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Abstract—Successful compensation of nonlinear distortions due
to fiber Kerr nonlinearities relies on the availability of an
accurate channel model. Some models obtained by approximate
solutions of the nonlinear Schrödinger equation and the back-
propagation method are taken into account. It turns out that
backpropagation is not the optimal processing technique and in
some cases is outperformed by simpler processing techniques.
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I. INTRODUCTION

The nonlinear Schrödinger equation (NLSE) describes the
propagation of the optical field complex envelope v(z, t) in a
single-mode fiber. Accounting for group velocity dispersion
(GVD), self-phase modulation (SPM), and loss, in a time
frame moving with the signal group velocity, the NLSE can
be written as [1]
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∂z

= j
β2
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∂2u
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− jγe−αz|u|2u (1)

where u(z, t) = exp(αz/2) v(z, t) is the normalized complex
envelope, β2 is the GVD parameter, γ is the Kerr nonlinear
coefficient, and α is the power attenuation constant. In general,
the NLSE does not admit an analytical solution when both β2
and γ are different from zero. Only when α = 0 the exact
solution can be obtained by the inverse scattering method
in the form of classical solitons. If the attenuation cannot
be neglected, the NLSE can be approximately solved either
numerically, through the split-step Fourier method (SSFM)
[2], or analytically, through the Volterra series approach [3].
These two different approaches naturally lead to two different
strategies for the compensation of nonlinear effects: nonlin-
ear equalization based on Volterra kernels [4] and channel
inversion by digital backpropagation (BP) [5]. However, when
applied to typical long-haul optical links, the first approach
requires too many Volterra kernels to obtain a good approxi-
mation of the output field, making the corresponding nonlinear
equalizer too complex. Better results can be obtained with
BP. However, this technique also requires a complex structure
and, as discussed in the following, is not the optimal detection
strategy in a real scenario.

II. PERTURBATION METHODS

An alternative approach to approximately solve the NLSE
is based on perturbation methods.

A. Regular Perturbation
The regular-perturbation (RP) method is a classical method

used for solving nonlinear differential equations [6]. The
(normalized) optical field complex envelope u(z, t) is expanded
in power series of the nonlinear coefficient γ. The first term
u0(z, t) of the series is the linear solution of the NLSE (γ = 0),
while the other terms describe the deviation from the linear
solution due to nonlinear effects. Truncating the series after
the first two terms, we obtain

u(z, t) ≈ u0(z, t) + γu1(z, t) (2)

with
u1 = −j

z

0
(|u0|2u0) h(z − ζ, t)e−αζdζ (3)

where is the time convolution operator and h(z, t) is the
linear impulse response of a fiber of length z. Remarkably, the
RP method has been shown to be equivalent to the Volterra
series approach [6].

B. Logarithmic Perturbation
The logarithmic perturbation (LP) method consists in ex-

panding the log of the complex envelope u(z, t) in power series
of γ. By retaining only the first term of the expansion, u(z, t)
can be approximated as [1]

u(z, t) ≈ u0(z, t) exp(γψ1(z, t)) (4)

where u0(z, t) is again the linear solution of the NLSE and
ψ1(z, t) = u1(z, t)/u0(z, t), u1(z, t) being as in (3).

C. Combined Regular-Logarithmic Perturbation
In order to overcome the difficulty that the linear solution

of the NLSE appears at the denominator of ψ1(z, t) in (4), a
combined regular-logarithmic perturbation (CRLP) was devel-
oped [7]. By extending the CRLP method to modulated signals
and adopting a CRLP expansion in γ, the output signal can be
approximated as

u(z, t) ≈ (u0(z, t) + γυ(z, t)) exp(−jγφ(z, t)) (5)

where u0(z, t) is again the linear solution of the NLSE, while

φ(z, t) =
z

0
|u0(ζ, t)|2e−αζdζ (6)

υ(z, t) =
z

0
f(ζ, t) h(z − ζ, t)dζ (7)

where
f(z, t) =
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D. Comparison
In order to compare the accuracy of the various approxima-

tions, we assume that the “true” solution u(z, t) can be obtained
by the SSFM with a sufficiently small step size and adopt a
normalized square deviation (NSD) defined as

NSD = |u(z, t) − uP(z, t)|2 dt |u(z, t)|2 dt (9)

where uP(z, t) is one of the previous approximations and the
integrals extend over the whole transmission period. The NSD
was computed for two different configurations of a typical
10×130 km terrestrial link, whose spans employ a fiber with a
dispersion coefficient of 4.4 ps/nm/km, a nonlinear coefficient
of 1.3W−1km−1, and attenuation of 0.23 dB/km. The NSD
reported in Fig. 1(a) refers to a dispersion compensated link,
where a compensating fiber (DCF) with a dispersion coeffi-
cient of −100 ps/nm/km, nonlinear coefficient of 6.5W−1km−1

and attenuation of 0.57 dB/km is sandwiched in a dual stage
amplifier with noise figures of 7.5 dB and 6.5 dB. The DCF
length is chosen to exactly compensate for the accumulated
dispersion. Instead, Fig 1(b) reports the NSD for the case of
no in-line dispersion compensation. In both cases, the gain
of the dual-stage amplifiers recovers the span loss, so that the
power launched in each fiber is equal to the transmitted power.
The input field is a 50Gb/s QPSK-NRZ signal, generated by
a nested Mach-Zehnder modulator with 20GHz bandwidth,
filtered by a 4th-order Gaussian bandpass filter with 45GHz
bandwidth and modulated by a quaternary de Bruijn sequence
of length212. The received signal is then filtered by a 4th-
order Gaussian bandpass filter with 40GHz bandwidth. In
either considered cases, the LP method turns out to be the best
approximation. If we consider acceptable an NSD < 10−2, the
LP method allows for a launch power of 6 ÷ 7 dBm.

III. NONLINEAR CHANNEL MODELS

The methods examined in the previous sections can be
used as a hint to devise an optimum receiver according to
the maximum a posteriori (MAP) criterion, given that they
suggest a model for the nonlinear fiber optic channel. In other
words, we do not try to devise a nonlinear equalizer based on
the approximate solutions of the NLSE, but rather use them
to infer a channel model for applying MAP strategies.

A. Backpropagation
If all the amplified spontaneous emission (ASE) noise were

injected only at the input of the link, the BP method could
exactly invert the NLSE and the channel would revert to the
additive white Gaussian noise (AWGN) case. In this case,
according to the MAP criterion, the optimum receiver would
be a matched filter followed by a symbol-by-symbol (SxS)
detector. In practical cases, however, ASE noise is injected
along the link by in-line amplifiers, such that BP followed by
SxS detection is not optimum and a better (yet, sub-optimum)
performance is obtained by a partial BP on a reduced number
of spans.

B. Cartesian Gaussian MLSD
In a linear propagation regime, the output signal can be

written as u0(z, t) = s0(z, t) + n0(z, t), where s0(z, t) is the
signal component, affected by dispersion, and n0(z, t) is the
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Fig. 1. Normalized square deviation for (a) dispersion-compensated and
(b) dispersion-uncompensated link. The curve labeled U0 corresponds to the
linear solution of the NLSE.

AWGN due to optical amplifiers. According to the RP method,
in the presence of nonlinear effects, the output signal is
also affected by an additive perturbation term, γu1(z, t), that
depends both on s0(z, t) and n0(z, t) through (3). Retaining
only terms that are linear in n0(z, t), as done for instance
in [7], the output signal is affected by nonlinear intersymbol
interference (ISI) and colored Gaussian noise, such that the
in-phase and quadrature components of the output samples,
conditional on the transmitted symbols, can be modeled as
correlated Gaussian variables. Thus, the MAP strategy takes
the form of maximum likelihood sequence detection (MLSD),
implemented by a Viterbi algorithm (VA) based on Cartesian
Gaussian (CG) metrics [8].

C. Polar Gaussian MLSD
Also the CRLP terms in (5), υ(z, t) and φ(z, t), can be

linearized with respect to the noise term n0(z, t). In this case,
the output signal is still affected by nonlinear ISI, but its distri-
bution is better approximated by assuming that the amplitude
and phase of the output signal samples are correlated Gaussian
variables, rather than the in-phase and quadrature components.
Consequently, the MAP strategy could be implemented by a
VA based on polar Gaussian (PG) metrics [8].

D. Comparison
Fig. 2 compares the performance of all the detection

strategies in terms of bit error rate (BER) versus launch
power for the same dispersion-compensated link introduced
in the previous section. Ideal BP is performed on the op-
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Fig. 2. BER versus launch power for the described detection strategies.

timum number of spans (five in this case). The VA with
CG or PG metrics is implemented with 16 states (nonlinear
ISI limited to 2 symbols). For each state and symbol, the
required conditional expectation and covariance matrix are
estimated and stored in a look-up table using a suitable
training sequence and assuming that samples spaced more
than a symbol time are uncorrelated. Since low dispersion
fiber and in-line compensation are considered, nonlinear ISI
is limited to a few symbols and can be handled by the 16-
state VA, while signal-noise interaction is highly detrimental
and gives rise to parametric gain and nonlinear phase noise.
Therefore, BP, that is beneficial only against nonlinear ISI,
brings some improvement with respect to SxS, but has a
lower performance compared to VA detectors, which can
cope also with parametric gain. In addition, the PG metric
better accounts for nonlinear phase noise and outperforms the
CG metric and the BP algorithm both in terms of minimum
BER and of required power for a given BER. This behavior
can be better understood by looking at the distribution of
the received sample conditional on the transmitted sequence
for a launch power of 6 dBm (minimum BER for the PG
detector). Fig. 3(a) compares the joint distribution of the in-
phase and quadrature components of the signal, obtained by
Monte Carlo simulations, with a bi-variate Gaussian distribu-
tion with same expectation and covariance matrix (i.e., the
distribution adopted by the CG metric). Fig. 3(b) reports a
similar comparison but considering the amplitude and phase of
the received sample (whose distribution is assumed Gaussian
by the PG metric). It is apparent the higher accuracy of the
PG metric, while the CG metric can only provide a rough
estimate of the parametric gain effect. A comparison among
the detection strategies for different length of the link is finally
reported in Fig. 4, where only the minimum of each BER curve
is reported as a function of the number of spans. The VA with
PG metric always gives the minimum BER (for a given link
length) or the maximum reach (for a fixed BER threshold).

IV. CONCLUSIONS
We have presented different channel models for optical

fibers affected by Kerr nonlinearity and derived the related op-
timum detection strategies. For dispersion-compensated links
deploying low-dispersion fibers, the best performance is ob-
tained by a 16-state Viterbi detector with polar Gaussian met-
rics, while a worse performance (both in terms of maximum
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Fig. 3. Joint distribution (contour lines) of (a) in-phase and quadrature and
(b) amplitude and phase components. Solid lines refer to simulations, dashed
lines to Gaussian fitting.
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Fig. 4. Minimum BER versus link length (130 km per span) for the described
detection strategies.

reach or minimum BER) is obtained by digital backpropaga-
tion, despite its higher complexity. This work was supported
in part by Ericsson and by MIUR under the FIRB project
COTONE.
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