good-quality soft-tissue
images to visualize nodules on lung chest images. We will then compare
our results with GE’s and Fujifilm’s results regarding runtime, image
quality, and dose usage. Finally, we will discuss our future work.

4.1. Image quality assessment

We used a soft-tissue image to determine the nodules that result
from our DES solution. We did not use a bone image for determining
the nodules on a chest image, DES computed tomography (CT) with
more dose-intensive and high-cost exams, rib suppression [21], and
bone suppression using a single image in academic research [22–26]
and medical industry [27–29]; hence, a discussion of the bone image
[30], lung CT screening [31] or other unrelated subjects is out of the
scope of this article.

We need human observation to observe image quality with small
and detailed objects, such as soft tissues on chest radiographic images,
since we have difficulty obtaining sample areas on the object and
background to compute the contrast factor. Human being observation
is still helpful for diagnosing as well as practical experiments. Our
radiologists used the same criteria in [13] to determine the quality of
the soft-tissue images, such as terrible, not accept, accept, good, and
excellent. We took a similar evaluation as Fujifilm’s research [13]. In
addition, the judgment was undertaken by our well-trained radiologists.
Hence, using the same criteria is fair for evaluation and comparison.

Fig. 6(a) presents the detailed criteria for the soft-tissue images.
The different levels are based on contrast and artifacts in the soft-
tissue images. The terrible case gives too much sharpness, remaining rib
edges, and artifacts, so radiologists cannot diagnose. The unaccepted
case shows remaining artifacts and rib edges to be hard to diagnose. The
accepted case presents some rib edges; then diagnosing is possible. The
good case shows good contrast and very few remaining rib edges. The
excellent case offers perfect contrast, with no artifacts and remaining
rib edges; hence, it is ideal for diagnosing.

The number of soft-tissue images is obtained by the condition
defined in Eq. (4). The multiplication of the high energy in kVp and
mAs should be approximate or equal to that of the low energy. If we
choose the kVp and mAs, which are not satisfied this condition, or we
choose a random 𝑘𝑆 and 𝑘𝐵 by a manual method, we may obtain a
failed case as presented in Fig. 6(b). In the failed case, the ribs almost
remained on the soft-tissue image.

We used several methods to reduce the rib edge artifacts, such as
choosing a good mA and a suitable number of iterations. Between two
datasets, 100 mA and 200 mA, we recognized a significant reduction
of the rib edge artifacts using 100 mA, as shown in Fig. 6(c).

In addition, the number of iterations also affects the quality of the
soft-tissue and bone images. We experimented with different iterations,
i.e., no, one, and five. Finally, we obtained the best image quality with
five iterations, as presented in Fig. 6(d).

We chose the best parameters, such as 100 mA and five iterations,
to obtain the result. Fig. 7 shows an example of a soft-tissue image
resulting from a combination of (60 kVp, 100 mA, 0.04 s) and (120
kVp, 100 mA, 0.025 s). Other soft-tissue images have a similar image
quality. We used our proposed algorithm described in Section 3.1 and
chose the best parameters, such as 100 mA and five iterations. Finally,
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Fig. 6. Image quality optimization. (a) Criteria for quality assessment of soft-tissue images used the same criteria in [13]. (b) Failed case by choosing the wrong kVp and mAs.
(c) Soft-tissue comparison between the left-hand side column: a combination of (80 kVp, 200 mA, 0.016 s) and (120 kVp, 200 mA, 0.008 s) and the right-hand side column: a
combination of (60 kVp, 100 mA, 0.04 s) and (120 kVp, 100 mA, 0.032 s). Red arrows indicate rib-bone artifacts. (d) Soft-tissue comparison among various iterations. Red arrows
indicate nodules on standard and soft-tissue images.
based on the criteria for soft-tissue images in Fig. 6(a), our radiologists
assessed the quality of soft-tissue images, as presented in Table 1.

We tested two phantoms with 220 images scanned with all cases of
doses and energies. We believe our algorithms will work well with all
patients in clinical evaluations. To obtain a good-quality output image,
a manual method for our algorithms, as shown in Fig. 4, is impossible
or may get a failed case, as shown in Fig. 6(b).
6

After obtaining the soft-tissue images, as assessed in Table 1, we
calculated our dose usage for DES as follows:

𝐷𝑜𝑠𝑒𝐷𝐸𝑆 = 𝑚𝐴𝐿.𝑠𝑒𝑐𝑜𝑛𝑑𝐿 + 𝑚𝐴𝐻 .𝑠𝑒𝑐𝑜𝑛𝑑𝐻 , (13)

where 𝐷𝑜𝑠𝑒𝐷𝐸𝑆 is the dose used in DES; 𝑚𝐴𝐿 and 𝑚𝐴𝐻 present mA
for the low and high-energy images, respectively; 𝑠𝑒𝑐𝑜𝑛𝑑𝐿 and 𝑠𝑒𝑐𝑜𝑛𝑑𝐻
indicate the low and high-exposure time of digital flat-panel X-ray
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Fig. 7. An example of a soft-tissue image resulting from a combination of (60 kVp, 100 mA, 0.04 s) and (120 kVp, 100 mA, 0.025 s). The left-hand side is the standard image;
the right-hand side is our soft-tissue image; the red arrows indicate nodules on standard and soft-tissue images.
.

Table 2
Runtime comparison among GE’s, Fujifilm’s, and our algorithms. NA — not applicable;
DES — dual-energy subtraction. The bold underlining represents the best performance

Contents GE [11] (ms) Fujifilm [13] (ms) Ours (ms)

Factor detection 4000 NA 200
The entire DES NA 10,000 6066

ystem for the low and high-energy images, respectively. For a normal
hest, our radiologists used 5 mAs.

In the above example, we used a low-energy image (60 kVp,
00 mA, 0.04 s) and a high-energy image (120 kVp, 100 mA, 0.025 s),
hich means we had 𝐷𝑜𝑠𝑒𝐷𝐸𝑆 = 6.5 mAs = 1.3 × 𝐷𝑜𝑠𝑒𝑛𝑜𝑟𝑚𝑎𝑙_𝑐ℎ𝑒𝑠𝑡. We
sed other similar doses for other DES images.

GE’s method used 120% of the standard dose [9], and Fujifilm used
50% of the standard dose [14]. Our DES algorithm provides 130% of
he standard dose, slightly better than Fujifilm. Hence, our proposed
lgorithm offers efficient dose usage.

.2. Runtime comparison

We used five iterations for our iterative DES process to obtain the
est image quality, as described in Section 4.1. As presented in Fig. 4,
e only used our proposed algorithm to detect the bone and soft-tissue

actors for the first stage; the other five iterative steps applied the fixed
actors.

We tested 220 images and got 77 DES image pairs for our proposed
lgorithm for determining soft-tissue and bone factors and our simpli-
ied iterative DES. Table 2 shows the average runtime of our proposed
lgorithm compared to that of GE and Fujifilm algorithms. The runtime
f our proposed algorithm for determining the bone and soft-tissue
actors in 200 ms outperforms that of the GE’s algorithm [11] in 4 s. In
ddition, the runtime of our iterative DES process in 6.066 s is shorter
han that of the Fujifilm’s algorithm [13] in 10 s.

.3. Image quality comparison

Fig. 8 compares image quality among our DES, GE’s [15], and Fuji-
ilm’s [16] results. The first and second columns in this figure present
he standard and soft-tissue images, respectively. The red circles and
ed arrows show the nodules on the chest images. The primary purpose
7

of DES is to remove ribs and bones to visualize nodules on soft-tissue
images with no misregistration artifacts, no or less noise, and good
contrast. The results of our image quality assessment are presented in
Table 1 with the criteria shown in Fig. 6(a) and Section 4.1, which
are the same criteria for the image quality assessment of Fujifilm’s
research in [13]. With the same criteria, we have a fair evaluation and
comparison.

As shown in Fig. 8(a), a nodule overlaps with ribs and tissues on
the lung chest radiographic image. Hence, it is difficult for doctors
and radiologists to have an exact diagnosis if there is no DES solution.
As we can see in this figure, the GE’s result visualizes the nodule
well. In addition, it shows no remained rib edges, no misregistration
artifacts, no noise, and a good contrast between the lung fields and
other anatomies.

Fig. 8(b) presents Fujifilm’s results. There is no nodule on the chest
image, and there are remaining blur clavicle bones and a few rib
edges on DES’s result. In addition, tissues on the lung field are slightly
over-contrast compared with the first column’s original chest image.

Fig. 8(c) shows our results. There are two nodules on this chest
image: one in the middle of the lung field and another on the left
ventricle. The right column of this image visualizes the nodules well,
especially the nodule on the left ventricle. There are no artifacts, noise,
and remaining rib bones, clavicles, or edges on our DES results. In
addition, the figure shows that the contrast of the DES result is similar
to the original contrast of the standard image on the left column.

Some background patterns exist since our radiologists did not make
perfect offset and gain calibrations for the digital flat-panel X-ray detec-
tor when we experimented in our laboratory. After running through our
iterative DES process with contrast enhancement, some combination
doses of DES appeared patterns on the only background, not on the
chest; hence, these patterns did not affect our image evaluation. We can
refer to Fig. 7 without background patterns to confirm our explanation.

Our DES results visualize the nodules well from this discussion while
retaining a similar contrast to the standard image. Compared with the
GE’s and Fujifilm’s results, our result shows identical image quality
in visualizing nodules on the chest image, good contrast on the lung
field, and a similar contrast to the standard image. Other images in
[15,16], and our results have a similar image quality comparison. This
comparison shows that the image quality of our algorithm results is
similar to or a little better than the other algorithms.
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Fig. 8. Comparison of image quality among (a) GE’s result [15], (b) Fujifilm’s result [16], and (c) our result. The first and second columns present standard and soft-tissue images,
respectively. Red circles and red arrows show nodules on chest images.
Finally, we have reviewed all product-level algorithms, such as
GE’s algorithm for detecting bone and soft-tissue factors and Fujifilm’s
algorithm for the entire process of DES, and compared those regarding
dose usage, runtime, and image quality as described in the above
sections. If we find any more high-quality DES algorithms, we will
reach them.
8

4.4. Future work

We have already presented our efficient proposed algorithm for
determining the bone and soft-tissue factors in DES using the win-
dow/level ratio and the digital X-ray radiographic histogram analysis.
We have optimized our iterative DES to minimize time and dose
consumption. Those are the academic contributions of this article.
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We have three directions for our future work. They include: (a)
reducing runtime using parallel processing, (b) using deep learning
for automatically detecting nodules, and (c) reducing dose usage using
state-of-the-art image processing techniques.

The runtime of the entire DES process is a limitation of our algo-
rithms since we did not apply parallel processing in those algorithms.
In future work, to reduce the runtime, we will use the latest high-
performance computing, parallel processing, and optimization tech-
niques for large matrix computation, i.e., 3072 × 3072 matrix. Those
echniques are Intel Threading Building Blocks (TBB) and C Basic
inear Algebra Subprograms (CBLAS), which belong to the Intel Math
ernel Library (MKL) for large matrix computation, and programming
ptimization in C++. Those techniques have been applied successfully
ith an efficiency of 94.88% for reducing runtime [32]. By those

echniques, we expect the runtime will be significantly reduced when
unning all processes, including determining the bone and soft-tissue
actors, DES, the registration, and the enhancement of soft-tissue image
ontrast.

When we finish reducing the runtime of the entire DES using high-
erformance computing, parallel processing, and optimization tech-
iques for large matrix computation, we will apply deep learning to
etect nodules in soft-tissue images [26,33]. That work has a high
hance of success since deep learning performance is now good enough
n clinical evaluations.

Using our proposed algorithms, we obtained 130% of the standard
ose, as described in Section 4.1, which is better than Fujifilm’s result
f 150% [14] but worse than GE’s result of 120% [9]. That means we
ave room for improvement in the future. We may achieve our goal
y using low-quality images of low doses and an automatic contrast
nhancement technology [34] for subtracting dual-energy images.

. Conclusion

This article proposes an automatic algorithm for determining the
one and soft-tissue factors in DES. Our proposed algorithm has mini-
ized the runtime to 200 ms through our experimental results, much

horter than the GE algorithm’s runtime of 4 s. Our iterative DES’s
untime of 6.066 s also outperforms the Fujifilm algorithm’s runtime of
0 s. With those results, our proposed algorithm is simplified. Simul-
aneously, we have achieved a similar image quality on the soft-tissue
mages compared with the other algorithms to visualize the nodules.
sing our iterative DES algorithm, we got efficient dose usage, 130% of

he standard dose, and the optimized runtime in the entire DES process.
Further work must be performed using the latest high-performance

omputing, parallel processing, and optimization techniques for large
atrix computation. We expect to reduce the entire DES process’s run-

ime significantly. In addition, we will consider applying deep learning
o detect nodules in clinical evaluations and applying the latest contrast
nhancement technology to reduce dose usage.
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