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Abstract
Exponential decay is a prototypical functional behaviour for many physical
phenomena, and therefore it deserves great attention in physics courses at an
academic level. The absorption of the electromagnetic radiation that propa-
gates in a dissipative medium provides an example of the decay of light
intensity, as stated by the law of Lambert–Beer–Bourguer. We devised a very
simple experiment to check this law. The experimental setup, its realization,
and the data analysis of the experiment are definitely simple. Our main goal
was to create an experiment that is accessible to all students, including those in
their first year of academic courses and those with poorly equipped labora-
tories. As illustrated in this paper, our proposal allowed us to develop a deep
discussion about some general mathematical and numerical features of
exponential decay. Furthermore, the special setup of the absorbing medium
(sliced in finite thickness slabs) and the experimental outcomes allow students
to understand the transition from the discrete to the continuum approach in
experimental physics.
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1. Introduction

The Lambert–Beer–Bourguer (LBB) law describes the absorption of a beam of electro-
magnetic radiation (typically, visible light) which propagates through a dissipative medium,
establishing a relationship between the intensity of the radiation and the optical path within
the medium [1]. According to the original work of Mach [2], the first applications of the law
appeared separately in 1760 in both the ‘Traité d’optique’ by Bourguer [3] and the ‘Photo-
metria’ by Lambert [4]. The two are acknowledged as the founders of ‘photometry,’ while
Beer’s contribution dates back to late 1852 [5]. Briefly, the law correlates the radiant power in
a beam of electromagnetic radiation (e.g. ordinary light) to both the length of the path of the
beam in an absorbing medium and to its concentration [6].

Therefore, despite its age, the LBB law is a firm foundation of a methodology, and in
some sense we can speak of it in terms of second-order linearity. The law remains a milestone
both in experimental research (as shown from the large number of papers in international
didactical [7], general physics [8], optics [9], surface science [10], chemistry [11], and
biology [12] journals), and education (as we see from the many web pages in which examples
of didactic experiments are discussed).

In its basic version, the law is formulated as follows:
Let x be the coordinate (geometrical length) along the propagation direction of a radiation

beam, with I0 being the intensity of the incident beam at the boundary of the medium. If we
indicate the boundary of the medium with x= 0 (i.e. the medium occupies the region between
x= 0 and x> 0), then I0 is the intensity at x= 0 (the intensity by which the beam enters the
medium). According to the LBB law, the intensity of the beam in a position x within the
medium (i.e. in the interval [0, ∞ [ ) is given by:

= −I x I e( ) . (1)ax
0

In equation (1), α acts as the ‘light absorption factor’ per unit length of the medium; its
physical dimensions are reciprocal of the length. In principle, the ‘light absorption factor’
ought to be described by an xyz tensor. However, if we restrict the analysis to an optically
isotropic and homogeneous medium and use a beam made by plane waves, we are allowed to
assume α as a constant.

Equation (1) states that inside a dissipative medium, the relationship between the
intensity of light and the crossed thickness is simple exponential decay. Therefore, in the case
of easier test conditions described above (plane waves with the wave front perpendicular to
the propagation direction and a homogeneous and isotropic optical medium), the constant α
can be easily estimated by measuring the incident light intensity and the emerging intensity if
the thickness of the medium is known.

In this paper, we suggest a didactic experience to check the LBB law. We illustrate its
usefulness in teaching as well as its didactical potential, not only for physical content, but also
for some general considerations it suggests about the general features of an exponential
function like equation (1), from the points of view of applied mathematics and the most
appropriate procedure of experimental data collection.
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2. Basic theoretical considerations

2.1. The classical derivation of the LBB law

It should be emphasized that the assumption of spatial isotropy of α does not imply its
constancy if the wavelength of the incident radiation changes. Therefore, when using a
simplified experimental setup as we propose, the estimation of the absorption coefficient of a
medium should be performed by a monochromatic light source, which does not entail a loss
of the didactical content.

To get equation (1) and to gain a proper comprehension of its conceptual bases, we
assume that a portion of medium having infinitesimal thickness, dx, extends between the
positions x and x+ dx. Let us also assume that the absorbed light is proportional to the
thickness and to the incident intensity. We can write:

+ − ≡ = −( )I x x I x I aI x xd ( ) d ( ) d . (2)

The minus takes into account that the intensity variation corresponds to the amount of
absorbed intensity; we have a decrease of I. In equation (2), α represents the proportionality
coefficient describing our assumption about the absorption. Equation (2) results in a differ-
ential equation and an associated Cauchy problem, whose solution is the LBB law:

α= −

=
⇒ = α−

⎡

⎣
⎢⎢⎢ ( )

I

x
I

I I
I x I e

d

d
0

( ) .x

0

0

The above derivation shows how the LBB law models the simplest mechanism of light
absorption by an opaque dissipative medium. Namely, the relative intensity of absorbed light,
dI/I, is proportional to the length of the geometrical path, dx. Based on these remarks, an
experiment aimed to verify equation (1) can equivalently be considered a validation of these
assumptions.

2.2. A discrete version of the derivation of the LBB law

An appealing alternative approach to the problem discussed in the previous section lies in its
representation through a discretized process. We must pay attention to the discrete version of
the derivation of the LBB law since it suggests an obvious experimental approach: The
empirical verification of equation (1) needs the measures of the light intensity at a finite
number of thicknesses.

Let us suppose that we split a bar of a dispersive medium in thin slices, with every slice
of the same thickness, S. The output surface of the jth slice therefore has the position j · S.
Considering those slices as ‘elementary portions,’ Iin,j and Iout,j being the input and output
light intensity of the jth slice, respectively, for this slice equation (2) reads

Δ− ≡ = −I I I aI S, (3)j j j jout. in. in.

which leads to

Δ
α− =

I

I S
. (4)j

jin.

Equation (4) assures us that the relative intensity loss (i.e. absorption coefficient) per unit
length does not depend on the particular slice. This result is also independent of the thickness,
S, of the slices, and the hypothesis of equally thick slices might be weakened.
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Let D be the length of the whole bar, and let us divide it into N slices. By the iterative
application of equation (3), the final output intensity, ID, results in

≡ = − = − = − = … = −

≡ −
− −( ) ( ) ( ) ( )

( )
I I I aS I aS I aS I aS

I aS

1 1 1 1

1 .

D N N N N

N

N

out. in. out. 1 in. 1

2

in1

0

This expression restores the LBB law if we consider the limit toward a continuing
partition of the bar (i.e. the limit of infinitely thin slices). To evaluate this limit, we observe
that S=D/N, and the limit is given by N→∞. The final result is

α− = α

→∞

−⎜ ⎟⎛
⎝

⎞
⎠I

D

N
I elim 1 ,

N

N
D

0 0

which corresponds to equation (1) for x=D.
It is crucial to include the meaning of this limit from the experimental point of view when

the discrete approach is used, meaning the experiment is actually performed through discrete
steps. Note that we will not know the thickness of each slice or how many slices there are
when the bar is split to accomplish the approach described in this section. Actually, these
variables are not needed. Just observe that N→∞ implies αD/N→ 0, which means, in an
empirical sense made only by finite quantities, αD/N≪ 1, or αS≪ 1. We learned that an
absolute, ‘universal’ thickness which identifies and defines the quasi-continuous regime
cannot be acknowledged. Given a dissipative medium, we can assert that the thickness of a
slice fulfils our requirements if the product between its thickness and its absorption coeffi-
cient, which is a dimensionless number, is much lower than 1.

In equations (3) or (4), this condition is equivalent to having a relative intensity loss in
the slice much smaller than 1 (αS =ΔIj/Ij). In the following section, we will point out how this
condition is needed in order to get the correct estimate of the absorption coefficient defined by
the ‘continuous version’ of the LBB law derivation through a ‘single-slice measurement.’ We
will also show that the α coefficient defined by the finite ratio of equation (4) is the same as
that defined in equation (1), and by the continuous approach based on equation (2).

3. The experiment

Our version of the experiment can be performed by using commercial instrumentation and
very common materials. We developed the experiment in our classrooms with minimal
instrumentation, which includes a commercial 20W halogen lamp with 12 V alternating
current power supply; an achromatic doublet to produce plane waves, with the light source
placed in the focus of the doublet; a standard digital lux-meter, chosen to fit the spectrum of
the light source; cubes of optical Plexiglas coupled to the lens by air; and an appropriate
optical guide. The purpose of the achromatic doublet is to produce, at the same time, plane
waves without chromatic aberration; we reported this in the general design of the experiment,
but we verified that even with a commercial halogen lamp the chromatic aberration has
negligible effects, and the experimental setup can be further simplified, avoiding the usage of
the doublet.

The lamp and the lux-meter are aligned with the opposite ends of the rail that hold the
Plexiglas bar, and the Plexiglas cubes are lined up between them, as shown in figure 2. The
lux-meter measures the luminous intensity emitted through the last Plexiglas cube. The
measurements can be repeated for several thicknesses of the medium. This thickness changes
simply by changing the number of cubes.
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Figure 1. An elementary portion of the absorbing medium of infinitesimal
thickness, dx.

Figure 2. (a) Schematic representation of the experimental apparatus; (b) drawing of the
cube and tape system, which ‘artificially’ increases the global absorption of a single
cube to a detectable level; (c) illustration of the experimental apparatus, in which the
decreasing intensity of light is clearly visible along the cubes.



Before starting the experiment, we measured the emitted intensity with the lux-meter at
different distances from the lamp, without the Plexiglas cubes, to confirm that the influence of
the intensity loss with distance (Kepler’s effect) was negligible. In our experimental design,
this was true within the experimental errors of the measurements, up to the maximum distance
reached with the Plexiglas cubes, even when the commercial lamp was placed without any
optical device before the cubes.

The Plexiglas used in our experiment has a low absorption coefficient, so the intensity
absorption of a single cube was hardly detectable. To manage this challenge, we covered the
output surface of each cube with a thin paper band, which allowed us to increase the
absorption of each cube to a detectable level, while simultaneously allowing the absorption to
be low enough that the light was still measurable after a certain number of cubes, thus
maintaining the realization of the didactical experience. This allowed us to select a more
appropriate ‘effective’ absorption coefficient for each cube-band couple. The final result of
the experimental setup is shown in figure 2.

This procedure represents the practical realization of the previously described dis-
cretization. The evaluated physical intensity loss is a measure of the ‘effective’ absorption
coefficient, which is not, of course, that of the Plexiglas. The effective α of each cube results
from the combination of Plexiglas and the paper band. Each single taped cube acts as an
elementary piece of the ‘artificial material,’ and the effective overall α manifests itself only at
the end of each piece. In other words, this system can be viewed as a simulation of what it
happens when the discretization is actually realized.

In the next subsection, we will return to the question of the ‘too-low absorbed light per
single cube,’ and we will introduce further information on the considerations developed about
the ‘discrete derivation’ of the LBB law and on the meaning of the condition, αS≪ 1.

The experiment can proceed over two mainstreams:

(1) If the cubes are the same length, the students can measure the intensity of output light as a
function of the thickness of the bar (i.e., as a function of the number of cubes, whose
length has the role of length unit), plot the data, verify the exponential decay according to
equation (1), and infer from the curve the ‘effective’ absorption coefficient of the
built system.

(2) Students can estimate for each single cube the ratio at the left side of equation (4). A
further discussion on this point is developed in the following subsection.

In figure 3(a), some data for I(x) are plotted as an example. The experimental points have
equally spaced abscissas, since they are recorded by adding one cube after another. The
spacing between the abscissas is 3 cm, which is equal to the thickness of the cubes. I0 has
been measured by the lux-meter directly from the halogen lamp, with no cubes in the middle.

The exponential decay is particularly evident when the natural logarithm of I/I0 is plotted
instead of I:

= ⇒ = −− [ ]I x I e ln I x I ax( ) ( ) . (5)ax
0 0

The plot in figure 3(b) clearly shows the linear behaviour of ln[I/I0] versus x. This
representation is the easiest way to infer the absorption coefficient, α, from the data: a linear
fit on the logarithmic data, in which α is the opposite of the slope, while the intercept is
expected to be consistent with zero. From the reported data, α = (15.0 ± 0.5) m−1 can be
estimated. It is interesting to note that the effective observation of neat exponential decay for
I(x) also confirms that we are using plane waves, which do not suffer from substantial losses
along x apart from the absorption from the medium (the previously mentioned
Kepler’s effect).
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4. The numerical consequences of exponential decay

4.1. The discrete approach and its intrinsic approximation

Let us now operate according to equation (4), which considers the discrete finite ratio
−ΔI/(I∙S) for each single cube. This ratio is easily calculated from the data, and the results are
reported in the inset of figure 3(a), which also shows the value of the absorption coefficient as
estimated above. As we can see, the ratio values are barely constant within the errors, but their
values are well (systematically) below the experimental α. At first glance, this could appear to
be a consequence of experimental errors and inaccuracy. However, it is not so simple: a
crucial role is played by the discretization itself, and by the difference between finite incre-
mental ratios and their limits for zero-increment. To understand this point, and to provide a
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Figure 3. (a) Experimental data of light intensity collected in the apparatus described in
the text. The resulting fit performed with the Lambert–Beer law is overlapped in the data.
In the inset: values of the ratio—ΔI/I · S on the single cubes. (b) The same data are plotted
as ln(I/I0) vs x, so that the LBB decay assumes a linear behaviour. This plot has been used
for a linear fit, and the resulting fit line overlaps the data.
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Figure 4. (a) Calculated exponential decaying light intensity for some values (indicated
in the figure) of the product α · S. (b) The same simulated data plotted as ln(I/I0) vs x.
(c) –ΔI/I vs x for each exponential curve; the plots have been reported with different
vertical scales, because of their very different vertical ranges, to magnify the
discrepancy between this ratio and the ‘true’ α. (d) The same operation as in (c),
performed after a noise (noise-to-signal ratio = 1%) has been added to the
exponential curves.



didactically effective illustration for students, we prefer to proceed through numerical
simulations of analytic and empirical functions, rather than with mathematical demonstration.

Therefore, let us consider again the LBB law in equation (1). Figure 4(a) shows curves
calculated from that law, for different values of the product α · S. Calculated means that the
y values are exactly what the exponential function in equation (1) gives for the corresponding
x values; the curves are not affected by any experimental error or fluctuation. Both the vertical
and horizontal scales have been normalized, to I0 and S respectively, in order to have general
plots. Figure 4(b) reports the same curves on a logarithmic scale, on which they are linear.

In figure 4(c), we plot the results for −ΔI/I versus x for each curve, which, according to
equation (4), should be constant over x and equal to the product, α · S. The plots show that the
calculated ratio is actually constant over x, and therefore potential x-dependence in an
experimental dataset would be an effect of experimental fluctuations. However, such a
constant value is systematically lower than the ‘true’ α · S value (i.e., the one that we used in
equation (1) to generate the curves themselves, which is the one coming from the continued
derivation). We also show the relative discrepancy between α · S given by both the discrete
ratio and the ‘true’ ratio, which increases as α · S approaches 1.

Now, we can assert that the α coefficient introduced in equations (3) and (4) coincides
with the one defined by the continuous derivation in equations (1) and (2) if and only
if α · S≪ 1.

We point out that one of the α · S values we considered, 0.45, corresponds to the value we
have from our data: S= 3 · 10−2 m, α = 15 m−1. Our simulation says that in this case, the
discrete evaluation of a single block gives, in the ideal case, an underestimation of about
19–20%. Referring to the data in the inset of figure 3(a), the average value for α from the
discrete ratio computation is about 12, which is actually lower than the absorption coefficient
estimated through the fit of 20%.

What can a student learn from these results? These considerations have, in our opinion,
an impressive didactical impact which overcomes the experimental exercise from which we
started. They illustrate how a discrete experimental calculation on single constituting units
can produce reliable results only if the mathematical continuity limit is approached. In our
experiment, this translates to the condition α · S≪ 1, which is also very simple to understand
from the point of view of its derivation, making the exponential LBB law very suitable to
illustrate these concepts. The effectiveness of the exponential decay in showing the subtle
differences between a discrete and a continuous approach also lies in the fact that it can be
tested with quantities that are both easy to evaluate (the ratios ΔI/I, or in general Δy/y) and are
expected to have a constant value, allowing ease of comparison and discrepancy calculation.

But there is an additional aspect of the exponential decay that can more effectively
illustrate the origin of the approximations arising from the discrete versus continuous
approach. Plotting the exponential law for I(x) on a logarithmic vertical scale leads to the
linear plot in figure 4(b), described by equation (5), which uses the linear fit proposed to
students. In equation (5), and therefore in the logarithmic plot, the absorption coefficient is the
opposite of the angular coefficient of the line. Obviously, for a line, the evaluation of the
angular coefficient gives the same result independently from the chosen interval. In other
words, if we apply a discrete computation to evaluate α from the line in the logarithmic plot,
the result is not affected by the fact that we are using a finite interval, and it will equal the
‘true’ absorption coefficient. In formulas, with the slice thickness, S, representing the ele-
mentary Δx, from the linear relation of equation (5) we have for the jth slice:
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α
Δ

= −
−

= −
−

= −
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ln I I ln I I

S

ln I ln I

S

ln I

S
. (6)

j j j j jout. 0 in. 0 out. in.

As we said, for the elementary properties of a linear function the α value evaluated in this
way is equal to that obtained with the correct continuous approach. Comparing equations (6)
with (5), and this assertion with the above consideration about the ‘wrong’ result of the
discrete computation on the exponential form, we can infer the primary reason for the dis-
crepancies: the ‘true’ absorption coefficient, working with finite differences, is equal to (Δln
(I))/S and not to (ΔI/I)/S, because ΔI/I=Δln(I) only when ΔI→ 0.

4.2. Experimental fluctuations and their role in the discrete approach

The information presented in the previous section clarifies why there is a systematic dis-
crepancy between the decay rate estimations through the continuous interpolation, which are
operated by the fit procedure and the discrete calculation of single steps. The discrepancy
arises for intrinsic reasons, not because of experimental errors. At the same time, we see that
in the ‘exact’ exponential decay, with no fluctuations, the ratio (ΔI/I)/S underestimates the α
value, but it is the same for all the slices. As a consequence, although the experimental
fluctuations do not affect the α underestimation, they must be responsible for its dependence
on the interval on which equation (4) is applied.

We would like to briefly discuss this point, which is not completely disconnected from
the previous one. Once again, for didactical purposes, we start from the ideal discrete curves
reported in figure 4(a). We artificially overlapped a noise onto these simulated ideal data; the
noise was made by random fluctuations δI of maximum amplitude 1% of the ideal value Itrue
(−10−2 < δI/Itrue < 10

−2). On such new ‘dirty’ data, we reapplied the procedure of equation (4),
obtaining the results summarized in figure 4(d).

As we can see, the consequent relative fluctuations in the (ΔI/I)/S values are extremely
dependent on the α · S values, with an opposite trend with respect to the accuracy of the α
estimation: the smaller α · S is, the larger the fluctuations of the discrete evaluation are. For the
chosen noise amplitude, figure 4(d) shows that the computation of single steps would be
meaningless for the first two curves (α · S= 0.001 and α · S= 0.01), while it makes sense for
greater values of α · S, with fluctuations decreasing as α · S increases. If we constrain the
experimental noise to a relative amplitude of 0.1%, the curve at α · S= 0.01 produces rea-
sonable oscillations for (ΔI/I)/S, while the curve at α · S = 0.001 still gives meaningless results.
As a general criterion, we can state that the oscillations in the (ΔI/I)/S estimation give reliable
results when α · S≫ δI/Itrue.

The opposite trends for the two desirable conditions in the discrete process—the accuracy
of the estimation and a reasonable distribution width of the calculated values over an
experimental dataset—establish the need for a compromise. Small α · S values favour an
accurate estimation of the absorption coefficient through the discrete approach; however, this
condition can give extremely fluctuating values around this accurate ‘ideal’ value if it is not
supported by a good noise-to-signal ratio, which must be much smaller than α · S. So, to
overcome the fitting procedure of the nonlinear exponential law through the linearization on
the logarithmic scale, a student might think, after reading the previous subsection, that using
thinner Plexiglas slices (smaller S) or avoiding use of the tape (smaller α) would reduce the
product α · S. However, it would be useless since reducing this a-dimensional product below
the noise-to-signal ratio would produce unreliable fluctuating results.
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5. Conclusions

In this paper, we proposed a simple optical experience that can be performed with very basic
experimental instrumentation and materials. The simple empirical work and analysis allow
students to consider more general questions concerning the features of exponential decay
behaviour. The exponential decay describes a large number of physical phenomena; as dis-
cussed, it arises anytime a physical quantity decreases with relative losses proportional to a
second physical quantity. In our experience this is a geometrical length, but it could be a time
or any other quantity.

The LBB law for light absorption provides one of the easiest and fastest ways to manage
an example of such an important prototypical function in the experimental setup described in
this paper. Furthermore, having built the absorbing medium through discrete steps, the
conceived experiment also allows students to understand the computational aspects and
numerical problems of finite differences approaches versus continuous ones. This is recog-
nized as a primary issue in many fields of computational physics and technology, and, as a
consequence, it also deserves academic exploration for its wide application in discrete
dynamics [13]1.

The peculiar features of the exponential function make it very suitable to introduce this
topic to undergraduate students; they can study the problems and understand the results as we
described without introducing any formalism, simply by looking at the numerical outputs.
This discussion can also be regarded as a milestone for deeper considerations about numerical
discrete computation in experimental physics, such as numerical derivative problems. Indeed,
the basic considerations we developed are the real base of the difficulties in numerical
derivatives. Overly sparse data can produce uncorrected absolute values, which is a problem
when an absolute estimation, rather than a normalized trend, is needed. However, having
denser experimental points may be useless, since a good noise-to-signal ratio is always the
ultimate requirement to get both accurate estimations and manageable fluctuations.
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