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Abstract—A central issue for verifying the schedulability of hard real-
time systems is the correct evaluation of task execution times. These
values are significantly influenced by the preemption overhead, which
mainly includes the cache related delays and the context switch times
introduced by each preemption. Since such an overhead significantly
depends on the particular point in the code where preemption takes
place, this paper proposes a method for placing suitable preemption
points in each task in order to maximize the chances of finding a
schedulable solution.

In a previous work, we presented a method for the optimal selection of
preemption points under the restrictive assumption of a fixed preemption
cost, identical for each preemption point. In this paper, we remove
such an assumption, exploring a more realistic and complex scenario
where the preemption cost varies throughout the task code. Instead
of modeling the problem with an integer programming formulation, with
exponential worst-case complexity, we derive an optimal algorithm that
has a linear time and space complexity. This somewhat surprising result
allows selecting the best preemption points even in complex scenarios
with a large number of potential preemption locations. Experimental
results are also presented to show the effectiveness of the proposed
approach in increasing the system schedulability.

1 INTRODUCTION

A key element to guarantee the timing constraints of hard real-
time systems is a precise knowledge of tasks characteristics.
In particular, while periods and deadlines are assigned by the
system designer to meet specific performance requirements,
task computation times depend on the task code and input
data, and hence may be subject to high variations. To perform
feasibility analysis in worst-case conditions, task computation
times are thus upper bounded by worst-case execution times
(WCETs), that are typically estimated by appropriate timing
analysis tools. However, a precise WCET estimation is quite
difficult to achieve, and current tools can only provide large
upper bounds computed under very pessimistic assumptions,
dictated by the low-level mechanisms of modern computer
architectures. For example, since preemptions destroy program
locality, WCET estimates of preemptive tasks are computed
by assuming worst-case cache related delays, given by the
extra operations needed for refilling the cache lines evicted
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by the preempting task. Additional overhead is due to the
context switch time and to the time needed to invalidate the
instruction pipeline after each preemption. Finding a precise
estimation of preemption costs is therefore crucial for deriving
tight schedulability conditions.
Less pessimistic WCET bounds can be obtained either by

refining the timing analysis tools, or by adopting suitable
scheduling algorithms to limit the number of preemptions as
much as possible. The first approach has been targeted by
many papers in the timing analysis domain [3], [4], [16],
[20], [23], [27], [28], [32], and will not be discussed here.
The second approach has been introduced in [24], [31] and
consists in deferring a preemption request until a point in
which the resulting Cache Related Preemption Delay (CRPD)
is small, without imposing an excessive blocking on the
preempting job. The knowledge of the deterministic location
of the preemption points can be exploited to simplify the
analysis of the cache state at each point, so improving the
estimation of the preemption overhead. Specific experiments
on CRPD showed that WCET can increase up to 40% in
the presence of preemptions, with respect to a fully non-
preemptive execution [26].
In [10], we tackled the problem of finding the best possible

placement of preemption points under the restrictive assump-
tion of a fixed context-switch overhead, identical for each
preemption point. The analysis was presented for both Fixed
Priority (FP) and Earliest Deadline First (EDF) scheduling, by
computing the maximum time-interval for which each task can
execute in non-preemptive mode without causing any deadline
miss. However, the assumption of a fixed preemption cost
turns out to be very pessimistic, since to be conservative
we considered that each task experiences the maximum pre-
emption overhead at all preemption locations, without taking
advantage of points at which a preemption would cause a
reduced overhead (e.g., between two frames of an MPEG
decoding application).
Contributions: In this paper, we improve the task model

by removing the restriction of considering a fixed overhead
for each preemption point, so obtaining a more realistic and
interesting scenario in which the preemption cost depends
on the particular location at which a task is preempted. The
information on the preemption cost can be provided by exist-
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ing timing analysis tools, along with the worst-case execution
time of each non-preemptive chunk of code. We show how
to optimally select the preemption points under such a model
on a single processor system, in such a way that, if a feasible
schedule is not found by the proposed method, then no other
strategy can lead to a feasible solution. While the problem
could be solved using an integer programming formulation, its
exponential worst-case complexity would make it intractable
in typical scenarios, where the number of potential preemption
points can be very high. Instead, we managed to find a
much more efficient solution that has a linear complexity both
in space and time. The final outcome is a fully integrated
approach that allows the automatic placement of preemption
points, without user intervention, for applications that can be
modeled as a sequential flow of basic blocks of code. A set of
experiments is presented to prove the effectiveness of the pro-
posed approach in increasing the system schedulability. First,
some tasks coming from real applications are characterized in
terms of WCETs and preemption costs, using timing analysis
tools, and the results are used to derive a model for generating
a synthetic workload with realistic preemption costs. Then,
the proposed placement algorithm is applied to a realistic
set of synthetic tasks, showing that a smart preemption point
selection can significantly reduce the WCET of each task, so
improving system schedulability. As already mentioned, the
run-time complexity of the selection algorithm is linear in the
number of basic blocks, so that the additional computational
cost is negligible when compared to the cost of the classic
timing analysis.
Organization of the paper: The remainder of the paper is

organized as follows. Section 2 reviews previously proposed
scheduling algorithms that adopt hybrid preemption policies.
Section 3 presents the adopted system model and terminology,
along with the assumptions made to simplify the analysis.
Section 4 reminds some useful results on the schedulability
analysis of systems scheduled using a deferred preemption
scheduler. Section 5 illustrates the proposed preemption point
placement algorithm. The complexity of the proposed ap-
proach is evaluated in Section 6, along with implementation
related issues. Section 7 reports a set of experiments aimed at
evaluating the effectiveness of the method. The validity of the
adopted system model is discussed in Section 8, suggesting
future research directions that relax the assumptions made in
this work. Finally, Section 9 states our conclusions.

2 RELATED WORK

The research on hybrid preemption strategies is receiving an
increasing attention in the real-time research community [14],
[11], [29], [10], [31], [24], [15], [33], [30] as well as in
industrial environments [17], [18]. This is mainly due to the
problems that fully preemptive approaches create in terms of
cache performance and WCET analysis. On the other side,
non-preemptive schedulers [19], [7] are not able to achieve
a high utilization, because of the large blocking imposed to
high priority jobs. For these reasons, alternative preemption
strategies have been investigated to achieve higher utilizations
at a reduced preemption overhead.

The deferred preemption model has been proposed by Burns
in [15]. According to this model, each task is composed of
a sequence of non-preemptive regions separated by a fixed
preemption point. The advantage of this approach is that the
timing analysis is significantly simplified since a task can be
preempted only at a limited set of pre-defined locations. An
exact schedulability analysis for fixed priority scheduling with
deferred preemptions has been presented in [13], deriving a
pseudo-polynomial test that needs to take into account only
the maximum and the last non-preemptive regions of each
task.
A different model has been proposed by Baruah [6], who

proposed a method for computing the maximum amount of
time Qi for which a task τi may execute non preemptively
still preserving feasibility. Under this model, non-preemptive
regions are not defined a priori, but are triggered by a
preemption request from a higher priority job. In other words,
an executing task will switch to non-preemptive mode as soon
as a higher priority job arrives, postponing the preemption after
Qi time-units (or earlier in case the executing task completes
before). Since the location of the preemption points is not
deterministic and non-preemptive regions can be everywhere
in the task’s code (excluding the first Qi time-units), this
model is also called floating non-preemptive region model.
In [11] and [35], a method is presented to compute the largest
non-preemptive region lengths that allow each task to meet its
deadline, under both FP and EDF.
An alternative hybrid preemption strategy, based on the

concept of preemption threshold, has been presented in [33].
According to this policy, each task is assigned a nominal
priority and a preemption threshold. A preemption will take
place only if the preempting task has a nominal priority greater
than the preemption threshold of the executing task. An exact
schedulability analysis for FP with preemption thresholds has
been presented in [22]1. Although the number of preemptions
is reduced with this method, a preemption can still occur
at any time and position, so that timing analysis techniques
cannot take advantage of additional information to simplify
the estimation of the WCETs.
Finding tight estimations of the WCET of critical tasks is

a problem that has been widely considered in the real-time
community (a good survey on timing analysis techniques can
be found in [34]). As we said, this problem becomes even more
complex when considering preemptive systems with caches,
for which existing techniques are still far from deriving tight
bounds on the preemption overhead. In [16] and [27], two
methods have been presented to integrate the classic Response
Time Analysis with the penalties associated with CRPD,
adding a fixed context-switch cost. A complex but more
precise analysis considering common sets of data between
preempting and preempted tasks has been presented in [23].
With a similar target, Staschulat et al. [32] provided safe
estimations of the CRPD, analyzing the intersection between
the set of useful data—locations that might be accessed again
by a preempted task—and used data—locations that might be

1. The original analysis in [33] was flawed and has been corrected in [30],
which in its turn has been improved by [22].
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accessed by the preempting task. The impact of the data cache
on the overall preemption overhead has been analyzed in [29]
considering as well the case in which tasks can contain one
non-preemptive region. While most of the above works were
based on systems scheduled with FP, Ju et al. [20] proposed
a CRPD analysis for systems scheduled with EDF.
Closer in scope and motivations to our analysis are the

works described in [31], [24]. Both approaches adopt a FP
scheduler with deferred preemptions, with the common target
of reducing the preemption overhead by properly placing the
preemption points. In [31], each task is divided into a set of
intervals, each one shorter than the maximum blocking time
tolerated by higher priority tasks. Then, a preemption point
is placed in each interval, at the location having the smallest
number of useful cache blocks, i.e., cached data that will be
accessed again. In [24], instead, preemption points are inserted
at the locations characterized by a number of useful cache
blocks below a given threshold. Since both approaches adopt
a heuristic strategy for the placement of preemption points,
neither method is able to minimize the CRPD to a full extent,
obtaining only suboptimal solutions.
Our work improves the above results, deriving an optimal

preemption point placement algorithm able to minimize the
CRPD of each task and find a feasible solution, if there
exists one. In [10], we proposed a simpler algorithm that
is optimal when considering a fixed context switch cost at
each preemption point. Since this cost was set to the largest
preemption overhead experienced by a task, the analysis was
rather pessimistic. This work improves the analysis, by taking
advantage of more detailed information on the preemption
overhead at different locations. This is possible by exploiting
the features of modern timing analysis tools – as the Absint’s
aiT2 tool [5] – that are able to evaluate the maximum blocking
time and the context-switch cost for a set of potential preemp-
tion points of a given task.

3 TASK MODEL

We consider a set τ composed of n periodic and sporadic
real-time tasks that are scheduled on a single processor using
Fixed Priority (FP) or Earliest Deadline First (EDF) [25]. Each
task τi generates an infinite sequence of jobs, with the first
job arriving at any time and successive job-arrivals separated
by at least a minimum inter-arrival time Ti, also denoted as
period. Each job of τi is assumed to have a relative deadline
Di ≤ Ti and to consist of a sequence of Ni non-preemptive
Basic Blocks (BBs). Preemption is allowed only at basic block
boundaries, so each task has Ni − 1 “Potential Preemption
Points” (PPPs), one between any two consecutive BBs. Critical
sections and conditional branches are assumed to be executed
entirely within a basic block. In this way, there is no need for
using shared resource protocols to access critical sections.
To limit the preemption overhead, the proposed algorithm

identifies a subset of PPPs that minimizes the overall CRPD
still preserving the schedulability of the task set. A PPP
selected by the algorithm is referred to as an Effective Pre-
emption Point (EPP), whereas the other PPPs are disabled.

2. http://www.absint.com/ait/

Therefore, the sequence of basic blocks between any two
consecutive EPPs forms a Non-Preemptive Region (NPR). The
following notations are used throughout the paper:

CNP
i denotes the non-preemptive WCET of τi, that is, the

WCET (without preemption cost) estimated when τi

is executed fully non preemptively.
Ci denotes the preemptive WCET of τi, that is the

WCET (with preemption cost) estimated when τi is
executed preemptively.

Ti denotes the period of τi or its minimum inter-arrival
time.

Di denotes the relative deadline of τi.
δi,k denotes the k-th basic block of task τi.
bi,k denotes the WCET of δi,k without preemption cost,

that is, when τi is executed non-preemptively.
Ni denotes the number of BBs of task τi, determined by

the Ni − 1 PPPs defined by the programmer.
pi denotes the number of NPRs of task τi, determined

by the pi − 1 EPPs selected by the algorithm.
qi,j denotes the WCET of the j-th NPR of τi, including

the preemption cost.
qmax
i denotes the maximum NPR length for τi:

qmax
i = max{qi,j}

pi

j=1.

ξi,k denotes the worst-case preemption overhead intro-
duced when τi is preempted at the k-th PPP (i.e.,
between δk and δk+1).

To evaluate the preemption cost ξi,k, the following overhead
contributions need to be considered:
• CRPD;
• WCET of the scheduler and related RTOS activities;
• cost for flushing the processor pipeline (if there is any);
• bus contention delay.

Assuming a fully timing compositional architecture [21], like
the ARM7, that does not exhibit any timing anomalies and
with no DMA-capable devices, the above costs can be upper
bounded by timing analysis tools.
We assume tasks to be ordered by decreasing priorities

in the FP case, and by increasing relative deadlines in the
EDF case, i.e., ∀i | 0 < i < n : Di−1 ≤ Di. To simplify
the notation, the task index is omitted from task parameters
whenever the association with the related task is evident from
the context.

Fig. 1. Example of parameters defined for a task with 6
BBs and 3 NPRs. Preemption cost is reported for each
PPPs, but accounted only for the EPPs.

219



Figure 1 illustrates some of the defined parameters for a
task with 6 basic blocks and 3 NPRs. PPPs are represented by
dots between consecutive basic blocks: filled dots are EPPs
selected by the algorithm, while empty dots are PPPs that
are disabled. Above the task code, the figure also reports the
preemption costs ξk for each PPP, although only the cost for
the EPPs is accounted in the analysis, in the WCET qj of the
corresponding NPR.
Using the notation introduced above, the non-preemptive

WCET of τi may be expressed as follows:

CNP
i =

Ni∑
k=1

bi,k.

The goal of this work is to minimize the overall worst-
case execution time Ci of each task τi, including the pre-
emption overhead, by properly selecting the EPPs among all
the PPPs specified in the code by the programmer, without
compromising the schedulability of the task set. To compute
the preemption overhead, we make the following simplifying
assumptions:
A1. The cache is cold after each context switch.
A2. Each EPP leads to a preemption.

Under these assumptions, the overall worst-case execution
time Ci can be computed as follows

Ci = CNP
i +

Ni−1∑
k=1

selected(i,k) · ξi,k (1)

where selected(i,k) = 1 if the k-th PPP of τi is selected by the
algorithm to be an EPP, whereas selected(i,k) = 0, otherwise.
Note that A1. and A2. are pessimistic assumptions. In

particular, if a preempting task has a small cache footprint,
the preempted task might experience a smaller preemption
overhead than that assumed with A1. However, expressing
the preemption overhead as a function of the preempting
task would significantly complicate the analysis, needing to
evaluate how many cached locations are effectively invalidated
at each PPP by each preempting task.
Regarding Assumption A2., there might be cases in which

not all EPPs lead to a preemption. As mentioned in [10], the
fact that an EPP is inserted in the code of a task τi does not
imply that τi will be preempted at that point. For instance,
when there is only one higher priority task τj with a large
period Tj , τi cannot be preempted more than once every
Tj time units. Considering which EPP can effectively lead
to a preemption would significantly complicate the analysis,
needing again to express the preemption overhead as a function
of the preempting task. Moreover, when a task τi can be pre-
empted by more than one task, it is difficult to identify when a
higher priority instance will cause an additional preemption to
τi. In fact, multiple higher priority instances could be executed
within one single preemption of τi, when all such instances
arrive before τi resumes the execution. Techniques to detect
the worst-case preemption pattern that leads to the largest
overhead for τi are presented in [32], [28], [29]. Adapting
these techniques to the limited preemption scheduling model
is beyond the scope of this paper. A more detailed discussion

on the validity of assumptions A1. and A2. and on the problem
of relaxing these assumptions is presented in Section 8.

4 SCHEDULABILITY ANALYSIS

This section briefly summarizes some schedulability results
useful for computing the upper bound of an NPR for each
task. For this purpose, we define the request bound function
RBFi(a) and the demand bound function of a task τi in an
interval a as

RBFi(a) =

⌈
a

Ti

⌉
Ci,

and

DBFi(a) =

(
1 +

⌊
a−Di

Ti

⌋)
Ci.

The maximum allowed non-preemptive execution depends
on the adopted scheduler. The following theorem, derived in
[10], provides an upper bound Qi for the maximum allowed
NPR of a task τi for FP and EDF.

Theorem 1 (from [10]). A task set τ is schedulable with
limited preemption EDF or FP if, for all k | 1 < k ≤ n + 1,

qmax
k ≤ Qk

.
= min

1≤i<k
{βi}, (2)

where, under FP, βi is given by

βFPi

.
= max

a∈{Di}∪A|a≤Di

⎧⎨
⎩a−

∑
j≤i

RBFj(a)

⎫⎬
⎭ , (3)

with A = {kTj, k ∈ N, 1 ≤ j < n}, whereas, under EDF, βi

is given by

βEDFi

.
= min

a∈A|Di≤a<Di+1

⎧⎨
⎩a−

∑
τj∈τ

DBFj(a)

⎫⎬
⎭ , (4)

with A = {kTj + Dj , k ∈ N, 1 ≤ j ≤ n}.

Note that we conventionally set qmax
n+1 = 0, and Dn+1 equal

to the minimum between: (i) the least common multiple (lcm)
of T1, T2, . . . , Tn, and (ii) the following expression3:

max

(
Dn,

1

1− U
·

n∑
i=1

Ui ·max
(
0, Ti −Di

))
.

Notice that, under EDF, Condition (2) is necessary and
sufficient, whereas, under FP, it is necessary and sufficient only
when there is no information on the length of the final non-
preemptive chunk of code of each task (i.e., in the “floating
model” described in [35]).

3. The expression may in general be exponential in the parameters of τ ;
however, it is pseudo-polynomial if the system utilization is a priori bounded
from above by a constant less than one, as proved in [8].

220



5 PROPOSED APPROACH

In [10], it was proved that an optimal way for selecting the
EPPs to minimize the preemption overhead without violating
Condition (2) is to proceed from task τ1 to τn, according to
the ordering assumed in Section 3. In this way, the chances for
finding a feasible solution are maximized. Since the preemp-
tion overhead ξi of a task τi in [10] is assumed to be constant
for all preemption points, the resulting placement algorithm
is rather simple, selecting an EPP every (at most) Qi − ξi

units of execution. However, since the cost of each single
preemption needs to be safely set to the largest preemption
cost experienced by each task, the overhead is significantly
overestimated.
In this section, we show how to improve the analysis,

considering a different preemption overhead for every PPP
and presenting a placement algorithm that selects the EPPs
to minimize the overall preemption cost, without violating
Condition (2). In the following, we implicitly refer to a generic
task τi, with maximum allowed NPR length Qi = Q.
It is easy to prove that a naive algorithm, like the one

adopted in [10], that activates a PPP after at most Q units
of execution from the previous one is not optimal, since it
does not minimize the overall preemption overhead. When
a variable preemption overhead is considered, this algorithm
does not even minimize the number of EPPs4. Moreover,
even an algorithm that minimizes the number of EPPs might
be unable to minimize the overall preemption overhead. In
general, it may be convenient to insert more preemption points
than the least possible number, to take advantage of points with
a small CRPD.
Consider, for instance, the task reported in Figure 2, assum-

ing Q = 8. With the naive algorithm, only one preemption
point is inserted at the end of δ4. In fact,

∑4

k=1
bk =

2+2+2+1 = 7 ≤ Q, and ξ4+
∑6

k=5
bk = 3+2+3 = 8 ≤ Q,

meeting Condition (2). The total preemption overhead is 3.
However, by selecting two EPPs — one after δ1 and another
after δ5 — we achieve a feasible solution with a smaller total
overhead ξ1 + ξ5 = 1 + 1 = 2. In general, for tasks with a
large number of basic blocks with different overhead values,
finding the optimal solution is not trivial.
For a generic task, the worst-case execution time q of a NPR

composed of the consecutive basic blocks δj , δj+1, . . . , δk can
be expressed as

q = ξj−1 +

k∑
�=j

b�, (5)

conventionally setting ξ0 = 0. Note that the preemption
overhead is included in q. Since any NPR of a feasible EPP
selection has to meet the condition q ≤ Q, we must have

ξj−1 +

k∑
�=j

b� ≤ Q. (6)

Now, let Bk be the WCET, including the preemption
overhead, of the first k basic blocks, i.e., from the beginning

4. When instead a fixed preemption overhead is considered for each point,
the naive algorithm described in [10] is able to minimize the number of EPPs,
and, consequently, the total preemption overhead.

1 2 3 3 1
δ1 δ2 δ3 δ4 δ5 δ6 Q = 8

Solution with one PP:

δ1 δ2 δ3 δ4 δ5 δ6 CRPD = 3

Optimal solution with 2 PPs:

δ1 δ2 δ3 δ4 δ5 δ6 CRPD = 2

Fig. 2. Two solutions for selecting EPPs in a task with
Q = 8: the first minimizes the number of EPPs, while the
second minimizes the overall preemption cost.

of δ1 until the end of δk. Then, we can express the following
recursive expression

Bk = Bj−1 + q = Bj−1 + ξj−1 +
k∑

�=j

b�. (7)

Note that since δN is the last BB, the worst-case execution
time Ci of the whole task τi is equal to BN .
The proposed algorithm for the optimal selection of preemp-

tion points is based on the equations presented above and its
pseudo-code is reported in Figure 3. The algorithm evaluates
all the BBs in increasing order, starting from the first one. For
each BB δk, the minimumBk that does not violate Condition 2
is computed as follows.
For the first BBs, the minimum Bk is given by the sum of

the BB lengths
∑k

�=1
b� as long as this sum does not exceedQ.

Note that if b1 > Q, there is no feasible PPP activation, and the
algorithm fails. For the following BBs, Bk needs to consider
the cost of one or more preemptions as well. Let Prevk be
the set of the preceding BBs δj≤k that satisfy Condition (6),
i.e., that might belong to the same NPR of δk. If this set is
empty, there is no feasible PPP activation, and the algorithm
fails. Otherwise, the minimum Bk is given by

Bk = min
δj∈Prevk

⎧⎨
⎩Bj−1 + ξj−1 +

k∑
�=j

b�

⎫⎬
⎭ . (8)

Let δ∗(δk) be the basic block for which the rightmost term of
Expression (8) is minimum

δ∗(δk) = arg min
δj∈Prevk

⎧⎨
⎩Bj−1 + ξj−1 +

k∑
�=j

b�

⎫⎬
⎭ . (9)

If there are many possible BBs minimizing (8), the one with
the smallest index is selected. Let δPrev(δk) be the basic block
preceding δ∗(δk), if there exists any. The PPP at the end of
δPrev(δk) – or, equivalently, at the beginning of δ∗(δk) – is
meaningful for the analysis, since it represents the last PPP to
activate for minimizing the preemption overhead of the first k
basic blocks.
A feasible placement of EPPs for the whole task can then

be derived with a recursive activation of PPPs, starting with
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the PPP at the end of δPrev(δN ), which will be the last EPP
of the considered task. The penultimate EPP will be the one
at the end of δPrev(δPrev(δN )), and so on. If this recursive
lookup of function δPrev(k) reaches the start of the program,
a feasible placement of EPPs has been detected, with a worst-
case execution time, including preemption overhead, equal to
BN . This is guaranteed to be the placement that minimizes
the preemption overhead of the considered task, as proved in
the next theorem.

Theorem 2. Under assumptions A1. and A2., the PPP ac-
tivation pattern detected by procedure PPP SELECT(Qi, τi)
minimizes the preemption overhead experienced by a task τi,
without compromising the schedulability.

Proof: First, we prove that if procedure
PPP SELECT(Qi, τi) fails, there is no other feasible
EPP placement. For the procedure to fail, it is necessary that
the condition at line 3 is satisfied. This means that there
exists a BB δk for which Condition (6) is violated for any
j ≤ k; That is,

ξj−1 +

k∑
�=j

b� > Q, ∀j ≤ k.

This means that with any possible PPP activation pattern,
the length of the NPR containing δk will be larger than Q,
violating Condition (2) and leading to a deadline miss5.
We now consider the minimization of the preemption

overhead. Let Ci be the WCET, including the preemp-
tion overhead, resulting from the EPP allocation given by
PPP SELECT(Qi, τi). Suppose there exists another feasible
EPP allocation that results in a smaller C′i < Ci. We prove by
induction that this is not possible. The proof inducts over the
index j of the basic blocks δj , proving that Bj is minimized
for all j, 1 ≤ j ≤ N .
Base case. For j = 1, B1 = b1 by definition. This is the

minimum possible value of the WCET of the first BB, since
it does not experience any preemption.
Inductive step. Assume all B�, ∀� < j are minimized

by procedure PPP SELECT(Qi, τi). We prove that Bj is also
minimized. By Equation (8), procedure PPP SELECT(Qi, τi)
computes Bj as

Bj = min
δ�∈Prevj

{
B�−1 + ξ�−1 +

j∑
m=�

bm

}
.

Since, by induction hypothesis, all B�−1 terms are minimal,
also Bj is minimized, proving the statement. Since Ci = BN ,
a contradiction is reached, proving the theorem.
As we mentioned in Section 4, the feasibility of a given task

set is maximized by applying procedure PPP SELECT(Qi, τi)
to each task τi, starting from τ1 and proceeding in task order.
Once the optimal allocation of EPPs has been computed for a
task τi, the value of the overall WCET Ci = BN can be used
for the computation of the maximum allowed NPR Qi+1 of the
next task τi+1, using Equation (2). The procedure is repeated

5. Note that Theorem 1 is necessary and sufficient only in the EDF case.

until a feasible PPP activation pattern has been produced for
all tasks in the considered set. If the computed Qi+1 is too
small to find an EPP feasible allocation, the only possibility
to reach schedulability is by removing tasks from the system,
as no other EPP allocation strategy would produce a feasible
schedule.

PPP SELECT(Q, τ)

Initialize: Prev1 ← {δ1}, B0 ← 0
1 for (k : 1 ≤ k ≤ N )
2 Remove from Prevk all δj violating (6)
3 if (Prevk = ∅)
4 return (Infeasible)
5 Compute Bk using Equation (8)
6 Store δPrev(δk)
7 Prevk+1 ← Prevk ∪ {δk}
endfor

8 δj ← δPrev(δN )
9 while (δj �= ∅)
10 Select the PPP at the end of δPrev(δj)
11 δj ← δPrev(δj)

endwhile
12 return (Feasible)

Fig. 3. Algorithm for the optimal selection of PPPs of a
task.

5.1 Example

To better clarify how the proposed algorithm works, we
illustrate an example of EPP selection using the task previously
described in Figure 2. The execution steps of the algorithm are
reported in Figure 4.

1 2 3 3 1
δ1 δ2 δ3 δ4 δ5 δ6 Q = 8

k Prevk δPrev(δk) Bk

0 0
1 {δ1} ∅ 2
2 {δ1, δ2} ∅ 4
3 {δ1, δ2, δ3} ∅ 6
4 {δ1, δ2, δ3, δ4} ∅ 7
5 {δ2, δ3, δ4, δ5} δ1 10
6 {δ5, δ6} δ5 14

Place an EPP at the end of δ1 and δ5

Fig. 4. Sample execution of procedure
PPP SELECT(Q, τ).

At the beginning, B0 = 0, by definition, and Prev1 is
initialized to the first BB δ1. For the first 4 BBs δ1, . . . , δ4, it
is possible to accommodate the overall WCET from the start
of the program without any preemption. In fact, ξ0 + b1 +
b2 + b3 + b4 = 0 + 2 + 2 + 2 + 1 = 7 ≤ Q = 8, without
violating the Q bound. This means that ∀k, 1 ≤ k ≤ 4 the
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smallest Bk is obtained with a NPR spanning δ1, . . . , δk. Since
no preemption penalty is paid at the beginning of the execution
(ξ0 = 0), Equation (8) gives Bk =

∑k

�=1
b�, ∀k, 1 ≤ k ≤ 4, as

shown in the figure. Moreover, δ∗(δk) = δ1 by Equation (9),
so that ∀k, 1 ≤ k ≤ 4 there is no BB preceding δ∗(δk), and
δPrev(δk) = ∅.
For k = 5, the start of the task is no more in the Q window

(δ1 /∈ Prev5), because the non-preemptive execution time
from the start to the fifth PPP is

∑5

�=1
b� = 9 > Q. This

means that at least one EPP should be inserted between δ1

and δ5. To decide which PPP to activate, the minimum B5

is computed with Equation (8), evaluating all δk ∈ Prev5

and exploiting the values B1, . . . , B4 derived at the previous
steps. Note that Prev5 = {δ2, δ3, δ4.δ5}, since ∀k, 2 ≤ k ≤
5, ξk−1 +

∑5

�=k b� ≤ Q. The minimum B5 is obtained with
δ∗(δ5) = δ2, giving B5 = 10 and δPrev(δ5) = δ1. This means
that the minimum B5 is obtained by placing an EPP at the
end of δ1. Note that no EPP is inserted at this point of the
program. The decision on the EPPs will be taken only at the
end of the procedure, when the final BB δN is reached. What
has been decided at this step is just that if an EPP is placed at
the end of δ5, then the overall WCET is minimized by placing
another EPP after δ1.
For k = 6 = N , the last BB δ6 has been reached. Prev6

is derived by adding δ6 to Prev5, and removing all BBs that
cannot be in the same NPR of δ6. Note that δ2 is too far,
even without considering the preemption overhead:

∑6

�=2
b� =

2 + 2 + 1 + 2 + 3 = 10 > Q. For δ3, ξ2 +
∑6

�=3
b� =

2 + 2 + 1 + 2 + 3 = 10 > Q. For δ4, ξ3 +
∑6

�=4
b� =

3 + 1 + 2 + 3 = 9 > Q. Therefore, Prev6 = {δ5, δ6}. Using
Equation (8), the minimum B6 is obtained by selecting the
smallest value between B4 +ξ4 +b5+b6 = 7+3+2+3 = 15
and B5 + ξ5 + b6 = 10 + 1 + 3 = 14. Therefore, B6 = 14,
δ∗(δ6) = δ6 and δPrev(δ6) = δ5. Since the end has been
reached, B6 = 14 represents the minimum WCET, including
preemption overhead, that can be obtained for the considered
task without violating the NPR bound of Q. This value is
obtained by placing an EPP at the end of δPrev(δ6) = δ5.
Looking up recursively, another EPP is placed at the end of
δPrev(δ5) = δ1. Since δPrev(δ1) = ∅, no other EPP needs to
be placed, and PPP SELECT(Q, τ) returns a feasible result.

6 IMPLEMENTATION CONSIDERATIONS

We now present some considerations about the implementation
of procedure PPP SELECT(Q, τ) and its complexity.

6.1 Memory requirements

For each BB δk, the algorithm has to store the Prevk set.
In later steps, only information about elements δj of this set
are needed, such as Bj , bj and ξj . Since the size of this set
depends on Q, the memory requirements are O(Q). Moreover,
it is necessary to maintain a trace of all δPrev(δk), ∀k, 1 ≤ k ≤
N , for the final recursive lookup of the PPPs to select. The
overall memory requirement is therefore O(N + Q).

6.2 Run-time complexity

Regarding the run-time complexity, a naive implementation
of the algorithm would search, at each step, within the set
Prevk the element generating the minimum value to compute
δPrev(δk). This requires O(Q) time for each BB, yielding to
a time complexity of O(N × Q). A smarter implementation
could maintain the set Prevk in an ordered queue, where the
element δj generating the minimum Bj−1 + ξj−1 is always in
the head. To maintain this ordered queue, the implementation
should, at each step, do the following for the considered BB
δk:
• Remove infeasible elements from the head, i.e., elements

δj that violate Condition (6) for the considered δk.
• Compute Bk−1 + ξk−1 for δk.
• Remove from tail all elements δj for which Bj−1 +

ξj−1 ≥ Bk−1 + ξk−1, i.e., elements that cannot minimize
Bk.

• Insert δk in the tail.
Since, at each step, only elements at the head and tail of the
ordered list are considered, the run-time complexity is reduced
to O(N).

6.3 Implementation of preemption points

One last consideration concerns the implementation of PPPs
and EPPs. Since the preemption overhead upper bounds ξk

are computed a priori by timing analysis tools, it is important
for the PPP activation procedure not to modify the code
that has been analyzed. Therefore, it is not possible to add
a scheduler invocation at a selected EPP, when this system
call was not included in the initial code considered by the
timing analysis tool. Similarly, it is not possible to remove a
scheduler invocation at a PPP that is not selected by procedure
PPP SELECT(Q, τ), if this call was included in the code
analyzed by the tool. These changes in the code would cause
a shift in the memory locations that could modify the cache
states derived in the timing analysis, potentially invalidating
the derived bounds on the preemption overhead. A possibility
to sidestep this problem is to add a modified scheduler invo-
cation at each PPP in the code analyzed by the tool. This call
contains a boolean parameter that is set if the PPP is selected
by procedure PPP SELECT(Q, τ). The scheduler can then
check this argument to decide whether to return immediately
to the calling task, or to take a scheduling decision. Another
alternative, that does not require any modification to the
scheduler, is to add annotations for the compiler at each PPP,
specifying whether the point is selected or not. The compiler
will then replace a selected EPP with a call to the scheduler,
and an unselected PPP with a NOP instruction.

7 EXPERIMENTAL RESULTS

This section presents some experimental results aimed at
measuring the preemption cost of real tasks and at evaluating
the performance of the proposed algorithm in terms of task set
schedulability, as a function of different task set characteristics.
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7.1 Measuring preemption costs

A first set of experiments has been carried out to measure the
overhead costs due to preemption and evaluate the coherence
of the task model proposed in Section 3. To deal with
realistic cases, we considered two control tasks produced by
the Simulink automatic code generator, which intrinsically
generates sequences of code blocks:
• the Matlab U.S. Navy F-14 Tomcat aircraft control
task [1], which guarantees the aircraft to operate at a
high angle of attack with minimal pilot workload, and

• the Matlab automotive task that models an automatic
transmission controller [2].

All timing parameters were measured using a cycle-accurate
platform emulator [9] of an ARM7TDMI processor running
at 200 MHz and equipped with a 4Kb Harvard I/D caches.
Measures have been obtained by placing a preemption point
in the task code in different positions corresponding to the end
of a basic block. Preemption is enforced by creating a higher
priority task that evicts all cache lines. Then, preemption cost
is computed as the difference between the execution times
measured with and without preemptions. Note that measured
values include the costs related to cache misses, context
switches and pipelines flushes. The results achieved on the
two considered tasks are reported in Figure 5. The x-axis
represents the time at which a preemption takes place, while
the y-axis represents the increase in the execution time caused
by a preemption at that place.

7.2 Evaluation of the algorithms

A second set of experiments has been carried out on synthetic
task sets, to evaluate the performance of the proposed algo-
rithm against other approaches in improving the schedulability
of the system. The following scheduling algorithms have been
considered in the comparison, under the Rate Monotonic
priority assignment:
• FuP-nocost: Fully preemptive scheduler with no cost.
Under this scheduler, a task can be preempted every-
where within its code without extra penalty. Although
unrealistic, this algorithm has been considered to provide
a reference for an ideal behavior. In this case, the task
set schedulability is computed using the Response Time
Analysis technique.

• FuP. Fully preemptive scheduler with preemption cost.
The cost accounted for each preemption is the maximum
among the costs of all potential preemption points in
the task. The schedulability test is performed using the
CRTA algorithm proposed by Busquets-Mataix et al. in
[16].

• LiP-naive. Limited preemption approach with variable
cost, using the naive algorithm adopted in [10]. This
algorithm activates a PPP after at most Q time-units
of execution from the previous one, starting from the
beginning of the task.

• LiP-opt. Limited preemption approach with variable cost,
using the optimal algorithm proposed in this paper.

• NoP. Non-preemptive algorithm. For the sake of com-
pleteness, we also evaluated the performance of a fully
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Fig. 5. Preemption costs for two real control tasks.

non preemptive case, which provides a lower bound for
the task set schedulability.

Task parameters were randomly generated to produce both
the basic blocks execution times and the preemption cost
for each preemption point. The number of basic blocks was
randomly generated in an interval [20, 200] with uniform
distribution, while their WCET was generated according to
a Gaussian distribution with mean equal to 4000 time units
and variance of 3000 time units. Notice that in the ARM7
architecture used in the previous experiments, a time unit
corresponds to 5 nanoseconds. The utilization of each task
has been generated using the approach proposed in [12].
The task periods were then computed dividing the WCET by
the utilization of each task. Preemption costs were randomly
generated using the following function, to achieve a realistic
distribution similar to the one shown in Figure 5:

ξi = ξi−1 + Δξi

where Δξi = gaus(mi, σ), and

mi+1 =

⎧⎨
⎩

−M if ξi > ξmax

+M if ξi < ξmin

sgn(Δξi)M otherwise

The variance σ determines the degree of variability of the
preemption overhead between any two consecutive PPPs. An
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example of values generated by this function is shown in
Figure 6 for different values of the variance σ, settingM = 20,
ξmin = 1000, ξmax = 55000. Note that the requirement for
positive CRPD values introduces an asymmetry that makes
them to increase with the variance σ. In the following exper-
iments, we adopt a variance σ = 3000.
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Fig. 6. CRPD of the same task as a function of the CRPD
variance.

In a first test, we monitored the percentage of schedulable
task sets for every algorithm as a function of the task set
utilization. In Figure 7, we report the achieved results for the
case with n = 7 tasks. Each point in all the graphs has been
obtained as the average upon 2000 simulation runs.
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Fig. 7. Percentage of schedulable task sets as a function
of the utilization.

The non preemptive algorithm exhibits the worst perfor-
mance for utilizations smaller than 0.9, while the fully pre-
emptive scheduler without preemption cost outperforms all the
others. Note that both limited preemptive approaches have a
performance close to the one of the ideal fully preemptive
scheduler, and much better than the one shown by the fully
preemptive algorithm with preemption cost. Between the par-
tially preemptive approaches, the one proposed in this paper
outperforms the other.

Figure 8 illustrates the results of another test, where the
percentage of schedulable task sets is shown as a function of
the number of tasks. In this setup, the task set utilization was
fixed at U = 0.9. Note that the fully preemptive approach
presents a very poor performance, because the cost of such
a high number of preemptions leads to a total computation
time higher than the one achieved using limited preemptive
algorithms. The graph shows that the impact of the preemption
cost awareness is higher for a small number of tasks, because,
under this condition, each task presents more effective pre-
emption points, amplifying the advantages of the proposed
selection algorithm.
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of the number of tasks.

The next experiment is aimed at showing the effects of the
maximum preemption cost ξmax on the task set schedulability.
We show here the case with n = 7 and total utilization U =
0.95, in order to have a large number of generated task sets
that are close to the schedulability border. Figure 9 shows that
even the Fully Preemptive algorithm without preemption cost
is able to schedule less than one half of the generated task sets.
The performance of the LiP-opt algorithm are significantly
better than the LiP-naive algorithm, which has a performance
degradation that is twice as fast. The FuP algorithm, which
takes preemption costs into account, performs very poorly,
while the non-preemptive algorithm is never able to produce
a feasible schedule with the generated tasks.
Such a big difference between the two limited preemption

algorithms can be explained by considering a cascade effect. In
fact, selecting the EPPs with smaller cost reduces the global
WCET of the task. This leads to a reduced task utilization,
but also to a larger value of Q for tasks with lower priority,
which causes a reduction of preemption points to achieve
schedulability. Such a cumulative effect is significant and can
be appreciated even with a small task set, like the one used in
the experiment.
Increasing the variability of preemptions costs produces the

results reported in Figure 10, which shows that the advantage
of the proposed algorithm with respect to the others is always
significant and improves along with the variance σ. Note that
a large σ implies a larger average preemption overhead, as
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we showed in Figure 6. However, it also implies a higher
probability of having a PPP with low overhead that will be
selected by the proposed algorithm. While the other algorithms
suffer the increment of the average preemption cost, our
approach compensates it because of its capability of finding
a PPP with lower cost, significantly increasing the number of
schedulable task sets.
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8 OPEN PROBLEMS

The optimality of the proposed algorithm for the activation
of the preemption points depends on assumptions A1. and
A2. These assumptions have been introduced in order to
simplify the analysis, ignoring the dependency of preemption
overhead on the preempting task, and allowing the WCET
of a task τi to be expressed using Equation (1). A more
detailed analysis is possible if the preemption overhead of
τi is considered as a function of the preempting task. For
instance, tasks that have a small cache footprint will not be
able to invalidate all the useful blocks that τi loaded in the

cache before being preempted. As a consequence, relaxing
Assumption A1., the preemption overhead of τi at the k-th
PPP could be expressed as an array of i − 1 values ξj

i,k,
one for each potential preempting task τj . How to derive an
optimal placement algorithm for such an improved model is
an interesting problem that we leave as a future work.
Another interesting open problem is finding an optimal EPP

selection method relaxing Assumption A2., i.e., considering
which of the selected EPPs will possibly lead to a preemption.
For example, there can be cases in which many EPPs need
to be activated for a task τi in order to avoid an excessive
blocking to higher priority tasks, but only a few of them
could effectively lead to a preemption. Consider the following
example.

Example 1. A task set is composed of two tasks τ1 and τ2

to be scheduled with limited preemption EDF or FP. Task τ1

has deadline D1 = 10, period T1 = 100, and is composed of
a single basic block of length C1 = 1. Task τ2 has deadline
D2 = 16, period T2 = 100, and is composed of four basic
blocks of length 4, 4, 2, 2, respectively. The three PPPs of τ2

have a preemption overhead of 3, 5, 3, respectively.
Note that, according to Theorem 1, the maximum allowed

NPR of τ2 is D1 − C1 = 9. Possible EPP selections are
(i) activating the first and third PPP, with a total overhead
of 6 units, or (ii) activating only the second PPP, with a
total overhead of 5 units. All other possible choices are either
infeasible or redundant. Applying procedure PPP SELECT to
τ2 with Q2 = 9 activates only the second PPP, leading to
a WCET C2 = 12 + 5 = 17, and the task set is clearly not
schedulable. However, considering that task τ1 has a period of
100, it can preempt each job of τ2 at most once. Therefore, an
EPP selection that activates only the first and third PPP of τ2

leads to a WCET C2 of at most 12 + 3 = 15. Considering
the additional interference of 1 unit by τ1, the task set is
schedulable.

In the above example, both the first and the third PPP have
to be activated in order to avoid an excessive blocking to τ1.
However, only one of them will possibly lead to a preemption.
Note that procedure PPP SELECT is optimal only under the
assumption that all EPPs lead to a preemption. When this
assumption is relaxed, the EPPs activated by PPP SELECT
are not guaranteed to minimize the overall WCET. This is
true even for implicit deadline task sets, as could be proved
with simple examples. We leave the problem of finding an
optimal EPP activation relaxing Assumption A2. as a future
work.
One last open problem that is worth mentioning is con-

sidering applications that are not modeled as a sequential
flow of basic blocks. Typical applications are composed of
many conditional branches and loops, which could cover
significant portions of the task code. Requiring all loops and
branches to be contained within one BB could be very con-
straining, limiting the applicability of the proposed approach.
Therefore, it would be particularly interesting to extend the
model, considering applications that can have a PPP even
inside a conditional branch or a loop. Under this model, it
is difficult to understand what is the best combination of
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EPPs that guarantees the WCET of a task to be minimized,
independently of the particular branch of basic blocks that will
be conditionally executed. We believe that optimal solutions
with linear complexity are unlikely for this problem, due
to the cross dependencies that might arise between different
conditional structures of the same application. Designing an
algorithm that is able to solve this problem with a reasonable
complexity would be indeed an interesting achievement.

9 CONCLUSIONS

This paper presented an algorithm for automatically setting a
number of preemption points within the code of each task,
to minimize the overall preemption cost under schedulability
constraints. Preemption points are selected among a larger
predefined set of potential preemption points, defined by the
programmer at design time. The adopted task model fits well
with tasks consisting of a sequence of basic function blocks, as
those produced by code generators running in standard design
tools, like Simulink.
The algorithm was proved to have a linear complexity and

to be optimal, in the sense that, if a feasible schedule is not
found by the proposed method, then no other strategy can lead
to a feasible solution. Extensive experiments demonstrated
the effectiveness of the proposed approach in increasing the
system schedulability with respect to other algorithms.
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