
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 9, NO. 1, FEBRUARY 2013 3

Limited Preemptive Scheduling for
Real-Time Systems. A Survey

Giorgio C. Buttazzo, Fellow, IEEE, Marko Bertogna, Senior Member, IEEE, and Gang Yao

Abstract—The question whether preemptive algorithms are
better than nonpreemptive ones for scheduling a set of real-time
tasks has been debated for a long time in the research community.
In fact, especially under fixed priority systems, each approach
has advantages and disadvantages, and no one dominates the
other when both predictability and efficiency have to be taken
into account in the system design. Recently, limited preemption
models have been proposed as a viable alternative between the
two extreme cases of fully preemptive and nonpreemptive sched-
uling. This paper presents a survey of the existing approaches
for reducing preemptions and compares them under different
metrics, providing both qualitative and quantitative performance
evaluations.

Index Terms—Limited-preemptive scheduling, nonpreemptive
regions, real-time systems.

I. INTRODUCTION

P REEMPTION is a key factor in real-time scheduling,
since it allows the operating system to immediately allo-

cate the processor to incoming tasks requiring urgent service. In
fully preemptive systems, the running task can be interrupted at
any time by another task with higher priority, and be resumed
to continue when all higher priority tasks have completed.
In other systems, preemption may be disabled for certain
intervals of time during the execution of critical operations
(e.g., interrupt service routines, critical sections, etc.). In other
situations, preemption can be completely forbidden to avoid
unpredictable interference among tasks and achieve a higher
degree of predictability (although higher blocking times).
The question whether enabling or disabling preemption

during task execution has been investigated by many authors
under several points of view and it is not trivial to answer. A
general disadvantage of the nonpreemptive discipline is that it
introduces additional blocking time in higher priority tasks, so
reducing schedulability. On the other hand, there are several
advantages to be considered when adopting a nonpreemptive
scheduler. In particular, the following issues have to be taken
into account when comparing the two approaches.

Manuscript received September 01, 2011; revised November 22, 2011 and
February 01, 2012; accepted February 07, 2012. Date of publication March 05,
2012; date of current version December 19, 2012. Paper no. TII-11-501.
G. C. Buttazzo is with the Scuola Superiore Sant’Anna, Pisa 56124, Italy

(e-mail. g.buttazzo@sssup.it).
M. Bertogna is with the University of Modena and Reggio Emilia, Modena

41121, Italy (e-mail. marko.bertogna@unimore.it).
G. Yao is with the University of Illinois at Urbana–Champaign, Urbana, IL

61820 USA (e-mail. gangyao@illinois.edu).
Color versions of one or more of the figures in this paper are available online

at http.//ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TII.2012.2188805

• In many practical situations, such as I/O scheduling or
communication in a shared medium, either preemption is
impossible or prohibitively expensive [1].

• Preemption destroys program locality, increasing the
runtime overhead due to cache misses and pre-fetch mech-
anisms. As a consequence, worst-case execution times
(WCETs) are more difficult to characterize and predict
[2]–[5].

• Mutual exclusion is trivial in nonpreemptive scheduling,
which naturally guarantees the exclusive access to shared
resources. On the contrary, to avoid unbounded priority
inversion [6], preemptive scheduling requires the imple-
mentation of specific concurrency control protocols for ac-
cessing shared resources [6], [7], which introduce addi-
tional overhead and complexity.

• In control applications, the input–output delay and jitter
are minimized for all tasks when using a nonpreemptive
scheduling discipline, since the interval between start time
and finishing time is always equal to the task computation
time [8]. This simplifies control techniques for delay com-
pensation at design time.

• Nonpreemptive execution allows using stack sharing tech-
niques [7] to save memory space in small embedded sys-
tems with stringent memory constraints [9], [10].

In summary, arbitrary preemptions can introduce a significant
runtime overhead and may cause high fluctuations in task exe-
cution times, so degrading system predictability. In particular, at
least four different types of costs need to be taken into account
at each preemption. Scheduling cost (for inserting the running
task into the ready queue, switch the context, and dispatch the
new incoming task); Pipeline cost (for flushing the processor
pipeline when the task is interrupted and refilling it when the
task is resumed); Cache-related cost (for reloading the cache
lines evicted by the preempting task); Bus-related cost (due to
the extra bus interference for accessing the RAM because of the
additional cache misses caused by preemption). Bui et al. [11]
showed that on a PowerPC MPC7410 with 2 MByte two-way
associative L2 cache the WCET increment due to cache inter-
ference can be as large as 33% of the WCET measured in non-
preemptive mode.
The cumulative execution overhead due to the combination of

these effects is referred to as Architecture related cost. Unfortu-
nately, this cost is characterized by a high variance and depends
on the specific point in the task code where preemption takes
place [12]–[14].
The total increase of the WCET of a task is also a function

of the total number of preemptions experienced by , which
in turn depends on the task set parameters, on the activation
pattern of higher priority tasks, and on the specific scheduling

1551-3203/$31.00 © 2012 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca della Scuola Superiore Sant'Anna

https://core.ac.uk/display/54934231?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

4 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 9, NO. 1, FEBRUARY 2013

algorithm. Such a circular dependency of WCET and number of
preemptions makes the problem not easy to be solved.
The major contribution of this paper is to provide a detailed

comparison of the various limited preemptive approaches pro-
posed in the literature, with respect to fully preemptive and non-
preemptive schemes. Schedulability tests for each method are
reported for completeness, and simulation experiments are car-
ried out to evaluate the impact of the algorithms on the number
of preemptions and the overall system schedulability. The re-
sults reported here can be used to select the most appropriate
scheduling scheme to increase the efficiency of time-critical em-
bedded systems without sacrificing predictability.
The rest of this paper is organized as follows. Section II

describes three different approaches proposed in the literature
to handle limited preemptive scheduling. Section III describes
the task model and the terminology adopted in this paper.
Section IV presents the schedulability analysis for the non-
preemptive task model. The preemption thresholds model is
analyzed in Section V. Section VI details the deferred preemp-
tion model, while the method of fixed preemption points is
analyzed in Section VII. Considerations regarding the differ-
ences between the various models are presented in Section VIII.
Section IX reports and discusses some simulation results and
Section X states our conclusions.

II. LIMITED PREEMPTIVE APPROACHES

Often, preemption is considered a prerequisite to meet timing
requirement in real-time system design; however, in most cases,
a fully preemptive scheduler produces many unnecessary pre-
emptions. To reduce the runtime overhead due to preemptions
and still preserve the schedulability of the task set, the following
approaches have been proposed in the literature.
• Preemption Thresholds Scheduling (PTS). This approach,
proposed by Wang and Saksena [15], allows a task to dis-
able preemption up to a specified priority level, called pre-
emption threshold. Thus, each task is assigned a regular
priority and a preemption threshold, and the preemption is
allowed to take place only when the priority of the arriving
task is higher than the threshold of the running task.

• Deferred Preemptions Scheduling (DPS). According to
this method, first introduced by Baruah [16] under Earliest
Deadline First (EDF), each task specifies the longest
interval that can be executed nonpreemptively. For the
sake of clarity, it is worth noting that the terminology is
not consistent in the literature, since other authors (e.g.,
Burns [17] and Bril et al. [18]) used the term Deferred
Preemptions to actually denote Fixed Preemption Points.
However, we believe the term Deferred is more appro-
priate in this case, because preemption is postponed for
a given amount of time, rather than moved to a specific
position in the code. Depending on how nonpreemptive
regions are implemented, this model can come in two
slightly different versions.
1) Floating model. In this model, nonpreemptive regions
are defined by the programmer by inserting specific
primitives in the task code that disable and enable pre-
emption. However, since the start time of each region
is not specified in the model, nonpreemptive regions

cannot be identified offline and, for the sake of the anal-
ysis, they are considered to be “floating” in the code,
with a duration not exceeding .

2) Activation-triggered model. In this model, nonpreemp-
tive regions are triggered by the arrival of a higher
priority task and programmed by a timer to last ex-
actly for units of time (unless the task finishes ear-
lier), after which preemption is enabled. Once a timer
is set at time , additional activations arriving before
the timeout do not postpone the preemption any
further. Once a preemption takes place, a new high-pri-
ority arrival can trigger another nonpreemptive region.

• Fixed Preemption Points (FPP). According to this ap-
proach, proposed by Burns [17], a task implicitly executes
in nonpreemptive mode and preemption is allowed only at
predefined locations inside the task code, called preemp-
tion points. In this way, a task is divided into a number of
nonpreemptive chunks (also called subjobs). If a higher
priority task arrives between two preemption points of
the running task, preemption is postponed until the next
preemption point. This approach is also referred to as
Cooperative scheduling, because tasks cooperate to offer
suitable preemption points to improve schedulability.

III. TERMINOLOGY AND NOTATION

Let us consider a set of periodic or sporadic real-time tasks
that need to be scheduled on a single processor. Each task
is characterized by a WCET , a relative deadline , and a
period (or minimum interarrival time) . A constrained dead-
line model is adopted, so is assumed to be less than or equal
to . Each task is assigned a fixed priority , used to select
the running task among those tasks ready to execute (a higher
value of corresponds to a higher priority). Notice that task
activation times are not known a priori and the actual execution
time of a task can be less than or equal to its worst-case value
. Tasks are indexed by decreasing priority, i.e.,

. Additional terminology will be introduced below
for each specific method.

A. Integer Time Model

In real-time operating systems, time instants and interval du-
rations are measured by counting the number of clock cycles
generated by a real-time clock, hence all timing values have a
resolution equal to one clock cycle. Therefore, to use analytical
results in a real embedded system, all timing parameters are as-
sumed to be non-negative integer values. To comply with such
a convention, all cited results derived under the domain of real
numbers have been adapted to the integer time model.

B. Critical Instant

The maximum response time of each task is derived under
the worst-case arrival pattern that leads to the largest interfer-
ence on the considered task. Such a particular scenario is often
referred to as the critical instant. For fully preemptive fixed pri-
ority systems, Liu and Layland [19] proved that the critical in-
stant for a task occurs when it arrives synchronously with all
higher priority tasks, and all task instances are released as soon
as possible, i.e., in a strictly periodic fashion.

BUTTAZZO et al.: LIMITED PREEMPTIVE SCHEDULING FOR REAL-TIME SYSTEMS. A SURVEY 5

TABLE I
PARAMETERS OF A SAMPLE TASK SET

Fig. 1. Schedule produced by Deadline Monotonic (in fully preemptive mode)
on the task set of Table I.

In the presence of nonpreemptive regions, however, the ad-
ditional blocking from lower priority tasks has to be taken into
account, hence, the critical instant for a task occurs when it
is released synchronously and periodically with all higher pri-
ority tasks, while the lower priority task that is responsible of
the largest blocking time of is released one unit of time be-
fore [20]. However, the largest response time of a task is not
necessarily due to the first job after a critical instant, but might
be due to later jobs, as explained later on.
All schedulability tests hereafter presented have been derived

by computing the worst-case response time of a task under the
above described notion of critical instant.

C. Motivating Example

To better appreciate the importance of limited preemptive
scheduling and to better understand the difference among the
limited preemptive approaches presented in this survey, Table I
reports a sample task set that will be used as a common example
throughout this paper, because it results to be unschedulable by
Deadline Monotonic [21], both in fully preemptive and in fully
nonpreemptive mode, but it can be schedulable by all limited
preemptive approaches.
Fig. 1 illustrates the schedule produced by Deadline Mono-

tonic in fully preemptive mode. As clear from the figure, the
task set is not feasible, since task misses its deadline.

IV. NONPREEMPTIVE SCHEDULING (NPS)

The most effective way to reduce preemption cost is to dis-
able preemptions completely. In this condition, however, each
task can experience a blocking time equal to the longest
computation time among the tasks with lower priority. That is

(1)

where the maximum of an empty set is assumed to be zero. No-
tice that one unit of time is subtracted from the computation time
of the blocking task to consider that, to block , it must start at

Fig. 2. Schedule produced by nonpreemptive deadline monotonic on the task
set of Table I.

Fig. 3. An example of self-pushing phenomenon occurring on task .

least one unit before the critical instant. Such a blocking term in-
troduces an additional delay before task execution, which could
jeopardize schedulability. High-priority tasks are those that are
most affected by such a blocking delay, since the maximum
in (1) is computed over a larger set of tasks. Fig. 2 illustrates
the schedule generated by Deadline Monotonic on the task set
of Table I when preemptions are disabled. With respect to the
schedule shown in Fig. 1, notice that is now able to complete
before its deadline, but the task set is still not schedulable, since
now misses its deadline.
Unfortunately, under nonpreemptive scheduling, the least

upper bounds of both Rate Monotonic (RM) [19] and EDF [19]
drop to zero! This means that there exist task sets with arbitrary
low utilization that cannot be scheduled by RM and EDF when
preemptions are disabled.

A. Feasibility Analysis

The feasibility analysis of nonpreemptive task sets is more
complex than under fully preemptive scheduling. Davis et al.
[22] showed that in nonpreemptive scheduling the largest re-
sponse time of a task does not necessarily occur in the first job,
after the critical instant. An example of such a situation is illus-
trated in Fig. 3, where the worst-case response time of occurs
in its second instance. Such a scheduling anomaly, identified
as self-pushing phenomenon, occurs because the high-priority
jobs activated during the nonpreemptive execution of ’s first
instance are pushed ahead to successive jobs, which then may
experience a higher interference.
The presence of the self-pushing phenomenon in nonpreemp-

tive scheduling implies that the response time analysis for a
task cannot be limited to its first job, activated at the critical
instant, as done in preemptive scheduling, but it must be per-
formed for multiple jobs, until the processor finishes executing

6 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 9, NO. 1, FEBRUARY 2013

tasks with priority higher than or equal to . Hence, the re-
sponse time of a task needs to be computed within the longest
Level- Active Period, defined as follows [20].
Definition 1: The Level- pending workload at time
is the amount of processing that still needs to be performed
at time due to jobs with priority higher than or equal to
released strictly before .
Definition 2: A Level- Active Period is an interval

such that the Level- pending workload is positive for all
and null in and .

The longest Level- Active Period can be computed by the
following recurrent relation:

(2)

In particular, is the smallest value for which .
This means that the response time of task must be computed
for all jobs , with , where

(3)

For a generic job , the start time can then be computed
considering the blocking time , the computation time of the
preceding jobs and the interference of the tasks with
priority higher than . Hence, can be computed with the
following recurrent relation:

(4)
Note that the original result derived in [20] adopted two dif-
ferent expressions, one for the th task, that does not experience
any blocking, and one for the remaining tasks. Instead, using an
integer time model and computing the blocking term with (1),
it is possible to simplify the analysis, using a homogeneous for-
mulation for all tasks.
Since, once started, the task cannot be preempted, the fin-

ishing time can be computed as

(5)

Hence, the response time of task is given by

(6)

Once the response time of each task is computed, the task set is
feasible if and only if

(7)

Yao et al. [23] showed that the analysis of nonpreemptive
tasks can be reduced to analyzing a single job, under specific
(but not too restrictive) conditions. The following theorem, orig-
inally stated for the fixed preemption model, is presented here

for the nonpreemptive scheduling model, which is a special case
of the fixed preemption model.
Theorem 1 (From [23]): The worst-case response time of a

nonpreemptive task occurs in the first job after its critical instant
if the following two conditions are both satisfied:
1) the task set is feasible under preemptive scheduling;
2) relative deadlines are less than or equal to periods.
Under these conditions, the longest relative start time of task
is equal to and can be computed from (4) for

(8)

Hence, the response time is simply

(9)

V. PREEMPTION THRESHOLDS SCHEDULING (PTS)

According to this model, proposed by Wang and Saksena
[15], each task is assigned a nominal priority (used to en-
queue the task into the ready queue and to preempt) and a pre-
emption threshold (used for task execution). Then,
can be preempted by only if . At the activation time
, the priority of is set to its nominal value , so it can

preempt all the tasks with threshold . The nominal
priority is maintained as long as the task is kept in the ready
queue. During this interval, can be delayed by all tasks
with priority and by at most one lower priority task
with threshold . When all such tasks complete (at time
), is dispatched for execution and its priority is raised at its

threshold level until the task terminates (at time). During
this interval, can be preempted by all tasks with priority

. Notice that, when is preempted, its priority is kept
to its threshold level.
Preemption threshold can be considered as a tradeoff between

fully preemptive and fully nonpreemptive scheduling. Indeed,
if each threshold priority is set equal to the task nominal pri-
ority, the scheduler behaves like a fully preemptive scheduler;
whereas, if all thresholds are set to the maximum priority, the
scheduler runs in a nonpreemptive fashion. Wang and Saksena
also showed that, by appropriately setting the thresholds, the
system can improve the schedulability compared with fully pre-
emptive and fully nonpreemptive scheduling.
For example, if priorities are assigned as , , and

, and thresholds as , , and , the task
set of Table I results to be schedulable, and the schedule pro-
duced in the synchronous periodic arrival pattern is illustrated
in Fig. 4.
Notice that, at , can preempt since .

However, at , cannot preempt , being .
Similarly, at , cannot preempt , being .

A. Feasibility Analysis

Under fixed priorities, the feasibility analysis of a task set
with preemption thresholds can be performed by the test derived

BUTTAZZO et al.: LIMITED PREEMPTIVE SCHEDULING FOR REAL-TIME SYSTEMS. A SURVEY 7

Fig. 4. Schedule produced by Deadline Monotonic on the task set in Table I
with priorities , , and , and thresholds , ,
and .

by Keskin et al. [24].1 First of all, a task can be blocked only
by lower priority tasks that cannot be preempted by it, that is,
by tasks with and . Hence, a task can
experience a blocking time equal to the longest computation
time among the tasks with priority lower than and threshold
higher than or equal to . That is

(10)

where the maximum of an empty set is assumed to be zero.
Then, the response time of task is computed by consid-
ering the blocking time , the interference before its start time
(due to the tasks with priority higher than), and the interfer-
ence after its start time (due to tasks with priority higher than).
The analysis must be carried out within the longest Level- ac-
tive period defined in (2). This means that the response time
of task must be computed for all the jobs with ,
where is defined in (3).
For a generic job , the start time can be computed

considering the blocking time , the computation time of the
preceding jobs, and the interference of the tasks with
priority higher than . Hence, can be computed using (4).
The finishing time can be computed by summing to the start
time the computation time of job , and the interference
of the tasks that can preempt (those with priority higher than
). That is

(11)
Again, the integer time model adopted in this paper, along with
the convention on the blocking term given by (10), allow sim-
plifying the analysis with respect to [24], without needing to
use two different expressions for the cases with and without
blocking.
The response time of task can then be computed using (6),

and the task set is feasible if and only if Condition (7) is satisfied.
The feasibility analysis under preemption thresholds can also

be simplified under the conditions of Theorem 1. In this case,

1The original analysis by Wang and Saksena [15] has been corrected by
Regehr [25], which in its turn has been improved by Keskin et al. [24].

Fig. 5. Schedule produced by deadline monotonic with deferred preemptions
for the task set reported in Table I, with and .

we have that the worst-case start time is computed using (8),
and the worst-case response time of task can be computed as

(12)

B. Selecting Preemption Thresholds

The example illustrated in Fig. 4 shows that a task set unfea-
sible under both preemptive and nonpreemptive scheduling can
be feasible under preemption thresholds, for a suitable setting
of threshold levels.
Given a task set that is feasible under preemptive scheduling,

an interesting problem is to determine the thresholds that limit
preemption as much as possible, without jeopardizing the
schedulability of the task set. Saksena and Wang [26] proposed
an algorithm to increase the threshold of each task up to the
level after which the schedule would become infeasible. The
algorithm considers one task at the time, starting from the
highest priority task.

VI. DEFERRED PREEMPTIONS SCHEDULING (DPS)

According to this method, each task defines a maximum
interval of time in which it can execute nonpreemptively. De-
pending on the specific implementation, the nonpreemptive in-
terval can start after the invocation of a system call inserted at
the beginning of a nonpreemptive region (floating model), or
can be triggered by the arrival of a higher priority task (activa-
tion-triggered model).
Under the floating model, preemption is resumed by another

system call, inserted at the end of the region (at most units
long); whereas, under the activation-triggered model, preemp-
tion is enabled by a timer interrupt after exactly units (un-
less the task completes earlier). For example, considering the
same task set of Table I, assigning and , the
schedule produced by Deadline Monotonic with deferred pre-
emptions under the activation-triggered model is feasible, as il-
lustrated in Fig. 5. Dark regions represent nonpreemptive inter-
vals triggered by the arrival of higher priority tasks.

8 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 9, NO. 1, FEBRUARY 2013

A. Feasibility Analysis

In the presence of nonpreemptive intervals, a task can be
blocked when, at its arrival, a lower priority task is running in
nonpreemptive mode. Since each task can be blocked at most
once by a single lower priority task, is equal to the longest
nonpreemptive interval belonging to tasks with lower priority.
In particular, the blocking factor can be computed as

(13)

Note that, under the floating model, one unit of time must be
subtracted from to allow the nonpreemptive region to start
before . Under the activation-triggered model, however, there
is no need to subtract one unit of time from , since the nonpre-
emptive interval is programmed to be exactly from the arrival
time of a higher priority task.
In both the floating and activation-triggered cases, the start

times of nonpreemptive intervals are assumed to be unknown a
priori. Therefore, nonpreemptive regions cannot be identified
offline and, for the sake of the analysis, they are considered
to occur in the worst possible time (in the sense of schedula-
bility). Then, schedulability can be checked through the classic
response time analysis

(14)

Note that, under the floating model, the analysis does not need
to be carried out within the longest Level- active period. In
fact, the worst-case interference on occurs in the first instance
assuming that could be preempted one time-unit before its
completion.
On the other hand, the analysis is more pessimistic under the

activation-triggered model, where nonpreemptive intervals are
exactly equal to units and can last until the end of the task.
In this case, the analysis does not take advantage of the fact
that cannot be preempted when higher periodic tasks arrive
units (or less) before its completion. The advantage of such a

pessimism, however, is that the analysis is much simpler and can
be limited to the first job of each task. Under these assumptions,
a task set is feasible with deferred preemptions only if the task
set is feasible preemptively. The analysis of periodic tasks with
floating nonpreemptive regions has also been developed under
EDF [27], [28].

B. Longest Nonpreemptive Interval

When using the deferred preemption method, an interesting
problem is to find the longest nonpreemptive interval for
each task that can still preserve the task set schedulability.
More precisely, the problem can be stated as follows.

Given a set of periodic tasks that is feasible under
preemptive scheduling, find the longest nonpreemptive in-
terval of length for each task , so that can continue
to execute for units of time in nonpreemptive mode,
without violating the schedulability of the original task set.

This problem has been solved under EDF by Bertogna and
Baruah [27], and under fixed priorities by Yao et al. [29]. The
solution is based on the concept of blocking tolerance , for a
task , defined as follows.
Definition 3: The blocking tolerance of a task is the

maximum amount of blocking can tolerate without missing
any of its deadlines.
When deadlines are equal to periods, a simple way to compute

a lower bound on the blocking tolerance is from the Liu and
Layland test [19], which, in the presence of blocking factors,
becomes

where . Isolating the blocking factor, the
test can also be rewritten as

Hence, considering integer computations, we have

(15)

When deadlines are less than or equal to periods, an exact bound
for can instead be achieved by using the schedulability test
presented in [30], so that a task set is schedulable with deferred
preemptions if and only if for each task

(16)

where

(17)

and is defined by the following recurrent expression:

(18)

This leads to the following result:[29]

(19)

Given the blocking tolerance, the feasibility test can also be ex-
pressed as follows:

and, by (13), we can write

BUTTAZZO et al.: LIMITED PREEMPTIVE SCHEDULING FOR REAL-TIME SYSTEMS. A SURVEY 9

This implies that, to achieve feasibility, we must have

Hence, the longest nonpreemptive interval that preserves
feasibility for each task is

(20)

The terms can also be computed more efficiently, starting
from the highest priority task and proceeding with de-
creasing priority order, according to the following theorem.
Theorem 2 (From [29]): The longest nonpreemptive interval
of task that preserves feasibility can be computed as

(21)

where and .
Note that, in order to apply Theorem 2, is not constrained

to be less than or equal to , but a value of greater than
means that can be fully executed in nonpreemptive mode.

VII. FIXED PREEMPTION POINTS (FPP)

According to this model, each task is split into nonpre-
emptive chunks (subjobs), obtained by inserting preemp-
tion points in the code. Thus, preemptions can only occur at the
subjobs boundaries. All the jobs generated by one task have the
same subjob division. The subjob has a WCET , hence

.
Among all the parameters describing the subjobs of a task,

two values are of particular importance for achieving a tight
schedulability result

(22)

In fact, the feasibility of a high-priority task is affected by
the size of the longest subjob of each task with priority

. Moreover, the length of the final subjob of
directly affects its response time. In fact, all higher priority jobs
arriving during the execution of ’s final subjob do not cause a
preemption, since their execution is postponed at the end of .
Therefore, in this model, each task will be characterized by the
following 5-tuple:

For example, consider the same task set of Table I, and suppose
that is split into two subjobs of 2 and 1 unit, and is split
into two subjobs of 4 and 2 units. The schedule produced by
Deadline Monotonic with such a splitting is feasible and it is
illustrated in Fig. 6.

A. Feasibility Analysis

Feasibility analysis for tasks with fixed preemption points can
be carried out in a very similar way as the nonpreemptive case,
with the following differences.

Fig. 6. Schedule produced by Deadline Monotonic for the task set reported in
Table I, when is split into two subjobs of 2 and 1 unit, and is split into two
subjobs of 4 and 2 units, respectively.

• The blocking factor to be considered for each task is
equal to the length of longest subjob (instead of the longest
task) among those with lower priority

(23)

• The last nonpreemptive chunk of is equal to (in-
stead of).

The response time analysis for a task has to consider all the
jobs within the longest Level- Active Period, defined in (2).
This means that the response time of must be computed for
all jobs with , where is defined in (3).
For a generic job , the start time of the last subjob can

be computed considering the blocking time , the computation
time of the preceding jobs, the subjobs of preceding
the last one , and the interference of the tasks with
priority higher than . Hence, can be computed with the
following recurrent relation:

(24)
Also, in this case, the original result reported by Bril et al. [20]
adopted a more complex expression, separating the lowest pri-
ority task from the higher priority ones. The expression pre-
sented here has been simplified thanks to the integer timemodel,
provided the blocking term is computed using (23).
Since, once started, the last subjob cannot be preempted, the

finishing time can be computed as

(25)

The response time of task can then be computed using (6), and
the task set is feasible if and only if Condition (7) is satisfied.

B. Longest Nonpreemptive Interval

As done in Section VI-B under deferred preemptions, it is in-
teresting to compute, also under task splitting, the longest non-
preemptive interval for each task that can guarantee the
schedulability. It is worth observing that splitting tasks into sub-
jobs allows achieving a larger , because a task cannot be
preempted during the execution of the last units of time.
As shown by Bertogna et al. [31], there are cases in which

10 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 9, NO. 1, FEBRUARY 2013

can be computed even when the task set is not preemptively fea-
sible, because the last nonpreemptive region allows reducing the
interference from higher priority tasks.
Defining as the blocking tolerance of the th job of

after a critical instant, the schedulability of such a job can be
checked using the following condition [31]:

(26)
where

Hence, the blocking tolerance becomes

(27)
The blocking tolerance of task can be computed as the

minimum blocking tolerance among the first jobs of in
the longest Level- Active Period

(28)

where is defined in (3).
From (27), it is easy to see that the blocking tolerances do

not depend on , which can be set to without affecting the
analysis. The longest nonpreemptive interval that guarantees
the feasibility for each task can then be computed by Theorem
2, using the blocking tolerances given by (28).
As previously mentioned, the maximum length of the non-

preemptive chunk under fixed preemption points is larger than
in the case of deferred preemptions. It is worth pointing out that
the value of for task only depends on the of the higher
priority tasks, as expressed in (20), and the blocking tolerance
is a function of , as clear from (28). Note that when tasks are
assumed to be preemptively feasible, the analysis can be limited
to the first job of each task. In this case, the blocking tolerance
of task is .

VIII. ASSESSMENT OF THE APPROACHES

The limited preemption methods presented in this paper can
be compared under several aspects, such as. implementation
complexity, predictability in estimating the preemption cost,
effectiveness in improving schedulability, and in reducing the
number of preemptions.

A. Implementation Issues

The preemption threshold mechanism can be implemented by
raising the execution priority of the task, as soon as it starts run-
ning. The mechanism can be easily implemented at the appli-
cation level by calling, at the beginning of the task, a system
call that increases the priority of the task at its threshold level.
The mechanism can also be fully implemented at the operating
system level, without modifying the application tasks. To do
that, the kernel has to increase the priority of a task at the level of

its threshold when the task is scheduled for the first time. In this
way, at its first activation, a task is inserted in the ready queue
using its nominal priority. Then, when the task is scheduled for
execution, its priority becomes equal to its threshold, until com-
pletion. Note that, if a task is preempted, its priority remains at
its threshold level.
Note that preemption threshold scheduling is already used in

the ThreadX real-time operating system by Express Logic Inc.,
and in the Erika Enterprise real-time kernel by Evidence, and it
represents an example of a great success of transferring research
results to industrial applications.
In deferred preemption (floating model), nonpreemptive re-

gions can be implemented by proper kernel primitives that dis-
able and enable preemption at the beginning and at the end of
the region, respectively. As an alternative, preemption can be
disabled by increasing the priority of the task at its maximum
value, and can be enabled by restoring the nominal task priority.
In the activation-triggered mode, nonpreemptive regions can be
realized by setting a timer to enforce the maximum interval in
which preemption is disabled. Initially, all tasks start executing
in nonpreemptive mode. When is running and a task with
priority higher than is activated, a timer is set by the kernel
(inside the activation primitive) to interrupt after units of
time. Until then, continues executing in nonpreemptivemode.
The interrupt handler associated to the timer must then call the
scheduler to allow the higher priority task to preempt . Notice
that, once a timer has been set, other additional activations be-
fore the timeout will not prolong the timeout any further.
Finally, cooperative scheduling does not need special kernel

support, but it requires the programmer to insert in each pre-
emption point a primitive that calls the scheduler, so enabling
pending high-priority tasks to preempt the running task. As a
last remark, note that the fixed preemption point model can also
be adopted to model electrical loads of a distributed smart grid,
where power appliances can be interrupted only at predefined
points [32].

B. Predictability

As observed in Section I, the runtime overhead introduced by
the preemption mechanism depends on the specific point where
the preemption takes place. Therefore, a method that allows pre-
dicting where a task is going to be preempted simplifies the es-
timation of preemption costs, permitting a tighter estimation of
task WCETs.
Unfortunately, under preemption thresholds, the specific pre-

emption points depend on the actual execution of the running
task and on the arrival time of high-priority tasks, hence it is
practically impossible to predict the exact location where a task
is going to be preempted.
Under deferred preemptions (floating model), the position

of nonpreemptive regions is not specified in the model, thus
they are considered to be unknown. In the activation-triggered
model, instead, the time at which the running task will be pre-
empted is set units of time after the arrival time of a higher
priority task. Hence, the preemption position depends on the ac-
tual execution of the running task and on the arrival time of the
higher priority task. Therefore, it can hardly be predicted offline.

BUTTAZZO et al.: LIMITED PREEMPTIVE SCHEDULING FOR REAL-TIME SYSTEMS. A SURVEY 11

On the contrary, under fixed preemption points, the locations
where preemptions may occur are explicitly defined by the pro-
grammer at design time, hence the corresponding overhead can
be estimated more precisely by timing analysis tools. For in-
stance, Bertogna et al. [33] presented an algorithm for selecting
the preemption points that minimize the overall preemption cost
without compromising the feasibility of the task set.

C. Effectiveness

The effectiveness of an algorithm that limits preemptions can
be evaluated either in terms of schedulability or by the number
of preemptions. As long as schedulability is concerned, all the
limited preemptive methods (under fixed priorities) dominate
both fully preemptive scheduling and nonpreemptive sched-
uling, even when preemption cost is neglected. Such a behavior
has been clearly illustrated by showing how the sample task
set in Table I cannot be scheduled by fully preemptive and
nonpreemptive Deadline Monotonic, whereas it is schedulable
using any limited preemptive algorithm. This property will be
also evaluated by simulation in the next section, using more
quantitative data.
The number of preemptions each task can experience depends

of different parameters. Under preemption thresholds, a task
can only be preempted by tasks with priority greater than its
threshold . Hence, if preemption cost is neglected, an upper
bound on the number of preemptions can experience can
be computed by counting the number of activations of tasks with
priority higher than occurring in that is

(29)

This is an upper bound because each higher priority arrival is
counted as a different preemption, even when multiple arrivals
cause a single preemption.
Under deferred preemption, the number of preemptions oc-

curring on can be upper bounded using the nonpreemptive
interval specified for the task. If preemption cost is neglected,
we simply have

This is a pessimistic estimation since a task is assumed to be
preempted after every interval of length , even in the absence
of higher priority jobs. In this case, a better upper bound can
be derived from (29), by replacing with . Note that when
preemption cost is not negligible, the derived upper bounds are
not applicable, since task computation times also depend on the
number of preemptions, leading to a circular dependency, as
shown by Yao et al. [34].
Under cooperative scheduling, the number of preemptions

can be easily upper bounded by the minimum between the
number of effective preemption points inserted in the task code
and the number of higher priority jobs activated during the
response time of the considered task.

IX. SIMULATION EXPERIMENTS

This section presents a set of simulation results performed
on randomly generated task sets, with the objective of evalu-

ating the effects of the different scheduling approaches on the
number of preemptions and the system schedulability. Specific
tests have been carried out to evaluate how schedulability is af-
fected by the size of nonpreemptive regions and by the preemp-
tion cost. The aforementioned algorithms have been considered
in the comparison, all executed under the Deadline Monotonic
priority assignment.
Each task set was generated as follows. The UUniFast [35]

algorithm was used to generate a set of periodic tasks with
total utilization equal to a desired value . Then, for each task
, its computation time was generated as a random integer

uniformly distributed in the interval [100, 500], and its period
was computed as . The relative deadline was

generated as a random integer uniformly distributed in the range
, with .

To reduce preemptions as mush as possible, in the PTS algo-
rithm, threshold priorities were set at the highest possible value
using the method described in Section V-B. Similarly, in both
DPS and FPP, the length of nonpreemptive regions was set at
the highest possible value to keep the task set feasible, using
the methods illustrated in Section V-B and Section VII-B, re-
spectively.
In the rest of this section, three sets of experiments are

presented. the first set is aimed at evaluating how the number
of preemptions is affected by different parameters; the second
set evaluates the schedulability level in the ideal case of zero
peremption cost, whereas the third set compares the feasibility
level in the presence of non-negligible cost.

A. Number of Preemptions

The first set of experiments was carried out to monitor the
total number of preemptions generated by the different algo-
rithms on a periodic task set within a simulation window of

units of time. In particular, each value shown in the
graphs plots the average over 1000 runs. To make the compar-
ison fair, only preemptively feasible task sets were considered
and the preemption cost was assumed to be zero. In this set of
experiments, the nonpreemptive scheduling algorithm (NPS) is
not reported, since the number of preemptions is always zero,
for any utilization. Such a great performance of NPS, however,
is compensated by a poor schedulability level, which is better
evaluated in the second set of experiments. The curve for de-
ferred preemption scheduling (DPS) corresponds to the activa-
tion-triggered model. We did not include the floating model be-
cause in this model no information is provided on the minimum
length and position of the nonpreemptive regions. The number
of preemptions is therefore the same as in the fully preemptive
case (FPS).
Fig. 7 shows how the performance of the various algorithms

varies as a function of the task set utilization, for task sets com-
posed of tasks. As clear from the graphs, the use of
nonpreemptive regions, either fixed (FPP) or not (DPS), allows
achieving a higher reduction with respect to preemption thresh-
olds, especially for task set utilizations greater than 70%. Note
that in all the graphs related to this experiment, DPS performs
slightly better than FPP. This can be explained considering that,
when preemption points are fixed, high-priority jobs arriving
slightly before and after a preemption point generate two dis-

12 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 9, NO. 1, FEBRUARY 2013

Fig. 7. Average number of preemptions versus utilization when .

Fig. 8. Average number of preemptions versus number of tasks when .

tinct preemptions (although deferred), whereas under DPS the
first arrival always triggers a nonpreemptive interval of length
, which prevents other subsequent arrivals to generate addi-

tional preemptions. In most practical cases, however, such a per-
formance difference is quite negligible, hence FPP is still to be
preferred against DPS for the reasons expressed in the previous
sections.
Fig. 8 shows the average number of preemptions as a function

of the number of tasks, when . Note that preemptions
rapidly decrease with for all the algorithms. This is due to the
fact that, for a given utilization, large task sets are character-
ized by tasks with smaller computation times, which have less
chance to be preempted. For task sets with , however,
both FPP and DPS lead to a significant reduction with respect
to PTS.

B. Schedulability With Zero Preemption Cost

The second set of experiments was carried out to test the im-
pact of the various algorithms on the task set schedulability,
which has been verified using the feasibility tests reported in
this paper, assuming zero preemption cost. The performance of
the algorithms was evaluated by comparing the feasible ratio,
calculated as the number of feasible task sets divided by the

Fig. 9. Feasible ratio versus utilization when .

Fig. 10. Feasible ratio as a function of , when .

total number of generated sets. In each experiment, 5000 task
sets were randomly generated for each parameter configuration.
The assumption on preemptive feasibility was removed and the
percentage of feasible task sets was monitored as a function of
different parameters.
In this set of experiments, DPS is not shown, since its perfor-

mance is the same as FPS, as mentioned in Section VI-A. On
the other hand, fully preemptive EDF [19] has been included in
the graphs to evaluate the difference with respect to an optimal
solution.
Fig. 9 shows the performance of the various algorithms as a

function of the task set utilization, when . It is worth
observing that both FPP and PTS improve the schedulability
level with respect to FPS, but FPP is able to achieve a larger
improvement, especially for higher utilizations . For
example, FPP is able to schedule 30% more task sets than FPS
for around 0.9.
A second experiment has been carried out to test how schedu-

lability is affected by the number of tasks. Here, the total system
utilization was set to and the number of tasks was
varied from 4 to 40. The results are reported in Fig. 10.
Note that FPP always outperforms all the other fixed priority

algorithms, although the improvement decreases for larger task
sets. This can be explained observing that a large task set is more

BUTTAZZO et al.: LIMITED PREEMPTIVE SCHEDULING FOR REAL-TIME SYSTEMS. A SURVEY 13

likely to have smaller blocking tolerances, due to the higher
number of generated deadlines. This phenomenon limits the
length of nonpreemptive regions of lower priority tasks, hence
FPP has less chance to improve schedulability for large task sets.
On the other hand, the performance of NPS increases with , be-
cause larger task sets tend to have smaller computation times,
which introduce smaller blocking times in higher priority tasks.

C. Schedulability With Preemption Cost

Considering that FPP is the algorithm that exhibits the best
performance with respect to the other fixed priority schemes, a
final experiment was carried out to evaluate how the feasibility
ratio of FPP is affected by the preemption cost. In this case,
however, existing feasibility tests that take preemption costs
into account are quite pessimistic, since they count a preemp-
tion for each high-priority job arrival. For this reason, in this set
of experiments, an approximated feasibility ratio was computed
by simulation, considering a task set schedulable if no deadline
miss occurred during the entire simulation interval. Even if such
a simulation represents just a necessary condition for feasibility,
it allows giving a rough estimation of the schedulability perfor-
mance when preemption cost is taken into account.
Preemption cost has been incorporated into response time

analysis by Altmeyer et al. [36] to obtain tight bounds on feasi-
bility. However, the approach requires detailed information on
the task structure and cache usage, which is not in the scope of
this paper.
In the experiment, the length of the nonpreemptive regions

in each task was varied from 0 to , (i.e., the longest com-
putation time among the tasks), through a parameter varying
in [0, 1], such that . In this way, FPS and NPS result
to be two special cases of FPP, obtained with and ,
respectively. Note that, if , task is entirely executed in
nonpreemptive mode. The same value is used for all tasks in
the system in order to vary the length of the nonpreemptive re-
gions in a uniform way for the whole task set. However, a much
better schedulability performance could be obtained adopting a
different value for each task , as explained in Section VII.
The preemption cost, denoted by , was assumed to be a fixed
value for each task.
Fig. 11 shows the feasibility ratio achieved by FPP as a func-

tion of the task set utilization, for different values of in [0, 1].
Here, the task set has tasks and the preemption cost is

. Note that different curves intersect each other, meaning
that the relative performance depends on the task set utiliza-
tion. In particular, using smaller nonpreemptive regions is more
efficient for small task set utilizations, when there are less pre-
emptions due to the reduced workload. On the other hand, when
the total utilization increases, having longer nonpreemptive re-
gions might help reducing the number of preemptions, reducing
the overhead experienced. In the considered configuration, the
curve for (i.e., for) has the
best performance until , while the curve for
(i.e., for) has a better performance for
larger utilizations. It is interesting to note that the curve for fully
preemptive scheduling has a rapid performance degra-
dation, being the highest one for and the lowest one
when .

Fig. 11. Feasible ratio versus utilization under different values, with
and .

Fig. 12. Overall feasible ratio versus length of nonpreemptive regions.

Finally, Fig. 12 shows how the overall system feasibility,
computed for all the task sets generated within the utilization
range [0.05, 0.95], varies as a function of , from the fully pre-
emptive case , to the nonpreemptive case .
Different curves are plotted for different preemption costs

ranging from 0 to 50 units of time, with a step of 10. It is worth
noting that the highest feasibility ratio is not achieved under
fully preemptive scheduling , even for low preemption
costs. Also, note that increasing the preemption cost the highest
feasibility ratio is achieved for longer nonpreemptive regions
(higher). This confirms that limited preemptive scheduling
dominates fully preemptive and nonpreemptive scheduling,
even when preemption cost is negligible, and becomes more
effective for larger preemption costs. Also note that, when
increases, each task has less chances to be preempted, hence
the cost is less relevant and the gap between lines reduces.
Eventually, all lines merge at one point, since NPS does suffer
from the preemption cost.

X. CONCLUSION

This paper presented a survey of limited preemptive sched-
uling algorithms, as methods for increasing the predictability
and efficiency of real-time systems. The most relevant result

14 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 9, NO. 1, FEBRUARY 2013

that clearly emerges from the experiments is that, under fixed
priority scheduling, any of the considered algorithms dominates
both fully preemptive and nonpreemptive scheduling, even
when preemption cost is neglected.
As discussed in the previous sections, each specific algo-

rithm for limiting preemptions has advantages and disadvan-
tages. The preemption threshold mechanism has a simple and
intuitive interface and can be implemented by introducing a low
runtime overhead; however, preemption cost cannot be easily
estimated, since the position of each preemption, as well as the
overall number of preemptions for each task, cannot be deter-
mined offline. Using deferred preemptions, the number of pre-
emptions for each task can be better estimated, but still the po-
sition of each preemption cannot be determined offline. Fixed
preemption points represents the most predictable solution for
estimating preemption costs, since both the number of preemp-
tions and their positions are fixed and known from the task
code. Moreover, simulation experiments clearly show that the
FPP algorithm is the one generating less preemptions and higher
schedulability ratios for any task set parameter configurations.
However, FPP requires adding explicit preemption points in the
program, hence achieving portability of legacy code is still a
challenge for future works.

REFERENCES

[1] M. Grenier and N. Navet, “Fine-tuning MAC-level protocols for op-
timized real-time QoS,” IEEE Trans. Ind. Informat., vol. 4, no. 1, pp.
6–15, Feb. 2008.

[2] C.-G. Lee, J. Hahn, Y.-M. Seo, S. L. Min, R. Ha, S. Hong, C. Y. Park,
M. Lee, and C. S. Kim, “Analysis of cache-related preemption delay in
fixed-priority preemptive scheduling,” IEEE Trans. Comput., vol. 47,
no. 6, pp. 700–713, 1998.

[3] H. Ramaprasad and F.Mueller, “Tightening the bounds on feasible pre-
emption points,” in Proc. 27th IEEE Real-Time Syst. Symp. (RTSS’06),
Rio de Janeiro, Brazil, Dec. 5–8, 2006, pp. 212–224.

[4] H. Ramaprasad and F. Mueller, “Bounding worst-case response time
for tasks with non-preemptive regions,” in Proc. Real-Time Embedded
Technol. Appl. Symp. (RTAS’08), St. Louis, MO, Apr. 22–24, 2008, pp.
58–67.

[5] H. Ramaprasad and F. Mueller, “Tightening the bounds on feasible
preemptions,” ACM Trans. Embedded Comput. Syst., vol. 10, no. 2,
pp. 1–34, Dec. 2010.

[6] L. Sha, R. Rajkumar, and J. Lehoczky, “Priority inheritance protocols.
An approach to real-time synchronization,” IEEE Trans. Comput., vol.
39, no. 9, pp. 1175–1185, Sep. 1990.

[7] T. P. Baker, “Stack-based scheduling for realtime processes,” Real-
Time Syst., vol. 3, no. 1, pp. 67–99, Apr. 1991.

[8] G. Buttazzo and A. Cervin, “Comparative assessment and evaluation of
jitter control methods,” in Proc. 15th Int. Conf. Real-Time and Network
Syst. (RTNS’07), Nancy, France, Mar. 29–30, 2007, pp. 137–144.

[9] P. Gai, L. Abeni, M. Giorgi, and G. Buttazzo, “A new kernel approach
for modular real-time systems development,” in Proc. 13th IEEE Eu-
romicro Conf. Real-Time Syst. (ECRTS’01), Delft, The Netherlands,
Jun. 13–15, 2001, pp. 199–206.

[10] R. Marau, P. Leite, M. Velasco, P. Marti, L. Almeida, P. Pedreiras, and
J. Fuertes, “Performing flexible control on low-cost microcontrollers
using a minimal real-time kernel,” IEEE Trans. Ind. Informat., vol. 4,
no. 2, pp. 125–133, May 2008.

[11] B. D. Bui, M. Caccamo, L. Sha, and J. Martinez, “Impact of cache par-
titioning on multi-tasking real time embedded systems,” in IEEE Proc.
14th Int. Conf. Embedded Real-Time Comput. Syst. Appl. (RTCSA’08),
Kaohsiung, Taiwan, Aug. 25–27, 2008, pp. 101–110.

[12] S. Altmeyer and G. Gebhard, “WCET analysis for preemptive sched-
uling,” in Proc. 8th Int. Workshop Worst-Case Execution Time (WCET)
Analysis, Prague, Czech Republic, Jul. 2008, pp. 105–112.

[13] G. Gebhard and S. Altmeyer, “Optimal task placement to improve
cache performance,” in Proc. 7th ACM-IEEE Int. Conf. Embedded
Softw. (EMSOFT 07), Salzburg, Austria, Oct. 1–3, 2007, pp. 259–268.

[14] C. Li, C. Ding, and K. Shen, “Quantifying the cost of context switch,”
in Proc. ACM Workshop Experimental Comput. Sci. (ExpCS’07), San
Diego, CA, Jun. 13–14, 2007.

[15] Y. Wang and M. Saksena, “Scheduling fixed-priority tasks with pre-
emption threshold,” in Proc. 6th IEEE Int. Conf. Real-Time Comput.
Syst. Appl. (RTCSA’99), Hong Kong, China, Dec. 13–15, 1999, pp.
328–335.

[16] S. Baruah, “The limited-preemption uniprocessor scheduling of spo-
radic task systems,” in Proc. 17th Euromicro Conf. Real-Time Syst.
(ECRTS’05), Palma de Mallorca, Balearic Islands, Spain, Jul. 6–8,
2005, pp. 137–144.

[17] A. Burns, S. Son, Ed., “Preemptive priority based scheduling. An ap-
propriate engineering approach,” Adv. Real-Time Syst., pp. 225–248,
1994.

[18] R. J. Bril, J. J. Lukkien, and W. F. J. Verhaegh, “Worst-case response
time analysis of real-time tasks under fixed-priority scheduling with
deferred preemption revisited,” in Proc. 19th Euromicro Conf. Real-
Time Syst. (ECRTS’07), Pisa, Italy, Jul. 4–6, 2007, pp. 269–279.

[19] C. Liu and J. Layland, “Scheduling algorithms for multiprogramming
in a hard-real-time environment,” J. Assoc. Comput. Mach., vol. 20,
no. 1, pp. 46–61, Jan. 1973.

[20] R. Bril, J. Lukkien, and W. Verhaegh, “Worst-case response time anal-
ysis of real-time tasks under fixed-priority scheduling with deferred
preemption,” Real-Time Syst., vol. 42, no. 1–3, pp. 63–119, 2009.

[21] J. Leung and J. Whitehead, “On the complexity of fixed-priority sched-
uling of periodic real-time tasks,” Perform. Eval., vol. 2, no. 4, pp.
237–250, 1982.

[22] R. I. Davis, A. Burns, R. J. Bril, and J. J. Lukkien, “Controller area net-
work (CAN) schedulability analysis. Refuted, revisited and revised,”
Real-Time Syst., vol. 35, no. 3, pp. 239–272, 2007.

[23] G. Yao, G. Buttazzo, and M. Bertogna, “Feasibility analysis under
fixed priority scheduling with fixed preemption points,” in Proc.
16th IEEE Int. Conf. Embedded Real-Time Comput. Syst. Appl.
(RTCSA’10), Macau, China, Aug. 23–25, 2010, pp. 71–80.

[24] U. Keskin, R. Bril, and J. Lukkien, “Exact response-time analysis for
fixed-priority preemption-threshold scheduling,” in Work-in-Progress
Session 15th Int. Conf . Emerging Technol. Factory Autom. (ETFA’10),
Bilbao, Spain, Sep. 13–16, 2010.

[25] J. Regehr, “Scheduling tasks with mixed preemption relations for ro-
bustness to timing faults,” in Proc. 23rd IEEE Real-Time Syst. Symp.
(RTSS’02), Austin, Texas, Dec. 3–5, 2002, pp. 315–326.

[26] M. Saksena and Y. Wang, “Scalable real-time system design using
preemption thresholds,” in Proc. 21st IEEE Real-Time Syst. Symp.
(RTSS’00), Orlando, FL, Nov. 27–30, 2000, pp. 25–34.

[27] M. Bertogna and S. Baruah, “Limited preemption EDF scheduling of
sporadic task systems,” IEEE Trans. Ind. Informat., vol. 6, no. 4, pp.
579–591, Nov. 2010.

[28] M. Short, “Improved schedulability analysis of implicit deadline tasks
under limited preemption edf scheduling,” in Proc. 16th IEEE Conf.
Emerging Technol. Factory Autom. (ETFA’11), Sep. 2011, pp. 1–8.

[29] G. Yao, G. Buttazzo, and M. Bertogna, “Bounding the maximum
length of non-preemptive regions under fixed priority scheduling,” in
Proc. 15th IEEE Int. Conf. Embedded Real-Time Comput. Syst. Appl.
(RTCSA’09), Beijing, China, Aug. 24–26, 2009, pp. 351–360.

[30] E. Bini and G. C. Buttazzo, “Schedulability analysis of periodic
fixed priority systems,” IEEE Trans. Comput., vol. 53, no. 11, pp.
1462–1473, 2004.

[31] M. Bertogna, G. Buttazzo, and G. Yao, “Improving feasibility of fixed
priority tasks using non-preemptive regions,” inProc. 32nd IEEE Real-
Time Syst. Symp. (RTSS 2011), Vienna, Austria, Nov. 30–Dec. 2 2011,
pp. 251–260.

[32] T. Facchinetti and M. D. Vedova, “Real-time modeling for direct load
control in cyber-physical power systems,” IEEE Trans. Ind. Informat.,
vol. 7, no. 4, pp. 689–698, Nov. 2011.

[33] M. Bertogna, O. Xhani, M. Marinoni, F. Esposito, and G. Buttazzo,
“Optimal selection of preemption points to minimize preemption over-
head,” in Proc. 23rd Euromicro Conf. Real-Time Syst. (ECRTS’11),
Porto, Portugal, Jul. 6–8, 2011, pp. 217–227.

[34] G. Yao, G. Buttazzo, and M. Bertogna, “Comparative evaluation of
limited preemptive methods,” in Proc. 15th IEEE Int. Conf. Emerging
Techonol. Factory Autom. (ETFA’10), Bilbao, Spain, Sep. 13–16, 2010,
pp. 1–8.

[35] E. Bini and G. C. Buttazzo, “Measuring the performance of schedula-
bility tests,” Real-Time Syst., vol. 30, no. 1–2, pp. 129–154, 2005.

[36] S. Altmeyer, R. Davis, and C. Maiza, “Cache related pre-emption delay
aware response time analysis for fixed priority pre-emptive systems,”
in Proc. 32nd IEEE Real-Time Syst. Symp. (RTSS.11), Vienna, Austria,
Nov. 30–Dec. 2 2011.

BUTTAZZO et al.: LIMITED PREEMPTIVE SCHEDULING FOR REAL-TIME SYSTEMS. A SURVEY 15

Giorgio C. Buttazzo (SM’05–F’12) graduated with
a Degree in electronic engineering at the University
of Pisa, Pisa, Italy, in 1985, the M.S. degree in
computer science from the University of Pennsyl-
vania, Philadelphia, in 1987, and the Ph.D. degree
in computer engineering from the Scuola Superiore
Sant’Anna of Pisa, Pisa, in 1991.
He is a Full Professor of Computer Engineering at

the Scuola Superiore Sant’Anna of Pisa. From 1987
to 1988, he worked on active perception and real-time
control at the G.R.A.S.P. Laboratory, University of

Pennsylvania. He has authored 6 books on real-time systems and over 200 pa-
pers in the field of real-time systems, scheduling algorithms, overload manage-
ment, robotics, and neural networks.
Prof. Buttazzo has been Program Chair and General Chair of the major

international conferences on real-time systems. He is Editor-in-Chief of
Real-Time Systems (Springer), Associate Editor of the IEEE TRANSACTIONS
ON INDUSTRIAL INFORMATICS, and Chair of the IEEE Technical Committee on
Real-Time Systems.

Marko Bertogna (SM’11) graduated (summa cum
laude) in Telecommunications Engineering at the
University of Bologna in 2002. He received the
Ph.D. degree in computer engineering from Scuola
Superiore Sant’Anna of Pisa, Pisa, Italy, in 2008.
He is an Assistant Professor at the University of

Modena and Reggio Emilia, Italy. In 2006, he vis-
ited the University of North Carolina at Chapel Hill,
working with Prof. S. Baruah on scheduling algo-
rithms for single andmulticore real-time systems. His
research interests include scheduling and schedula-

bility analysis of real-time multiprocessor systems, protocols for the exclusive
access to shared resources, resource reservation algorithms, and reconfigurable
devices. He has authored over 30 papers in international conferences and jour-
nals in the field of real-time systems.
Prof. Bertogna received four Best Paper Awards.

Gang Yao received the B.E. and M.E. degrees from
Tsinghua University, Beijing, China, in 2003 and
2006, respectively, and the Ph.D. degree in computer
engineering from the Scuola Superiore SantAnna of
Pisa, Pisa, Italy, in 2010.
He is a Postdoctoral Research Collaborator at the

University of Illinois at Urbana–Champaign. His
interests include real-time scheduling algorithms,
safety-critical systems, and shared resource proto-
cols.

