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This article provides an overview of resonance
phenomena in wave scattering by infinite and semi-
infinite periodic arrays of small cylindrical scatterers,
in the context of Foldy’s approximation. It briefly
summarizes well-known results from the literature.
Moreover, for infinite arrays, the asymptotics of the
resonant wave amplitudes in the double resonance
case is investigated. This leads to the rediscovery of
non-uniqueness of the solution in this context, and to a
discussion of the validity of Foldy’s approximation for
double resonance. For semi-infinite arrays, a new and
improved uniform far-field approximation is derived,
uniqueness issues are considered and the validity of
Foldy’s approximation is discussed.

1. Introduction
The study of wave propagation in periodic structures
has benefited greatly from the design of metamaterials
and their subsequent benefits in noise management.
This is because metamaterials are usually modelled as
a periodic arrangement of small segments called unit
cells. Examples of these metamaterial models include
designs in three dimensions (see [1–3]) as well as the
much thinner and lighter two-dimensional metasurfaces
(see [4–7]) and metagratings [8]. There are many articles
that study diffraction by periodic structures including
infinite arrays [9–12] and semi-infinite arrays [13–15].

2022 The Authors. Published by the Royal Society under the terms of the
Creative Commons Attribution License http://creativecommons.org/licenses/
by/4.0/, which permits unrestricted use, provided the original author and
source are credited.
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One open avenue of investigation in the literature is the different ways to change the structure of
the unit cells since doing so can drastically affect the overall scattering. For example, Lynott et al.
[16] use the boundary element method to calculate the reflection and transmission coefficients
associated with infinite arrays of various smooth-shaped scatterers. Alternatively, one can keep
simple unit cells but change the array configuration to study the effects of edges. This was the
intention of our previous work [17] where we studied a wedge interface consisting of point
scatterers. The notation and results of [17] will be used in this work as a starting point for infinite
and semi-infinite array problems.

A major feature of wave scattering by periodic structures is the possibility of resonance
effects. These effects were first observed in diffraction gratings experimentally by Wood [18] and
partly explained theoretically by Rayleigh [19]. In the context of array scattering, occurrences of
resonance are frequently referred to as Wood’s anomalies [20]. Here, the waves scattered off each
of the array’s individual scatterers are in phase with each other and interfere constructively to
form a plane wave propagating along the array.

A theoretical framework for resonance has been given for infinite arrays with Dirichlet and
Neumann boundary conditions [21–27]. In these articles, Wood’s anomalies were referred to
as Rayleigh wavelengths and the scattered wave is considered as a monopole expansion ([25]
is an exception on the latter). Linton & Thompson [28] studied the full multipole expansion
in this setting, including solutions at single and double resonance. In the case of semi-infinite
arrays, Millar [29] is (to the authors’ knowledge) the only article that studies all possible types of
single and double resonance. This article also recovered many results of [30], which exclusively
specialized in the inward resonance case. Resonance has also been studied with finite [31,32] and
circular arrays [33].

The uniqueness of the solution to the Helmholtz equation on an infinite domain with infinitely
many scatterers is not a priori obvious and depends on the boundary conditions on the infinite
scatterer [34,35]. In fact, the existence of Rayleigh–Bloch waves (modes that propagate along the
grating and decay exponentially in orthogonal directions) can lead to non-uniqueness in certain
circumstances (see [33,36–39]), though this can usually be eliminated by applying an appropriate
periodicity condition [40]. In the present work, it is shown that non-uniqueness can also arise in
problems where Rayleigh–Bloch surface waves do not exist.

Interesting phenomena, such as abnormal transmission or reflection, can often be observed
around the resonant state [41,42]. Although a direct comparison is difficult due to the distinct
geometry and approximations used in the studies, different smooth periodic boundaries and a
grazing incidence can also lead to Wood’s anomalies [43]. Homogenization techniques have also
been employed to determine the effective properties of continuum models for wire meshes [44]
and infinite arrays of penetrable scatterers [45,46], during which different kinds of resonances can
occur.

This article considers resonance phenomena of two array scattering problems. The arrays are
made of Dirichlet circular scatterers subject to Foldy’s approximation [47]. Section 2 concentrates
on resonance in the infinite array problem (figure 1a). Solutions at single and double resonance
as well as the asymptotics in the double resonance limit are studied. A convenient method to
illustrate non-uniqueness in this problem is also introduced. Section 3 will consider the semi-
infinite array problem (figure 1b), including the outward resonance solution, some asymptotic
approximations during inward resonance and the non-uniqueness during double resonance. In
particular, a new and improved uniform far-field approximation is derived and implemented.
Appendix A includes some asymptotic expansions for the Wiener–Hopf kernel that are vital
for the results in §3, while appendix B considers the link between the semi-infinite array
and the continuous half-plane. Appendix C gives a different perspective on the infinite array
problem by not using Foldy’s approximation and finds a unique solution in the double resonance
limit.

For simplicity during the discussions here, we will position the arrays on the x-axis, with the
semi-infinite array positioned on the positive side (figure 1). In other words, any formulae that
we reuse from [17] will have the array angle set to zero (i.e. α = 0). In these problems, the incident
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Figure 1. Diagrams of the (a) infinite and (b) semi-infinite arrays with the cylinders located atRm, the position vector r and the
incident waveΦI = e−ikr cos(θ−θI ) . (Online version in colour.)

wave ΦI will take the form of a plane wave with wavenumber k and incident angle θI (i.e. ΦI =
e−ikr cos(θ−θI)) and the total field Φ will be required to satisfy Helmholtz’s equation and Dirichlet
boundary conditions.

To apply Foldy’s approximation, we will need the radius of the scatterers a to be small in
comparison to the incident wavelength (i.e. ka � 1). This approximation consists in assuming that
the array scatterers are isotropic point scatterers. As a result, the scattered field (ΦS =Φ −ΦI) is
written in the form of a monopole expansion.

2. Infinite array problem
In the context of Foldy’s approximation, the total field due to a plane wave incident on an infinite
array of small circular scatterers with homogeneous Dirichlet boundary conditions [17] (figure 1a)
can be expressed as

Φ(r) =ΦI(r) + A(inf)
0

∞∑
m=−∞

e−iksm cos(θI)H(1)
0 (k|r − Rm|). (2.1)

Here, H(1)
0 is the zeroth-order Hankel function of the first kind, the scatterers are located at

Rm = msx̂, (m ∈ Z) in a Cartesian basis (x̂, ŷ) (figure 1) and

A(inf)
0 = − 1

K(eiks cos(θI))

= −
(

H(1)
0 (ka) + 2

∞∑
m=1

[cos(ksm cos(θI))H
(1)
0 (ksm)]

)−1

, (2.2)

where the kernel K(z) is defined by (A 1). By using [48, eqn. (10.17.5)], we can determine the
asymptotic behaviour of the sum end terms in (2.1) as m → ±∞:

e−iksm cos(θI)H(1)
0 (k|r − Rm|) ∼

m→±∞

√
±2
πksm

e−iksm cos(θI)±iksm−ikr cos(θ)−(iπ/4). (2.3)

The form of (2.3) indicates that the total field summation (2.1) will fail to converge when
(ks/2π )(±1 − cos(θI)) ∈ Z. At these points, the summation in (2.2) will also fail to converge and
leads to A(inf)

0 → 0. However, this does not imply that the scattered field is zero. In fact, one can
use the integral formula for the Hankel function and the Poisson summation formula to rewrite
(2.1) as a sum of plane waves [15]

Φ =ΦI + 2A(inf)
0
ks

∞∑
n=−∞

e−ikr cos(|θ |+ψn)

sin(ψn)
, θ ∈ (−π ,π ] (2.4)
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where ψn (known as the scattering angles) are solutions to the equation

cos(ψn) = cos(θI) + 2π
ks

n. (2.5)

The right-hand side of (2.5) is real for all parameter values. It is important to note that these
scattering angles are defined such that Re{ψn} ∈ [0,π ] and Im{sin(ψn)} ≥ 0. This chosen branch
means that each ψn is a point on one of three line segments on the complex plane.

— If cos(θI) + (2π/ks)n ∈ [−1, 1], then ψn is real and in [0,π ].
— If cos(θI) + (2π/ks)n> 1, then ψn = ix, where x> 0.
— If cos(θI) + (2π/ks)n<−1, then ψn = π − ix, where x> 0.

It should also be noted that these scattering angles differ from those of [15] by the identity ψn =
π − ψ

(Linton and Martin)
−n due to a different incident angle θI = π + θ

(Linton and Martin)
I . By using [49,

eqns (8.522) and (8.524)], one can also rewrite (2.2) in terms of the scattering angles

A(inf)
0 = −

[
H(1)

0 (ka) − 1 − 2i
π

(
γ + ln

ks
4π

)
+ 2

ks sin(ψ0)

+
∞∑

n=−∞
n �=0

[
2

ks sin(ψn)
+ i

|n|π
]]−1

, (2.6)

where γ = 0.5772 · · · is the Euler–Mascheroni constant. With all this in mind, there are some
distinctive interesting cases to consider.

Single resonance: If there exists a single integer N ∈ Z such that

— ψN = 0 and N = (ks2π )(1 − cos(θI)) or
— ψN = π and N = (ks/2π )(−1 − cos(θI))

then single resonance occurs. In both cases, sin(ψN) → 0 which implies that

A(inf)
0 = −

[
2

ks sin(ψN)
+ O(1)

]−1
, (2.7)

as ψN → 0 or π . This simplifies the scattering angle formula for the total field (2.4) to

Φ ∼
ψN→0,π

ΦI + 2A(inf)
0
ks

e−ikr cos(|θ |+ψN)

sin(ψN)

and then the limit is taken to obtain

Φ =ΦI − e∓ikr cos(θ), (2.8)

where the upper (resp. lower) sign is for the case where ψN = 0 (resp. π ). Due to (2.8), if θI = 0 or
π , then the total field becomes identically zero (which is equivalent to the behaviour of an infinite
plane with a homogeneous Dirichlet boundary condition). At r = Rm (for any incident angle),
we find that (2.8) satisfies the Dirichlet boundary conditions. As a result, the total fields will be
almost zero on the cylinder surfaces (since the radius is small), therefore, the boundary conditions
are satisfied in the limit of Foldy’s approximation.

To reach resonance at non-grazing incidence (i.e. θI �= 0,π ), it is necessary to have non-zero
N and ks ≥ π . Though in this case ks is at least O(1), it is not incompatible with the validity of
Foldy’s approximation. Indeed, this approximation remains valid if we assume that a � s (i.e.
wide spacing between the scatterers). For this reason, it makes sense to talk about resonance
phenomena in the context of Foldy’s approximation. This comment remains true for all other
resonance phenomena considered in this article.

Double resonance: If both resonance conditions are satisfied at the same time (i.e. (ks/2π )(1 −
cos(θI)) ∈ Z and (ks/2π)(−1 − cos(θI)) ∈ Z), then double resonance occurs. Note that in this
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problem and the semi-infinite array problem, this is the maximum number of resonances that can
occur simultaneously. Double resonance results in the scattered field comprising of two resonant
waves instead of one. With this in mind, we pose the following ansatz,

Φ =ΦI + c1 e−ikr cos(θ) + c2 eikr cos(θ). (2.9)

Applying the Dirichlet boundary conditions at r = Rn to (2.9) gives us a condition for the
amplitudes; 1 + c1 + c2 = 0. However, to obtain a unique solution, we need a second condition
for c1 and c2. This second condition cannot be obtained if we only consider monopole terms (i.e.
H(1)

0 ), which means that Foldy’s approximation fails to give a unique solution in the case of double
resonance. Notably, this non-uniqueness does not occur if full linear multiple scattering theory is
applied (see appendix C). Retaining monopoles and dipoles (as opposed to monopoles only as in
(2.1)) leads to the result cos(θI) + c1 − c2 = 0 (C 20), so the correct expression for the total field is

Φ =ΦI − cos2
(
θI

2

)
e−ikr cos(θ) − sin2

(
θI

2

)
eikr cos(θ). (2.10)

Setting θI = 0 or π leads to a solution equivalent to equation (37) in [28] where the scattered field
cancels out the incident wave to result in a zero total field.

Within Foldy’s approximation, i.e. we only consider monopole terms, we can explicitly exhibit
the resulting non-uniqueness by considering different ways of approaching double resonance.
Indeed during double resonance, there exist two integers N± such that ψN+ = 0 and ψN− = π and
this can only happen if ks is a multiple of π (in fact, we can write ks = (N+ − N−)π and cos(θI) =
(N+ + N−)/(N+ − N−)). Note that N+ = (ks/2π )[1 − cos(θI)] ≥ 0 and N− = (ks/2π )[−1 − cos(θI)] ≤
0. Since there are only two resonance conditions here, there is no case where we have three or more
integers satisfying the conditions at the same time. Determining the double resonance solution
requires us to balance two limits ψN+ → 0 and ψN− → π . With this in mind, the coefficient A(inf)

0
reduces to

A(inf)
0 = −

[
2

ks sin(ψN+ )
+ 2

ks sin(ψN− )
+ O(1)

]−1
, (2.11)

and then (2.4) reduces to

Φ ∼ΦI + 2A(inf)
0
ks

[
e−ikr cos(θ)

sin(ψN+ )
+ eikr cos(θ)

sin(ψN− )

]
,

∼ΦI − 1
1 + β

e−ikr cos(θ) − 1
1 + β−1 eikr cos(θ), (2.12)

where β ∼ (sin(ψN+ )/sin(ψN− )) as ψN+ → 0 and ψN− → π . Finding the limit of β is not a trivial
task and requires one to know how sin(ψN+ ) → 0 in relation to sin(ψN− ) → 0. In order to obtain
this information, one needs to determine the asymptotic behaviour of sin(ψN± ) when approaching
double resonance. Some different possibilities of solutions are presented in (2.17)–(2.20). While we
could approach this by determining the asymptotic behaviour of ψN± , this is largely unnecessary.
Instead, we consider the relation sin(z) = i

√−i(1 − cos(z))
√−i(1 + cos(z)), where the square roots

take the principal branch. Then β is simplified to

β ∼
√−i(1 − cos(ψN+ ))

√−i(1 + cos(ψN+ ))√−i(1 − cos(ψN− ))
√−i(1 + cos(ψN− ))

∼
√−i(1 − cos(ψN+ ))√−i(1 + cos(ψN− ))

, (2.13)

because the top right and bottom left square roots are well-behaved and evaluate to 2 e−(iπ/4) as
ψN+ → 0 and ψN− → π , respectively.

Let us assume that k, s and θI take values such that cos(θI) + (2π/ks)N± = ±1 and define two
perturbations d1ε and d2ε in terms of a small parameter 0 ≤ ε� 1 and two complex constants d1
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and d2 indicating the direction of the perturbation. We then take (2.5) and replace θI with θI + d1ε

and replace k with k(1 + d2ε) to obtain

cos(ψN± ) = cos(θI + d1ε) + 2πN±
ks(1 + d2ε)

. (2.14)

We expand (2.14) as ε→ 0 using the Taylor expansions cos(θI + d1ε) = cos(θI) − d1ε sin(θI) + O(ε2)
and (1 + d2ε)−1 = 1 − d2ε + O(ε2) to give

cos(ψN± ) = cos(θI) − d1ε sin(θI) + 2πN±
ks

(1 − d2ε) + O(ε2),

= ±
(

1 − (±d1 sin(θI) + d2(1 ∓ cos(θI)))ε + O(ε2)
)

. (2.15)

Then we substitute (2.15) into (2.13) which becomes

β ∼
√−i(d1 sin(θI) + d2(1 − cos(θI)))√

i(d1 sin(θI) − d2(1 + cos(θI)))
. (2.16)

This solution leads to infinitely many different possible solutions. In particular, it is possible to
recover all the following solutions with certain special choices of d1 and d2.

— If d2 = 0 and d1 sin(θI)> 0 then β = −i, which implies that,

Φ =ΦI − 1 + i
2

e−ikr cos(θ) − 1 − i
2

eikr cos(θ). (2.17)

— If d2 = 0 and d1 sin(θI)< 0 then β = i, which implies that,

Φ =ΦI − 1 − i
2

e−ikr cos(θ) − 1 + i
2

eikr cos(θ). (2.18)

— If d1 = 0 then β =√
(1 − cos(θI))/(1 + cos(θI)) = | tan(θI/2)|, which implies that,

Φ =ΦI − 1

1 +
∣∣∣tan

(
θI
2

)∣∣∣ e−ikr cos(θ) − 1
1 + | cot(θI/2)| eikr cos(θ). (2.19)

— If d1 = sin(θI) cos(θI) and d2 = −(1 + cos2(θI)) then β = (1 − cos(θI))/(1 + cos(θI)) = tan2(θI/2),
leading to

Φ =ΦI − cos2
(
θI

2

)
e−ikr cos(θ) − sin2

(
θI

2

)
eikr cos(θ). (2.20)

The first three solutions were given by Millar [26] who was the first to suggest such non-
uniqueness. The last solution recovers the solution from [28] given by (2.10).

(a) Visualizing uniqueness/non-uniqueness
In this section, we show a way to visualize uniqueness and non-uniqueness in this context. To do
this, we replace θI and k with the perturbations θI + d1ε and k(1 + d2ε) in the wave field (2.4). For
uniqueness, it is required that Φ(r, θ ; k(1 + d2ε), θI + d1ε) tends to the same limit for all values of
d1 and d2 as ε→ 0+. Let us define the reference limit Φ(limit) = limε→0+ Φ(r, θ ; k, θI + ε) and then
for simplicity, use the parameterization d1 = cos(σ ) and d2 = sin(σ ) where σ ∈ (−π ,π ]. Then, we
evaluate the error function |Φ(r, θ ; k(1 + ε sin(σ )), θI + ε cos(σ )) −Φ(limit)| with respect to σ (at a
fixed position (r, θ )) and as ε→ 0+. The idea is that if the value of Φ(r, θ ; k, θI) is unique then the
error converges to zero for all σ . However, if there exists a σ such that the error does not converge
to zero then Φ(r, θ ; k, θI) is not unique. It is clear that comparing the wave field (2.4) with the
given limits (2.8) and (2.12) will highlight the uniqueness of the single resonance case and the
non-uniqueness of the double resonance case in the infinite array problem.

Figure 2 visualizes this error function by displaying some heat maps with respect to σ where
each bar corresponds to a fixed value of ε. It includes a non-resonant case (a) with a unique
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Figure 2. Visualization of the wave field uniqueness for the infinite array problem using (2.4) at (r, θ )= (10s,π/4), where
s= 0.1 and a= 0.001. (a) A non-resonant case, which has a unique limit, where k = 40π/3 and θI = π/2. (b) A double
resonance case, which does not have a unique limit, where k = 40π and θI = 2π/3. (Online version in colour.)

limit and a double resonance case (b) with a non-unique limit. Figure 8a is a graph plotting
the bar’s average with respect to ε. This includes two non-resonant cases as well as single and
double resonance. We see here that cases with a unique limit show convergence as ε→ 0+.
Among these is the single resonance case, which converges slower than non-resonance and may
suffer numerical error issues as ε becomes smaller. Although observations from these particular
plots are already known to us from earlier in this article, we have introduced the concept of
this visualization for the infinite array, because we intend to use it later for the less conclusive
semi-infinite array.

3. Semi-infinite array problem
Now we will examine the different resonant cases in the more interesting and less studied setting
of a semi-infinite array. Recall the scattered field solution (figure 1b) given by (2.2) and (2.22) of
[17] which was found via the discrete Wiener–Hopf technique,

ΦS(r) =
∞∑

m=0

[A(s-inf)
m H(1)

0 (k|r − Rm|)],

where A(s-inf)
m = −

m∑
n=0

[
λn e−iks(m−n) cos(θI)

K+(e−iks cos(θI))

]
. (3.1)

Here, we reuse the definitions of the discrete Wiener–Hopf kernel (A 2), its factors (A 5) and the
coefficients

λn = 1
n!

dn

dzn

[
1

K+(z)

]
z=0

from [17]. We can rewrite (3.1) in integral form as explained in §3.3 of [14]. Hence,

ΦS(r, θ ) = 1
πK+(e−iks cos(θI))

∫ i∞

π−i∞
eikr cos(|θ |−ϕ)

K−(eiks cos(ϕ))(1 − e−iks(cos(ϕ)+cos(θI)))
dϕ. (3.2)

The integration contour is a series of three straight lines from π − i∞ to i∞ via the waypoints π
and 0. The integrand has an infinite number of poles and branchcuts, from which the contour is

indented above and to the right of. The branchcuts start at ϕ(bp)
n = cos−1((2πn/ks) + 1) and follow
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the curved path given by ϕ = cos−1(cos(ϕ(bp)
n ) + it) from t = 0 to ∞. The poles are simple and

located at ϕ(pole)
n = cos−1((2πn/ks) − cos(θI)) and have associated residues,

i eikr cos(|θ |−ϕ(pole)
n )

πksK(e−iks cos(θI)) sin(ϕ(pole)
n )

. (3.3)

Hills & Karp [14] used this integral to create a far-field approximation for the scattered field.
After deforming to the steepest descent contour, the end result is a summation of the residues

(3.3) where |θ |<ϕ(pole)
n <π is real, plus a cylindrical wave contribution from the saddle point at

|θ |. They neglect integral contributions from branch cuts, explaining that these are higher-order
terms in most cases. Their final result is the following far-field (kr → ∞) approximation,

ΦS(r, θ ) =
kr→∞

−
∑

ϕ
(pole)
n ∈R

ϕ
(pole)
n >|θ |

2 eikr cos(|θ |−ϕ(pole)
n )

ksK(e−iks cos(θI)) sin(ϕ(pole)
n )

−
√

(2/πkr) eikr−(iπ/4)

K+(e−iks cos(θI))K−(eiks cos(θ))(1 − e−iks(cos(θ)+cos(θI)))
+ o((kr)−(1/2)). (3.4)

The conditions for resonance in the semi-infinite array problem remain the same as the infinite
array problem; ((ks/2π)(1 ± cos(θI)) ∈ Z). However, the two conditions lead to two different types
of single resonance, which [14] refers to as outward and inward.

Outward resonance: Satisfying the condition (ks/2π )(1 − cos(θI)) ∈ Z, outward resonance is
very similar to the behaviour of resonant waves in the infinite array problem. In this case, the
scattering coefficients A(s-inf)

n tend to zero because the factor K+(e−iks cos(θI)) in (3.1) is singular.
However, the scattered wave field is not zero. Contributions to the integral in (3.2) tend to zero,

except for the residue from one pole, located at ϕ(pole)
n = π . This residue is non-zero because

sin(ϕ(pole)
n ) → 0 at the same rate as K(e−iks cos(θI)) → ∞, which leads to the total field being no

different to (2.8)

Φ = e−ikr cos(θ−θI) − e−ikr cos(θ). (3.5)

This was also the conclusion of [14,29]. Interestingly, if we were to evaluate A(s-inf)
n using the

approximate Wiener–Hopf kernel (see appendix A.3 of [17] for details), we would incorrectly
obtain non-zero scattering coefficients due to the approximate kernel being finite at the branch
points. Despite this, the Hankel summation given by (3.1) still numerically yields plane wave-like
behaviour for the resonant scattered field (this is illustrated in figure 3a) but with an amplitude
that depends on the truncation value M. We can show this if we take the Hankel summation (3.1)
with the sum terms replaced by their asymptotic expansions as m → ∞,

M∑
m=0

[A(s-inf)
m H(1)

0 (k|r − Rm|)] ∼
√

2
πks

e−ikr cos(θ)+(3π i/4)

K̃(eiks cos(θI))

M∑
m=0

m−(1/2), (3.6)

where K̃ represents the approximate kernel. In (3.6), we have a plane wave factor which explains
the behaviour in figure 3a. The sum

∑M
m=0 m− 1

2 is O(M1/2) as M → ∞ which implies that the
numerical amplitude is also of the same order. We show this behaviour in figure 3b where
we plotted the numerical amplitude’s absolute value (simulated from (3.1) by the quantity
|ΦS(0.1,π/2)|) against M and then compared it with the true amplitude.

Inward resonance: The behaviour of the total field during inward resonance (when (ks/2π )(1 +
cos(θI)) ∈ Z) is quite different from the behaviour during outward resonance because the
scattering coefficients are now non-zero. In fact, the scattering coefficients have the asymptotic
behaviour given by A(s-inf)

n = O(eiksnn−(1/2)) as n → ∞ which decays faster than in the non-
resonant cases. This means that we do not have the same numerical issues related to the truncation
value as we did for the outward resonance case. The resulting inward resonance wave starts at the
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(a) (b)scattered field (2.1)
during outward resonance
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Figure 3. (a) The real part of an outward resonance example of the Hankel summation solution (3.1) (where the truncation is
atM= 10 000) using the approximate Wiener–Hopf kernel. The right side plots the absolute value of the numerical resonant
wave amplitude with respect to the truncationM. (b) The behaviour of the numerical amplitude asM→ ∞ and compares it
with the true amplitude. Here, the incident wave is defined by the parameters k = 40π/3 and θI = 2π/3 and the scatterers
of the semi-infinite array are positioned on the positive x-axis with radius a= 0.001 and spacing s= 0.1. (Online version in
colour.)

1.0

(a) (b)scattered field (2.1)
during inward resonance

scattered field (2.1)
during inward resonance
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Figure 4. Real part of the scattered field associated with the inward resonance example of the Hankel summation solution
(3.1) (where the truncation is atM= 10 000) visualized around the origin (a) and further down the array (b). Here, the incident
wave is defined by the parameters k = 40π/3 and θI = π/3 and the scatterers of the semi-infinite array are positioned on
the positive x-axis with radius a= 0.001 and spacing s= 0.1. (Online version in colour.)

edge of the array as a cylindrical wave supported within an angular region and slowly interferes
with other scattered waves to become a full plane wave at infinity (figure 4).

Dedicated to this special case, the article [30] looks into the far-field asymptotics of (3.2)
and deduces numerous asymptotic formulae valid for different regions of θ assuming that kr
is sufficiently large. Since we now have cos(θI) = (2π/ks)m − 1 for some integer m, the location

of the pole with index n + m coincides with the branch point with index n, i.e. ϕ(pole)
n+m = ϕ

(bp)
n =

ϕn = cos−1((2πn/ks) + 1). This means that the previously neglected branch cut contributions can
no longer be ignored. As a consequence, the pole-residue sum in the far-field approximation (3.4)
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is no longer valid. Instead, the new far-field approximation (when |θ | �= ϕn) is a summation of
combined pole and branch cut contributions as well as the original saddle point contribution,

ΦS ≈ −
√

(2/πkr) eikr−(iπ/4)

K+(e−iks cos(θI))K−(eiks cos(θ))(1 − e−iks(cos(θ)+cos(θI)))

+
∑
ϕn∈R

ϕn>|θ |

1
πK+(e−iks cos(θI))




∫
eikr cos(|θ |−ϕ)

K−(eiks cos(ϕ))(1 − e−iks(cos(ϕ)+cos(θI)))
dϕ. (3.7)

Here, 

∫

represents an integral around the branch cut starting at the branch point ϕ = ϕn where
|θ |<ϕn <π (figure 5). Note that during inward resonance, we have e−iks cos(θI) = eiks which
removes the θI dependency entirely from the scattered field. This means that, for fixed k, a and
s, every case of inward resonance has exactly the same ΦS. However, if we were using the full
multipole expansion, the scattered field at every inward resonance is composed of a constant
(equal to 1 within Foldy’s approximation) multiplied by the scattered field at head-on incidence
θI = π , plus some extra terms (which disappear with Foldy’s approximation). Equation (3.7) is
now simplified to

ΦS ≈ −I(θ )

√
2
πkr

eikr−(iπ/4) +
∑
ϕn∈R

ϕn>|θ |

1
π



∫
I(ϕ) eikr cos(|θ |−ϕ) dϕ,

where

I(ϕ) = 1
K+(eiks)K−(eiks cos(ϕ))(1 − eiks(1−cos(ϕ)))

. (3.8)

To evaluate 

∫

, we start by expanding the integrand about ϕ = ϕn. We do this by using K−(z) =
K+(1/z), (A 6) and some elementary algebra, which leads to

I(ϕ) ∼ e(iπ/4)√−2i(cos(ϕn) − cos(ϕ))

×

⎛⎜⎜⎜⎝ 1

1 + ((1 + i)/2)ksK1
√−i(cos(ϕn) − cos(ϕ)) − iK2(cos(ϕn) − cos(ϕ))

+O((−i(cos(ϕn) − cos(ϕ)))(3/2))

⎞⎟⎟⎟⎠ , (3.9)

where K1 is given by (A 4),

K2 = i
4

− ks
2

− ks eiks K+′
(eiks)

K+(eiks)
, (3.10)

and K+′
(eiks)/K+(eiks) is given by (A 7). We can simplify (3.9) further by noting that, cos(ϕn) −

cos(ϕ) ≈ sin(ϕn)(ϕ − ϕn) when ϕ ≈ ϕn.
We split 


∫
into three parts with three parameterizations; Γ1, Γ2 and Γ3 (figure 5) which are

given by,

Γ1 = {ϕ|ϕ = ϕn + t e−(iπ/2), ε≤ t ≤ η},

Γ2 =
{
ϕ|ϕ = ϕn + ε eit, −π

2
≤ t ≤ 3π

2

}
and Γ3 = {ϕ|ϕ = ϕn + t e3π i/2, ε≤ t ≤ η},

where 0< ε < η and ε� 1. The integral over Γ2 is of the order O(
√
ε) as ε→ 0, so it tends to zero

in the limit. The other parts are two sides of the same branch cut which can be pieced together to
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Im(ϕ)

Re(ϕ)|θ | ϕn

ε

Γ1Γ3

Γ2

η

Figure 5. An illustration of the contour around the branch pointϕn for

∫
as the sumof its parts

∫
Γ1
,
∫
Γ2
and

∫
Γ3
which depend

on the parameters ε andη. Note that the black line is a segment of the steepest descent contour through the saddle point |θ |.
(Online version in colour.)

obtain
1
π



∫
I(ϕ) eikr cos(|θ |−ϕ) dt ≈ − (1 + i)

π
√

sin(ϕn)

∫ η
0

(1 − K2t) eikr cos(|θ |−ϕn+it)
√

t(1 + ((i(ksK1)2/2) − 2K2)t)
dt. (3.11)

We can expand the non-exponential part of the integrand for small t but this is only valid if
η < |2/(i(ksK1)2 − 4K2)|. For now, we shall assume that it is valid then,

1
π



∫
I(ϕ) eikr cos(|θ |−ϕ)dt ≈ − (1 + i)

π
√

sin(ϕn)

∫ η
0

eikr cos(|θ |−ϕn+it)
√

t
dt. (3.12)

After expanding the exponent for small t, the result can be written in terms of the error
function, which is approximated for large argument (specifically krη� 1). Then we obtain the
final approximation

1
π



∫
I(ϕ) eikr cos(|θ |−ϕ)dϕ ≈ − (1 + i) eikr cos(|θ |−ϕn)√

πkr sin(ϕn) sin(ϕn − |θ |) . (3.13)

If the condition η < |2/(i(ksK1)2 − 4K2)| is not true, then we split the integral into two parts
∫η

0 =∫η̂
0 + ∫η

η̂
where η̂ is such that (1/kr) � η̂ < |2/(i(ksK1)2 − 4K2)|. The first part is approximated as

before, which leads to (3.13). The absolute value of the second part has an upper bound of the
order O(e−kr sin(ϕn−|θ |) sinh(η̂)), which is exponentially small for large kr. This means that the second
part can be neglected completely. Hence, the far-field approximation during inward resonance is
given by

ΦS ≈ −I(θ )

√
2
πkr

eikr− iπ
4 −

∑
ϕn∈R

ϕn>|θ |

(1 + i) eikr cos(|θ |−ϕn)√
πkr sin(ϕn) sin(ϕn − |θ |) . (3.14)

We compare this new far-field approximation with the Hankel summation in figure 6.
This plot reasserts that this far-field approximation works very well provided kr is large
and |θ | �= ϕn.

Even though the far-field approximation is invalid when |θ | ≈ ϕn, it is still possible to obtain
uniform far-field approximations that are valid in those regions. In these cases, the saddle point
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Figure 6. Plots of the Hankel summation (where the truncation is atM= 10 000) compared with the non-uniform (3.14) and
uniform far-field approximations, as well as the approximation given by (3.15) from [38]. Here, the top (bottom) side compares
the absolute value (real part). In these plots, we have r = 31s/2, the incident wave is defined by the parameters k = 40π/3
and θI = π/3 and the semi-infinite array is defined by a= 0.001 and s= 0.1. The black lines indicate locations of ±ϕn.
(Online version in colour.)

collides with the branch point at ϕn, meaning that the saddle point contribution needs to be
reworked. Linton et al. [38] were able to find two far-field approximations (one non-uniform and
one uniform in θ ) during inward resonance without using Foldy’s approximation. Their non-
uniform formula (given by equation (5.11)) matches our version (3.14) after applying Foldy’s
approximation, which is done by discarding all non-zero n terms in equations (5.5), (5.12)
and (5.13). Note that [38] only gave results for θ ∈ [0,π ], and since our reduced problem is
purely symmetric, we can replace θ with |θ | to get correct results for θ ∈ [−π ,π ]. Their uniform
approximation (given by equation (5.14)) as well as some other similar ones can be derived using
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the same methodology followed by Nethercote et al. [50] to obtain a uniform geometric theory of
diffraction approximation for a perfect wedge problem.

We take the uniform approximation from [38, eq. (5.14)] and apply Foldy’s approximation,
while noting that in our context ζm = √

2kr sin( 1
2 (|θ | − ϕm)). Therefore, we obtain

ΦS ≈ −I(θ )

√
2
πkr

eikr− iπ
4 + eikr+(iπ/4)

√
2πkr sin(|θ |/2)

−Φ
(∼0)
S

+
∑
ϕn∈R

[
eikr+(iπ/4)√

πkr sin(ϕn) sin(θ − ϕn)
−Φ

(∼ϕn)
S

]
. (3.15)

Here, Φ(∼0)
S (r, θ ) can be expressed in terms of the Fresnel integral F (z) from the scaled complex

error function w(z) by using [48, eqn (7.5.9)],

Φ
(∼0)
S = eikrw

(√
2kr sin

( |θ |
2

)
e(iπ/4)

)

= eikr cos(θ)

[
1 − (1 − i)F

(
2

√
kr
π

sin
( |θ |

2

))]
, (3.16)

where F (z) is given by (7.2.7) + i(7.2.8) from [48], i.e. F (z) = ∫z
0 e(iπ/2)t2

dt. The other term

Φ
(∼ϕn)
S (r, θ ) is expressed in terms of the parabolic cylinder function D−1/2(z) of order − 1

2 by the
formulae,

Φ
(∼ϕn)
S = eikr cos2((|θ |−ϕn)/2)+(iπ/8)

(kr)1/4
√
π sin(ϕn) cos((|θ | − ϕn)/2)

D−1/2

(
2
√

kr sin(|θ | − ϕn/2) e−(iπ/4)
)

. (3.17)

There are similar uniform approximations in [30] but with sin((|θ | − ϕn)/2) replaced by
(|θ | − ϕn)/2. However, these approximations are more locally uniform as they quickly become
invalid as you move away from the singularity they remove. Here, the definition of the parabolic
cylinder function (see [49, eqn (9.241.1)]) is given by

D−1/2(z) = e(z2/4)+(iπ/4)
√

2π

∫∞

−∞
e−(t2/2)+izt

√
t

dt, (3.18)

where the square root is restricted to the principal branch. It is possible to write the parabolic
cylinder function in terms of Hankel functions,

D−1/2(z e−(iπ/4)) = i
√
πz
8

H(1)
1/4

(
z2

4

)
, | arg(z)| ≤ π

2
, (3.19)

by using [48, eqns. (12.7.10) and (10.27.8)]. Equation (3.19) can then be analytically continued to
the left half-plane using [49, eqn (8.476.6)] with m = 2 and ν = 1/4,

D−1/2(z e−(iπ/4)) = i
√

−πz
8

[
H(1)

1/4

(
z2

4

)
−2(1 + i)J1/4

(
z2

4

)]
,
π

2
< | arg(z)| ≤ 3π

2
. (3.20)

Note that the square roots in (3.19) and (3.20) are restricted to the principal branch and Jn(z)
represents the Bessel function of the first kind. We express the parabolic cylinder function in
this way because it is not formally programmed for software such as MATLAB (to the authors’
knowledge at least), and these connection equations provide a simple and convenient formula for
us to use, which is valid for all arguments required.

Figure 6 also compares this uniform far-field approximation with the non-uniform version and
the Hankel summation. Note that in our plot, the uniform approximation is continuous but not
differentiable at θ = ±ϕ−1 due to the branch point behaviour there. This results in a small but
unwanted error around these points. This is in contrast to fig. 5.5 of [38] which appears to be
differentiable. We believe that this is due to an approximation (given by equation (5.10)) that they
use in their result.
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In order to address this issue, we will consider higher order asymptotic approximations. We
can achieve this either by using the original expansion of the integrand (3.9),

I(∼)(ϕ;ϕn) = e(iπ/4)√−2i(cos(ϕn) − cos(ϕ))

×
(

1

1 + ((1 + i)/2)ksK1
√−i(cos(ϕn) − cos(ϕ)) − iK2(cos(ϕn) − cos(ϕ))

)
, (3.21)

or a simplified one,

I(∼)(ϕ;ϕn) = e(iπ/4)√−2i(cos(ϕn) − cos(ϕ))
, (3.22)

with the latter leading to (3.15). It is important to note that the expansion that gives us (3.22)
requires |((1 + i)/2)ksK1

√−i(cos(ϕn) − cos(ϕ)) − iK2(cos(ϕn) − cos(ϕ))|< 1 to be valid, which
breaks down if ka is too small because K1 (and the whole expression) is O(ln(ka)) as ka → 0. We
then add and subtract I(∼) inside the integrand of the scattered wave (3.2) for every real ϕn,

ΦS = 1
π

∫ i∞

π−i∞

⎛⎝I(ϕ) −
∑
ϕn∈R

[I(∼)(ϕ;ϕn)] +
∑
ϕn∈R

[I(∼)(ϕ;ϕn)]

⎞⎠ eikr cos(|θ |−ϕ)dϕ,

= 1
π

∫−(π/2)+i∞

(π/2)−i∞

⎛⎝I(ϕ + |θ |) −
∑
ϕn∈R

[I(∼)(ϕ + |θ |;ϕn)]

⎞⎠ eikr cos(ϕ)dϕ

+
∑
ϕn∈R

1
π

∫−(π/2)+i∞

(π/2)−i∞
I(∼)(ϕ + |θ |;ϕn) eikr cos(ϕ) dϕ. (3.23)

To obtain (3.23), we transformed the integral with the substitution ϕ = ϕ′ + |θ |, deformed the
contour to the local steepest descent path through the saddle point at ϕ′ = 0 (taking care to
divert around intercepted branch cuts), and dropped the prime from ϕ′. The first integral in
(3.23) is approximated using the method of steepest descent. This approximation results only
in saddle point contributions since the branch cut contributions are cancelled out. This leads to
the following expression:

ΦS = −
√

2
πkr

⎡⎣I(|θ |) −
∑
ϕn∈R

I(∼)(|θ |;ϕn)

⎤⎦ eikr−(iπ/4)

+
∑
ϕn∈R

1
π

∫−(π/2)+i∞

(π/2)−i∞
I(∼)(ϕ + |θ |;ϕn) eikr cos(ϕ)dϕ. (3.24)

Creating an approximation in this way is beneficial because the subtraction of I(∼) will remove the
singularities (at |θ | = ϕn) present in the non-uniform approximation (3.14) due to I. The addition
of I(∼) afterwards serves as a correction to ensure equivalence with the original scattered wave.
This addition must be evaluated either analytically (leading to terms similar to (3.16) and (3.17)) or
through numerical integration on the steepest descent path (while taking care to navigate around
branch cuts) to ensure uniformity at the removed singularities. For brevity, we will only use
numerical integration here. We compare this uniform approximation with the Hankel summation,
the non-uniform far-field approximations as well as the uniform approximation given by Linton
et al. [38, eqn (5.14)] in figure 6. This plot shows that this new approximation is more accurate and
smoother than the others at |θ | = ϕn, while remaining excellent elsewhere.

Double resonance: As in the infinite array problem, double resonance occurs when both
resonance conditions are satisfied at the same time, implying that ks is a multiple of π . Generally,
when ks is a multiple of π , we find that the branch points of the Wiener–Hopf kernel will
coalesce. In the appendix, we explain that the kernel has two branch cuts emerging from the
same point (A 10) (for example, see figure 9b). This also changes the branch points of the kernel
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Figure 7. Visualization of thewave field uniqueness for the semi-infinite array problem at (r, θ )= (10 s,π/4), where s= 0.1
and a= 0.001. (a) A non-resonant case, which has a unique limit, where k = 40π/3 and θI = π/2. (b) A double resonance
case, which does not have a unique limit, where k = 40π and θI = 2π/3. (Online version in colour.)
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Figure 8. Plots of the averages of each of the colour bars displayed in figure 2 and figure 7 as ε→ 0+. (a) Non-resonant cases
as well as single and double resonance cases for the infinite array problem. (b) Non-resonant cases as well as outward, inward
and double resonance cases for the semi-infinite array problem. (Online version in colour.)

factors from square-root to fourth-root (see (A 11)), which is a drastic change in behaviour. For
non-resonant cases, this has a cascading effect on the long-term behaviour of the scattering
coefficients and the tail-end of the Hankel summation (3.1). We also expect similar effects for
double resonance. As far as the authors are aware, there are not many articles that look into
double resonance in this context. Neither [14] nor [30] considered double resonance but [29]
obtained some interesting results by looking at the far-field asymptotics of the scattered field as
the incident angle approaches one that induces double resonance. Their final result implies that
ΦS ∼ −e−ikr cos(θ) for kr � 1 and the author conjectured that the results are valid for all kr, meaning
that in the double resonance limit, the total field is equivalent to the outward resonance case (3.5).
In other words, the outward and inward resonant waves are not superimposed in contrast to the
infinite array problem. Millar also acknowledged that they did not consider what happens if ks

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

16
 D

ec
em

be
r 

20
22

 



16

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20220604

..........................................................

approaches a value to induce double resonance. However, the drastic behaviour change resulting
from the branch points coalescing allows for the reasonable assertion that a perturbed ks will not
tend to the same solution as a perturbed θI which implies that this case does not have a unique
solution. This is what we propose to illustrate in the next subsection.

(a) Discussions on uniqueness/non-uniqueness
In this section, we visualize uniqueness or non-uniqueness for the semi-infinite array problem,
for which we use the same methodology as in the infinite array problem (see §2a). For the non-
resonance and outward resonance cases, we use (3.4) to assess uniqueness but with one small

change. In the pole summation, we also include the first complex values of ϕ(pole)
n as well as all the

real ones (ϕ(pole)
n ∈ R). This is particularly important during outward resonance as one ϕ(pole)

n is
on the borderline of being purely real and becomes the dominant term in the equation. Under the

original condition, some perturbations will still include the borderline value of ϕ(pole)
n but there

are others which will give it a small imaginary part, therefore not satisfying the condition. This is

why we edited (3.4) to include the first complex values of ϕ(pole)
n , to keep as much continuity as

possible for all perturbation directions. For the inward and double resonance cases, we would not
be able to use (3.4) because the branch point and pole singularities are combined which renders
this invalid. Hence, we shall revert to the Hankel summation for these cases.

Figure 7 visualizes the solution uniqueness for the semi-infinite array problem. Similarly to
figure 2, it includes a non-resonant case where ks �= nπ (a) and a double resonance case (b).
Figure 8b shows the average of the bars for several different cases (b). This plot also includes
two non-resonant cases as well as an example of outward, inward and double resonance cases.
We find that both the non-resonant cases as well as the outward and inward resonance cases
are converging, implying uniqueness. Although it is important to note that, outward and inward
resonance converge more slowly than non-resonant cases and are more susceptible to numerical
error. As in the infinite array problem, we see that the double resonance case is not converging to
a unique solution. Unlike the infinite array problem, the perturbation of θI does not lead to non-
uniqueness. In other words, both of the perturbations θI + ε and θI − ε lead to the same solution
which is not the case for the infinite array problem. This conjecture is backed up by figure 7b and
the conclusions of [29].

4. Conclusion
In this article, we have provided a brief overview of the special resonance cases for wave
scattering by infinite and semi-infinite arrays in the context of Foldy’s approximation. From this
overview, we recovered several known results for different resonance cases (including single and
double resonance in both problems), and derived a new asymptotic approximation for inward
resonance in the semi-infinite array problem.

For the infinite array problem, we verified the well-known single resonance solution from the
scattering angle formula (2.4) and validated the non-uniqueness of the double resonance solution
in the context of Foldy’s approximation. We then showed how the amplitudes of the resonant
waves are dependent on the direction in which the double resonance limit is approached, and in
doing so, it became possible to recover solutions that have appeared in the previous literature.
However, it is clear that the non-uniqueness is due to a breakdown of Foldy’s approximation,
and the different values for the resonant amplitudes do not appear to have any physical meaning.
Including dipole terms (and possibly higher order terms) leads to a unique solution in all cases
as shown by Linton & Thompson [28] and appendix C. We also developed a way to visualize this
non-uniqueness (figure 2), which further demonstrated our conclusions.

For the semi-infinite array problem, we recovered the known solution in the outward
resonance case and a non-uniform far-field approximation for the inward resonance case.
When simplified by Foldy’s approximation (to compare it with our results), the uniform
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far-field approximation discovered by Linton et al. [38] turns out not to be continuously
differentiable across the shadow boundaries |θ | = ϕn �= 0. This was missable in their article
due to an approximation used for their numerical results. To alleviate the shortcomings of
this approximation, we considered higher-order terms and improved the overall accuracy and
smoothness of the uniform far-field approximation (figure 6). For the double resonance case, we
determined that the solution is only unique if ks remains fixed. This was verified using the same
visualizations as in the infinite array problem (figure 7). We surmised that this non-uniqueness is
also likely due to using Foldy’s approximation.

The results and assessments of this article will be important for future research. Specifically,
we plan to piece these results together with our work on the point scatterer wedge [17] to study
potential resonance cases. In that article, we asserted that there could be at least four resonance
conditions given by (4.1), two for the top array and two for the bottom array, respectively. The
results of this article show us the resonance effects of isolated arrays, which is a step towards the
overall resonance effects of point scatterer wedges and has potential applications in metamaterial
and metasurface design.
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Appendix A. Branch point asymptotics for the discrete Wiener–Hopf kernel
and its factors

We already know from [17] that the discrete Wiener–Hopf kernel

K(z) = H(1)
0 (ka) +

∞∑
�=1

(z� + z−�)H(1)
0 (ks�) (A 1)

has two branch point singularities at z = e±iks, however, it will be useful to get a sense of their
nature and the effect on the factorization of their asymptotic behaviour. Unfortunately, when k
is real, (A 1) is only convergent on the unit circle except for the branch points. As a result, it is
not the best formula to use in order to determine the asymptotic behaviour we are looking for.
Instead, we will substitute z = eit and use an alternative and more rapidly convergent formula in
the t complex plane (see [17, eqn. (A 7)]) given by

K(eit) = H(1)
0 (ka) − 1 − 2i

π

(
γ + ln

(
ks
4π

))
+ 2

i
√−i(ks − t)

√−i(ks + t)

+
∞∑

�=−∞
� �=0

(
2

i
√−i(ks − (2π�− t))

√−i(ks + (2π�− t))
+ i
π |�|

)
, (A 2)

where γ = 0.5772 · · · is the Euler–Mascheroni constant and all square roots are defined using the
principal branch. The formula (A 2) is convergent for complex t and is an analytic continuation of
(A 1) from the z unit circle to the entire complex plane (except the branch points and cuts). Here,
the branch points are periodically located at t = ±ks + 2π� (� ∈ Z) with respective branch cuts
directed towards ±ks + 2π�± i∞ (due to the −i factor). In other words, the branch is chosen such
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that if t ∓ ks − 2π�> 0, then arg
(√−i(ks ± (2π�− t))

)
= ±(iπ/4). As t → ±ks, only one square root

term becomes dominant. Hence, K(eit) has the following asymptotic behaviour:

K(eit) =
√

2
ks

e−(iπ/4)√−i(ks ∓ t)
+ K1 + e(iπ/4)

√−i(ks ∓ t)
(2ks)3/2 + O(ks ∓ t), (A 3)

where

K1 = H(1)
0 (ka) − 1 − 2i

π

(
γ + ln

(
ks
4π

))

+
∞∑
�=1

(
1√

π�(ks − π�)
+ 1

i
√
π�(ks + π�)

+ 2i
π�

)
. (A 4)

Note that all square roots in (A 3) and (A 4) take the principal branch. When written in the t plane,
the kernel factors are given by the identity K−(eit) = K+(e−it), and the formula

ln(K+(eit)) = ln(K0) − 1
2π

∫π
−π

ln(K(eiτ ))
1 − e−i(τ+t)

dτ ,

where ln(K0) = 1
2π

∫π
0

ln(K(eiτ )) dτ .

(A 5)

Here, the integration contour follows a path illustrated on figure 9a. Note that we cannot rule out
the possibility that K(eit) = 0 for some complex t. It has been proven that a zero when t is real
indicates the presence of a Rayleigh–Bloch wave which cannot happen with Dirichlet boundary
conditions (see [40] for a rigorous proof). Because there are no isolated zeros on the real line,
we can say that there exists a neighbourhood of the real line in which we can safely deform the
contour to the path on figure 9a without encountering zeros. When the Wiener–Hopf kernel is
factorized, each factor takes the asymptotic behaviour of one branch point and is analytic on the
other. For example, the K+ factor keeps the branch point at t = −ks but is analytic on t = ks (and
vice versa for the K− factor). Noting that K+(eit) = (K(eit)/K+(e−it)), we find that the asymptotic
behaviour for the K+ factor as t → −ks is given by

K+(eit) = 1
K+(eiks)

(
1 + i eiks K+′

(eiks)
K+(eiks)

(ks + t) + O((ks + t)2)
)

× (A 3),

= 1
K+(eiks)

[√
2
ks

e−(iπ/4)√−i(ks + t)
+ K1 + e(iπ/4)

√−i(ks + t)
(2ks)3/2

×
(

1 + 4 iks eiks K+′
(eiks)

K+(eiks)

)
+ O(ks + t)

]
, (A 6)

where the ratio K+′
(eiks)/K+(eiks) is obtained by differentiating (A 5) with respect to t and also

uses the same contour path,

K+′
(eiks)

K+(eiks)
= 1

2π

∫π
−π

ln(K(eiτ ))
(ei(ks+τ ) − 1)2

eiτ dτ . (A 7)

A similar formula for the K− factor as t → ks can be obtained using the identity K+(eit) = K−(e−it),
but we do not do it here. The behaviour (A 3) breaks down when ks is an integer multiple of π .
In this situation, two of the branch points in the t plane have coalesced which means that two
branch cuts emerge from the same branch point (figure 9b). This implies that two square root
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ks – 2p

2p – ks

Re(t) Re(t)

Im(t)
(a) (b) Im(t)

0 0
–ks

ks–t –t–p –pp p

Figure9. Diagramsof the integration contours (in red) used in (A 5) (a) andanexample illustrating thebranchpoints coalescing
as ks→ π (b).

terms equally dominate the asymptotic behaviour of the K(eit) as t → ±ks even though they have
different branch definitions. That behaviour is given by

K(eit) = 2√
(ks)2 − t2

+ 2√
(ks)2 − (2ks − t)2

+ Kπ + O(
√

ks ∓ t),

=
√

2
ks

e−(iπ/4)√−i(ks ∓ t)
+
√

2
ks

e−(iπ/4)√
i(ks ∓ t)

+ Kπ + O(
√

ks ∓ t), (A 8)

where

Kπ = H(1)
0 (ka) − 1 − 2i

π

(
γ + ln

(
ks
4π

))
+ 1

iks
√

2
+ 2i

ks

+
∞∑
�=1
� �= ks

π

(
1√

π�(ks − π�)
+ 1

i
√
π�(ks + π�)

+ 2i
π�

)
. (A 9)

Alternatively, if we were to use the relation

√−iz +
√

iz =
(

(
√−iz +

√
iz)4

)1/4 = (4z2)1/4 =
√

2(iz)1/4(−iz)1/4,

we can write (A 8) in a way that is much more suitable for factorization,

K(eit) = 2√
ks

(
1

−i(ks ∓ t)

)1/4 ( 1
i(ks ∓ t)

)1/4
e−(iπ/4) + Kπ + O(

√
ks ∓ t). (A 10)

Note that the fourth roots all take the principal branch as well. When we factorize (A 10) about
t = −ks, we assign (−i(ks + t))−1/4 to the K+(eit) factor, then (i(ks + t))−1/4 will be assigned to
K−(e2 iks+it) = K−(eit) (because i(ks + t) = −i(ks − (2ks + t))). This means that if ks is a multiple of
π then the asymptotic behaviour of the K+(z) factor as t → −ks is given by,

K+(eit) =
(

4i
ks(ks + t)

)1/4
e−(iπ/8)

+ Kπ (ks)1/4

2
e(iπ/8)(−i(ks + t))1/4 + O((ks + t)3/4), (A 11)

where a similar formula is obtained for the K− factor as t → ks using K+(eit) = K−(e−it).

Appendix B. Linking the semi-infinite array to Sommerfeld’s half-plane
In this appendix, we want to link the semi-infinite array problem to Sommerfeld’s half-plane
problem by matching the integral solution given by (3.2) to the equivalent for the half-plane given
by
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ΦS(r, θ ) = 1
π i

∫ i∞

π−i∞
sin(θI/2) sin(ϕ/2)
cos(ϕ) + cos(θI)

eikr cos(|θ |−ϕ) dϕ. (B 1)

This solution is found using the continuous Wiener–Hopf technique detailed in [51] (although
it should be noted that a geometry transform is required as this book has the half-plane on the
negative x-axis instead). For now, we shall restrict θI ∈ [0,π ] for brevity. The integration contour
of (B 1) has the same definition as (3.2) and is indented above the simple pole at ϕ = π − θI.

To match the semi-infinite array to the half-plane, we must take the limit s → 0 while keeping
a � s/2 in place and show that the limiting form of the integrand in (3.2) is equal to (B 1). To do
this, we need to know the asymptotic behaviour of K+(eiksτ ) for small s. Take (A 2) with t = ksτ
and a � s/2 � 1, then

K(eiksτ ) = 2

iks
√−i(1 − τ )

√−i(1 + τ )
+ 2i
π

ln
(

2πa
s

)
+ O(ks). (B 2)

If lims→0 |ks ln( a
s )| = ∞, then the logarithmic term dominates (B 2). In this case, the scatterer sizes

are decreasing too quickly for a half-plane to form and as a result, the scattered field tends to zero.
If lims→0 |ks ln(a/s)| = 0, then the square root term dominates

K(eiksτ ) ∼ 2

iks
√−i(1 − τ )

√−i(1 + τ )
. (B 3)

This can be factorized fairly simply. The K+ factor should have a branch point at τ = −1 and be
analytic at τ = 1, hence,

K+(eiksτ ) ∼
√

2
iks

1√−i(1 + τ )
. (B 4)

We apply (B 4) to the integrand of (3.2) and then as s → 0

1
K+(e−iks cos(θI))K+(e−iks cos(ϕ))(1 − e−iks(cos(ϕ)+cos(θI)))

∼
√−i(1 − cos(θI))

√−i(1 − cos(ϕ))
2(cos(ϕ) + cos(θI))

,

∼ sin(θI/2) sin(ϕ/2)
i(cos(ϕ) + cos(θI))

, (B 5)

which completes the link between the semi-infinite array and Sommerfeld’s half-plane. If
lims→0 |ks ln(a/s)| = c> 0, which could happen if a(s) = s e−(c/ks) for instance, then factorizing (B 2)
is not a simple task [52]. However, it can be argued that this is a transition region between the
semi-infinite array turning into a half-plane and disappearing entirely. This is evident in (3.4)
where the amplitude of the only propagating wave simplifies to,

lim
s→0

⎛⎝− 2

ksK(e−iks cos(θI)) sin(ϕ(pole)
0 )

⎞⎠= − 1
1 − (ic/π ) sin(θI)

. (B 6)

Here, c = 0 recovers the amplitude for the geometrical optic component of the half-plane problem
and c → ∞ leads to the plane wave (with the entire scattered field) tending to zero, symbolizing
the semi-infinite array’s disappearance. It is worth noting that all of these conclusions apply to
the infinite array matching to an infinite plane as well.

Appendix C. Full linear theory
Diffraction by linear arrays of circular cylinders at resonant frequencies was considered by
Linton & Thompson [28], without the restriction ka � 1. There the calculation was performed by
considering unknown quantities such as grating mode amplitudes as functions of the scattering
angles. Here, we show how a slight modification of the method allows the same results to be
obtained without the need to take limits, or to vary any parameter in particular, as resonance
(single or double) is approached. We then derive an explicit solution that is valid at low frequency
and show that this leads to (2.10). The argument presented here does not amount to a full proof
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of uniqueness for the array problem. In particular, it does not rule out the existence of Rayleigh–
Bloch waves or other types of trapped mode. Our intention is to show that the non-uniqueness
observed in §2 is due to a breakdown of the point scatterer model. The fact that no trapped modes
can exist on a linear array of cylinders subject to Dirichlet boundary conditions was established
in [40].

Following [28], we represent the field in the form

Φ = e−ikr cos(θ−θI) +
∞∑

j=−∞
e−ijks cos(θI)

∞∑
n=−∞

BnH(1)
n (krj) einθj , (C 1)

where (rj, θj) is a set of polar coordinates with its origin at the centre of cylinder j, so that

rj cos(θj) = x − js, rj sin(θj) = y and (r0, θ0) = (r, θ ).

Note that we have defined the incident wave as in §2, which is different to [28]. The incident and
scattered fields are then expanded about the central scatterer using the Jacobi–Anger expansion
[53, eqn 2.17], and Graf’s addition theorem [53, theorem 2.12], respectively. This leads to

Φ =
∞∑

m=−∞
((−i)mJm(kr) eim(θ−θI) + BmH(1)

m (kr) eimθ )

+
∞∑

j=−∞
j�=0

(
e−ijks cos(θI)

∞∑
n=−∞

Bn

∞∑
m=−∞

H(1)
n−m(|j|ks)(−sgn(j))n−mJm(kr) eimθ

)
, r< s, (C 2)

where the term with j = 0 is left unchanged, because it is already in the correct form in (C 1).
Finally, orthogonality in θ is applied, and the Dirichlet boundary condition enforced on r = a,
leading to the linear system of equations

Bm + Zm

∞∑
n=−∞

Bnσn−m = −Zm(−i)m e−imθI , m ∈ Z. (C 3)

Here, the Zm coefficients are given by Zm = Jm(ka)/H(1)
m (ka), and the Schlömilch series σn is given

by

σn =
∞∑

j=1

H(1)
n (jks)(eijks cos(θI) + (−1)n e−ijks cos(θI)). (C 4)

Some care is needed with the notation used for Schlömilch series, because the definition of σn in
[28] differs by a factor (−1)n from the definition used by the same authors in some later papers.
Here, we use the newer definition as in [54]. Different boundary conditions can be accounted for
by simply changing the coefficients Zm (e.g. for Neumann; Zm = J′m(ka)/H(1)′

m (ka)).
The field can be transformed into a sum of grating modes using an integral representation

for the wave functions H(1)
n (krj) einθj , (see [28, eqn (16)]). If n = 0 this representation is valid

everywhere except the point (x, y) = (0, 0); otherwise, it is valid provided that y �= 0. Substituting
this integral representation into (C 1) and applying the Poisson summation formula [55, p. 580]
yields

Φ = e−ikr cos(θ−θI) +
∞∑

j=−∞
A±

j e−ikr cos(θ±ψj), θ ∈ (−π ,π ], (C 5)

where the scattering angles are defined in (2.5) and the grating mode amplitudes are given by

A±
j = 2

ks

∞∑
n=−∞

inBn
e∓inψj

sin(ψj)
. (C 6)

Here, the upper and lower signs are to be used for θ > 0 and θ < 0, respectively.
If the parameters are not close to a resonance, the coefficients Bn can be computed by simply

truncating (C 3), because |Zn| → 0 at an exponential rate as |n| → ∞ (see (10.19.1) + i(10.19.2) from
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[48]). To obtain solutions at (and near) resonance, we will separate the singular terms from the
Schlömilch series σn, exactly as in [28]. Thus, from [54, eqns (3.37) and (3.39)], we have

σn = 2in

ks

(
einψ0

sin(ψ0)
+

∞∑
j=−∞

j�=0

(
einsgn(j)ψj

sin(ψj)
+ iδn0

2π |j|

))
+ μn, n ≥ 0, (C 7)

where μn is a polynomial and δn0 is the Kronecker delta. Suppose we are concerned with a
potential resonance in grating mode N. Then we may define a regularized series via

σ̂n = σn − 2in einsgn(N)ψN

ks sin(ψN)
, (C 8)

taking sgn(0) = 1. Clearly, σ̂n has no singularity at sin(ψN) = 0 if n ≥ 0. For negative indices, the
Schlömilch series can be obtained via the identity σn = (−1)nσ−n, which follows directly from
(C 4). Therefore, if n< 0, we have

σ̂n = 2in

ks

(
e−inψ0

sin(ψ0)
+

∞∑
j=−∞

j�=0

(
e−insgn(j)ψj

sin(ψj)
+ iδn0

2π |j|

))

+ (−1)nμ−n − 2in einsgn(N)ψN

ks sin(ψN)
. (C 9)

The total coefficient multiplying csc(ψN) is then −4in+1sgn(N) sin(nψN)/(ks), so that the
singularity is removed in all cases.

Suppose now that the parameters k, s and θI are such that the field is close to double resonance.
Let N+ = (ks/2π )[1 − cos(θI)] ≥ 0 and N− = (ks/2π )[−1 − cos(θI)] ≤ 0 be the indices of the near-
resonant modes, so that

| sinψj| ≥ | sinψN± |, ∀j �= N∓.

Define the regularized series

σ̂n = σn − 2in

ks

(
einψN+

sin(ψN+ )
+ e−inψN−

sin(ψN− )

)
, (C 10)

which remains bounded at the double resonance. The relationship between σ̂n and σ̂−n is then

σ̂n − (−1)nσ̂−n = 4in+1

ks

(
sin(nψN− )
sin(ψN− )

− sin(nψN+ )
sin(ψN+ )

)
(C 11)

which will be useful later. Substituting (C 10) into (C 3) yields

imBm + Zm

∞∑
n=−∞

Bn

[
imσ̂n−m + 2in

ks

(
ei(n−m)ψN+

sin(ψN+ )
+ e−i(n−m)ψN−

sin(ψN− )

)]

= −Zm e−imθI , m ∈ Z. (C 12)

Crucially, there is no need to introduce new unknowns (as was done in [28]), because the sums
of the second and third terms in the square bracket are recognizable as grating mode amplitudes
from (C 6). Therefore, (C 12) simplifies to

imBm + Zm

(
e−imψN+A−

N+ + eimψN−A+
N− + im

∞∑
n=−∞

Bnσ̂n−m

)

= −Zm e−imθI , m ∈ Z. (C 13)
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In general, fixing a non-negative integer M and discarding coefficients Bn with |n|>M and
equations with |m|>M leaves two excess unknowns in (C 13) but, from (C 6), we have

ks sin(ψN± )A∓
N± = 2

∞∑
n=−∞

inBn e±inψN± (C 14)

which closes the system.
Explicit solutions for Bn can be constructed for small values of the truncation parameter M.

This is made easier if the field is separated into components that are symmetric and antisymmetric
about the axis of the array (see [56]). Here, we consider only the solution at double resonance, in
which case the symmetry decomposition is not needed (at least for M ≤ 1), and we have ψN+ = 0
and ψN− = π . With these values (C 11) is simplified to

σ̂n − (−1)nσ̂−n = 4nin−1

ks
(1 + (−1)n). (C 15)

Double resonance causes no special difficulty in (C 13), and (C 14) simplifies to

∞∑
n=−∞

(±i)nBn = 0. (C 16)

It is important to note that Foldy’s approximation is equivalent to having the truncation
parameter M set to zero in the full linear theory. It is immediately apparent that this fails at double
resonance, because both forms of (C 16) reduce to simply B0 = 0. The equation with m = 0 in (C 13)
becomes

A−
N+ + A+

N− = −1. (C 17)

Note that there is no difference between the amplitudes on opposite sides of the grating because
the scattered field is purely symmetric in this case. However, there is no further information in
the model, so the solution is non-unique.

If we set M = 1 so that both monopoles (n = 0) and dipoles (n = ±1) are retained in (C 1) then,
at double resonance, (C 16) yields B0 = 0 as before but now also B−1 = B1. Since ( C15) shows that
σ̂−1 = −σ̂1 (for all parameter values), the equation in (C 13) with m = 0 again reduces to (C 17), but
in this case, we must also include the equations with m = ±1. Using (C 15) with n = 2, we see that
σ̂−2 = σ̂2 − 16i/(ks) and so at double resonance, we have the m = −1 equation

A−
N+ − A+

N− − iB1(Z−1
1 + σ̂0 + σ̂2) = −eiθI (C 18)

and

A−
N+ − A+

N− + iB1

(
Z−1

1 + σ̂0 + σ̂2 − 16i
ks

)
= −e−iθI . (C 19)

Adding these together and using (C 17), we find that

A−
N+ = − cos2

(
θI

2

)
− 4B1

ks
and A+

N− = − sin2
(
θI

2

)
+ 4B1

ks
, (C 20)

and then A+
N+ and A−

N− are determined by finding the difference between the upper and lower
signs of (C 6)

A+
N± − A−

N± = ± 4
iks

∞∑
n=−∞

n(±i)nBn, (C 21)

which is simplified to A+
N± − A−

N± = (8B1/ks) when the truncation is applied. Finally, taking the
difference between (C 18) and (C 19) yields

B1(Z−1
1 + σ̂0 + σ̂2 − 8i/(ks)) = sin(θI). (C 22)

Note that the presence of Z−1
1 in (C 22) means that B1 is O((ka)2) (the scatterer size a does not

appear in any other terms). Therefore, the factors ±4B1/(ks) represent small corrections (since
a< s/2) and hence, the correct solution at low frequency is given by (2.10).
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