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A problem of emphasizing features of a surface roughness by
means the Discrete Wavelet Transform
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Abstract

When we are interested to the detection of the roughness features by means of the 3D reconstruction, based on photometric stereo techniques,
an important problem is the elimination of the brightness variation due to different light conditions which can alter the response.

This paper will concentrate on presenting results of a new method for eliminating this problem.
Every pixel of a picture gives only one number: the brightness of the corresponding point on the object, whereas the surface orientation is

described by a normal vector that has two degrees of freedom. The level of brightness depends on many factors as well as the homogeneity
of reflection properties of the material or its physical continuity and the surface smoothness or roughness.
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In this work we will show how the application of the Discrete Wavelet Transform (DWT) to the processing of some images,
n different light conditions, permits to solve the problem of emphasizing roughness features of a metallic surface. Wavelet tran
odel irregular data patterns such as sharp changes, better than the Fourier transforms and standard statistical procedures (e.
nd non-parametric regressions) and provide a multiresolution approximation to the data.
Here we propose, also, a non-parametric method, based on the wavelet theory, for the estimation of the threshold level of a

istribution, obtained from the intensity image matrix.
2005 Elsevier B.V. All rights reserved.
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. Introduction

The study of criteria for evaluating the surface roughness
epresents, to day, one of the most important problem for
he production of some critical mechanical organs in order
o confer them some specific and functional characteristics.
or that reason many authors consider the roughness as the

ourth dimension of the design.
Since, in many cases, the roughness determines the level of

rightness of a metallic surface, its reflectance can be studied
y a specific model, based on some hypotheses and solving

he image irradiance equation using some algorithms[1,2].
In this paper we will show a new method of image pro-

essing for emphasizing the features of a surface roughness,
aptured on different light conditions. It is based on the prop-
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erties of the Wavelet Transform to detect the presence o
tails which, usually, are lost when we apply to the sign
filtering process in order to reduce the noise.

The Wavelet Transform gives a time-frequency repre
tation of a signal that has two main advantages over u
methods: an optimal resolution even in the time and
quency domains and lack of the requirements of station
of the signal. It is defined as the convolution between the
nalx(t) and the wavelet functionsψa,b(t)which are dilated o
contracted and shifted versions of a unique wavelet fun
ψ(t).

Contracted versions of the wavelet function will ma
the high frequency components of the original signal
on the other hand, the dilated versions will match low
quency oscillations. Then, by correlating the original sig
with wavelet functions of different sizes, we can obtain
details of the signal at different scales. These correla
with the different wavelet functions can be arranged in a
erarchical scheme called multiresolution decomposition[3].

924-0136/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
oi:10.1016/j.jmatprotec.2005.02.169

https://core.ac.uk/display/54947337?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


V. Niola et al. / Journal of Materials Processing Technology 164–165 (2005) 1410–1415 1411

The multiresolution decomposition separates the signal
into “details” at different scales, the remaining part, being
a coarser representation of the signal, is called “approxima-
tion”. Moreover, it was shown[3] that each detail (Dj) and
approximation signal (Aj) can be obtained from the previ-
ous approximationAj−1 via a convolution with high-pass and
low-pass filters, respectively.

When wavelets are used to encode two-dimensional sig-
nals (i.e., pictures or images), often this is done by using
“separable products” of a one-dimensional wavelet and a one-
dimensional scaling function. This makes it possible to use
the Wavelet Transform and in this case each new wavelet
measures variations in the image along three different di-
rections: horizontal, vertical and diagonal edges. The Dis-
crete Wavelet Transform (DWT) of images is then calculated
essentially by applying the one-dimensional Wavelet Trans-
form along the rows and the columns of the image[4–6].
Therefore, an algorithm similar to the one-dimensional case
is possible for two-dimensional wavelets and scaling func-
tions obtained from one-dimensional ones by tensor product
[3,7,8].

In mathematics, a singularity is a point at which a func-
tion is not differentiable although it is differentiable in a
neighbourhood of that point. Singularities record large signal
changes over very short time changes. Crests of roughness
may be though of as a smoother version of singularities where
l nges.
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wavelet) orthonormal toψ(x), according to theL2 norm. In
our work we choose:

ϕ(x) =
{

1, x∈ (0,1]

0, x /∈ (0,1]
and ψ(x) =




−1, x∈
[
0, 1

2

]
1, x∈

(
1
2,1

]
0, x /∈ [0,1]

They are called Haar Wavelets. It is easy to prove that, ifψ(x)
is a mother wavelet, then alsoψj,k is a mother wavelet.

Moreover, in this case, the systems of functions

{{ϕj0k}, {ψjk}, k ∈Z, j ∈ [j0, j1] ∩ Z}
is an orthonormal system inL2(R). The definition of the esti-
mator (1) is based on the Parseval Theorem. In fact, according
to this result, anyL2(R) can be represented as a convergent
series

h(x) =
∑
k

aj0kϕj0k(x) +
j1∑
j=j0

∑
k

bjkψjk(x) (2)

where

aj0k =
∫ +∞

t=−∞
h(t)ϕj0k(t) dt and

bjk =
∫ +∞

h(t)ψjk(t) dt

N n,
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arge signal changes occur over slightly broader time cha
A theory for examining the singularities of functions us

he Wavelet Transform was developed[9], which has bee
pplied here to identify and characterise the crests that
p the surface roughness of a metallic test piece on diff

ight conditions.

. A threshold estimator based on Haar Wavelet

We follow an approach similar to[10].
Let X1,X2, . . .,XN be N independent identically di

ributed random variables whose density (unknown) isf(x).
n this case, a wavelet estimator off is given by[11,12]

ˆ =
∑
k

âj0ϕj0k(x) +
j1∑
j=j0

∑
k

b̂jkψjk(x) (1)

herej0, j1 ∈Z

ˆj0k = 1

N

N∑
i=1

ϕj0k(Xi), b̂jk = 1

N

N∑
i=1

ψjk(Xi)

jk(x) = 2j/2ϕ
(
2jxk

)
, k ∈Z

nd

jk(x) = 2j/2ψ(2jxk), k ∈Z

inally, ψ(x) is a function (mother wavelet) whose fi
(h∈N) moments are zero andϕ(x) is a function (fathe
t=−∞
ow assume thatϕ andψ are compactly supported. The

ollowing [11], by utilising the relation below

k

ϕjk(x) · ϕjk(Xi) +
∑
k

ψjk(x) · (Xi)

=
∑
k

ϕj+1k(x) · ϕj+1k(Xi)

t follows that the estimator (1) can be written in the equiva
orm

ˆ
j1(x) = 1

N

N∑
i=1

∑
k

ϕj1+1k(x)ϕj1+1k(Xi) (1’)

he choice ofj1 is discussed in statistic literature. The cho
f j1 is made in order to minimize the mean integrated squ
rror

ISE = E||f − f̂j1||22
= E||f̂j1 − E(f̂j1)||22 + E||f − E(f̂j1)||22

hereE(·) is the expected value of the observations and||·||2
enotes the usualL2 norm. Note that

(f̂j1(x)) =
∫ +∞

y=−∞
ϕj1+1k(x)ϕj1+1k(y)f (y) dy

ow, let

(x, y) =
+∞∑
k=−∞

φ(x− k)φ(y − k)
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Fig. 1. Image of surface roughness of the same metallic test piece obtained on different light conditions.

andq(x,y) = 2nq(2nx, 2ny) < 2n. It follows that

E||f̂ − E(f̂j1)||22 ≤ 1

N

∫ +∞

−∞

∫ +∞

−∞
q2
j1+1

(y, x)f (y) dx dy

=
∫ +∞

−∞
qj1+1(y, y)f (y) dy ≤ 2j1+1

N

Now, letWn be the space spanned by the orthonormal basis
{2n/2ψ(2n/2x− k), k∈Z}. Furthermore, letV0 be the space
spanned by the orthonormal basis{ψ(x− k), k∈Z} and let
Vn =Vn−1 +Wn−1 (i ∈N). By construction,∪n∈N0Vn is dense
in L2(R).

SinceE(fj1) is the projection off on the spaceVj1, we can
deduce thatE||f − E(f̂j1)||22 converges to zero asj1 tends to
infinity, for any f ∈ L2(R).

An alternative measure of error is the mean square error

MSQ = E[f (x) − f̂j1(x)]
2

= E[E(f̂j1(x) − f̂j1(x)]
2 + E[f (x) − Ef̂j1(x)]

2

However, in a regression estimation (i.e., whenXi −Xi−1 =
1/N = const.) it is accepted thatj1 = log2 N− ln(log2 N).
Therefore, in our work we have chosen

j

(
1

)

w

x

pro-
m

f
c
s ore,
f

position∫ s

u

f̂ (x)(x− u) dx =: Ê(X− u,X > u)

wheres is given bys= sup{x: F(x) < 1}.

Fig. 2. (a) Gray levels histogram referred to the first image (left). (b) Gray
levels histogram referred to the second image (right).
1 = log2 median(xi − xi−1)
− ln

(
log2

(
1

median(xi − xi−1)

))
(3)

here

i = Xi√∑N
i=1Xi

The determination of an optimal threshold is a com
ise of many factors.
The f̂ (x) can be calculated by utilising (1) or (1′). Then,

or any i ∈ {1, 2,. . .,N}, we evaluate thêF (Xi) by numeri-
al quadrature of̂f (x) by setting

∫ Xi
0 f̂ (x) dx:=F̂ (Xi). Now

uppose that{Xi} are sorted in ascending order. Theref
or anyu∈ [X1,XN], we can estimateE(X− u,X>u) by the
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Fig. 3. An example of binary images obtained by applying usual thresholding method.

Finally, we evaluateE(X− u|X>u) by setting

Ê(X− u)|X > u):= Ê(X− u,X > u)

1 − F̂ (x)

F ages
o

3. Application of DWT and results

Fig. 1 shows the images of the same metallic test piece
captured on different light conditions. It is evident the differ-
ence of brightness caused by the position of the lamp. The
images are converted into intensity matrix containing the val-
ues in the range 0 (black) to 1 (full intensity or white) (Fig. 2a
and b).

The evidence of prevalence of darkness on the first image
(left) with respect to the second one (right) is illustrated by
comparing their histograms bar plot of gray levels.

The importance of converting the intensity image to bi-
nary image by an optimum thresholding is illustrated inFig. 3
obtained by applying to the gray levels histogram the usual
method[13–15]. The output binary image has values of 0
(black) for all pixels in the input image with luminance less
than threshold parameter and 1 (white) for all other pixels.
Note that we specify the threshold in the range [0,1], regard-
less of the class of the input image.

Since exists a large difference in brightness level for the
same image it would be difficult to base a quantitative mea-
sure of surface roughness on such data by means of the 3D
reconstruction by photometric stereo techniques.

We have verified, also, that the threshold obtained by ap-
plying the DWT to the gray levels histogram provides the
best response in terms of emphasizing the surface roughness
f

ig. 4. Grand average of the approximation coefficients calculated on im
f Fig. 3.
Fig. 5. An example of the better pe
eatures.

rformance obtained with DWT.
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Fig. 6. Grand average of the approximation coefficients calculated on images
of Fig. 5.

The output of the wavelet transform is a set of coefficients
which give a measure of how the properties of the chosen
wavelet “fit” the function at the particular translation and
scale.

The results by applying the DWT to the original images
are presented inFig. 4, in which are presented the mean dis-
tribution of the approximation wavelet coefficients.

Note that the shape of the curves, in terms of qualitative
response, is quite similar, while, in terms of entropy, a com-
mon concept in many fields, mainly in signal processing[16],
is more different: 24.0990 and 54.9523 respectively for the
first (left) and the second (right) image.

The improvement of the response obtained by choosing
a good thresholding level is illustrated inFigs. 5 and 6,
where the value of the entropy is of 48.5104 and 48.3762
respectively for the first (left) and the second (right)
image.

The data presentation shown byFig. 6 appears to be the
best way of displaying the ability shown by DWT for elimi-
nating the error due to brightness influence.

4. Conclusion

As a general remark we can state that with wavelets a
better resolution and localization of the features of the image
i

rom
e e
b rtant
f ion.
T from
t

sur-
f con-
s the
m con-

sists of relatively low-frequency oscillations which are as-
sociated with the energy content of the image as well as
his entropy. Both the information are useful for detecting
the resolution in terms of denoising and enhancement of the
image.

Future research shall identify correlations between indi-
vidual features across a given sample set. This will allow a
more selective averaging to take place with the effect of re-
ducing the required number of trials necessary to obtain the
features of a surface roughness. By understanding the under-
lying mechanism that generate the brightness variation and
reducing the number of trials necessary to calculate it, the
overall objective is to develop a method to extract the fea-
tures from a single trial.

The preliminary results demonstrate that the signals, ob-
tained from the images, can be decomposed into a finite set of
distinct crests without any loss of overall information, when
averaged across all signals. The crest detection method has
generated a set of peaks that are characterised by position,
scale and amplitude. This allows them to be analysed in more
refined ways than just the usual methods and, of course, it as-
sumes that the method used in this paper represents the first
step in order to eliminate the error due to the brightness in-
fluence to measure the surface roughness.

In this manner the progress of metal machining, grinding
and polishing operations can be monitored, in real time, until
t
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s achieved.
There are many wavelet packet libraries. They differ f

ach other by their generating filtersϕ andψ, the shape of th
asic waveforms and the frequency content. It was impo

or our investigation to have refined frequency resolut
herefore, we have chosen the wavelet packets derived

he splines of the eighth order.
It was discovered that the brightness of a metallic

ace produces disturbances of two types. The first type
ists of the high-frequency oscillations which determine
ain features of the processed image. The second type
he desired surface finish is achieved.
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