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Abstract—Optical signal processing techniques employ a wide
range of devices and various nonlinearities to achieve multiple net-
work functionalities. The choice of nonlinearity can also impact
the relative efficiency, both in terms of energy and material con-
sumption, of the signal processing function being implemented.
Techniques for some of the important functionalities, wavelength
multicasting, wavelength-division multiplexing to time-division
multiplexing, add–drop multiplexing, and wavelength exchange
are compared in terms of the used optical spectrum, number of
pumps required, and optical energy consumed. These include va-
rieties of four-wave mixing, cross-phase modulation, Kerr-effect-
based polarization rotation in optical fibers, and three-wave mix-
ing in lithium niobate waveguides (WGs). Future possibilities of
greener optical signal processing using on-chip WG technologies
are discussed within the scope of recent developments in the dis-
persion tailored, highly nonlinear WGs.

Index Terms—Add–drop multiplexing, multicasting, multiplex-
ing, nonlinear optics, optical fiber communications, optical signal
processing, silicon waveguides, wavelength exchange.

I. INTRODUCTION

TODAY’S networks are growing at incredible rates, driven
by both an increase in the number of connections as well

as the demand for higher bandwidth applications, mainly video
content. This growth places increasingly costly requirements
on available resources, including power and raw materials. The
ability to feed the growth may eventually become a limiting
barrier, driving up the cost of network operation. It has been
estimated that by 2030, the power that will be demanded by the
optical communications infrastructure in Japan will be higher
than the total energy production of the country [1]. To offset
this growing trend, research efforts have focused on the ways
to improve the efficiency of these networks, often by leveraging
photonic alternatives to provide improved performance with
lower material and energy costs [2].
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This concept of “green photonics” is driven by several bene-
ficial properties of optics. By taking advantage of the relatively
unlimited bandwidth of optics, and the femtosecond response
times of photonic materials, green photonic solutions can sup-
port single-channel data rates well beyond 100 Gb/s in a single
element [3], [4]. Since optics does not need to “touch” or operate
on each individual bit, a single photonic element has the ability
to transparently process a data channel regardless of its data
rate or the modulation format of the data that it carries allow-
ing for efficient scaling of network resources [5]–[9]. Similarly,
a single photonic element can operate on multiple data chan-
nels simultaneously, greatly reducing the need for large fan-outs
and redundant parallel processing structures. This may be espe-
cially true, as spectral efficiency requirements continue to move
networks toward multibit-per-symbol formats that may require
extensive parallel processing [10]–[13]. The possibility of elim-
ination of an optical-electrical-optical conversion process with
an energy consumption of ∼0.5 nJ/bit [14] by optical signal
processing methods may be advantageous considering the ca-
pabilities of operation at line rates >100 Gb/s. Furthermore, as
optical technologies improve and integrated solutions become
increasingly available, optics offers the potential for a continued
decrease in the cost per bit over what is currently achievable.

There exists a wide variety of photonic materials capable
of providing green operation through optical signal processing,
including highly nonlinear specialty fibers, periodically poled
lithium niobate (PPLN) waveguides, chalcogenide glass chips,
silicon waveguides, and many others. Fiber-based solutions have
the advantage of being directly integrated with existing fiber
networks and utilizing cheap fiber components for their im-
plementations. Silica-based highly nonlinear fiber (HNLF) is
the most common choice, although many structures and ma-
terials including photonic crystal fiber, bismuth-oxide-doped
fiber (Bi-HNLF), and chalcogenide fibers have shown great
potential in miscellaneous optical signal processing applica-
tions, such as wavelength conversion, regeneration, and format
conversion [15]–[20].

While direct integration of fiber may have some limitations,
both silicon (Si) and chalcogenide-based alternatives have the
potential for direct chip-level integration. Leveraging the mature
Si processing industry, Si photonics has become one of the driv-
ing goals of current green photonics research. With new low-loss
processes, impressive results show the potential of waveguide
(WG) devices in ultrahigh-speed optical signal processing up to
1.28 Tb/s [8], [9].

Many of these materials utilize a variety of both χ(2) :
χ(2) and χ(3) nonlinear interactions, including cascaded
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second-harmonic generation and difference-frequency genera-
tion (cSHG/DFG), and cascaded sum- and difference-frequency
generation (cSFG/DFG) in PPLN waveguides, self-phase modu-
lation, cross-phase modulation(XPM), and degenerate and non-
degenerate four-wave mixing (FWM) in fibers, chalcogenide
chips, and silicon WGs. The choice of nonlinear interaction can
be critical for implementing a green photonic function in the
most efficient matter.

The total energy consumed is often estimated by the number
of high-power optical lasers required to perform the signal pro-
cessing function. Coupling and filtering losses, and the addition
of high-power optical amplifiers limited with the pump-laser ef-
ficiencies often greatly increase the power energy consumption,
and number of components necessary. By utilizing nonlinear
processes that require a minimum number of high-power pump
lasers, it is possible to demonstrate the large potential of green
photonics. To this end, each optical technique is compared using
the total optical energy per bit required to achieve the desired
function. In this manner, wide variation in equipment and ex-
perimental setups used can be minimized, e.g., an amplified and
filtered pump laser can be exchanged with a single standing
high-power laser unit eliminating a high-power amplifier and a
filter, and a more direct comparison between different functions,
devices, and nonlinearities is possible.

In this paper, we investigate different optical signal process-
ing techniques that employ a wide range of devices and various
nonlinearities to achieve network functionalities. While a wide
range of functions can be envisioned for future optical systems,
four network functionalities have been chosen as examples due
to their diverse use of devices and the varying nonlinearities em-
ployed. We will focus on the energy-efficient methods to enable
several optical signal processing applications, including wave-
length multicasting, wavelength-division multiplexing (WDM)
to optical time-division multiplexing (OTDM) conversion, opti-
cal add–drop multiplexing, and wavelength exchange. The per-
formances of different techniques are studied from an optical
energy consumption view (energy/bit). Optical energy per bit
for these nonlinear processes often scales inversely with data
rate. In Section II, we give a brief introduction of the basic con-
cept of multicasting, multiplexing, and wavelength exchange. In
Section III, we describe potential green methods to realize these
optical signal processing applications, addressing several issues
such as resource savings and optical energy consumption. Non-
linear integrated WGs, potential candidates for efficient optical
signal processing, are discussed in Section IV. Finally, a brief
summary is given in Section V.

II. CONCEPT

Recent experimental demonstrations are presented, cov-
ering wavelength multicasting, WDM-to-TDM multiplexing,
add/drop multiplexing, and wavelength exchange. In this sec-
tion, we describe the operating principle of each application.

A. Wavelength Multicasting

Wavelength multicasting is the selective distribution of data
to predetermined wavelengths [21], [22]. The input signal at a

Fig. 1. Conceptual spectra for various method of multicasting. (a) FWM.
(b) Parametric amplification. (c) Multiple pump FWM. (d) Supercontinuum-
based multicasting schemes.

given wavelength is copied to multiple output wavelengths us-
ing different optical signal processing methods. These methods
differ in the number of pumps and seed lasers depending on
the optical nonlinearity being used to generate the new output
signals. A potentially important characteristic of an all-optical
multicaster is the minimal use of additional pump lasers that
consume added energy and spectrum.

Conceptual spectra for different methods of multicasting are
shown in Fig. 1. A straightforward way to generate multiple
copies is the use of FWM in a nonlinear medium as shown in
Fig. 1(a) [23]. The input signal is used as a pump in a degenerate
FWM process. Two photons from the signal pump mix with the
probe photons to generate the idlers (signal copies) at fidler =
2fsig − fprobe as depicted in Fig. 1(a). There is a need of N
probe lasers for N -fold multicasting. Using a low-dispersion,
highly nonlinear medium, parametric gain can be obtained [24]
with higher pump powers. In such a scheme, the probes are also
modulated by the pump signal through the parametric gain. In
this manner, only N /2 pumps are required to generate N output-
multicasted copies as depicted in Fig. 1(b). Another method is
the use of multiple continuous wave (CW) pumps to generate
idlers from an input signal using nondegenerate FWM [25]. This
method uses N /2 pumps to generate N − 1 multicasted copies as
depicted in Fig. 1(c). Since it uses a nondegenerate FWM setup,
it can support phase-modulated signal multicasting as opposed
to the schemes described in Fig. 1(a) and (b). Since methods in
(a) and (b) are based on degenerate mixing, no spectral inversion
(phase conjugation) takes place in the wavelength conversion.
However, in Fig. 1(c) both phase conjugated and non-conjugated
output copies are generated [25], and this needs to be tracked
carefully for any following processes for complex operations,
such as optical delays and buffers [26]. Another method is to
use supercontinuum generation in a nonlinear medium as in
Fig. 1(d). There is typically pulsewidth requirements to generate
a wide output spectrum that can be combined with a periodic
filter to slice the supercontinuum into multiple output channels
[27], [28]. This method has also been shown to support the
phase-modulated formats for low input powers [29].
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Fig. 2. Concept of WDM-to-TDM multiplexing. (a) Time domain. (b) Spectra
comparison of XPM-based and FWM-based multiplexing.

In addition to these methods, several other techniques have
been explored. These include XPM-based methods, where
phase-modulated side lobes of a CW pump are filtered [30]
using half as many probe pumps, and cross-gain modulation
and cross-absorption modulation-based methods, where the gain
(absorption) modulation in a semiconductor transfers the data
to CW lasers using N pumps [31].

B. WDM-to-TDM Multiplexing

Optical fiber communication systems are characterized by
their extremely high transmission capacity. With high band-
width and on-demand applications continuing to emerge, next-
generation core optical networks will require significant im-
provements in capacity and reconfigurability [32]. Therefore,
optimization of network usage may require efficient sharing of
this high bandwidth among lower rate users. One popular net-
working approach is to time multiplex many channels together.
Moreover, given that the lower speed channels will likely ex-
ist on different wavelengths in a WDM system, it is beneficial
to envision wavelength, converting different low-rate channels
onto a single-wavelength high-rate channel.

Typical approaches in doing WDM-to-TDM multiplexing in-
clude the use of FWM [33], XPM in HNLFs [34], or cSHG/DFG
in PPLNs [35]. Fig. 2 gives a comparison of the FWM approach
and the XPM approach. If we consider N -fold WDM-to-TDM
multiplexing, N + 1 pumps will be needed for the FWM case. In
the XPM case, only one CW pump is required. The CW pump
is phase modulated by the intensity of the N WDM signals,
and the required optical bandwidth is approximately half of the
FWM case, as shown in Fig. 2. Subsequently, offset filtering,
which serves as a phase-to-intensity converter, can be used to
obtain the multiplexed signal. Due to the Kerr-effect-based na-
ture of this multiplexing method, the applications are limited
to intensity-modulated signal. For the case of FWM, phase co-
herence between within each tributary will be preserved due
to nondegenerate FWM. However, phase coherence would be
difficult to establish between the tributaries. On the other hand,
since the XPM-based method is seeded from a CW source,
the multiplexed signal will be phase coherent. We can see that
XPM-based processes has the advantages of high efficiency in
terms of optical bandwidth and a reduced number of pumps for
WDM-to-TDM conversion.

Fig. 3. Conceptual block diagram of an add/drop multiplexer.

C. Add–Drop Multiplexing

Single-channel extraction, clearing, and insertion from time-
interleaved optical signals is a key feature for networking oper-
ation in WDM/OTDM hybrid transmission systems.

Semiconductor devices are the most common candidates to
perform this operation, thanks to their compactness, ease of
integration, wide optical bandwidth, and high nonlinear coeffi-
cient [36], [37]. Nevertheless their characteristic response times
limit the maximum bit rate of the signal to be processed.

On the other hand, optical fiber exhibits very fast dynamics
of the Kerr effects. Add–drop multiplexers exploiting fibers can
be based on a Kerr shutter [38] and separately carry out the
extraction and insertion functionalities of a channel from a time-
interleaved optical frame, as shown in Fig. 3. Channel extraction
can be obtained via polarization rotation through XPM using
pump pulses at the tributary bit rate that coincide in time with
the channel to be dropped. Ultrafast add/drop multiplexers have
been demonstrated using nonlinear optical fibers up to 640 Gb/s
[39], [40]. Specialty nonlinear fibers allow for a reduction in the
fiber length, down to 1 m, with advantages in terms of stability
and compactness [41].

The solution presented in [40] consists of using a nonlinear
polarization-rotating loop, which is a looped version of the Kerr
shutter. Similarly, the Add and Drop operations are performed
separately. The 640-Gb/s speed operation has been reported also
using PPLN waveguides [42].

Add and Drop operations can be carried out in a PPLN wave-
guide operating in a two-pump configuration using the para-
metric depletion effect. The depletion effect can be utilized on
the signal or on clock signal such that either a polarity-inverted
or noninverted demultiplexed signal can be achieved. The de-
pletion effect is shown to be phase coherent and compatible
with advanced modulation formats [43]. Note that cSFG/DFG
introduce a broadening effect on the converted idler pulsed sig-
nal, due to chromatic dispersion, during the interaction between
signals in different spectral regions. This distortion limits the
speed of operation to ∼320 Gb/s [44], [45]. On the other hand,
parametric depletion introduces little distortion on the pumps
enabling 640-Gb/s add/drop operations and beyond [45], [46].
In all the mentioned add/drop implementations, a single pump
signal is required.

D. Wavelength Exchange

Robust data manipulation in the space, time, polarization, and
wavelength domains might be valuable for superior network
performance [46]. A desirable goal of optical signal processing
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Fig. 4. (a) Concept of wavelength exchange. (b) Wavelength exchange by sep-
arate WCs. (c) Wavelength exchange by parametric depletion in single nonlinear
device.

would be to efficiently utilize nonlinearities in the wavelength
domain such that the data between two different wavelengths can
be “exchanged,” i.e., swapped, using single nonlinear processes
in a single device. Wavelength exchange is a wavelength-domain
data manipulation enabling the swapping of data between two
different wavelengths, as illustrated in Fig. 4(a). One straight-
forward way, as shown in Fig. 4(b), is to use two separate wave-
length converters (WCs) with one performing the wavelength
conversion from signal A to signal B, and the other from signal
B to signal A. Other methods of wavelength exchange included
the use of an optical parametric loop mirror [47] and 2-D non-
linear photonic crystal [48]. Toward single-device operation,
another simple way of wavelength exchange is to explore the
parametric depletion effects in a nonlinear device including a
piece of HNLF [49]–[53] or a PPLN waveguide [54]–[56]. Non-
degenerate FWM (χ(3)) in a HNLF and cascaded second-order
nonlinearities (χ(2) : χ(2)) in a PPLN waveguide are potential
choices. As shown in Fig. 4(c), due to the parametric depletion
effects [57], [58] the data carried by signal A is depleted and
converted to the wavelength of signal B and the vice versa. This
enables single-device-based wavelength exchange. Parametric
depletion effect can support phase-modulated formats and the
converted signals are not spectrally inverted.

III. RECENT ADVANCES FOR ENERGY-EFFICIENT

OPTICAL SIGNAL PROCESSING

We have generally discussed how optical signal processing
functions can be achieved using nonlinear effects in various
material platforms. In this section, we discuss energy efficiency
in more details based on specific experimental demonstrations.

A. Tunable Fold-Multicasting of ON–OFF Keying Signals
Using Supercontinuum Generation

Optical signal processing can be quite valuable for reducing
optical–electrical conversions in straightforward functional op-

Fig. 5. (a) Conceptual block diagram of multicasting via supercontinuum.
(b) Realization of the TPF in the polarization domain. (c) Transmission profiles
of the TPF for different DGD values.

erations. For example, multicasting of data channels has poten-
tial utility for efficient system implementation of one-to-many
processing functions, such as routing, parallel computing, and
simultaneous critical data monitoring. We have investigated a
tunable N -fold multicasting scheme that allows tunable tempo-
ral pulsewidth of 40-Gb/s channels using variable periodic slic-
ing of a supercontinuum [59]. A supercontinuum is generated
and then filtered with a periodic filter, comprising a tunable dif-
ferential group delay (DGD) element and a polarizer, to generate
multicasted copies of the original data. two-, four-, and eight-
fold multicasting of the 40-Gb/s return-to-zero ON–OFF keying
(RZ-OOK) waveform with average penalties of 0.1, 0.26, and
0.44 dB, respectively, at a 10−9 bit error rate (BER) are shown.

Typically, wave mixing or Kerr-effect-based multicasting ap-
proaches require at least half as many additional pump lasers for
multicasted copies. The total optical energies needed scale with
the input signal and pump powers [60] determined by the scheme
used. For example, seven seed lasers were used for sevenfold
multicasting of 10-Gb/s OOK signals using an electroabsorption
(EA) modulator [31]. Also, 40-fold multicasting is achieved in
an HNLF using 20 seed lasers [24] and optical parametric am-
plification at 40 Gb/s. Furthermore, FWM with three pumps
was used for sixfold multicasting in Bi-HNLF [25] for 20-Gb/s
ASK– differential phase-shift keying (DPSK) signals. Another
method used XPM in an HNLF for 40-Gb/s OOK signals. It is
also demonstrated in Si waveguides using FWM [61].

The conceptual block diagram of the supercontinuum tech-
nique is shown in Fig. 5(a). A supercontinuum is generated
from an input signal and then “sliced” by a tunable periodic
filter (TPF) to achieve multicasting. A commercially available
tunable DGD element and a polarizer are used to realize the
TPF. As shown in the Fig. 5(b), in the TPF, the signal can be
decomposed into principal polarization states. A relative delay
is induced between the states by the tunable DGD element. The
two polarizations are then recombined in a polarizer resulting
in a delay-line interferometer in polarization domain with the
transfer function (1 + cos(2πfΔτ + θ)), where Δτ is the delay
and θ is the relative phase difference between the two states of
polarization [62]. Fig. 5(c) shows the transmission spectra for
two settings of the DGD (Δτ ) element, which is tuned to change
the number of output channels (multicasting order), since the
free spectral range (FSR) is equal to 1/Δτ . Furthermore, the
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Fig. 6. Experimental block diagram for supercontinuum-based multicasting
along with experimental spectra for different stages. BPF: bandpass filter;
MZM: Mach–Zehnder modulator; PC: polarization controller; MLL: mode-
locked laser.

Fig. 7. Experimental spectra for different orders of multicasting: (a) Twofold,
(b) fourfold, (c) eightfold, and (d) sixfold by changing the TB-BPF bandwidth.

center wavelength for the passbands can be changed by adjust-
ing the polarization controllers in the TPF to change the relative
phase θ between the polarization states.

The experimental block diagram of our technique is shown
in Fig. 6 along with the experimental spectra at various stages.
A short-pulse laser (at 1554.9 nm) with a repetition rate of
10 GHz and pulsewidths of ∼2 ps is used at the transmitter. The
modulated signal is then amplified and sent through a 300-m
HNLF with a zero-dispersion wavelength (ZDW) at ∼1561 nm
for supercontinuum generation as shown in Fig. 6(graph ii).
A portion of the generated supercontinuum is filtered with a
tunable-bandwidth bandpass filter (TB-BPF) set to ∼9.8 nm
bandwidth [see Fig. 6(graph iii)]. Later, the filter bandwidth is
tuned to change the multicasting order. The selected supercon-
tinuum section is then channelized with the TPF as shown in
Fig. 6(graph iv). The tunable DGD element used in the experi-
ment is a commercially available tunable DGD emulator (JDSU
PE4).

Experimental spectra of four different multicasting orders,
twofold (a), fourfold (b), eightfold (c), and (d) sixfold, are
shown in Fig. 7, along with the eye diagrams of the multicasted
channels. The DGD values are set to 1.65, 3.3, and 6.6 ps for
Fig. 7(a)–(c), respectively. This corresponds to ∼4.8-, ∼2.4-,
and ∼1.2-nm-wide output channels. With the 6.6-ps setting,

Fig. 8. (a) Output pulsewidth versus DGD (multicasting order). (b) Eye dia-
grams for different multicasting orders captured by an optical sampling scope.

Fig. 9. (a) BER results and (b) Received power penalties (at 10−9 BER) for
different multicasting orders.

the TB-BPF bandwidth is changed to ∼7.4 nm resulting in six
1.2-nm output channels, as shown in Fig. 7(d). The inset
in Fig. 7(b) shows the tunability of the center wavelengths
of the multicasted channels by tuning the θ for the fourfold
multicasting case.

Pulsewidth versus DGD for a fixed supercontinuum portion
(9.8 nm) along with the eye diagrams [see Fig. 8(b)] from an
optical sampling scope is shown in Fig. 8(a). The DGD (1/FSR)
provides an almost linearly change in output pulsewidth. The
measured pulsewidths are ∼2.2, 4.3, and 8 ps for the two-, four-,
and eightfold multicasting cases, respectively.

BER measurements are obtained for all multicasted chan-
nels for two-, four-, and eightfold multicasting by filtering each
channel with a 4.8-, 2.4-, and 1.2-nm filter, respectively. Fig. 9(a)
shows the BER curves for the best and worst case performances
along with the back-to-back (B2B) performance. Three different
B2B curves are obtained by filtering the transmitted signal with
the same filter used to extract the multicasted channels. Fig. 9(b)
shows the power penalty (at a BER of 10−9) with respect to the
relevant B2B performance. An average penalty of 0.1, 0.26, and
0.44 dB (0.2, 0.5, and 1.1 dB maximum) exists for the two-,
four-, and eightfold multicasting cases, respectively.

The optical energy consumption of the supercontinuum-based
multicasting method is ∼0.8 pJ/bit per multicasted output chan-
nel. It can also be extended to phase-modulated schemes as in
ninefold multicasting of DPSK signals reported in [29] with an
optical energy consumption of ∼0.2 pJ/bit/channel, where the
complete supercontinuum is utilized.
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Fig. 10. Experimental setup for 40–160-Gb/s WDM-to-TDM conversion. TDL: tunable delay line; PC: polarization controller; MZM: Mach–Zehnder modulator;
BPF: bandpass filter; CW: continuous wave; MUX: multiplexing; DEMUX: demultiplexing.

B. Eightfold 40–320-Gb/s Multiplexing Using Cross-Phase
Modulation in HNLF

Multiuser networks tend to manipulate (i.e., multiplexing,
demultiplexing) multiple lower data-rate channels in order to
facilitate efficient routing and to optimally utilize links of dif-
fering capacities. This granularity adds to the usefulness of a
network, and optics enables such granularity in the wavelength
domain. In this section, we show the WDM-to-TDM multiplex-
ing of eight 40-Gb/s WDM channels to one single 320-Gb/s
channel using XPM.

Earlier results for high-speed time multiplexing include mul-
tiplexing lower speed, same wavelength channels into a single
∼1-Tb/s signal such that optical delays are arranged to inter-
leave the bit streams without any wavelength conversion in-
volved [63]. WDM to OTDM approaches have used semicon-
ductor optical amplifiers (SOAs) [64] and EA modulators [65],
with bit rates up to 60 Gb/s achieved. Results were also shown
using HNLFs based on FWM [33], supercontinuum genera-
tion [66], [67] and XPM [34], [67]. In general, there are always
significant technical challenges to achieve high bit rates with
high performance. XPM-based processes for WDM-to-TDM
conversion has the advantages of high efficiency in terms of
bandwidth and a reduced number of pumps. In addition, XPM-
based conversion depends just on the signal envelope, which
results in the multiplexed signal maintaining the phase coher-
ence of the pump [68].

Fig. 10 shows the experimental setup for phase-coherent
eightfold 40–320-Gb/s multiplexing. Fig. 11(a) shows the gen-
erated supercontinuum after the 500-m HNLF. To obtain mul-
ticasted copies after supercontinuum generation, eight filters
with ∼9 nm bandwidth are used, with center wavelengths from
∼1551 to 1565 nm in steps of 2 nm. A pulsewidth of ∼1.2 ps
is obtained for each channel. Note that the purpose of the mul-
ticasting stage is to emulate the eight channels. They overlap in
the frequency domain, but do not overlap in the time domain.
For the practical implementation of WDM-to-TDM multiplex-
ing, in order to obtain the RZ signals with short pulsewidth,
optical sampling would possibly be required to convert the orig-
inal data channels. Shown in Fig. 11(b) is the optical spectrum
after the XPM-based multiplexing stage. The combined four
multicasted copies can be seen on the right- hand side. Note that
they overlap in the frequency domain, but do not overlap in the
time domain. The 320-GHz tones in the broadened pump spec-
trum show the successful multiplexing to 320 Gb/s. The CW

Fig. 11. (a) Optical spectra of the multicasting stage, (b) optical spectra of the
XPM-based multiplexing stage, (c) optical spectra of the XPM based demulti-
plexing stage, and (d) eye diagrams of the 320-Gb/s multiplexed signal.

Fig. 12. BER performance of the 40-Gb/s tributaries of the multiplexed
320-Gb/s signal.

pump power into the 100-m HNLF is ∼23 dB·m and the total
average power of the eight signals is ∼18 dB·m, which gives
the optical energy consumption of the multiplexing approach to
be ∼0.8 pJ/bit. Cascaded filters of bandwidths 6 and 5 nm are
used to filter out the multiplexed 320-Gb/s signal. Subsequently,
the 320-Gb/s signal is demultiplexed to 40 Gb/s and Fig. 11(c)
shows the spectrum after demultiplexing. Eye diagram of the
multiplexed 320-Gb/s signal with a pulsewidth of ∼1.8 ps is
shown in Fig. 11(d).

Fig. 12 shows the BER performance of the eight multicasted
copies and eight demultiplexed tributaries. The eye diagrams for
each demultiplexed 40-Gb/s tributary are also given. An average
penalty of approximately 2 dB at 10−9 BER is observed for the
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Fig. 13. Concept of Add/Drop operations based on a PPLN waveguide.

multicasting copies when compared to the 40-Gb/s B2B per-
formance. An extra penalty of approximately 7 dB is observed
after the eightfold 40–320-Gb/s multiplexing process and the
320–40-Gb/s demultiplexing, mainly due to the pulse broad-
ening through the fiber, optical filters and erbium-doped fiber
amplifiers, and the slow phase drift of the signal and sampling
pulse train induced by fluctuations of the HNLF length [69].

The optical energy consumption for XPM-based 40–320-
Gb/s multiplexing is∼0.8 pJ/bit, which can be further decreased
in media with higher nonlinearities for more effective XPM [70].
The silica-HNLFs used in the demonstration can be replaced by
special HNLFs, having much shorter lengths and thus reducing
the phase drift significantly [71].

C. Add/Drop Multiplexing Based on Parametric Depletion in
PPLN Waveguide

Channel extraction, clearing from time-interleaved optical
signals, and new single-channel insertion in the time domain
are the key features for efficient operation in WDM networks.
Earlier, SOAs [36] and electroabsorption modulators [37] have
been used to perform add/drop operations up to 160 Gb/s,
whereas nonlinear optical fibers enabled add/drop operations
up to 640 Gb/s [39], [40]. Recently, PPLN waveguides have
drawn lots of attention for all-optical signal processing due
to their ultrafast dynamics, high efficiency, and compactness.
PPLN waveguides have been used to obtain 160-Gb/s OTDM to
WDM conversion [72] and wavelength conversion [73] exploit-
ing SFG/DFG. Demonstrations of 160-Gb/s half-adder, half-
subtractor, OR/XOR [74] operations by combining the parametric
depletion effect with SFG/DFG were also reported. Moreover,
recent results show the possibility of using PPLN waveguides
at room temperature to avoid the energy consumption due to
temperature control [75]. PPLN waveguides can provide a large
number of nonlinear functions when operating in a two-pump
configuration as shown in Fig. 13. Two pumps (A and B) can
nonlinearly interact through SFG defined by the quasi-phase
matching (QPM) condition. The generated signal simultane-
ously interacts with a CW light to produce an idle signal in
the C-band through the DFG process. Looking at A, B, and the

Fig. 14. Eye diagrams of the involved signals in Add/Drop operations.

idle signal at the output of the PPLN waveguide, we can obtain
different nonlinear operations.

The PPLN in the experiment is fabricated by the reverse-
proton-exchange technique. Input peak powers of 27 and
18 dB·m for the clock and OTDM signal, respectively, allow
for an optimized parametric depletion of the OTDM signal.
The parametric depletion optimization on the clock signal re-
quires exchanged peak power values. The CW input power is
∼25 dB·m for both cases. Finally a 320–10-Gb/s optical de-
multiplexer based on XPM effect in an HNLF has been used
to test the performance of the 320-Gb/s add/drop multiplexing.
Fig. 14 shows the eye diagrams of the involved signals. The
320-Gb/s OTDM input signal has a pulsewidth of 1.7 ps, as
shown in Fig. 14(a), while the 10- and 320-GHz input clocks
are 2 and 2.4 ps, respectively. For the demultiplexing operation,
we use a 10-GHz clock synchronized with the tributary channel
to be demultiplexed. This way, an inverted and a noninverted
replica of the demultiplexed channel are observed, respectively,
as shown in Fig. 14(b) and (d). If we optimize the parametric de-
pletion effect for the OTDM signal, the survived channels at the
OTDM signal wavelength are extracted at the PPLN waveguide
output. From Fig. 14(c), we can see that no severe distortions
are observed in the eye diagram with respect to that of the input
signal.
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Fig. 15. 320-Gb/s BER measurement for Add/Drop operations.

In addition, 320-Gb/s inverted wavelength conversion, as
mentioned earlier, can be obtained exploiting parametric de-
pletion on a 320-Gb/s clock, as shown in Fig. 14(e). In this case,
no distortions are evident and the converted signal presents al-
most the same pulse shape as the input clock. Finally, BER
measurements at 320 Gb/s have been carried out for all op-
tical nonlinear subsystems, obtaining error-free operations in
all cases. Fig. 14(f) shows the 10-Gb/s eye diagram of the re-
ceived channel of the original 320-Gb/s OTDM frame after
demultiplexing based on XPM in HNLF. Such demultiplexing
introduces a penalty of less than 1 dB, and for all nonlinear
operations, the penalty is lower than 3 dB, as shown in Fig. 15.

The optical energy consumption for each add and drop opera-
tion involving parametric depletion effect is lower than 1 pJ/bit.
Drop operation based on SFG/DFG increases the optical energy
consumption up to 2 pJ/bit. The energy consumption is partially
due to the high coupling loss of the PPLN used in the experi-
ment (∼4 dB). New generation devices [76] with low coupling
loss could greatly reduce the power value. Moreover, recent
results show the possibility to use PPLN waveguides at room
temperature avoiding the energy consumption of temperature
control [75].

We successfully carried out 320-Gb/s time-domain demul-
tiplexing, add/drop multiplexing, and wavelength conversion
operations. The obtained energy efficiencies are still limited by
the specific device used in the experiment, where it is about
2 pJ/bit.

D. PPLN-Assisted Time- and Channel-Selective Data
Exchange Between WDM Channels

Single-device single-stage-enabled wavelength exchange is
a desirable feature for the efficient operation in WDM net-
works. We investigate time- and channel-selective optical data
exchange between multiple WDM channels by exploiting the
cascaded second-order nonlinear interactions in a PPLN wave-
guide. Two gated pumps are employed supporting both time-
and channel-selective operations through the proper adjustment
of the gated pump pulse duration and pump wavelengths. Using

Fig. 16. Concept of PPLN-based time- and channel-selective optical data
exchange between WDM channels.

a single PPLN waveguide, this method provides a simple way
to implement data exchange between two channels of interest
without touching other channels and introducing any additional
spectrum. We demonstrate optical data exchange between two
WDM channels with a power penalty of less than 1.5 dB at
10 Gb/s and 3 dB at 40 Gb/s at a BER of 10−9 . Also, 40-Gb/s
channel-selective optical data exchange between four WDM
channels with a power penalty of ∼4 dB at a BER of 10−9 is
achieved [54], [55].

Earlier, nondegenerate FWM in an HNLF was widely used
for wavelength exchange [50]–[53]. In [49], [50], wavelength
exchange between a 2.5-Gb/s modulation and a 10-Gb/s mod-
ulation was proposed and demonstrated using a 1-km-long
dispersion-shifted HNLF. Further improvement was achieved
in [51] showing tunable (>15 nm) 10-Gb/s wavelength ex-
change with two pumps in the anomalous-dispersion region,
which eliminated the performance degradation caused by
Raman gain. In [52], HNLF-based byte-level wavelength ex-
change was investigated using square-wave-modulated pumps.

The conceptual diagram of our proposed PPLN-assisted time
and channel-selective optical data exchange between WDM
channels is shown in Fig. 16. Multiple WDM channels (S1–S4)
and two synchronized gated pumps (PA and PB) are coupled into
a PPLN waveguide in which cSFG/DFG processes take place.
The wavelength selectivity of the QPM condition allows selec-
tion of channels for data exchange by proper choice of the two
pump wavelengths. For proper QPM of both cSFG/DFG pro-
cesses, the two pump wavelengths are nearly symmetric to the
two exchanged data wavelengths with respect to the QPM wave-
length. For instance, as illustrated in Fig. 16, within the gated
pump pulse duration, PB mixes with S1 to produce a sum fre-
quency (SF) wave through the SFG process. Meanwhile, the SF
wave interacts with PA to generate a new idler at the wavelength
of S2 by the subsequent DFG process. During such parametric
nonlinear interactions, S1 can be depleted [57], and converted
to S2 by means of proper control of the pump powers. Simi-
larly, PA and S2 participate in the SFG process to create a SF
wave, which simultaneously interacts with PB to yield an idler
at the wavelength of S1 via the DFG process. Consequently, it
is expected to implement optical data exchange between S1 and
S2 without the use of additional spectrum and touching other
channels.
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Fig. 17. Measured temporal waveforms [(a1–a4) and (b1–b4)] and eye dia-
grams [(a5), (a6), (b5), and (b6)] of 10-Gb/s data exchange.

Fig. 18. Measured eye diagrams and BER performance of 40-Gb/s channel-
selective optical data exchange between four WDM channels.

We first demonstrate the optical data exchange between two
10-Gb/s signals. Two gated pumps with a duty cycle of 1/127 and
a pulse duration of ∼3.2 ns are employed. The average power
of each signal and peak power of each pump coupled into the
PPLN waveguide are about 4 mW and 1 W, respectively. Fig. 17
displays the observed temporal waveforms and eye diagrams of
data exchange. The time slots between the two straight lines
correspond to the gated pump pulse duration in which optical
data exchange occurs. For the 10-Gb/s operation, we obtain a
power penalty of less than 1.5 dB at a BER of 10−9 with an
optical energy consumption of ∼2.37 pJ/bit.

We also investigate the PPLN-based 40-Gb/s optical data ex-
change between two signals. Two gated pumps with a duty cycle
of 3/127 and pulse duration of ∼1.2 ns are adopted. The power
penalty of 40-Gb/s data exchange is measured to be ∼3 dB with
an optical energy consumption of ∼1.38 pJ/bit.

We further demonstrate the PPLN-based channel-selective
data exchange for multiple WDM channels at 40 Gb/s. Four
WDM channels (S1: 1535.5 nm, S2: 1539.4 nm, S3: 1543.3 nm,
S4: 1547.2 nm) are employed in the experiment. It is possible to
perform a channel-selective data exchange by simply tuning the
wavelength of the two pumps. Fig. 18 displays the measured typ-

ical eye diagrams and BER performance for channel-selective
data exchange between WDM channels. The power penalty of
40-Gb/s channel-selective exchange is estimated to be less than
4 dB.

In view of reported experiments [49]–[56], PPLN and HNLF
might be advantageous in terms of using only a single device for
wavelength exchange based on the parametric depletion effect.
As a key function of data traffic grooming, wavelength exchange
can enhance the flexibility of optical networks. In particular,
toward the robust grooming exchange, PPLN-/HNLF- assisted
wavelength exchange is also available for different modulation
formats and different granularities (entire data [49]–[51], [53],
byte-level groups of bits [52], [54], [55], and tributary channels
[56]).

IV. INTEGRATED WGS FOR POTENTIALLY

GREEN SIGNAL PROCESSING

Integrated photonics has attracted a great deal of attention in
recent years not only because it allows for more cost-effective
production and easier packaging, but also because smaller
chip size assists in realizing faster electro-optic interaction and
less energy-consuming photonic devices to facilitate energy-
efficient information technology [77]. Integrated photonics can
potentially enable sophisticated optical signal processing sub-
systems by cascading many basic functional components on a
single chip. This in turn imposes stricter requirements on the
power consumption of each functional device to avoid signifi-
cantly increased power density on limited chip area.

In integrated photonics, nonlinearity again lays a foundation
for signal processing, and three factors become critical in deter-
mining nonlinear efficiency: optical power, nonlinear coefficient
γ, and nonlinear interaction length. Since the integrated nonlin-
ear media is typically much shorter in length than optical fibers,
the nonlinear coefficient has to be extremely high [78] to effec-
tively reduce the energy consumption. Essentially, the nonlinear
coefficient relies on the material’s nonlinear index n2 and ef-
fective mode area Aeff . Many research efforts have been made
in recent years to develop new extremely high nonlinear ma-
terials and to design novel WG structures with enhanced light
confinement.

Highly nonlinear integrated WGs can be composed of sili-
con [79], silicon nitride [80], Si nanocrystals (Si-nc or Si-rich
oxide) [81], [82], III–V compound semiconductors [83], chalco-
genide glasses [84], [85], to name a few. Nonlinear index n2
ranges from 10−19 to 10−17 m2 /W, orders of magnitude higher
than silica. On the other hand, there has been several demonstra-
tions able to confine light in a tiny spot. An introduction of a slot
structure [86] takes advantage of the electric field discontinuity
at the material interfaces and makes low-index highly nonlinear
materials very useful for confining light, opening an opportunity
to further reduce the effective mode area Aeff to 0.01 μm2 . Ben-
efiting from the aforementioned advantages, the integrated WGs
have been made highly nonlinear, as summarized in Table I.

The high index contrast in the integrated photonics platform
not only enables strong light confinement, but also provides
great tailorability of chromatic dispersion that plays a critical
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TABLE I
COMPARISON OF OPTICAL PROPERTIES OF VARIOUS OPTICAL MEDIA

Fig. 19. (a) Integrated slot WG with silicon layers surrounding a highly non-
linear silicon nanocrystal slot layer. (b) For highly nonlinear Si nanocrystal slot
WGs, dispersion profiles change with slot height Hs .

role in determining nonlinear efficiency as well. Overall dis-
persion is dominated by WG dispersion, making it possible
to achieve low dispersion over a wide wavelength range and
desirable ZDW [87]. We describe a highly nonlinear Si-nc slot
WG, with chromatic dispersion designed for nonlinear applica-
tions. The WG structure is shown in Fig. 19(a). A horizontal slot
is surrounded by two silicon layers with air cladding. A 2-μm-
thick buried oxide layer serves as WG substrate. A large fraction
of vertically polarized quasi-TM mode can be confined in the
slot layer [86] due to the discontinuity of its electric field at the
interfaces of the slot and the silicon layers we choose WG width
W = 500 nm, and upper silicon height Hu equal to lower silicon
height Hl is 180 nm, while slot thickness Hs is 47 nm. Fig. 19(b)
shows a dispersion profile within ±160 ps/(nm·km) obtained
over a 244-nm wavelength range, from 1539 to 1783 nm. There
are two ZDWs at 1580 and 1751 nm, respectively. Calculated
nonlinear coefficient γ is 2874/(W·m). The obtained dispersion
is not as flat as in silica fibers due to the strong WG disper-
sion, but the accumulated dispersion in the nonlinear processes
is essentially quite low due to the short device length.

Although the integrated WGs exhibit a great potential for
“green” optical signal processing, some problems, such as two-
photon absorption could be quite challenging [86]. Further-
more, high power densities in such small footprint devices
should be taken into consideration. Such exotic WGs with
high-performance metrics are promising devices in order to
achieve on-chip, easy-to-integrate, and “green” optical signal
processing.

V. CONCLUSION

Optical signal processing techniques based on (silica and
bismuth) HNLFs, semiconductor-based electro/optical devices,
and WGs, such as PPLNs, Silicon, and chalcogenide have been
discussed. These techniques differ in the nonlinearities used for
the realization of the processing function. Along with the de-
vice specifications, careful choice of the nonlinearity exploited

plays an important role in determining the number of necessary
pumps and the pump powers contributing to the optical energy
consumption. Limiting the number of required pumps reduces
coupling loss, the number of components in the system, and can
improve the overall optical energy per bit requirement. Further-
more, the high bandwidth of optics and the ability to process
an entire channel without “touching” each bit allows the optical
energy per bit to decrease with increasing data rates. Addition-
ally, novel optical materials and the development of WGs with
extreme nonlinearities may provide even lower optical energy
consumptions at data rates far greater than 100 Gb/s.
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