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Abstract—Four-level pulse amplitude modulation (PAM4) sig-
nals transmission in short-haul intensity modulation-direct detec-
tion datacenters connections supported by homogeneous weakly-
coupled multicore fibers is seen as a promising technology to
meet the future challenge of providing enough bandwidth and
achieve high data capacity in datacenter links. However, in mul-
ticore fibers, inter-core crosstalk (ICXT) limits significantly the
performance of such short-reach connections by causing large bit
error rate (BER) fluctuations. In this work, a convolutional neural
network (CNN) is proposed for eye-pattern analysis and BER
prediction in PAM4 inter-datacenter optical connections impaired
by ICXT, with the aim of optical performance monitoring. The
performance of the CNN is assessed by estimation of the root
mean square error (RMSE) using a synthetic dataset created
with Monte Carlo simulation. Considering PAM4 interdatacenter
connections with one interfering core and for different skew-
symbol rate products, extinction ratios and crosstalk levels, the
obtained results show that the implemented CNN is able to
predict the BER without surpassing a RMSE limit of 0.1.

Index Terms—bit error rate, convolutional neural network,
inter-core crosstalk, machine learning, multicore fiber

I. INTRODUCTION

As the number of network telecommunication users and de-
vices grows exponentially, datacenters are becoming crucial
to handle the large amount of data due to their flexibility,
scalability in computing and storage resources [1]. The current
approach to deal with capacity scalability in datacenter links
is using multiple wavelengths (also known as lanes), where
each lane carries a 25 Gb/s on-off keying (OOK) signal or
a four-level pulse amplitude modulation (PAM4). The PAM4
has already been standardized by the IEEE 802.3bs task force
to enable rates of 50 and 100 Gbit/s per lane in datacenters
connections [1].

Furthermore, nowadays, datacenter connections typically
rely on single core-single mode fibers (SC-SMFs) with inten-
sity modulation-direct detection (IM-DD) transmission. How-
ever, it is expected that such fibers will not fulfill the future
capacity demand growth, as transmission in SC-SMFs is
approaching its limit of 200 Gbit/s per lane with IM-DD
[1]. Multicore fibers (MCFs) have been proposed in order to
overcome this issue and to reduce fiber per area density in
datacenters [2]. In particular, homogeneous weakly-coupled
multicore fibers (WC-MCFs) ensure simplicity, low cost and
power consumption as required by datacenter links. Even
so, transmission in such MCFs is impaired by inter-core

crosstalk (ICXT) [3], [4]. This crosstalk in MCFs arises from
power coupling between cores and is particularly relevant
to the transmission of signals with the same wavelength in
neighboring cores [5], [6]. The ICXT has been experimentally
shown to have a stochastic time evolution, which can result in
high levels of ICXT in short time periods and cause large
bit error rate (BER) fluctuations, that can lead to system
outage periods [2], [4], [7]. Hence, ICXT monitoring in
such datacenter connections is crucial to predict and maintain
acceptable BERs. Furthermore, in IM-DD systems, eye-pattern
analysis is of primary importance for monitoring and to extract
the optical signal quality, and subsequently predict the BER
from the optical signal observation. As this analysis depends
on engineering skills and expertise, which is prone to error,
automatic prediction of the BER from the eye-pattern, for
example, by resorting to machine-learning is a promising way
to effectively address this problem and monitor the ICXT in
datacenter connections.

Recently, the use of convolutional neural networks (CNN)
has been investigated for optical performance monitoring by
eye-patterns analysis [8], [9]. In [8], a CNN-based technique
is used to estimate the optical signal-to-noise ratio (OSNR)
and identify the modulation-format, from eye-pattern images.
In [9], an eye-pattern analysis scheme based on a CNN for
IM-DD transmissions is presented. In this work, different eye-
patterns of OOK and PAM4 signals from back-to-back (B2B)
up to 80 km link transmissions are sent to a CNN-based model
that outputs eye-pattern characteristics, estimates the fiber link
length and Q-factor and performs impairments recognition [9].
Inspired by these previous results, we contribute in this paper
with the first application of CNN regression to the problem
of eye-pattern analysis and BER prediction in PAM4 inter-
datacenter optical connections impaired by ICXT.

This paper is organised as follows. Section II describes the
system developed for the CNN-based eye pattern analysis and
BER prediction and its performance is assessed in Section III.
The main conclusions regarding this work are presented in
Section IV.

II. MODEL DESCRIPTION

The system developed for the CNN-based eye pattern analysis
and BER prediction has two main components, the Monte
Carlo simulator, that creates a dataset and the machine learning



module, that processes this dataset. Both components were
implemented with MATLAB. The schematic of the main tasks
of the implemented system is illustrated in Fig. 1.

Fig. 1. Main tasks of the developed system for the CNN-based eye-pattern
analysis and BER prediction.

The system’s first main task corresponds to the generation of
eye-patterns and the corresponding BERs calculation from the
PAM4 optical communication system model that is detailed in
section II-A. Then, data collection is performed as explained in
section II.B. Before the CNN training, the eye-patterns are pre-
processed to obtain what we denote as grayscale eye-patterns
(GEPs) images as described in section II-C. After that, the
CNN, whose architecture is described in section II.D, is trained
to predict the BER, for a given input GEP. Then, the CNN’s
prediction ability is evaluated against unseen GEP images.

A. Intercore crosstalk modelling

The impact of ICXT on the performance of optically amplified
PAM4 links for inter-datacenter connections has been analyzed
in [2] by resorting to the dual polarization-discrete changes
model (DP-DCM) that describes with reasonable accuracy the
ICXT effect in homogeneous WC-MCFs [10]. In this work, as
in [2], only two cores, the interfering core m and the interfered
core n are considered. Two transmitters, one for each core,
generate the signal transmitted along core m, which is the
interfering PAM4 signal, and the signal transmitted along core
n corresponding to the interfered PAM4 signal.

The PAM4 signal, with the extinction ratio given by the
inverse of the ITU-T definition [2], travels along core n of the
MCF, where linear propagation is assumed, since non-linear
effects are usually insignificant in inter-datacenters distances
[1], [11]. Fiber loss is also assumed the same in both cores.
The evolution of the ICXT along time on the interfered cores
is modelled by the DP-DCM by using transfer functions that
change randomly along time, being this dependence introduced
by applying random phase shifts (RPSs) along the longitudinal
direction of the MCF in each iteration of the Monte Carlo
simulator. A set of Np RPSs generated in each MC iteration
and the corresponding transfer functions are defined as MCF
realizations [10]. The RPSs are modelled using an uniform
distribution between [0, 2π[. The temporal dependence of the
ICXT is induced by effects such as the walk-off due to
different group velocities between cores [11]. In the DP-DCM,
the skew between the interfering core m and the interfered

core n is given by Smn = dmnL, where L is the MCF
length and dmn is the walkoff between cores m and n [2],
[6]. Therefore, in each iteration of the Monte Carlo simulator,
a new PAM4 signal with symbols randomly generated is
transmitted in core m and is passed to the transfer functions
corresponding to one MCF realization. The ICXT level is
quantified by the ratio between the mean ICXT power and the
mean power of the signal both at the output of the interfered
core as Xc = Np|Knm|2, where Knm is the average inter-core
coupling coefficient [4], [10].

At the output of the MCF, a chromatic dispersion com-
pensation (CDC) module fully compensates the chromatic
dispersion (CD) arising in core n, which is modelled consid-
ering a dispersion compensating fiber (DCF). After the CDC
module, an erbium-doped fiber amplifier (EDFA) compensates
the inter-datacenter link losses and an optical filter reduces the
amplified spontaneous emission (ASE) noise power generated
by the EDFA. The amplifier gain is set to compensate all losses
from the MCF and DCF and the ASE noise is modelled as
additive white Gaussian noise [2], [4]. The optical filter is
modelled by a 4th order super Gaussian filter.

After CDC and amplification, the PAM4 signal degraded
by ICXT and ASE noise reaches the DD receiver dedicated
to core n, where is converted to an electrical signal by the
photo-detector. Electrical noise is added after photodetection
and an electrical filter, modelled as a 3rd order Bessel filter,
is used to reduce the noise power. In the decision circuit,
the BER of each MCF realization is calculated by the semi-
analytical method known as the exhaustive Gaussian approach
[2]. Effects such as electrical noise, signal-ASE, and ASE-ASE
beat noises are taken into account analytically, while ICXT
and inter-symbol interference are taken into account by the
waveform distortion observed in the eye-patterns.

After several MCF realizations, the average BER is obtained
by averaging the BERs obtained in each MCF realization.

In this work, we consider that the inter-datacenter link,
impaired by ICXT, is in outage when the BER is above 3.8×
10−3, which is the threshold typically used for datacenters
connections with forward-error correction [2]. The electrical
and optical receiver filters bandwidth were optimized in B2B
operation to maximize the receiver sensitivity [2]. For the MCF
length of 80 km and extinction ratios of r=0 and r=0.1, the
signal power at the transmitter output has also been optimized
to achieve the BER of 3.8× 10−5 without ICXT. The number
of phase-matching points is set to characterize accurately the
RPS mechanism [2]. We consider the crosstalk levels Xc =
-16 dB, -14 dB and -12 dB. Two different intercore skew-
symbol rate products of |SmnRs| = 1000 and |SmnRs| =
0.01 are also considered. The case of |SmnRs| = 1000 is
referred as high skew symbol rate product as |SmnRs| >> 1
[2], [6]. The situation of |SmnRs| = 0.01 is referred as low
skew-symbol rate product, since |SmnRs| << 1 [2], [6].

Fig. 2 shows an example of the eye-patterns at the decision
circuit input impaired by ICXT, obtained with Xc = -14 dB
and r=0.1. Fig. 2 a) and b) correspond, respectively, to the
best and worst BERs obtained with |SmnRs| = 0.01 and



Fig. 2. Eye-patterns at the decision circuit input for Xc = -14 dB and r=0.1
of a) best BER and b) worst BER with |SmnRs| = 0.01 and c) best BER
and d) worst BER with |SmnRs| = 1000.

Fig. 2 c) and d) to the best and worst BERs obtained with
|SmnRs| = 1000 after 1000 MCF realizations. In Fig. 2 b),
the eye-pattern is practically closed, in comparison with Fig. 2
d), which shows that, for optical links with low |SmnRs|, the
ICXT is more detrimental than for high |SmnRs|. However, for
the best BERs obtained with low |SmnRs|, Fig. 2 a) shows that
the amplitude levels are more defined than in the eye-pattern
shown in Fig. 2 c) with high |SmnRs|, since, in this last case,
more symbols in the interfering core are contributing to ICXT
[2]. Fig. 2 confirms that the product |SmnRs| strongly affects
the impact of ICXT on the received eye-patterns.

Fig. 3 shows the BERs histograms and the corresponding
average BER obtained after 1000 MCF realizations with
Xc = -14 dB, r=0.1 and r=0, for a) |SmnRs| = 1000 and b)
|SmnRs| = 0.01. Several MCF realizations experience system
outage, especially for |SmnRs| = 0.01, since the correspond-
ing BERs surpass the BER limit. Only for |SmnRs| = 1000
and r=0.1, the BER limit is not exceeded and the system is
never in outage. Fig. 3 also shows that the effect of ICXT
on the BER distribution is less detrimental with r = 0.1.
For r = 0, a higher spreading of the BER is observed, and,
hence, more MCF realizations lead to outage. The results
in both histograms confirm again that the product |SmnRs|
has a significant influence on the BERs distribution, since for
|SmnRs| = 1000, the BER range is significant lower than in
comparison with the one obtained for |SmnRs| = 0.01.

B. Data collection

The data used to train and test the CNN corresponds to
synthetic data collected from different Monte Carlo simulator
iterations. Each pair of collected data consists of a received

Fig. 3. Histogram of the log10(BER) for 1000 MCF realizations with Xc =
-14 dB, r=0.1 and r=0, for a) |SmnRs| = 1000 and b) |SmnRs| = 0.01.

and synthetically generated eye-pattern, Ei (with i=1,...,NEP ),
where NEP is the number of eye-patterns generated, such
as the ones shown in Fig. 2, and the corresponding BER
calculated logarithmically, i.e., log10(BER). Each eye-pattern
corresponds to a 32× 256 matrix, with 32 amplitude samples
per symbol and 256 generated PAM4 symbols in each Monte
Carlo iteration. The eye-patterns are obtained by varying
several optical link parameters, such as the crosstalk level,
skew-symbol rate product and extinction ratio.

The CNN performance is highly dependent on the diversity
of the training data. Hence, we apply an active sampling
approach to collect a balanced number of BERs and corre-
sponding eye-patterns. For the different optical links (defined
as the IM-DD datacenter links with different parameters),
the data generated is collected following a two-step balanc-
ing scheme within a [log10(BER)min, log10(BER)max] range,
where 1000 pairs of data are saved in every 0.1 interval of the
log10(BER). Within these NBER intervals, where NBER =
log10(BERmax)− log10(BERmin)× 0.1, a second balancing
step is performed with 20 subintervals, where 50 pairs of data



are saved in every 0.005 interval of the log10(BER). Notice
that the BER range is not the same for all optical links studied,
since the BERs distribution is much dependent on the link
parameters, as seen in section II-A.

As the ICXT has a stochastic behaviour, some BERs are less
frequent than others, particularly for higher BERs associated
with low outage probabilities. Therefore, to collect a good
amount of balanced data inside each logarithmic BER interval
and to maintain the time of simulation at acceptable levels,
particularly for BERs that are less likely to occur, the DP-
DCM model has been implemented with a slight change
following a domain randomization-based approach.

Firstly, the Monte Carlo simulator starts with a random
set of Np RPSs, which is stored and used in the first MCF
realization. After that, based on a single uniformly distributed
random number in the interval [0, 1], the simulator determines
how the set of Np RPSs for the next MCF realization is
generated. If the random number is above or equal to 0.5,
a new set of Np RPSs is generated following the previously
described procedure and stored. If not, a new set is obtained
by adding normally distributed random noise with zero mean
and unitary variance to the set of Np RPSs previously stored.
This new set of RPSs generated with this random perturbation
is not stored, and, therefore, it is not used for the following
MCF realizations. Only the eye-pattern and log10(BER) are
saved if the corresponding NBER interval is not filled.

C. Eye-pattern pre-processing

Before training and testing the CNN, the eye-patterns are pre-
processed to obtain what we denote as GEP images. Typically,
oscilloscopes sample the received signal and generate a two-
dimensional plot, that statistically represents the time, where
the unit interval or bit period of the eye-pattern is defined by
the data clock, and the amplitude of the digital signal [12]. A
third dimension is considered, denoted as plot density, which
represents the number of pixels that are located in the same
position on the oscilloscope display. In this work, a similar
approach is used, where the plot density is represented by
the grayscale value of each pixel. Furthermore, two different
approaches regarding the eye-pattern representation are con-
sidered: fixed scale GEP and dynamic scale GEP. The process
to obtain GEP images is explained as follows.

First, for a x× y GEP image, the amplitudes of a synthetic
eye-pattern obtained from the simulator are normalized into
[1, y] ∈ N amplitudes to obtain the vertical position of the GEP
image pixel assigned to the corresponding amplitude. For the
case of a fixed scale GEP, this normalization is performed
by dividing the eye-pattern amplitudes by the maximum
amplitude that occurred in all eye-patterns obtained during
a CNN training. For the case of a dynamic scale GEP, each
eye-pattern is normalized taking into account its maximum
amplitude, without resorting to any information from other
eye-patterns. After normalization of both approaches, the eye-
pattern to GEP conversion process continues by generating a
y × x GEP matrix with zero as elements. The plot density is
modeled by incrementing one unit in all elements of the x×y

GEP matrix with the rows given by the eye-pattern normalized
amplitudes and the corresponding columns given by the rows
of the original eye-pattern normalized into [1, x]. In this work,
we use 32× 32 GEP images.

After this transformation process, the GEP images are used
as input data for the CNN.

D. Convolutional neural network

In this work, the CNN model is developed on MATLAB using
the Deep Learning Toolbox and Deep Network Designer.

The proposed CNN architecture is composed of a sequential
stack of layers based on [8], [9], and is schematically shown
in Fig. 4. First, normalization is applied by re-scaling the
data in the range [−1, 1] every time a GEP image is forward
propagated through the input layer of the CNN. In Fig. 4,
a fixed scale GEP is presented. The CNN architecture has
five convolutional (Conv) layers, C1 to C5, that pass the GEP
images through a set of convolutional kernels with stride (1, 1).
The layers C1 and C2, with both kernel sizes of 5×5, produce,
respectively, 32 and 64 feature maps, whereas the layers C3,
C4 and C5, with kernels sizes of 3×3, produce 128, 256 and
512 feature maps, respectively. All convolution layers add the
required padding to the input, either a GEP image or feature
map, to ensure that its border pixels are completely exposed
to the filter and the resulting feature map has the same size as
the input. The output of each convolutional layer is normalized
using a batch normalization (BN) layer followed by a rectified
linear unit (ReLU) layer for an effective and faster training
[13]. After each of the first four Conv+BN+ReLU operations,
a down-sampling is performed by an average pooling layer.
We set the four pooling layers, P1, P2, P3 and P4, with 2×2
subsampling regions and stride (2, 2). After feature extraction
at the last C5+BN+ReLU operation, a dropout layer is placed
to prevent overfitting, followed by a fully connected layer and
a regression layer used to predict the BER.

Regarding computational complexity and resources, using
the proposed method, the CNN must be trained firstly offline in
a specific PAM4 datacenter connection to extract the features
of the ICXT impairing that connection and to learn how to
predict the BER in an accurate way. Nowadays, such offline
approach does not imply any highly demanding computational
resources. Then, the trained CNN must be implemented in the
digital signal processors (DSPs) of the receiving equipment.
Nowadays, DSPs at optical receivers are trivial and sufficiently
powerful to perform complicated tasks, such as forward-error
correction in IM-DD systems [1]. Furthermore, the ICXT
decorrelation time is in the order of minutes and within a
subminute scale, the ICXT can be highly correlated [14].
As deep neural networks in real-world applications have an
inference time of few ms to one second [15], the proposed
approach seems perfectly capable to cope with the ICXT non-
stationarity.

The synthetically generated dataset is randomly split before
each CNN training, where 70% is assigned as training data,
15% as validation data and 15% as test data. The CNN is
trained with a stochastic gradient descent with momentum



optimizer. The maximum number of epochs is set to 30, since
lower values resulted in worse performances and higher values
did not enhance the performance and led to a much higher
computation time. A mini-batch size with 8 observations at
each iteration is used, since it performed better when compared
to 16, 32 and 64 mini-batch sizes. The initial learning rate has
been empirically set to 1 × 10−4 and reduced by a factor of
0.1 after 20 epochs.

III. CNN PERFORMANCE ASSESSMENT

In this section, the performance of the CNN developed for
BER prediction from eye-pattern analysis in PAM4 inter-
datacenter optically amplified short IM-DD connections im-
paired by ICXT is assessed by estimation of the root mean
square error (RMSE). This performance evaluation metric
has been chosen because it has been widely used in the
literature as a key CNN regression performance indicator [13].
In this work, we consider a RMSE below 0.1 as an acceptable
prediction of the log10 (BER).

A. CNN performance for specific optical link parameters

Firstly, the accuracy of the BER prediction is assessed by
training the CNN and testing its regression capabilities for
each type of optical link. Table I shows the RMSEs obtained
for the CNN when trained with fixed and dynamic scale GEPs.

When using fixed scale GEPs, the CNN model is able to
predict the log10 (BER) without surpassing the RMSE limit
of 0.1, with exception for Xc = -16 dB and Xc = -12 dB
with |SmnRs| = 1000 and r=0. From all training scenarios,
this case, r=0 and |SmnRs| = 1000, is the one that it is more
difficult to train, leading to a worst BER prediction. The best
predictions (with lower RMSE) are obtained in general for the
case of |SmnRs| = 0.01 and r=0.1, being the RMSE lower
than 0.05, for all crosstalk levels. When using a dynamic scale
GEPs, the CNN is also able to predict the log10 (BER) without
surpassing the RMSE limit of 0.1, except for Xc = -16 dB
and -12 dB with |SmnRs| = 1000 and r=0.

Table I shows that the CNN predicts the BER from the eye-
patterns impaired by ICXT, with a reduced RMSE, when the
CNN is trained for specific optical link parameters.

B. CNN generalization

In this subsection, the generalization capabilities of the CNN
to other optical link parameters is evaluated by verifying
its generalization capabilities to situations for which it has
not been trained. A first study is performed with a CNN
trained with fixed scale GEPs for the case of optical links
with Xc = -14 dB, |SmnRs| = 0.01 and r=0 and tested
with fixed scale GEPs from optical links with Xc = -16 dB,
|SmnRs| = 0.01 and r=0. The GEPs were normalized with
the maximum amplitude obtained in all eye-patterns generated
for both crosstalk levels of -16 and -14 dB. A RMSE of
0.654 was obtained, showing that the CNN is unable to predict
correctly the BER from the test GEPs obtained with crosstalk
levels different from the ones used during training. The CNN
was also unable to predict correctly the BER of dynamic

TABLE I
RMSE OF THE CNN TRAINED AND TESTED WITH FIXED AND DYNAMIC

SCALE GEPS, RESPECTIVELY DENOTED AS FS-GEPS AND DS-GEPS, AS
A FUNCTION OF Xc .

Link type FS-GEPs DS-GEPs
Xc = -16 dB |SmnRs| = 0.01, r = 0 0.083 0.075

|SmnRs| = 0.01, r = 0.1 0.037 0.037
|SmnRs| = 1000, r = 0 0.113 0.105
|SmnRs| = 1000, r = 0.1 0.074 0.080

Xc = -14 dB |SmnRs| = 0.01, r = 0 0.041 0.091
|SmnRs| = 0.01, r = 0.1 0.049 0.037
|SmnRs| = 1000, r = 0 0.099 0.093
|SmnRs| = 1000, r = 0.1 0.066 0.069

Xc = -12 dB |SmnRs| = 0.01, r = 0 0.091 0.076
|SmnRs| = 0.01, r = 0.1 0.047 0.054
|SmnRs| = 1000, r = 0 0.112 0.107
|SmnRs| = 1000, r = 0.1 0.087 0.090

scale GEPs obtained from optical links with Xc = -16 dB.
However, as the RMSE is lower than in the case of fixed
GEPs (RMSE=0.285), it seems more able to perform the
generalization.

As the CNN did not perform well in the previous domain
shift studies, two training approaches with mixed data, i.e.,
with different optical link parameters, have also been assessed.
Fig. 5 shows the true BER (obtained from the Monte Carlo
simulator) as a function of the predicted BER for a CNN
trained and tested with fixed scale GEPs obtained with all
the crosstalk levels shown in Table 1, |SmnRs| = 0.01, r=0
and log10 (BER) ∈ [−3.1,−1.9[. The results show that the
CNN trained with different crosstalk levels reached a RMSE of
0.082, considerably lower than the one obtained when training
the CNN with a single crosstalk level.

Fig. 6 shows the BERs distribution of the test set from a
CNN trained with dynamic scale GEPs using disjoint BER
intervals, i.e., for the case of optical links with Xc =
-16 dB and log10 (BER) ∈ [−4.5,−3.9], Xc = -14 dB
and log10 (BER) ∈ [−3.8,−2.9[, Xc = -12 dB and
log10 (BER) ∈ [−2.9,−0.8], for |SmnRs| = 0.01 and r=0.
This CNN was tested with the full BER range considering
eye-patterns obtained for the three crosstalk levels and Fig. 6
shows that the CNN is able to predict the BER for the three
crosstalk levels without surpassing the RMSE limit.

IV. CONCLUSIONS

A deep learning approach, based on a CNN, for BER predic-
tion in PAM4 inter-datacenter amplified IM-DD connections
impaired by ICXT was proposed. For validation, a synthetic
dataset was generated with Monte Carlo simulation employing
an active sampling strategy for a proper dataset balancing.

It is shown that the CNN provides good BER predictions
with RMSEs below 0.1, for different optical link parameters,
skew-symbol rate product, extinction ratio and crosstalk level.
Regarding its implementation, a CNN based on dynamic GEPs
is a better solution, since it does not require prior knowledge
of the amplitudes obtained for other eye-patterns.

In future work, we propose to test the CNN with experi-
mental data and fine-tune the CNN for those experiments.



Fig. 4. CNN architecture considered in this work to learn the BER from the GEP images.

Fig. 5. BER predictions of the test set from the CNN trained for the case
of optical links with Xc = -12,−14 and Xc = −16 dB, with |SmnRs| =
0.01 and r=0. The line represents the linear regression of the data.

Fig. 6. BER predictions of the test set from a CNN trained for optical
links with Xc = -16 dB and log10 (BER) ∈ [−4.5,−3.9], Xc = -14 dB
and log10 (BER) ∈ [−3.8,−2.9[, Xc = -12 dB and log10 (BER) ∈
[−2.9,−0.8], |SmnRs| = 0.01 and r=0. The blue data points represent
the predictions with a margin error below 0.1.
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