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ABSTRACT

We consider Hamilton-Jacobi equations
u; + H(Dpu) =0

in the H x R", where H is the Heisenberg group and Dyu
denotes the horizontal gradient of u. We establish uniqueness
of bounded viscosity solutions with continuous initial data
u(p,0) = g(p). When the hamiltonian H is radial, convex and
superlinear the solution is given by the Hopf-Lax formula

-1
u(p,t)zig{l{tL<q ; p) +g(q)},
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where the Lagrangian L is the horizontal Legendre transform
of H lifted to H by requiring it to be radial with respect to the
Carnot-Carathéodory metric.
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1. INTRODUCTION

The regularizing effects of solutions of Hamilton-Jacobi equations can
sometimes be used as a replacement for other approximation procedures,
like convolution, which are not available in the study of nonlinear elliptic
equations. This approach was discovered by Lasry and Lions in Ref. [1] and
used by R. Jensen in Ref. [2] to prove the comparison principle for viscosity
solutions of fully nonlinear elliptic equations. See also Ref. [3] for an
enlighting explanation.

When considering the possible extension of these techniques to the
subelliptic case is therefore appropriate to study Hamilton-Jacobi equations
in a subriemannian framework. In this article we focus on the Heisenberg
group, where once we defined a suitable notion of subelliptic jet, the proof of
uniqueness of solutions mirrors the Euclidean case, but the existence present
difficulties arising from the lack of commutativity of the group, and more
importantly, from the different metric structure. As it will be apparent in
Section §3 below, the appropriate gauge is the, so called, Carnot-
Carathéodory gauge instead of the more commonly used smooth gauges.
The underlying geometric reason is that geodesics behave better with respect
to the Carnot-Carathéodory gauge than other gauges.

While the theory of quasilinear elliptic equations in divergence form in
the subelliptic setting has been extensively developed (see Refs. [4-6] and
references therein), in the case of fully nonlinear subelliptic equations the
theory is at a more primitive stage. Recently Bieske (Ref. [7]) considered
extensions of the Jensen’s maximum principle from Ref. [8] to the
Heisenberg group for the special case of infinite harmonic functions and
one of us (Ref. [9]) refined Bieske’s ideas to prove a comparison principle for
viscosity solutions of fully nonlinear elliptic equations in the Heisenberg group.

There are many articles dealing with Hopf-Lax formulas for solutions
of Hamilton Jacobi equations of the form
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{ u; + F(u, Du) =0
u(x,0) = g(x)

under various hypothesis on the Hamiltonian F(u, Du) and the initial datum
g(x). See Refs. [10-14] and references therein. However, we are not aware' of
any Hopf-Lax type formulas when the Hamiltonian F(x, u, Du) depends also
on x. To illustrate our results, consider the following example in (0, co) x [&*

/2
R NG TSNS
"Tal\ox 20z ay 20z N

u(x, y,z,0) = g(x,y,2),

where o > 1. By interpreting this equation in a subriemmanian setting, the
solution u(g, f), where & = (x,, y1,z;) € R?, is given by the Hopf-Lax formula

_ _ _ 1 _ B/2
iMEC%M R L wﬁ)_ﬂm%@}

t t
(1.1)

where the infimum is taken for (x, y,z) € R?, the exponent 8 = a/(a — 1) is
the Holder conjugate of «, and d(x, y, z) is the Carnot gauge associated to
the vector fields

ya
X0 =——"—
106.7,2) ox 20z

and
Jd x0
X =—+-——.
(60 =g 5

The gauge d(x,y,z) does not have a simple closed form expression in
terms of x,y, and z, but its geometric significance makes the formula
Eq. (1.1) very useful in the study of nonlinear subelliptic equations. See
the forthcoming paper (Ref. [15]).

Our setting is the Heisenberg group H, which is the connected and
simply connected Lie group with Lie algebra ) spanned by the vector fields
X1, X, and

ad
X3(x’ysz) :iz [XI’XZ]'

"Recently we learn of work in progress by H. Ishii and 1. Capuzzo-Dolcetta who
have extended and generalised some of the results in this paper.
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For analysis on Carnot groups we refer to Refs. [16-20]. Endow § with and
inner product (-,-) so that {X;, X5, X3} is an orthonormal basis. The asso-
ciated norm will be denoted by || - |.

Using exponential coordinates in H we identify the vector xX| + yX,+
zX; in B with the point (x,y,z) in H (so that exp:§) — H is the identity).
The group multiplication law in H is given by

1
p-q= <x1 + X2, Y1 +)2, 21+ 22 +§(X1J/2 —Xz)’l)),

where p = (x1,1,21) and g = (x3, )», 25). For a point p = (x, y, z) we write
p = (x,»,0) and call points with vanishing z-coordinate horizontal points.
We also denote by H,, the set of all horizontal points, or horizontal vectors if
we think of them as members of the Lie algebra.

The Heisenberg group H has a family of dilations that are group
homomorphisms, parameterized by r > 0 and given by

8(x,y,2) = (rx, 1y, 172).

Note that whenever s and ¢ are positive §, o 8, = 8, and §, -8, = 6, - §,. For
negative r <0 we define

8.p) = (_)""(p) = 8_1,.(p)-

We often write r(p) or even rp to denote 3,(p) and for positive r, we write
p/r to denote §;/.(p).

The Carnot-Carathéodory metric in H is a left-invariant metric
homogeneous with respect to the dilations §, defined as follows. A curve
t— p(f) € H is horizontal if its tangent vector y/(¢) is in the two dimensional
subspace generated by {X;(y(¢)), X5(y(¢))}. The Carnot-Carathéodory dis-
tance between the points p and ¢ is defined as the infimum

1
dip.y =it [ Iyl

where the set I' is the set of all horizontal curves y such that y(0) = p and
y(1) = g. By Chow’s theorem (see, for example Ref. [16],) any two points
can be connected by a horizontal curve, which makes d( p, ¢) a left-invariant
metric on H. A Carnot-Carathéodory ball of radius r centered at a point
Do 1s given by

B(Poa”) = {P eH: d(PsPO) <rh

A homogeneous norm for p € H is defined by
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Ipl = d(0, p).

Note that |p| < |p| since the projection of a horizontal curve is horizontal
and that [p| = +/x*> +)? for p=(x,y,z). In addition, this homogeneous
norm or gauge has the following properties:

a) Ipl=1p""l,

b) [rpl = Irllpl,

¢) |pl=0if and only if p =0,

d) Ipgl < Ipl + lq| and

©) 10,2, 2)| ~ x| + Iyl + |22, (1.2)
Property (e) is a special case of the “Ball-Box™ theorem, see Ref. [16] or
Ref. [19].

We shall also need a smooth gauge equivalent to the Carnot gauge just
defined, called the Heisenberg gauge pi— ||p|l . It is given by

Il = (0242 +2) (13)

The Heisenberg gauge also satisfies properties a) through e) above (See
Ref. [20]).

We are grateful to the anonymous referee whose suggestions have
substantially improved the manuscript.

2. VISCOSITY SOLUTIONS

In order to define viscosity solutions we must first identify the first
order jets adapted to our framework. Motivated by the Taylor expansion
(Ref. [16]) consider a differentiable function u:’H x Ri—R at the point
(po, ty). We have

u(p, 1) = u( po, ty) + (Dpu( po, o). py ' - p) + u(po, 1)t — 1o)
+o(lpy" - pl+ 1t = 1)),

where Dpu = (X u)X;| + (X,u)X, is the horizontal gradient of u.

Definition 1. A function /: H—[R is of class C! if the horizontal derivatives
X,/ and X, f are continuous.

Remark 1. Note that a function could be C' in this sense, but not in the
usual sense. For example, we could take
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Fee,2) = lpe - plls

that has continuous horizontal derivatives but it fails to have a continuous
z-derivative at the point (xg, yo, zo)-

If a function u is not necessarily smooth but merely upper semiconti-
nuous, the collection of vectors n € R such that

u(p, 1) <u(po.to) + (@.py" - p) + 3t — 1) +o(lpy ' - pl+ 1t —151)  (2.1)

is denoted by J)*T(py. 7o) and called the first order superjet of u at the point
(Pos 1) Analogously we define J! ~(py, #y), the first order subjet of a lower
semicontinuous function u at (p, 7y) as the set of vectors y € R® such that

u(p, 1) > u(po. to) + 7.0y " - p) +va(t—to) +o(Ipa ' - pl+1t—1]).  (2.2)

Jets can also be characterized by test functions i as follows.

Proposition 1. Let u defined on a neighborhood of a point ( py, ty). Suppose that
Vis a C' function touching u from above at ( py, ty),

u( po, to) = Y¥(po. to)
and
u(p, 1) < ¥(p,1)
in a neighborhood of (py, ty). Then the vector

(Do ¥ pos o) ¥i(Pos t0)) € Ju (o to)-

Moreover, every vector

ne J;’+(p09 tO)
is of the form

(Dw¥(pos t0), Vi Pos 1))

for some C' function v that touches u from above at (py, ).
A similar statement holds for J;’_( Do ty) replacing “‘touching from
above by “touching from below.”

Proof. The direct part follows easily from the Taylor expansion of . To
prove the converse we start from Eq. (2.1) and want to construct ¥ € C'
that touches u from above at ( py, 7y). We follow the variations introduced in
Ref. [7] on the proof for the Euclidean case in Ref. [21].

Recall that ||p|| ;; is the Heisenberg gauge Eq. (1.3). Given r > 0 consider
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_— +
gl = sup{ (p.1) = uCpo, 10) = (5" - P) = ms(1 = 1) }

where the supremum is taken in the set ||py' - plly <r and |t — to| <r.
Observe that g(r) is non-decreasing and g(r) = o(r) as r — 0%. Choose a
non-decreasing continuous function g(r) satisfying g(r) > g(r) and still
g(r) = o(r) as r — 07. Define

1 2s
6 =+ / #0)do

and consider

W(p, 1) = u(pos to) + G(Ips " - pl) + g " - Pl

+ 1t — tol* + (i1, py " - p) + m3(t — 1g).

An elementary calculation shows that X;v and X,y are continuous in a
neighborhood of (py, 7y). Observe that v touches u from above at (py, ty) by
the construction of G.

From the fact that Dh(G(||pa1 -plla))(po) = (0,0) we deduce

Dy ¥(po.t9) =1

and

Vi(po, o) = n3.
In the set s < min{||p51 “pllas 1t — tol} we have u(p,t) — ¥(p,1) +2s% <0.
Therefore the function u — v has a strict maximum at ( py, ). ]

Definition 2. Let F:[R> — R be a continuous function. An upper semicon-
tinuous function u: D x I1—R, where I ¢ R* is an open interval and D C 'H
is a domain, is a viscosity subsolution of the equation

U, + F(Dyu) = 0

if whenever (pg, 7)) € D x I and ¥ is a C'-test function touching u from
above at (py, ty), we have

Vi pos 1o) + F(Dp( po, 1)) < 0.

Equivalently, we can give the definition in terms of superjets. For every
n € JEt(po, ty) we have

n3+ F(n) <0.
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A lower semicontinuous function v: D x [ 1—[R is a viscosity super-
solution of the equation

v, + F(Dpv) =0

if whenever (py, 1) € D x I and ¥ is a C'-test function touching u from
below at (py, ty), we have

V(pos to) + F(Dpyr( po, 1)) = 0.

Once again, we can give an equivalent definition in terms of subjets.
For every y € J~(p. to) we have

y3+ F(y) = 0.

A continuous function u: D x I+—[R that is both a viscosity subsolu-
tion and a viscosity supersolution is called a viscosity solution.

3. THE HOPF-LAX FORMULA IN H

In this section we extend to the Heisenberg group the Hopf-Lax for-
mula and some of its properties from the Euclidean case when we have
radial Hamiltonians. We have benefited from the techniques in Ref. [12].
Consider H(v) = f(|v|), where { is a convex increasing function satisfying

lim @ =400 (3.1)
and

lim@ =0. (3.2)

s—>0 5

and |v]> = &* 4 b* for v = aX, + bX,. The horizontal Legendre transform of
H is defined on horizontal vectors by

L(v) = sup{{v, w) — H(w)}.

wel),

It is easy to see that L(v) = ¢(]v]) where ¢ is the (one variable) Legendre
transform of f. Moreover ¢ has also properties Eqgs. (3.1) and (3.2)
(see Ref. [22]). We now lift L to the Heisenberg group by requiring that L
is radial with respect to the Carnot-Carathéodory metric so that for p € H we
have

L(p) = ¢(d(0,p)).
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Let g: Hi—R be a bounded continuous function. In analogy with the clas-
sical Hopf-Lax formula we define for t > 0 and p e H

-1
u(p,t) = inf{lL (q ~p> +g(q)}. (3.3)
qeH t

Let us observe that the continuity and superlinearity of L, and the conti-
nuity of g show that the infimum in Eq. (3.3) is actually a minimum. Also,
by taking ¢ = p we see that we always have the upper bound

u(p, 1) = g(p)- (3:4)

The following semigroup property is the starting point of the theory.

Theorem 1. For 0 <5<t and all p € H we have

-1
u(p, f) = min{(l - s)L<q'p> +u(g, s)}.
qeH

r—s
We need a lemma:

Lemma 1. Let ¢:[0,00)1—=R be a convex increasing function satisfying
@(0) = 0 and set

L(p) = ¢(d(p,0)).
Then for all o,t > 0 such that o +t = 1 we have
L((zp) - (0q)) < tL(p) + oL(q). (3.5)

In particular, given any three points p, q and v in H we have
g g -p
Lo ' py<<L — | +oL[—=). (3.6)
o

Proof. Start with the triangle inequality

I(zp) - (0g)| < |zp| + |ogl < tIp| + olq|

and apply the monotonicity and convexity of ¢.
Next, given any three point p, ¢ and v in ‘H write
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and apply Eq. (3.5) to obtain Eq. (3.6). O

PROOF OF THEOREM 1:

Proof. The proof will be divided in two parts.
Step 1: Based on the convexity property Eq. (3.6):

r—s

—1
u(p, 1) < migtl{(t - s)L(q 'p) +u(q, s)}. (3.7)
qe

Fix ¢ € H and choose v € ‘H such that

—1

Apply Eq. (3.6) to p,q and v with 0 = s/t and © = (¢ — 5)/t to obtain:

zL(vl 'p> < SL(Vl 'q) +(Z—S)L<q1 'p>.
t s r—s

Adding g(v) to both sides and taking minima over ¢ € H we obtain the
claim. 0

Step 2: Based on geodesics:

-1

u(p,t)Zmi%l{(t—s)L(q 'p)+u(q,s)}. (3.8)
qe

t—s

Given points p,w € H and numbers 0 <s<t<oo we want to find
q € ‘H such that we have the equality

—q 71 . 71 . 771 .
! ‘L(q p) —|—SL<W ") :L(” p). (3.9)
t r—s t S t

For ¢ along a minimizing geodesic from p to w we always have

g pl+ W gl = 1w pl

In addition given o, 7 > 0 and satisfying 0 + 7 =1 we can always find ¢
so that

lg~" - pl=tiw" - pl
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and
|w_1 -ql = O’|W_l -pl.

Setting o = s/t we obtain

_].

t lg-pl_Iw- _

r—s t t s t t

and the triple equality

()

Therefore we found ¢ € H so that Eq. (3.9) holds. To finish the proof of the
claim choose w € H so that we have the equality

wl.

mno:u( p)+gm

and add g(w) to both sides of Eq. (3.9). [

If the initial datum g is a Lipschitz function then, in the Riemannian
case, the function u(p, f) is also Lipschitz. We do not know whether this is
indeed the case in the Heisenberg group. In Theorem 2 below we prove the
local Holder continuity of u(p, t) with exponent 1/2.

Denote by Lip(g) the Lipschitz constant of g. Consider the constant
C(L, Lip(g)) defined as follows

C@Jm@»Z%%RW@M—L@H

By setting p = 0 it is clear that C(L, Lip(g)) > 0. Indeed, if the constant
C(L,Lip(g)) =0, then the superlinearity of ¢ gives that Lip(g) =0 and
therefore g is constant. Note that we have used Eq. (3.2) here. We will
assume from now on that g is not constant, and so

C(L,Lip(g)) > 0.

Note also that C(L,2Lip(g)) is strictly positive.
Choose a vector v € ‘H such that we have the equality

y L.

mn0:m< ’j+gw



1150 MANFREDI AND STROFFOLINI

Since u( p, t) < g(p) we have

d(v,p)
t

Vv .

_1 p
Oth< >+g(V)—g(p)zt¢<

; ) —d(v, p)Lip(g).

Dividing by d(v, p) we obtain

o= $OP/D)

doepyi P

Choose sy > 0 so that for s > 5, we have

). Lipte).

We conclude that
d(v,p) < sot. (3.10)
We are ready for the regularity properties of Eq. (3.3):

Theorem 2. Let u( p, t) be given by Eq. (3.3). We have
i) forallpe Handt>0

lu(p, 1) —&(p)l = C(L, Lip(g)) 1, (.11

ii) there exists an constant k >0 independent of the initial datum g and
the Lagrangian L such that for all p,q € H and t>0

lu(p, ©) — u(q, )| < kLip(g)(d(p,q)"* + (so0)"/?
+(pl + lg)'*)d(p. )", (3.12)

and

ill) given a compact set K C 'H here exists a constant A = A(K, k, L,
Lip(g)) depending on K, k, Lip(g), and L so that for |t — s| <1 and
pek

u(p. 1) — u(p.s)| < Alt — 5", (3.13)

Proof. Using the Lipschitz continuity of g and the homogeneity of the
Carnot metric we have
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-1

u(p.0) = g(p) + gg;g{m(" t"’) — Lip()d(p, q)}

> g(p) - lmdx{ L(v) + Lip(g) d(v,0)}.

Together with the inequality Eq. (3.4) this implies Eq. (3.11).

To prove the Holder continuity in the space variable, fix p and ¢ in H.
Choose v € ‘H such that
-1

t-P) + g(v).

u(p. 1) = 1L (”
Write the difference

1 . -1 .
u(q,t) —u(p,t) = I‘Pg{l{tL (W ; q) + g(w)} — tL(¥> —g(v).

Set w=¢-p~' - vin the formula above and note that d(w, ¢) = d(v, p) to get

u(q, 1) — u(p, 1) < g(w) — g(v) = Lip(g) d(w, v). (3.14)

To estimate d(w, v) we proceed as follows. Write

dow,v) =dg-p~" v =P pog v =T g pT vl (B9
Temporarily set p - q_l = (a,b,c) and v = (a, B8, y). We compute
y~ ! -p-(fl -v={(a,b,c+ ap — ba)

and use the Ball-Box estimate for the Carnot gauge to obtain

v peg vl < k(jal + 1] + e + ap — ba|'?)
< k(lal + 161 + le|'? + |ap — ba|'?)
<k(p-q 'l +Ip-q "1'"*v]'7?)
<kd(p.q)"*(d(p.g)" + Iv['?),

[Vl

where the constant k depend only on the constants in the Ball-Box property
Eq. (1.2). To estimate |v| we rely on Eq. (3.10) and the triangle inequality

vl <d(v,p) + Ipl < sot + pl. (3.16)

Inequality Eq. (3.12) follows from Eq. (3.14), Egs. (3.15) and (3.16).
To establish the Hoélder continuity in time note that from Eq. (3.3) it
follows that for 0 <s < ¢ we have
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u(p, 1) — u(p,s) < 0.

Start with the semigroup property from Theorem 1 and add —u( p, s) to both
sides. We obtain

—1

0= u(p.0) — u(p.s) = mi;;{(t—s)L(q, "’) +ulg.s) - u(p,s>}.
qe

— S

We estimate the right hand side using Eq. (3.12):

0 > u(p’ t) _”(P»S)

-1
znnn[o-@L<q p)
qeH t—s

—kUMQﬂnQWW@ﬂWﬂ%wW“Hm+mmﬂ}

Set g =p-8,_,(v") for a variable ve H and h=1¢—s5> 0 in the above
formula. Then we may write

V= 51//1(51_l -p)
so that d(p, q) = h|v|. We obtain

O > u(pa t) - u(p5s)
> min {AL() — k Lip(e)(hv))/*
x [V + (s0) + (pl + 1p- 8,6~ )D'"]

= — max [ = hLo) + K Lin()(hiv)'

X (DY + (509" + (pl + Ip - 6,7 )]}
Factor h'/? and using the fact that & < 1 we get

0 = Ll(p, l) - ”(P»S)
z—mﬂmu{—mﬂu@+kum@mmﬂ

veH

X [(DY2 + (509" + @lpl + )]
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It remains to observe that the expression inside the maximum is uniformly
bounded since L is positive and we control v by Eq. (3.10) and p varies in a
compact set. O

Our main result is the following:

Theorem 3. Let H(v) = f(|v|) where v € H, and §: [0, 00)1—[0, 00) is a convex
increasing function satisfying Eqs. (3.1) and (3.2). Let g: Hi—R be a bounded
and Lipschitz continuous function. The problem
{u[ +H(Dywu) =0 inH x (0,7)
u(p,0) = g(p) in H x {0}

has a unique viscosity solution given by the Hopf-Lax formula

(3.17)

-1
u(p, z>=;g7g{m(q l ”) +g(q>}, (3.18)

where L(p) = ¢(d(0, p)) and ¢ is the Legendre transform of f.

Proof. Let us observe that by Theorem 2 the function given by Eq. (3.18) is
bounded and continuous. The uniqueness statement is a particular case of
Theorem 4 below. All we need to do is to show that Eq. (3.18) is indeed a
viscosity solution of Eq. (3.17).

Let ¢ be a C' test function touching u from above at the point ( py, 7).
We want to prove that

V(o to) + H(Dpy(po, 1)) < 0.

For ¢ <ty the semigroup property of Theorem 1 gives
u(po. to) = ;gg{(zo 0L (”lol_’?’) +u(p. r)}
and therefore we have
u(po. t0) = u(p.1) = (1g = DL (’%)

Since Y( po, to) — ¥(p, 1) < u(po, o) — u(p, 1) we obtain

-1
Y(po, o) — Y(p, 1) < (t) — l)L<p Po>.

to—t
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Use the Taylor development of v at the point ( py, ¢;) to obtain

Vi Pos 1)h + h(Dy¥(po, 10),¢7") + ohlgl + 1) < hL(g™"),
where we have set 7 = t, — ¢ and ¢ is such that we have
P="po-hq.

Dividing by 4 and letting # — 0 we have

Vi pos to) + (D pos 1)) < Lg™")

for every ¢ € H. Since this holds for every ¢ € H we can write

¥i(po. 1) + r;lea;;({(th(po, 1), q) — L(¢)} = 0.
We now identify the term within the maximum using the fact that
L(g9) = L(q)
max{(Dy¥(po, 1), @) — L(q)} = max{{Dpy(po, lo), q) — L(9)}
qeH qeH
= H(Dw¥(po, o)),

We conclude

V(pos 1o) + H(Dy¥(po, tp)) < 0.

Suppose now that yrisa C ! test function touching u from below at the
point (pg, ty). We want to prove that

V(pos to) + H(Dy¥(po, to)) = 0.

Suppose that this is not true. We can find § > 0 so that for (p, t) near (py, ¢y)
we have

Vi(p, 1) + HDpy(p, 1) < =6 < 0. (3.19)

Let 1<ty and set 1 = ¢ty — t. From the semigroup property of Theorem 1 we
obtain the existence of p, € H such that

-1
u( P, 1g) = hL(’%) +u(p,, 1). (3.20)

Denote by ¢, the point defined by the relation p; ' - py = hq,. Note that
d = hlq,| where d = d(p,,pg)- Let s — y(s) be a minimizing geodesic from
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p; to py such that y(0) = p, and y(d) = py. Consider the curve s — I'(s) in
‘H x R given by

I'(s) = (y(s), t+ <§>S>

Note that since s — y(s) is a horizontal curve we have
d , h
7 V) = (Dy (L), ¥ () + ¥ (T(s)) -
Estimate the difference
d d
Hroeto) = Wpe) = [ G
d h
= [ o)+ w6 i

d d , h
= [ |{pwwron. Sy o)+ wre | o
0

(el

where we have used Eq. (3.19). Observe that from the superlinearity of ¢ we
can see that p, — py when ¢t — t,. Use now Eq. (3.20) and the fact ¢ touches
u from below at (py, ty) to obtain

hi(q,) < —6h+ hL(% )/(S)).

Cancel / and set v = (d/h)y'(s). Note that |v] < |¢,| and use the monotoni-
city of L to obtain
L(v) <=8+ L(v)

which is clearly impossible. Ll

4. A UNIQUENESS RESULT

In this section we adapt the uniqueness proof of Ref. [23] to the sub-
elliptic case. Quite possibly a more general theorem can be established using
the refinements in Ref. [24], but the theorem below is enough for our
purposes in the previous section
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Theorem 4. Let F:R*—R be a continuous Hamiltonian. For g:Hi—R

bounded and continuous the problem

{u,+F(Dhu)=0 in H x (0, 7) @1
u(p,0)=g(p) inH x {0} '

has at most one bounded viscosity solution u satisfying

w, (1) = sup{lu(p, 1) —u(p,0)|} — 0
PeH
as t — 0.

Proof. The proof of this theorem is based on the proof of Theorem 4.1 in
Ref. [23] We will only indicate the changes needed to accommodate our
subelliptic setting. Suppose that we have two solutions u; and u,

sup (uy(p, 1) —us(p,1)) =0 > 0.
Hx[0,T]

We will show that this strict inequality leads to a contradiction.

Let M = max{||ujlls, ltslloo} and A > 0. Consider a function
¢ € CP(R) such that ¢y(0) =1 and ¢y(r) =0 for r > 1. For € > 0 define
the function

x4 G /nd?
A= ¢0<(e) Q) +0) )
where p = (x,y,z) € H and ¢ > 0. Observe that g, is a smooth nonnegative
function bounded above by 1 and B.(0,0)=1. It is clear that if

x*+ 3+ 24 > € then B.(p,1)=0. For our purposes we wish to observe
the property

D.(B(p.1) = 0. 4.2)
We define

O(p.q.1,5) = wy(p. ) —us(q. s) =Mt + 8) +(SM+ 2AT)Bqg ™" - p.t — 3).
For a given § > 0 we can find a point ( py, ¢q, fg, 59) SO that

®(pos 905 Lo> So) > sup ® — 4.

The same argument as in Theorem 4.1 in Ref. [23] shows that if A, § and €
are sufficiently small, then we can find © > 0 so that

to>u and sop > pu

and u is independent of A, § and e.
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Next, consider a function ¢; € C*°(R) such that ¢,(0)=1 and
¢1(t) =0 for t > /2. Define the bump function centered at ( py, qg, y, So)

¢(p.q.t.8) = o1 (lpo" - Pl + go " - qlldy + (¢ = 10)* + (s — 50)°).

If lpo" - plitr + g0 - gl + (¢ = 10)* + (s — 50)* > u?/4 then ¢(p, g, t,5) = 0.
Define now

Y(p,q,t,5) = ®(p,q,t,5)+ 26¢(p, q,1,5).

The function W attains its maximum at a point ( p;, ¢, ;, 5;) satisfying

Ipo" - pilldr + g0t - qullds + (6 — 1) + (51 — s50)* < 1> /4.

In particular we have #; > /2 and s; > /2.

With these modifications, following the argument of Theorem 4.1 in
Ref. [23] and using Eq. (4.2) to simplify the calculation of the horizontal
gradient we arrive at a contradiction by letting § — 0. ]

Remark 2. One could also consider existence results for Eq. (4.1) for general
Hamiltonians. In the Euclidean case (Refs. [10,25,26]) when the
Hamiltonian depends on x, existence is based on control theory and differ-
ential games techniques.

Remark 3. For the case of general Carnot groups the definition of viscosity
solutions, the characterization of jets, and the semigroup property all hold
with similar proofs as in the Heisenberg case. However, we use specific
properties of the Heisenberg group in the proof of Theorem 2 ii) and iii).
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