
QoS Management through adaptive reservations ∗

L. Abeni, T. Cucinotta, G. Lipari, L. Marzario, L. Palopoli
ReTiS Lab, Scuola Sup. Sant’Anna, Pisa, Italy

Abstract

Reservation based (RB) scheduling is a class of scheduling algorithms that is well-suited for a large class
of soft real-time applications. They are based on a “bandwidth” abstraction, meaning that a task is given the
illusion of executing on a dedicated slower processor. In this context, a crucial design issue is deciding the
bandwidth that each task should receive. The point we advocate is that, in presence of large fluctuations on the
computation requirements of the tasks, it can be a beneficial choice to dynamically adapt the bandwidth based on
QoS measurements and on the subsequent application of feedback control (adaptive reservations).

In this paper, we present two novel contributions to this research area. First, we propose three new control algo-
rithms inspired to the ideas of stochastic control. Second, we present a flexible and modular software architecture
for adaptive reservations. An important feature of this architecture is that it is realised by means of a minimally
invasive set of modifications to the Linux kernel.

1. Introduction

Software based implementation of time-sensitive applications is gaining momentum because it is generally
regarded as cheaper and more flexible than a dedicated hardware solution. Important examples can be found in the
area of consumer electronics: multimedia streaming programs, video/audio players, software sound mixers, movie
editing, and so on. Another relevant area of application is offered by embedded systems used in data-intensive
processing of sensor data, where high volumes of data have to be processed in real-time (i.e. radar systems).
Such applications are characterised by implicit timing constraints (deadlines) for which occasional failures can
be tolerable, provided that they do not become too frequent. For instance, when streaming a MPEG movie, the
delayed decoding of a few frames is not even perceived by the user as long as the system behaves ”well” in the
average.

It often occurs that multiple applications (implemented by software tasks) populate the same system and com-
pete for a pool of shared resources. In this case, an appropriate real-time scheduling solution has to be utilised to
attain both an efficient use of the processor and an acceptable level of Quality of Service (QoS) for the different
tasks. To this regard, traditional real-time scheduling techniques, such as Rate Monotonic(RM) and Earliest Dead-
line First (EDF) [16], have evident and well-known shortcomings. Indeed, because classical real-time scheduling
theory deems unacceptable even a single deadline violation, schedulability tests are based on worst case assump-
tions for execution and inter-arrival time of tasks. However, the strict compliance with every deadline is irrelevant
in this context and it leads to an overly conservative management of the CPU. On the other hand, it is crucial that
large fluctuations on the execution or inter-arrival times of a task do not affect the performance levels granted to
other tasks. This property is called temporal isolation (or temporal protection) and it is neither provided by RM,
nor by EDF.

∗This work has been partially supported by the European OCERA IST-2001-35102 and RECSYS IST-2001-32515 projects.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca della Scuola Superiore Sant'Anna

https://core.ac.uk/display/54933059?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In the past years, several scheduling algorithms providing temporal isolation have been developed, ranging from
Proportional Share (PS) [13] to Reservation Based (RB) [18] algorithms. Both these classes of algorithms can be
shown to approximate a fluid allocation of the processor, giving each task the “illusion” of running on a dedicated
slower processor. In particular, RB techniques approximate this behaviour by periodically granting a fixed amount
of execution to each task.

RB techniques are the basis this work is developed upon. More specifically we consider CPU reservations,
which have been implemented on a variety of systems using different algorithmic solutions [22, 3, 12, 23]. We are
confident that most of the presented results can be extended to the management of other kind of resources, like
network bandwidth and disk, and to algorithms providing temporal protection other than CPU reservations, such
as the ones based on PS.

The traditional way for using RB scheduling is to reserve a fixed fraction of the CPU bandwidth to each task,
so that its temporal constraints can be fulfilled. However, a static allocation of resources is not a good idea if
the task widely changes its execution requirements throughout its execution. Indeed, we can allocate the CPU
bandwidth based on “average” requirements of the task; but this choice would result into transient degradations
of the provided QoS that might be annoying. On the other hand, a bandwidth allocation based on worst case
assumptions would most of the times be inefficient in terms of CPU utilisation. This problem can be addressed by
dynamically adapting the amount of resources reserved to each task (i.e. by using a feedback inside the scheduling
mechanism).

A first proposal for feedback based scheduling of time sharing systems dates back to 1962 [9]. More recently,
feedback control techniques have been applied to real-time scheduling [11, 19, 24, 14, 17, 8, 7] and multimedia
systems [29]. Owing to the difficulties in modelling schedulers as dynamic systems, these works only provide
a limited mathematical analysis of the closed-loop performance, often based on approximate models or intuitive
arguments. The application of feedback to RB algorithms was pioneered in [4] introducing the concept of adaptive
reservations. This work opened up a new research thread. In [6], it is shown how it is possible to write an exact
mathematical model for the dynamic evolution of a single reservation and to design a switching Proportional
Integer (PI) controller based on a linearisation of the system. Stability results and synthesis techniques for tuning
the parameters of the switching PI controller, based on the theory of hybrid systems and on convex optimisation
were shown in [20].

The problem was further investigated in [21], where a nonlinear feedback control scheme taking advantage of
the specific structure of the system model was shown. In this paper, this control approach is shortly reviewed
to the purpose of comparing it with novel feedback designs that we present here. An approach that bears some
resemblance to the one presented in this paper is the one shown in [1].

Contributions of this paper In this paper, we present two novel contributions with respect to our previous
work [20, 21]. First, we introduce novel control techniques, which have been designed by attacking the problem
in the domain of stochastic control and stochastic dynamic programming. In particular, we advocate a scheme
where a dedicated controller is attached to each task. At each step the controller tries to optimise or decide the
expected values of certain quantities of interest based on the expected behaviour of the computation time stochastic
process. To this end, we propose an architecture in which a separate component, the predictor, is responsible for
providing the necessary information, based on its knowledge of the past evolution of the system. Throughout the
paper we will shortly describe these control schemes and report a comparative evaluation of their performance
with more traditional schemes.

The second important contribution of the paper is the description of a software architecture for our feedback
control strategies. The problem has been discussed in the past few years and interesting proposals emerged at the
middleware level [10, 31]. In this paper we take a different viewpoint, searching for an architectural support for our
technology suitable for a general purpose operating system by a minimally invasive set of modifications. Namely,
we show our implementation based on the Linux kernel [15]. Taking advantage of its modularity, the structure of

2

our architecture is layered and modular in its turn. The RB scheduler is available as a separate component, while
different control modules can be plugged in and out at the user’s convenience. Contrary to other approaches that
are more focused on hard real-time applications, such as RTlinux [27] and RTAI [26], we can run time-sensitive
applications in user space with obvious benefits in terms of safety and access to a wealth of libraries available for
Linux. Modifications of the original kernel have been carried on in such a way that ordinary Linux applications
can run without any awareness whatsoever of the new environment.

2. Problem presentation

2.1. The task model

We consider a set of independent tasks T (1), ..., T (n) sharing a CPU. A task Ti consists of a stream of jobs, or
instances, J

(i)
k . Each job J

(i)
k arrives (becomes executable) at time r

(i)
k , and finishes at time f

(i)
k after executing for

a time c
(i)
k . Job J

(i)
k is associated a deadline d

(i)
k , which is respected if f

(i)
k ≤ d

(i)
k , and is missed if f

(i)
k > d

(i)
k .

For our purposes, the sequences of computation times {c
(i)
k }k∈N are considered as discrete-time continuous

valued stochastic processes.
For the sake of simplicity, we will restrict to periodic tasks, in which r

(i)
k+1 = r

(i)
k + T (i), where T (i) is the task

period. Moreover, we will assume that d
(i)
k+1 = d

(i)
k + T (i); hence, r

(i)
k+1 = d

(i)
k .

2.2. Resource Based Scheduling

In the application that we will show in this paper, tasks are scheduled by a Reservation Based (RB) policy [18].
In a RB framework, a task T (i) is associated a pair (Q(i), P (i)), said reservation, meaning that the scheduling

algorithm guarantees to T (i) a budget of Q(i) execution time units in every reservation period P (i) (whenever in
need). The ratio B(i) = Q(i)/P (i) is referred to as bandwidth. Dealing with periodic tasks, it is convenient to
choose P (i) so that T (i) = kP (i), k ∈ {1, 2, . . .}. If the task is not allowed to execute for more than Q(i) units
every P (i), even in presence of a idle processor, then the reservation is said hard [22]. In this paper we will restrict
our attention to this class of RB algorithms, even though most techniques and considerations shown in the sequel
are applicable to a good extent also to other types of reservations.

A very important property ensured by RB scheduling is the so called temporal isolation, which can be defined
as follows.

Definition 1 A scheduling algorithm is said to guarantee temporal protection if the ability for each task τ (i) (with
i = 1, . . . , n) to meet its timing constraints depends only the evolution of the task’s workload 1.

Thanks to this property, the task can be thought of as running on a virtual CPU whose speed is a fraction B (i)

of the CPU speed. In order to formally express this concept, define the virtual finishing time v(i)
k as the time the

kth job would finish if it were running on a virtual CPU with speed B(i). The following statement proves that in
principle a RB scheduler can be made to approximate a “fluid” allocation (see also [12]).

Fact 1 Assume that a hard reservation policy is used to schedule task τ (i) guaranteeing that it receives Q(i)

computation units in ever server period P (i). The following relation holds true:

max

{

b
v

(i)
k

P (i)
cP (i), v

(i)
k − δ

}

≤ f
(i)
k ≤ min

{

d
v

(i)
k

P (i)
eP (i), v

(i)
k + δ

}

, (1)

where δ = (1 − B(i))P (i).

1The workload of a periodic task is uniquely determined by its computation time and by its period

3

Proof:

A first consideration is that v
(i)
k and f

(i)
k lie in the same reservation period, i.e., b

v
(i)
k

P (i) cP
(i) ≤ f

(i)
k ≤ d

v
(i)
k

P (i) eP
(i).

Moreover, sharper bounds for their variation can be made considering the two following situations: 1) there
remains an infinitesimal unit of computation to be carried out in the last reservation period, 2) there remains
Q(i) units of computation to be carries out in the last period. Considering situation 1), the virtual finishing time
is located right after the beginning of the last reservation period. In this case the worst case situation is when
residual computation time is delayed to the maximum possible extent allowed by the reservation, i.e., f (i) ≤
v(i) + P (i) − Q(i). We can similarly deal with situation 2) leading to f (i) ≥ v(i) − P (i) + Q(i). Our claim is then
proved. •

As a consequence of the above in principle a RB scheduler can be made to approximate a “fluid” allocation
of the processor as closely as needed by choosing P (i) small enough, i.e., limP (i)→0 f

(i)
k = v

(i)
k . However, in

practical implementations, the overhead of context switches becomes relevant if P (i) is too small.
A consistency relation necessary for a RB scheduler to work properly is

∑

i

B(i) ≤ U lub, (2)

with U lub ≤ 1 depending on the algorithm used for the implementation.

2.3. Adaptive Reservations

When considering soft real-time applications it is of paramount importance to quantify the Quality of Service
that each task experiences during his execution. In our model we can tolerate occasional deadline misses as long
as the anomaly is kept in check. Therefore, it is reasonable to define a quality of service metric, that we will call
scheduling error, related to the deviation of the finishing time from the deadline. A possible definition for such a
metric could be e

(i)
k = (f

(i)
k−1 − d

(i)
k−1)/Ti, where e

(i)
k is the scheduling error experienced by job J

(i)
k−1. An ideal

bandwidth allocation would be one for which e
(i)
k = 0 for all k. Indeed, both e

(i)
k > 0 and e

(i)
k < 0 are undesirable

situations, since in the former case the task does not respect its timing constraint, while in the latter it receives an
excess of bandwidth that would better be allocated to other activities.

The introduction of a QoS metric exposes the limitations of RB scheduling per se. Consider Figure 1, where
we show the evolution of the scheduling error for a multimedia task (MPEG decoding). Figure 1(a) reports the
sequence of computation times for decoding a fragment of a Rock Concert movie (courtesy of Philips Research).
The processor used for decoding is a Philips Nexperia Trimedia and the frame rate is 25 frame/sec. Computation
times fluctuate around a mean value that is subject to sudden changes over time, due to the transitions from slow-
moving scenes to quicker ones, and vice versa. The two bottom rows report simulation data for a static assignment
of bandwidth. In the first experiment we chose a bandwidth equal to 1.3 times the mean of computation times
divided by the task’s period. The resulting scheduling error is shown in Figure 1 (b): while the average computed
over the sequence is acceptable, there are long intervals of time when the scheduling error is large thus degrading
unacceptably the experienced Quality of Service. Figure 1 (c), instead, shows what happens if the allocated
bandwidth is calibrated on the worst case execution time. The scheduling error is always negative, but it has a
large absolute value, so it results in a constantly large jitter value, meaning that the allocated bandwidth for the
task is most times in excess.

The considerations above clearly motivate the need for a dynamic adaptation of the bandwidth a task is allocated
during its execution, thus the idea of adaptive reservation. In particular, in the line of research initiated in [4],
we perform bandwidth adaptation using conceptual tools borrowed from feedback control theory. This concept is
henceforth referred to as feedback scheduling.

4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 200 400 600 800 1000 1200

c_k

(a)

-1

-0.5

0

0.5

1

1.5

2

2.5

200 400 600 800 1000 1200

k

e(k)

(b)

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

200 400 600 800 1000 1200

k

e(k)

(c)

Figure 1. Scheduling error for a static bandwidth scheduling of an MPEG player.

2.4. Dynamic model

In order to design a feedback control we need a mathematical model for the system dynamic evolution. To this
regard, the scheduling error as defined above, although an appealing QoS metric, turns out to be cumbersome to
use. Instead, we shall define a different metric, by approximating the actual finishing time fk of each job with

its virtual finishing time, vk : ε
(i)
k =

v
(i)
k

−d
(i)
k

T (i) . In view of Equation (1), it is easy to show that ε
(i)
k constitutes an

approximation of the original metric e
(i)
k :

ε
(i)
k − δ

′

≤ e
(i)
k ≤ ε

(i)
k + δ

′

, (3)

(where δ
′

= δ
T

= (1 − B(i))P (i)

T (i)), which clearly shows that the introduced approximation is acceptable provided

that the ratio P (i)

T (i) be small enough. The dynamics of ε
(i)
k is given by [6]:

ε
(i)
k+1 = S(ε

(i)
k) +

c
(i)
k

T (i)B
(i)
k

− 1 (4)

where S(x) = 0 if x < 0 and S(x) = x if x ≥ 0.

The bandwidth B
(i)
k is in this case considered as a command variable ant it is thus allowed to vary over time.

For most RB algorithms, ε
(i)
k is exactly and easily measurable upon the termination of each job. For particular

classes of RB, such as the Constant Bandwidth Server[3], different definitions for ε
(i)
k are easier to deal with; for

the sake of brevity we will not touch this issue (the interested reader is referred to [6]).

5

Figure 2. Pictorial representation of the envisioned architecture: each task is controlled by a dedicate
controller while a supervisor enforces the consistency condition

∑

B(i) ≤ 1.

2.5. Control performance

The above introduced concepts on RB scheduling, and the model for the task evolution, allow us to formally
express the control goals and to gauge the quality of the attained result. As we said earlier, one would ideally
wish to have the scheduling error always equal to zero. According to Equation (4), this would entail choosing
B

(i)
k = c

(i)
k /T (i), which is evidently impossible without a prior knowledge of {c(i)

k }. As a matter of fact, {ε(i)
k }k∈N

are stochastic processes. Therefore a reasonable formulation on the desired behaviour necessarily regards their
stochastic properties. A first possibility is on the “shape” of the first order density distribution f

ε
(i)
k

(·). Ideally,

we would wish it to be as close as possible to a Dirac delta centred on 0 (meaning that the scheduling error at
step k is 0 with probability 1). Based on this expectation, we can make a qualitative comparison of different
control algorithms evaluating how much they are close to this ideal performance. A more quantitative evaluation

can be made considering the expected value of the squared scheduling error E
[

(ε
(i)
k)2

]

that accounts for average

deviation of this quantity in both directions (clearly the smaller this quantity, the better the performance). Finally
a possible control performance specification (and a subsequent control scheme) can be made by requiring that the
scheduling error ε

(i)
k reside with a good probability in a specified segment [−e(i), E(i)].

3. Feedback scheduling techniques

Equation (4) describes a first order switching system, in which ε
(i)
k is a measurable state variable that we want

to control, the bandwidth B(i) acts as a command variable, whereas c
(i)
k is an exogenous disturbance term. As

a matter of fact, we have a collection of first order systems that evolve asynchronously one another, their states
being observed at asynchronous points in time (jobs termination for the different tasks).

The asynchronism of the system makes it difficult to design a global controller. A simpler choice is a decen-
tralised scheme where a dedicated controller decides the bandwidth of each task looking at the evolution of the task
itself in isolation. This idea is not completely applicable since the bandwidths chosen by the different controllers
undergo a global constraint dictated by Equation (2). A minor departure from the entirely decentralised scheme is

6

Figure 3. Block diagram for QoS controller

to include a supervisor that, whenever the controllers violate the constraint, resets the values of the bandwidths to
fix the problem (e.g. operating a weighted compression or a saturation). From the standpoint of each controller,
every time the supervisor is forced to act an impulsive disturbance is experienced (see Figure 2).

3.1. Single controller general design

The control scheme just introduced consists of a collection of controllers attached to each task and of a su-
pervisor that performs corrective actions only when a controller chooses a value for the bandwidth in contrast
with Equation (2) determining an overload condition. The latter component is described in depth in [2] and we
will omit further details. Rather, this section is mainly concerned with the design of the dedicated controllers.
In order to reduce the probability of overload conditions, and the subsequent supervisory corrections, each con-
troller is constrained by a “local” saturation constraint: B

(i)
k ≤ B

(i)
max. Even choosing the saturation values so that

∑

i B
(i)
max ≥ Ulub, their presence allows one to pose an upper bound on intensity of the disturbance term that can

occur in presence of a supervisor correction.
From now on, we will concentrate on how to design a controller for a single task and the (i) superscript will be

dropped for notational convenience. Clearly, the control problem would be trivial if the computation time ck were
known before beginning the kth job. To compensate for the lack of this knowledge, we propose a scheme based
on two components (see Figure 3) : 1) a predictor, upon the termination of Jk−1, supplies a set of parameters Ik

related to a prediction of ck; 2) a controller that decides the bandwidth Bk based on the set of parameters Ik and
on the measurements of εk collected from the scheduler. The predictor plays an important role in this scheme:
the more accurate the prediction the better the resulting control performance. The ability to build an accurate
predictor is related to the stochastic properties of the input process. A very simple predictor is one which is based
on statistics (e.g. moving average) gathered on the past computation times. Actually, we will show that the type
of information that the predictor needs to supply depends on the control scheme.

In the rest of the section we shall show three different control techniques:

1. invariant based control

2. stochastic dead beat control

3. cost optimal control

In this context, we will simply show the basic ideas and the structure of the controllers. Formal proofs on the
closed loop stability and other properties can be found in [21].

7

3.2. Invariant based design

This control scheme has already been presented in [21]. We report its description here for the sake of com-
pleteness and to compare its performance to other control schemes. The goal of an invariant based controller is
to constrain the scheduling error evolution within a small region [−e, E], compensating for the fluctuations of ck.
The information Ik provided at each step by the predictor is in this case a range [hk, Hk] where the next compu-
tation time ck is expected to fall. Assuming that ck ∈ [hk, Hk](correct prediction) the controller is required to
behave as follows:

1. if εk belongs to the set [−e, E] also εk+1 has to belong to the same set (invariance mode)

2. if εk is outside of [−e, E] it will be steered back into [−e, E] in a predetermined number of steps (recovery
mode)

Whenever the computation time deviates from the predicted range, it is possible that the scheduling error exits the
invariant region, thus the recovery control mode is used to steer it back into the region.

A theoretical discussion on conditions for such a controller to exist as well as on the problem of mistaken
predictions (i.e. ck /∈ [hk, Hk]) can be found in the cited paper. In this context we just summarise results on how
to choose the bandwidth:

step k) choose Bk such that:

Bk ∈
[

Hk

T (1+E−S(εk)) ,
hk

T (1−e−S(εk))

]

, if εk ≤ ε1

Bk ∈
[

Hk

T (1+E−S(εk)) , Bmax

]

, if ε1 < εk ≤ ε2

Bk = Bmax, if εk > ε2

(5)

where ε1 = 1 − e − hk

TBmax
and ε2 = 1 + E − Hk

TBmax
.

step 0) choose b0 in the same range as for a negative scheduling error.

The control formula just showed embeds the simplest recovery policy, which assigns the maximum available
bandwidth in such situations. Though, alternative policies are also possible, aiming at achieving a proper trade-off
between the speed of the recovery and the expense in terms of used bandwidth. For example, it is possible to force
an exponential reduction of the gap between the scheduling error value and the invariance region.

3.3. Stochastic dead beat approach

This control scheme attacks the design problem in the stochastic domain. The goal is to choose a bandwidth
such that the expectation of the next scheduling error be equal to a desired value. The expectation that we are
considering is conditioned to the past evolution of the system. If the desired value is zero we refer to the controller
as Stochastic Dead Beat (SDB). It is possible to prove that the control law having such a property, and satisfying
the saturation constraint, can be expressed as follows:

Bk =

{

µCk

T (1−S(εk)) if εk < 1 −
µCk

Bmax

Bmax if εk ≥ 1 −
µCk

Bmax

. (6)

If εk > 1−
µCk

TBmax
, then it is not possible to guarantee that the expected next error be zero. For this control scheme

the information Ik required from the predictor is µCk
, i.e. the expectation of ck conditioned to the past evolution

of the system. This can be done, for example, with a moving average performed on last execution times. Despite
its simplicity, this technique is able to achieve a very good performance, as we will show in Section 5.

8

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

-1 -0.5 0 0.5 1

Cost optimum
Stochastic Dead Beat

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

-1 -0.5 0 0.5 1

Figure 4. Optimal B(ε) function for the optimal cost approach compared with SDB.

3.4. Optimal cost approaches

This technique is also based on the framework of stochastic control. In particular, taking inspiration from
dynamic programming techniques [25], the controller chooses the value for the bandwidth Bk so as to optimise
the expectation w(ε, b) (conditioned to the past evolution of the system) of a cost function w(ε, b). Such a function
expresses, at step k, the cost to pay if we choose the bandwidth value bk = b, if the achieved next system state is
εk+1 = ε.

In particular we chose a cost function accounting for the deviation of the next scheduling error from zero, and
the bandwidth being used: w(εk+1, b) = γε2

k+1 + (1− γ)b, where γ ∈]0, 1[allows us to decide different tradeoffs
attaching more importance to the scheduling error and to the used bandwidth.

In case εk = 1, the minimum is immediately found as Bk = 3

√

2 γ
1−γ

(σ2 + µ2). In the other cases the following

formula holds:

Bk(εk) = 3
√

ρ + δ(εk) + 3
√

ρ − δ(εk)

ρ =
γ(σ2 + µ2)

(1 − γ)

δ(ε) =

√

(

γ

1 − γ

)2

(σ2 + µ2)2 +

(

2

3

µγ[1 − S(εk)]

1 − γ

)3

This formula can be directly used for all εk ≤ ε∗ = 1 + 3
2µC

3

√

γ
1−γ

(σ2 + µ2), which is the range for which δ(εk)

is real. As for the case of SDB, we used µ for the expectation of ck, while σ denotes its standard deviation. For
εk > ε∗, the formula still holds if computations are properly performed in the complex domain. Furthermore,
note that the optimum bandwidth value found with this formula is subject to the usual saturation constraint due
to Bmax. Both quantities are conditioned to the past evolution of the system and are the required output of the
predictor for this control scheme.

Figure 4 reports the optimal B(εk) function for a particular set of parameters. The same figure makes also a
comparison with the bandwidth function in (6).

An important problem with this approach is that the computation of the bandwidth requires several floating
point operations for which it is not immediate to achieve an efficient kernel implementation. For fixed µ and σ the
problem is relatively simpler in that it is possible to do efficient linear interpolations of the curve. For dynamically
changing parameters, more sophisticated techniques are required and they are currently under investigation.

Minimum expected square scheduling error A special case for the technique shown above is when γ = 1. In
this case, the controller minimises, at each step, the expectation of the squared value of the next scheduling error,
subject to the saturation constraint. The optimisation problem yields, in this case, a simpler formula for the control

9

law:

B(εk) =

{

σ2+µ2

µ[1−S(ε)] if ε < 1 − σ2+µ2

µBmax

Bmax if εk ≥ 1 − σ2+µ2

µBmax

. (7)

It is easy to show that this solution is only valid if Bmax > σ2+µ2

µ
= µ + σ2

µ
. If such relation does not hold, the

optimal control reduces to the trivial law always returning Bmax.
The optimal bandwidth assignment that we got is equal to the one given by the SDB formula (6), plus a factor

that is proportional to the input process variance σ2. Perfect equivalence with SDB is there only in the limit for
σ → 0. This is reasonable: since here we want to minimise the squared value of εk rather than its expectation, we
have to take into account the standard deviation deviation σ using larger bandwidth values to compensate for it.

4. Architecture of OCERA implementation

The applications to be scheduled with the techniques considered so far are soft real-time by nature. Thus it is
of paramount importance to provide an implementation of such techniques in the context of a general purpose OS,
where such applications are mostly used. We proved this to be feasible by providing a reference implementation
in the Linux kernel, which is described in this section.

The implementation has been carried out in the context of the OCERA project, financially supported by the
European Commission under the IST programme, fifth framework. The aim of the OCERA project is to enhance
the real-time characteristics of Linux for both hard and soft real-time systems by providing a set of open software
components. Although OCERA provides a high level of flexibility, allowing one to configure the system by
selecting the appropriate components2, in this paper we will focus on the soft real-time components, describing
how adaptive reservations are implemented.

In OCERA, soft real-time tasks are implemented as regular Linux processes running in user space, and some
scheduling modules are used to implement resource reservations as shown in Figure 5. The QRES module im-
plements the resource reservation algorithm used for scheduling soft real-time tasks. The QSPV module provides
is the QoS Supervisor that provides the admission control policy, whereas a set of QoS management modules
implement the QoS control techniques described in Section (3). This orthogonal separation among the different
components is very useful because it permits to change “on-the-fly” the behaviour of any of the components and
try out different feedback control architectures. In particular, the CPU allocation mechanism (the RB scheduler)
is separated from the policy implemented by the QoS modules. Moreover, both the scheduler and the controller
are not hardwired in the operating system and they can be dynamically changed at run-time by simply insert-
ing/removing kernel modules. Finally, it is possible to have at the same time two or more control algorithms
running in the same system, each one serving a group of different tasks.

4.1. Generic Scheduler Patch

As previously said, the scheduling mechanism and bandwidth management policies are implemented by load-
able modules. Such modules can customise the Linux scheduler’s behaviour by using some symbols exported
by the Generic Scheduler (gensched) patch. The gensched patch is a non-intrusive kernel patch that simply im-
plements some hooks exporting them to loadable modules and it is a fundamental component of the OCERA
architecture.

To better understand how our scheduler works, we will briefly recall here the structure of the Linux scheduler.
The standard Linux kernel provides three scheduling policies: SCHED RR, SCHED FIFO and SCHED OTHER.
The first two policies are the “real-time scheduling policies”, based on fixed priorities, whereas the third one is

2See http://www.ocera.org for a complete description

10

Linux Scheduler

QMgr1 Module

Task 1

QMgr2 Module

Task 3 Task 4 Task 5

Linux Kernel

QRes Module

Qos Supervisor

Task 2

Figure 5. Structure of the soft real-time configuration of OCERA.

the default time-sharing policy. Linux processes are generally scheduled by the SCHED OTHER policy, and can
change it by using the sched setscheduler() system call when they need real-time performance.

The Linux scheduler works as follows:

• The real-time task (SCHED RR or SCHED FIFO) having the highest priority is executed. If SCHED FIFO
is specified, then the task can only be preempted by higher priority tasks. If SCHED RR is specified, after
a time quantum (typically 10 milliseconds) the next task with the same priority (if any) is scheduled (with
SCHED RR, all tasks with the same priority are scheduled in round robin).

• If no real-time task is ready for execution, a SCHED OTHER task can be executed.

Our scheduling module forces the Linux scheduling decisions by using the SCHED FIFO policy and by setting
the real-time priority of the selected task to the maximum possible value: in this way, no big modifications to
the standard Linux scheduler are needed. To perform its scheduling decision, a scheduling module will need to
intercept some relevant kernel events, select the task to be executed according to our customised policy, and raise
its priority to the highest possible value. Then, the Linux scheduler will automatically be invoked when returning
to user space and will dispatch the selected process.

The interesting events that we need to intercept are job arrivals, job finishings, process creations, and process
terminations. In our framework, a job finishing corresponds to a task that blocks waiting for some event and a
job arrival corresponds to a tasks that is unblocked. The gensched patch permits to easily intercept such events by
exporting a set of function pointers, called hooks, that allow one to execute custom code segments when the events
are triggered. For example, when a task blocks waiting for some event, the block hook is checked, and, if set,
the corresponding function is invoked.

The most important hooks are: the block and unblock hooks, invoked when a task blocks and unblocks
(job arrival and finishing), the fork and cleanup hooks, invoked when a task is created and terminated, and the
setsched hook, invoked when the scheduling policy is changed. Initially, all hooks are unset in the kernel, and
are not used.

Thus, modules that need to customise the scheduler behaviour, like our QRES module, may set the hooks to
point to their appropriate handlers implementing the new behaviour. A more detailed description of the implemen-
tation of the generic scheduler patch and of the scheduling module can be found in [5].

11

4.2. Scheduling Module

The QRES scheduling module implements the CBS algorithm by Abeni and Buttazzo [3]: the CBS belongs
to the class of the RB algorithms, described in Section 2.2, and is based on the earliest deadline first scheduler
(EDF) [16]. In the original formulation, the CBS algorithm provides soft reservations; in our implementation we
modified it to provide hard reservations (refer to [22] for a description of hard vs soft reservations). All the basic
properties of the CBS scheduler still hold for our implementation, and the dynamical model described in Section
2.2 is still applicable. Since EDF is an optimal scheduling strategy on single processor systems, for the CBS
algorithm theoretically Ulub is 13.

Once the QRES module has been loaded into the kernel, a task can require to be scheduled according to a RB
policy by invoking the sched setscheduler() system call with the policy SCHED CBS. After such a call, the
QRES hook handlers will intercept all scheduling events related to that task, implementing the desired scheduling
policy. The sched setscheduler() system call is also used by the task to specify scheduling parameters,
through the use of an extended version of the structure sched param. Specifically, the task is required to provide
the desired budget and period into this structure.

The QRES implements the CBS algorithm by maintaining an internal queue of reservations ordered according
to EDF. Whenever a block or unblock hook is invoked, the QRES module executes the proper rule of the
CBS algorithm updating its internal variables and the EDF queue. Then, the first task in the queue is assigned the
highest real-time priority, so that the Linux scheduler will dispatch it.

4.3. QoS Supervisor Module

Every time a certain bandwidth request is issued by a task, the system must check if there is enough free
bandwidth to satisfy the request. This situation occurs when a new fixed reservation is created and every time a new
value is required by the feedback mechanism of an adaptive reservation. This admission control is performed by the
QoS supervisor module (denote with QSPV in Figure 5) upon every call of functions request qres create,
request qres change budget. Both functions are called by the handler of the setsched hook, which, in
its turn, is called upon every invocation of the scheduler setsched() system call.

Three different flavours of this module exist, each one implementing a different admission control policy: sat-
uration, compression and reject. They differ in their response to requests that cannot be accommodated. In all
cases, if the sum of the CPU utilisations of the existing reservations, plus the utilisation of the new reserva-
tion, does not exceed Ulub, then the request is forwarded to the setsched handler of the QRES module; the
sched setscheduler() succeeds and the task will be scheduled according to the CBS algorithm with the
specified parameters.

If there is not enough bandwidth to serve the new request, the action depends on the selected policy:

• In case the saturation policy is selected, the highest possible budget is assigned to the task so that the total
CPU utilisation does not exceed Ulub. The setsched handler of the QRES module is called with the new
budget.

• In case the compression policy is selected, all the reservations are recomputed (“compressed”) so that we can
make enough space for the new request. See [4, 2] for a detailed description of the compression algorithm.
For each existing reservation, the setsched handler of the QRES module is invoked with the new budget
value.

3Actually, due to the overhead of the kernel, Ulub is slightly less than 1. In most practical experiments, Ulub was set equal to 0.98.
However, in certain limit cases (for example when the period of the reservation is very short) the overhead is significantly higher and Ulub

can significantly decrease.

12

int main() {
// initialisation
sched param param;
// init controller parameters
qmgr create(SCHED QMGR1, ¶m);
while (1) {

//main loop code
qmgr end cycle();
wait period();

}
}

Figure 6. Typical structure of a cyclic task.

• In case the reject policy is specified, the sched setscheduler() returns with error and the task is
scheduled in background.

The QSPV module is also used by the QoS Manager to dynamically change the budget of an existing reservation
according to the feedback control algorithm.

4.4. The QoS Manager module

We provide different QoS management modules (denoted with QMGR1 and QMGR2 in Figure 5) that can coexist
in the same system. Each module provides a different controller strategy and can serve more than one task. Indeed,
different applications may need different controller strategies (in particular, the Predictor component in Figure 3
should be customised to the application needs). Each module will manage all tasks with the same characteristics,
which presumably needs to be managed using the same control algorithm.

A task can choose the QoS manager for its execution by specifying, in the sched setscheduler() call,
the SCHED QMGR1, SCHED QMGR2, etc. . . scheduling policy, and by providing proper parameters to the module
through the sched param structure.

A task using adaptive reservations must be linked with a qoslib library, which provides some commodity
function implementing the user-level part of the feedback strategy. Recall that only periodic tasks are considered
in this paper. As a result, a task attached to an adaptive reservation will have the structure shown in Figure 6.

The sequence of invocations is shown in the sequence diagram in Figure 7. In order to leave the kernel API unaf-
fected by our changes, invocations to qmgr create and to qmgr end cycle() use the sched setscheduler
system call to communicate with the kernel. At the beginning, the task must perform an initialisation phase in
which the setsched hook of the QMGR1 module is invoked. After storing the controller parameters in its inter-
nal data structures, the QMGR1 module invokes the qspv request create() function of the QSPV module
to initialise the reservation budget and period. After initialisation, the task enters a loop. Each execution of the
loop corresponds to a job of the task. For example, in case of a MPEG decoder, a job may correspond to the
decoding of one frame. At the end of the loop, the task signals the QMGR the termination of the job by invoking
the qmgr end cycle() function provided by the qoslib. The qoslib will then call the proper QMGR1
handler, which, in turn, calls the qres get consumed() function of the QRES module to obtain the amount
of budget consumed by the job. Then, the control law is applied and a new budget is computed and set with the
qspv change budget() function of the QSPV module.

If there is not enough free bandwidth to accommodate the request with the new budget, the QoS supervisor can
implement the three possible behaviours described above: saturation, compression, or reject (see [4, 2]). In any
case, the qspv change budget() returns the actual value of the budget that has been set.

13

Figure 7. Sequence diagram that shows the interaction between the QMGR, the QSPV and the QRES
modules.

Finally, the task blocks waiting for the next periodic event by calling the wait period() function provided
by qoslib. The periodic behaviour of the task is application dependent. In other words, it is the responsibility of
the application to set up a periodic timer event and to block waiting for the event (although the qoslib provides
some helper functions for setting up periodic tasks).

5. Experimental results

In this section we report experimental results gathered on a real Linux system. The considered application is
a MPEG decoder. While the OS infrastructure described above is at advanced testing stage, the adaptation of
a MPEG player (namely, the xine [30] player) is still under way. Therefore, we emulated the behaviour of the
decoder by a task that periodically reads a trace file and, for each job, consumes a time equal to the one read from
the file. The trace file, provided by Philips Research labs, refers to the same movie the segment in Figure 1 is taken
from. We verified that the overhead introduced by the overall scheduling mechanism was sustainable to the point
where we could perform the experiments on a slow machine (a first generation Pentium operated at 166MhZ).

In the first experiment, we show the benefit of adopting a feedback scheduling mechanism as opposed to a static
allocation of the bandwidth. In the second set experiment we compared the performance of different controllers.
Finally, in the third experiment, we evaluated the influence of the predictor component.

Benefits of feedback Consider again the MPEG decoding times shown in Figure 1. The scheduling error evolu-
tion achieved by a SDB controller is reported in Figure 8. The expected value µCk

is approximated by the predictor
by performing a moving average of the last ten samples.

The only significant overshoot (around the 790th sample) is due to a swift scene change, which causes a tempo-
rary anomaly in predictor output. The problem is transient and it is soon recovered. A visual comparison between
Figure 1 and Figure 8 is illustrative of the extent of the achieved improvement.

A more quantitative assessment can be made looking at experimental statistics reported in Table 1. The first
three rows are referred to a statical allocation of bandwidth. For high values of the bandwidth, the mean scheduling
error tends to negative values revealing a wasteful allocation. Notably the mean squared scheduling error - which
is a metric encompassing both performance and efficiency - tends to increase with the bandwidth overallocation.
On the contrary if the bandwidth is too small (as in the third row of the table) we may have a blow up of the

14

-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

200 400 600 800 1000 1200

k

e(k)

Figure 8. Scheduling error evolution resulting from the application of SDB controller to the input
sequence of Figure 1(a).

Algorithm Mean of εk Std Dev of εk Mean of ε2
k Mean of Bk

Static Alloc. (B=0.65) 1.845480 6.802540 49.680365 –
Static Alloc. (B=0.70) -0.109443 0.196325 0.050522 –
Static Alloc. (B=0.75) -0.189233 0.120037 0.050218 –
PI (poles in 0.9, 0.001) 0.001980 0.138938 0.019308 0.643467
Optimal cost (γ = 0.75) 0.102481 0.070175 0.015427 0.607399

Invariant ([−e, E] = [−0.16, 0.16]) 0.014971 0.074434 0.005764 0.616828
SDB 0.004612 0.063865 0.004099 0.617666

Table 1. Quantitative performance evaluation based on experimental statistics.

mean squared scheduling error, meaning a remarkable degradation of the experienced Quality of Service (as it is
pictorially shown in Figure 1.b). By varying the bandwidth between these extreme behaviours, it is possible to
find the bandwidth value that minimises the mean squared error. The remaining rows of the table show the results
that we obtained with feedback algorithms. In the first place, such algorithms have self-tuning abilities (we need
not any prior knowledge of the application needs, as is the case for static allocation). The improvement in the
mean squared scheduling error achieved by feedback scheduling algorithms with respect to the static allocation
is absolutely evident. Moreover, it is remarkable that even in presence of a performance improvement of at least
50% all control algorithms use a mean bandwidth that is largely smaller than all static allocation reported in the
table.

Comparing different controllers. In this section we compare the performance of four different controllers: 1)
the switching PI controller [6, 17], 2) the invariant based controller [21], 3) the stochastic deadbeat controller, 4)
the optimal cost controller. The experimental Probability Density Functions (PDF) resulting from the application
of the four controllers are reported in Figure 9 and Figure 10. A more quantitative evaluation can be made
looking at Table 1. A preliminary work was to hand-tune the parameters of the controllers so as to optimise their
performance (in order to get a fair comparison).

As Figure 9 demonstrates, the switching PI controller is largely outperformed by both the invariant based and
the stochastic dead beat schemes. The comparison between the SDB and the invariant based solution reveals very
similar performance, and the impression is confirmed by the value of the mean squared error in Table 1. A strength
of the SDB is its extreme simplicity, while the invariant based solution allows for more flexibility to the price of a
greater design complexity.

In Figure 10 we compare the SDB and optimal cost approaches. Regarding the optimal cost controller, we
report the results for two values of the γ parameter. In the first case we chose γ = 0.90, thus weighing very much
the importance of the scheduling error. With respect to the SDB case, the PDF is shifted to the right; this is because

15

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Stoch. Dead Beat (12 averages)
Invariant based (12 averages)

Optimal Cost (gamma=0.75, 12 averages)
Switching PI (Z1=0.001, Z2=0.9)

Fixed (B=0.70)

Figure 9. Experimental scheduling error PDF achieved by the stochastic based control schemes
compared to the one achieved by the switching PI and a fixed bandwidth allocation.

0

1

2

3

4

5

6

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

Stoch. Dead Beat
Optimal Cost (gamma=0.9)

Optimal Cost (gamma=0.75)

Figure 10. Experimental scheduling error PDF achieved by different stochastic based control
schemes.

the optimal cost controller achieves a trade-off between bandwidth consumption and performance. Attaching even
more importance to the bandwidth (γ = 0.75), the curve is further shifted to the right. Performance in terms
of the scheduling error degrades, but the system tends to “save” bandwidth for other tasks (as it is possible to
see in the last columnt of Table 1). As pointed out earlier, this flexibility is payed in terms of computational
complexity. Finally, the performance of the algorithms along with the average used bandwidth is pictorially
reported in Figure 11.

The importance of the predictor quality A first naive scheme for predicting computation times is based
on a moving average of a certain number of samples for the computation times. This scheme does not take into
account any peculiarity of the considered stochastic process. Actually, each application is characterised by peculiar
properties on the input process that can be leveraged in order to improve the prediction, hence the closed-loop
performance.

In our case we are dealing with an MPEG2 movie, consisting of a sequence of frames belonging to three classes
I , P , B[28]. A common class of MPEG movies (typically used for DVD) has a periodic structure in the frame
types, i.e. there exists a fixed sequence of frame types that repeats itself during the movie (a common example
is IBBPBBPBBPBBIBBP ...). The traces that we considered are derived from a DVD and have precisely
such a structure (with periodicity 12). This is reflected in the autocorrelation function (see Figure 12), where
peaks reveal that a I sample is highly correlated with the I sample of the next period, and so for the other frames
in the period. Such a consideration suggests to use several moving averages in the predictor. A first possibility

16

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.6 0.62 0.64 0.66 0.68 0.7 0.72

A
ve

ra
ge

 s
qu

ar
e

er
ro

r

Average used bandwidth

Static (B=0.70)
Optimal Cost

Invariant based
PI

SDB

Figure 11. Graphical comparison of the performance of different feedback controllers.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

Figure 12. Autocorrelation function for the considered MPEG movie

is to use three moving averages: one for each class of frames. A second, more expensive, possibility is to use
twelve moving averages (one for each position in the periodic sequences). Figure 13 compares the performance
obtained by a SDB controller with the three types of predictors. As shown in the picture, the more sophisticated
the predictor the narrower the resulting PDF, i.e. the more accurate the control results.

6. Conclusions and future work

In this paper, we addressed the problem of scheduling soft real-time systems by using reservation based schedul-
ing techniques augmented by feedback control strategies.

We presented two important contributions to this problem. First, we proposed three new control strategies
that are inspired to the ideas of stochastic control. We compared the performance of these new controllers with
previous approaches.

Second, we described a software architecture for feedback control in the Linux operating system. The archi-
tecture has been implemented with a minimal set of modification to the Linux kernel. The software components
are implemented as dynamically loadable kernel modules, and are organised according to a layered and modular
structure. Thus the system is easy to modify and customise to different application needs.

In the next future, we will apply these techniques to different classes of applications, including an MPEG
player, to demonstrate their effectiveness. Moreover, we want to consider alternative architectural solutions. An
interesting possibility could be moving some of the QoS manager functionalities from kernel to user space. This
would provide the QoS manager with additional flexibility than the one available in the kernel.

From a control theoretical point of view, we would like to attack the problem of scheduling tasks that use more
resources (disk, network, etc.) in a coordinate way. In fact, a task may need different resources, other than the
CPU, to complete its jobs. We could apply reservation based scheduling to other resources, but this allocation

17

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

12 Moving Averages
3 Moving Averages

Single Moving Average

Figure 13. Scheduling error PDF obtained with a single moving average vs. 3 and 12 multiple moving
averages.

must be coordinated in order to ensure a global QoS level.

References

[1] S. Abdelwahed, N. Kandasamy, and S. Neema. Online control for self-management in computing systems. In Proc. of
10th IEEE Real-Time and Embedded Technology and Applications Symposium, Toronto, Canada, May 2004.

[2] L. Abeni. Supporting time-sensitive Activities in a Desktop Environment. PhD thesis, Scuola Superiore S. Anna,
December 2002.

[3] L. Abeni and G. Buttazzo. Integrating multimedia applications in hard real-time systems. In Proceedings of the IEEE
Real-Time Systems Symposium, Madrid, Spain, December 1998.

[4] L. Abeni and G. Buttazzo. Adaptive bandwidth reservation for multimedia computing. In Proceedings of the IEEE Real
Time Computing Systems and Applications, Hong Kong, December 1999.

[5] L. Abeni and G. Lipari. Implementing resource reservations in linux. In Proceedings of Fourth Real-Time Linux
Workshop, Boston, MA, December 2002.

[6] L. Abeni, L. Palopoli, G. Lipari, and J. Walpole. Analysis of a reservation-based feedback scheduler. In Proc. of the
Real-Time Systems Symposium, Austin, Texas, November 2002.

[7] G. T. C. Lu, J. Stankovic and S. Son. Feedback control real-time scheduling: Framework, modeling and algorithms.
Ppecial issue of RT Systems Journal on Control-Theoretic Approaches to Real-Time Computing, 23(1/2), September
2002.

[8] A. Cervin, J. Eker, B. Bernhardsson, and K.-E. Årzén. Feedback-feedforward scheduling of control tasks. Real-Time
Systems, 23(1), July 2002.

[9] F. J. Corbato, M. Merwin-Dagget, and R. C. Daley. An experimental time-sharing system. In Proceedings of the AFIPS
Joint Computer Conference, May 1962.

[10] E. Eide, T. Stack, J. Regehr, and J. Lepreau. Dynamic cpu management for real-time, middleware-based systems. In
Proc. of 10th IEEE Real-Time and Embedded Technology and Applications Symposium, Toronto, Canada, May 2004.

[11] J. Eker. Flexible Embedded Control Systems: Design and Implementation. PhD thesis, Department of Automatic
Control, Lund Institute of Technology, 1999.

[12] G.Lipari and S. Baruah. Greedy reclaimation of unused bandwidth in constant bandwidth servers. In IEEE Proceedings
of the 12th Euromicro Conference on Real-Time Systems, Stokholm, Sweden, June 2000.

[13] P. Goyal, X. Guo, and H. M. Vin. A hierarchical cpu scheduler for multimedia operating systems. In Proceedings of
the 2nd OSDI Symposium, October 1996.

[14] B. Li and K. Nahrstedt. A control theoretical model for quality of service adaptations. In Proceedings of Sixth Interna-
tional Workshop on Quality of Service, 1998.

[15] http://www.linux.org. Linux Official Website.
[16] C. L. Liu and J. Layland. Scheduling alghorithms for multiprogramming in a hard real-time environment. Journal of

the ACM, 20(1), 1973.
[17] C. Lu, J. A. Stankovic, T. F. Abdelzaher, G. Tao, S. H. Son, and M. Marley. Performance specifications and metrics for

adaptive real-time systems. In Proceedings of the 21th IEEE Real-Time Systems Symposium, Orlando, FL, December
2000.

[18] C. W. Mercer, S. Savage, and H. Tokuda. Processor capacity reserves for multimedia operating systems. Technical
Report CMU-CS-93-157, Carnegie Mellon University, Pittsburg, May 1993.

[19] T. Nakajima. Resource reservation for adaptive qos mapping in real-time mach. In Sixth International Workshop on
Parallel and Distributed Real-Time Systems (WPDRTS), April 1998.

18

[20] L. Palopoli, L. Abeni, and G. Lipari. On the application of hybrid control to cpu reservations. In Hybrid systems
Computation and Control (HSCC03), Prague, april 2003.

[21] L. Palopoli, T. Cucinotta, and A. Bicchi. Quality of service control in soft real-time applications. In Proc. of the IEEE
2003 conference on decision and control (CDC02), Maui, Hawai, USA, December 2003.

[22] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa. Resource kernels: A resource-centric approach to real-time and
multimedia systems. In Proceedings of the SPIE/ACM Conference on Multimedia Computing and Networking, January
1998.

[23] D. Reed and R. F. (eds.). Nemesis, the kernel – overview, May 1997.
[24] J. Regehr and J. A. Stankovic. Augmented CPU Reservations: Towards predictable execution on general-purpose

operating systems. In Proceedings of the IEEE Real-Time Technology and Applications Symposium (RTAS 2001),
Taipei, Taiwan, May 2001.

[25] S. Ross. Introduction to stochastic dynamic programming. Academic Press, 1983.
[26] http://www.aero.polimi.it/ rtai/. RTAI Official Website.
[27] http://www.fsmlabs.com. FSMLabs - RTLinux Official website.
[28] I. I. Standard. Iso/iec jtc1/sc29/wg11 mpeg-2: Generic coding of moving pictures and associated audio information,

August 2000.
[29] D. Steere, A. Goel, J. Gruenberg, D. McNamee, C. Pu, and J. Walpole. A feedback-driven proportion allocator for

real-rate scheduling. In Proceedings of the Third usenix-osdi. pub-usenix, feb 1999.
[30] http://xine.sourceforge.net. Xine Official Website.
[31] R. Zhang, C. Lu, T. F. Abdelzaher, and J. A. Stankovic. Controlware: A middleware architecture for feedback control

of software performance. In Proc. of International Conference on Distributed Computing Systems, Vienna, Austria,
July 2002.

19

