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Abstract—Many distributed and multiprocessor real-time
applications consist of pipelines of tasks that must complete
before their end-to-end deadlines. Different schedulability anal-
yses have been proposed for both Fixed Priority and Earli-
est Deadline First scheduling. All the schedulability analyses
proposed so far assume that a global clock synchronization
protocol is used to synchronize the deadlines of jobs allocated
on different processors. This assumption may limit the appli-
cability of EDF to such systems.

In this paper, we propose the Distributed Deadline Synchro-
nization Protocol (DDSP) for computing the absolute deadlines
of jobs. The protocol is a non-trivial extension of the Release
Guard Protocol proposed for fixed priority systems. DDSP
does not require a global clock synchronization, yet existing
schedulability analyses are valid for schedules generatedby
DDSP.

I. I NTRODUCTION

Many distributed real-time embedded applications con-
sist of cyclically activated pipelines of tasks executing on
different processors. For example, multimedia streaming
applications are typically structured as sequences of differ-
ent stages, each one performed by a task executing on a
(possibly) different processor; in an encoder, the pipeline
is periodically activated at each frame period, while in a
decoder it is activated every time a new frame is available.
Every pipeline must be completed before itsend-to-end(EE)
deadline relative to the activation of the first task. In the real-
time literature, a pipeline of real-time tasks is also called
real-time transaction. This model was first proposed in [1].

In general, an application can consist of many of these
pipelines, each one with its timing parameters and EE dead-
line. An example of system with three pipelines executing
on four processors is shown in Figure 1.
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Figure 1: An example of 3 pipelines over 4 processors.

Please notice that two tasks of the same pipeline may

be allocated to the same processor: in the figure, tasksτ12
and τ14 reside on processor 2, andτ13 and τ15 reside on
processor 3.

Real-time pipelines can be used to model distributed as
well as multi-core systems. In the first case, the networks
can be modeled as specialprocessorsand messages can be
modeled as specialcommunication tasksflowing through
the network. The operating system schedules the tasks on
each node, while a MAC protocol resolves contention among
messages over the network.

When a fixed priority scheduler is assumed on each node,
such model has been extensively studied in the real-time
literature. From the point of view of the analysis, the holistic
analysis, first proposed by Tindell [1], is used to test the
feasibility of the system, i.e. to see if all pipelines will
complete before their EE deadlines. Recently, other analyses
have been proposed based on event streams [2], or on the
reduction to a single-processor problem [3], [4].

Similar methodologies have been developed when Earliest
Deadline First (EDF) is used as a scheduler [5]–[7]. In EDF,
each task’s instance (orjob) is assigned anabsolute deadline
that is used both for checking feasibility and as dynamic
priority of the job.

However, the deadline of each job is assigned relatively
to the activation of the first task in the pipeline, which may
be mapped onto a different node. Hence a common time
reference is required between nodes, which can be possibly
provided by a clock synchronization protocol.

This requirement limits the applicability of EDF to dis-
tributed systems where the overhead of a global clock
synchronization may be unacceptable. In this paper we
propose a new protocol, called Distributed Deadline Syn-
chronization Protocol (DDSP) that removes the requirement
of a global clock synchronization. Systems that useDDSP
for assigning absolute deadlines can be analyzed using the
classical holistic analysis [5], [6] or the processor demand
[7]. The idea is similar to the one behind the Release Guard
Protocol (RGP) by Sun and Liu [8]. However, the extension
of RGP to EDF is not trivial, as shown in Section V.

After describing the problem in Section II, we introduce
the notation in Section III, and recall the existing schedu-
lability analysis for real-time pipelines of tasks in Section
IV. Then, in Section V we propose a simple protocol and
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we show that it does not solve the problem when the EE
deadline is larger than the period of the pipeline. In Section
VI we present our protocol, and prove its correctness.
Finally, in Section VII we present our conclusions.

II. PROBLEM FORMULATION

In our model, the first task in a pipeline is activated
periodically or by external events with minimum inter-arrival
times. The release of successor tasks can be done in two
ways.

Event-driven activation. When an intermediate task
completes, it sends a signal (or a message) to the following
task in the pipeline, which is immediately activated upon the
reception of the signal. This is the simplest method as it does
not require any specific protocol or time synchronization.
Its drawback is that it may introduce a large release jitter,
because the activation instant depends on the completion
time of the previous task, which in turn depends on the
interference of other unrelated tasks in the system. The
schedulability analysis can be carried out using theHolistic
Analysis, first proposed by Tindell et al. [1].

Time-driven activation. Intermediate tasks are activated
periodically, with period equal to the period of the pipeline,
and an offset (orphase) equal to the worst-case completion
time of the preceding task. This method is calledPhase
Modification (PM) protocol and has been first proposed by
Bettati and Liu [9]. In order to set the offsets so that the
precedence between tasks is respected, the protocol requires
global clock synchronization. However, this protocol is only
valid for periodic pipelines (not sporadic ones), and it is
not robust to any variation of the parameters, like the task
computation times. In fact, when a task completes later
than expected, the successor task may start before such
completion, violating the precedence constraint. In the same
paper, Bettati and Liu also proposed theModified Phase
Modification(MPM) protocol to overcome such limitation.

The advantage of using a time-driven protocol is that the
analysis of the distributed system can be decoupled intom
single-processor schedulability analysis. In fact, the release
time of a job does not depend on the completion of the
preceding jobs.

A. Synchronization protocols for fixed priority

The Release Guard Protocol, proposed by Sun and Liu
[8], takes the best of the two approaches. The idea is to
control the release of a task so that the inter-arrival time
between two consecutive jobs is no shorter than the pipeline
period. The protocol maintains a variableai for each task
τi that stores the activation time of the last job. When an
activation signal arrives from the preceding task at timet,
the differencet−ai is compared against the pipeline period
T : if t < ai+T , then the task release is delayed untilai+T ,
otherwise it is immediately released.

In this case (as with the PM and MPM protocols),
the schedulability analysis reduces tom single processor
analyses. The protocol requires one timer for each task.

B. Synchronization protocols with EDF

Under EDF scheduling, we have the additional problem
of setting the absolute deadlinedℓi of every jobτ ℓi . In single
processor systems, the absolute deadlinedℓi can be simply
computed as the job release timeaℓi plus the task relative
deadlineDi, which is a fixed parameter:dℓi = aℓi +Di.

In distributed systems, if we choose a time-driven activa-
tion strategy the absolute deadline can simply be computed
as the release time plus the relative deadline. Also, we can
use any single processor schedulability analysis, like the
one based on the demand bound function, as we suggest
in [7]. However, we still have the same problems as in fixed
priority: the need for a global clock synchronization and the
lack of robustness.

Conversely, if we choose a purely event-driven activation
strategy without a clock synchronization protocol, the ab-
solute deadline of a job depends on its release time, which
in turn depends on the completion time of the preceding
task, which can be subject to a large jitter. Therefore, the
analysis becomes quite pessimistic, because we must take
the worst-case jitter into account.

In this paper, we propose theDistributed Deadline Syn-
chronization Protocol(DDSP), a protocol to correctly set
the absolute deadlines of the jobs that does not require global
clock synchronization. The protocol allows us to use both
an analysis based on the demand bound function, as the
one proposed in [7], and the holistic analysis for EDF [5],
[6]. The protocol uses an idea similar to the Release Guard
Protocol by Sun and Liu for EDF scheduling. However,
extending the Release Guard Protocol to EDF is not trivial,
as we will discuss in Section V.

III. SYSTEM MODEL AND NOTATION

A distributed real-time application is modeled by a set
of pipelines{T1, . . . , Tm}. To simplify the presentation, if
not otherwise specified, for most of the paper we will drop
the index of the pipelines, since our analysis focuses on one
pipeline in isolation.

The pipeline T is composed by a set ofn tasks
{τ1, . . . , τn}. Taskτi, with i > 1, is activated upon the com-
pletion of the preceding oneτi−1 and it has a computation
time Ci. The first taskτ1 of the ℓth instance of the pipeline
is activated atΦℓ, which is calledabsolute activation. We
consider sporadic pipelines with minimum inter-arrival time
T . Hence we have

Φℓ − Φℓ−1 ≥ T. (1)

We denote byτ ℓi the ℓth instance (job) of taskτi. Each
pipeline T has anend-to-end (EE) deadlineD that is the
maximum tolerable time from the activation of the first task
τ1 to the completion of the last taskτn.



When D > T , it may happen that a task is activated
before its previous instance has completed. In this paper,
we assume that the different activations of each task are
served in a FIFO order.

The application is distributed acrossp processing nodes,
and each taskτi of the pipelineT is mapped onto compu-
tational nodexi ∈ {1, . . . , p}. Hence, we defineTk = {τi ∈
T : xi = k} as the subset of tasks inT mapped onto node
k andnk as the cardinality ofTk.

Each task is assigned anintermediate deadlineDi, that is
the interval of time between the activation of the pipeline and
the absolute deadline of the task. Hence, using the notation
introduced so far, the absolute deadline of theℓth instance
of τi, is

dℓi = Φℓ +Di. (2)

For each task we define theoffset φi, relative to the
activation of the pipelineΦℓ, equal to the intermediate
deadline of the preceding one:

φ1 = 0, φi = Di−1 i = 2, . . . , n. (3)

The absolute offsetfor job τ ℓi is simply:

φℓ
i = Φℓ + φi. (4)

We define the taskrelative deadlineDi as

Di
def
= Di − φi.

The relationship between offsets and relative deadlines is
depicted in Figure 2. Clearly,

n
∑

i=1

Di = D. (5)

The release time of a jobτ ℓi depends on the activation
method. If we use a time-driven activation, then the release
time will be equal to the pipeline release time plus the offset.

aℓi = Φℓ + φi. (6)

If we use an event-driven activation, the release time will
be equal to the completion time of the preceding job in the
chain. If all tasks complete no later than their deadlines, we
have:

∀i, ℓ aℓi ≤ Φℓ + φi. (7)

φ2

φ3=D2

φn=Dn−1

T

D1=D1 D2 Dn

D = Dn

C1 C2 Cn

Figure 2: Notation for tasks.

The values ofT,Φℓ, D,Ci, Di, Di, φi are all real num-
bers. Finally, we use the notation(·)0

def
= max{0, ·}.

IV. SCHEDULABILITY ANALYSIS

In this section, we recall the two main schedulability
analyses used in the literature for analyzing distributed real-
time pipelines.

A. Holistic analysis

The holistic analysis was initially proposed for fixed
priority scheduling [1], and later extended to EDF [5], [6],
[10].

The basic idea is to analyze the system iteratively until the
analysis converges to a fixed point. The WCDO algorithm
by Palencia and Gonzalez [5] works as follows: every task is
assigned arelease timeand arelease jitterequal to the best-
case and worst-case response times of the preceding task in
the chain, respectively. Absolute deadlines of jobs are setin
accordance to Eq. (2).

Once the parameters of every task have been set, the
response times are computed using a single processor
schedulability analysis. In the case of EDF, the algorithm for
computing the response time has been originally proposed
by Spuri [10]. The new response times are used to set the
new release times and jitters. The computation is iterated
until a fixed point is reached, or the EE deadline is missed.

Pellizzoni and Lipari proposed the algorithm MDO-TO
[6], an improvement of WCDO that simply ignores the jitter
and only uses the release time, which is set equal to the
worst-case response time of the preceding task in the chain.
Moreover, MDO-TO uses a less pessimistic single processor
analysis for EDF that was proposed in [11].

B. Processor Demand Analysis

Holistic analysis isglobal, in the sense that the designer
must know the parameters of all pipelines in the system
before being able to start analyzing its schedulability.

Recently, it has been proposed acomponent-based ap-
proachanalysis of distributed real-time pipelines [7]. In this
analysis, the computational requirement of the subsetTk of
tasks allocated on nodek is modeled by itsdemand bound
functiondbfk(t) that is the maximum execution requirement
in any interval of lengtht. An algorithm for computing the
dbfwas developed [7]. We highlight that, differently from
what one may expect, thedbf of sporadic pipelines may be
larger than the corresponding periodic one.

The demand based analysis has the advantage of enabling
a component-based approach to the analysis of complex
distributed systems, since the demand of each pipeline
does not depend on other pipelines. However, it is more
pessimistic than the holistic analysis, due to the fact thatthe
activation of every job is set toaℓi = Φℓ +φi, while holistic
analysis can take advantage of early completion of tasks.
Nonetheless, at run-time we can release jobs earlier as long
as the absolute deadline is correctly set todℓi = aℓ

1
+Di.

Lemma 1:An early release of any jobτ ℓi without modi-
fying its absolute deadline does not increase thedbf.



Proof: Let φℓ
i = Φℓ + φi be the offset of jobτ ℓi , dℓi

its absolute deadline and letaℓi < φℓ
i be its actual release at

run-time.
The demand on any interval[t0, t1] that contains[aℓi , d

ℓ
i ] is

the same as demand in[φℓ
i , d

ℓ
i ]. Instead, the demand on any

interval [t0, t1] that does not contain[aℓi , d
ℓ
i ] may be lower

when [t0, t1] ⊇ [φℓ
i , d

ℓ
i ].

Hence activating jobs earlier cannot increase the demand
bound function.

Thanks to Lemma 1, we can analyze pipelines assuming
a time-driven activation, while at run-time we can safely use
an event-driven activation method.

While the demand-based analysis has the advantage of
enabling composability, it requires indeed a common time
reference among the nodes. This can be achieved through
a global synchronization protocol. However, to avoid the
additional cost of such a protocol, we describe below a
distributed implicit synchronization protocol.

V. SIMPLE SYNCHRONIZATION PROTOCOL

In this section we describe a simple synchronization
protocol that is a direct extension of the Release Guard
Protocol (RGP) by Sun and Liu [8]. We show that, in the
case ofD > T , such protocol does not guarantee a correct
absolute deadline computation. Hence in Section VI we fix
this problem by proposing a new protocol.

Let us first define anoptimal protocolA that relies on
global synchronization. As the first task in the pipeline is
activated atΦℓ, the optimal protocolA communicates this
instant to all nodes so that on each node job deadlines can
be correctly set equaldℓi = Φℓ +Di.

In order to correctly schedule jobs, any other protocolB
must possess the following properties.

1) Under the assumption that all jobs complete before
their deadlines, the absolute deadline of a job assigned
by B must be less than or equal to the corresponding
absolute assigned by the optimal protocolA. This
is required to avoid the violation of the EE pipeline
deadline.

2) The demand generated on-line by the protocolB
should not exceed the demand computed off-line
(corresponding to deadlines assigned byA). This is
required to ensure schedulability.

To eliminate the need for global clock synchronization,
the basic idea is to reason on a per processor basis. The Very
Simple Protocol (VSP) that we propose has the following 3
rules.

1) The distance between the absolute deadlines of two
consecutive jobs of the same task must always be
greater than or equal to the pipeline periodT ; in
formula,dℓi − dℓ−1

i ≥ T .
2) The distance between the release time and the absolute

deadline of a job must always be greater than the job
relative deadlineDi; in formula,dℓi − aℓi ≥ Di.
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p1

p2

τ1

τ2

τ3

τ4

Figure 3: Deadlines assigned by the optimal protocol.

3) The distance between the absolute deadlines of two
jobs of the same pipeline is never less than the same
distance computed off-line. In formula, for every task
τj that is a predecessor ofτi, and that is allocated on
the same processork, it must hold thatdℓi − dℓj ≥

Di −Dj .

The protocol VSP assigns a job the minimum absolute
deadline that respects the three rules above, that is

dℓi = max{dℓ−1

i + T, aℓi +Di, d
ℓ
j +Di −Dj}. (8)

Notice that we do notrequire that the distance between the
absolute deadline of tasks allocated on different processors
is maintained. This distance can indeed be less than the
one computed by the optimal algorithmA with clock
synchronization, as we show in the example below.

A. Example

Consider a pipeline with4 tasks on2 processors: tasksτ1
and τ3 are allocated on processor1, whereas tasksτ2 and
τ4 are allocated on processor2. The EE deadline is equal to
12, and the relative deadlinesDi are3, 2, 3, 4, respectively,
while computation times of all tasks is∀i, Ci = 1. Job τ1

1

is activated at timea1
1
= 0 with deadlined1

1
= 3. According

to the optimal protocolA, the absolute deadline ofτ12 is at
d1
2
= a1

1
+ D2 = 5 (see Figure 3). However, if we apply

VSP and we assume thatτ11 completes at time1 (and then
releases jobτ1

2
on processor2), the absolute deadline is set

at d1
2
= a1

2
+ D2 = 3, in accordance with Eq. (8). The

we assume jobτ12 completes at timet = 2 and signals job
τ1
3

on processor1. Following the rules of the protocol, the
minimum deadline isd1

3
= d1

1
+D3 −D1 = 8. Notice that,

in this case, the absolute deadline set by VSP is the same
as the deadline set by the optimal protocolA.

Finally, taskτ3 completes at timet = 8 due to interference
by jobs of other pipelines (not shown in the figures). Thus,
taskτ4 is activated on processorp2 at time t = 8, and VSP
assigns it an absolute deadline equal tod1

4
= t+D4 = 12,

the same as the optimal protocolA.
Notice that the deadlines assigned by VSP are never later

than the deadlines computed by the optimal protocol.

B. Failure of VSP

Although VSP is a direct translation of the RGP, when
D > T it may generate an interval in which the demand is
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Figure 4: Deadlines assigned by the simple protocol.
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Figure 5: Counterexample for the simple protocol.

higher than the demand computed according to the optimal
protocolA. Consider the pipeline of the previous example,
and suppose that it is periodically activated with period equal
to T = 9. If we use the optimal protocolA to assign
deadlines, we expect the jobs ofτ2 to be assigned deadlines
5, 14, 23, 32, . . . while those ones belonging toτ4 deadlines
12, 21, 30, 39, . . .

Suppose that the second job of taskτ1 completes att = 10
and immediately activatesτ2 (Figure 5 shows this scenario,
jobs of the second instance are in white). According to
VSP, the deadline is set atd22 = a22 + D2 = 12. However
in this circumstance, the interval[8, 12] contains the two
jobs τ1

4
and τ2

2
with an overall demand of2 units of time.

With the deadlines assigned by the optimal protocolA there
is no interval of length4 that can contains two units of
time. Hence the protocol VSP is not correct because it may
generate a demand higher thanA.

Fortunately this “bug” can be fixed by setting an ad-
ditional rule that prevents this phenomenon to happen, as
explained in the next section.

VI. D ISTRIBUTED DEADLINE SYNCHRONIZATION

PROTOCOL

Before describing the protocol, we introduce the following
definition.

Definition 1: The precedence setPℓ
i of job τ ℓi allocated

on processork is the set of all jobsτhj of tasksτj ∈ Tk,
with h ∈ {ℓ, ℓ− 1, ℓ− 2, . . . ℓ− l0} that, under any possible
activation patterns, have

{

dhj < dℓi
φh
j < φℓ

i

(9)

where the numberl0 of past instances is:

l0 =

⌈

D

T

⌉

− 1. (10)

In practice, to avoid the problem highlighted earlier, the
deadlinedℓi must necessarily follow all the deadlines of jobs
Pℓ
i under all possible activation patterns. Intuitively, it is

clear that we only need to look atl0 instances in the past.
Jobs of earlier instances, in fact, cannot overlap withτ ℓi . In
the example of Figure 5,P2

2 = {τ14 , τ
1

2 } .
The following lemma guarantees that we only have to

examine periodic activation patterns.
Lemma 2: If Equation (9) holds for jobτhj when we as-

sume a periodic activation pattern (i.e. all pipeline instances
from h to ℓ are separated byT ), then it is valid for any other
feasible activation pattern.

Proof: The proof follows from the definition of ab-
solute offset and absolute deadline (see Equations (4) and
(2)). Under the assumption of periodic activation,Φℓ =
Φh + (ℓ − h)T , while a sporadic activation pattern leads
to Φ′ℓ ≥ Φh + (ℓ− h)T . Then

dhj < dℓi = Φℓ +Di

= Φh + (ℓ− h)T +Di

≤ Φ′ℓ +Di = d′
ℓ

i .

The same steps hold for the release time:

φh
j < φℓ

i = Φℓ + φi

= Φh + (ℓ− h)T + φi

≤ Φ′ℓ + φi = φ′ℓ

i .

The precedence set of a jobτ ℓi does not depend on the
instance indexℓ, as stated by the following lemma.

Lemma 3: If τhj ∈ Pℓ
i , then∀u < h ≤ l, τh−u

j ∈ Pℓ−u
i .

Proof: Follows directly from the definition.
Therefore, by appropriately shifting job indexes, the

precedence sets of all jobs of the same task can be made
congruent (except for the firstl0 instances in which some
element is missing). Hence, the precedence setPi for a task
τi can be computed off-line: after fixing a generic instance
index ℓ > l0, we compute the list of jobs of previous
instances that are part of the set, and store them in the set
using relative instance indexes. Then,Pℓ

i can be obtained
from Pi by shifting the job indexes byℓ.

The main property of the precedence set is expressed by
the following lemma.

Lemma 4:The distance betweendℓi and the deadlinedhj
of any of the jobs inPℓ

i has to satisfy the inequality

dℓi − dhj ≥ (ℓ − h)T +Di −Dj (11)

Proof: Follows directly from the definitions. In fact

dℓi − dhj = Φℓ +Di − Φh −Dj

≥ Φh + (ℓ − h)T +Di − Φh −Dj

= (ℓ− h)T +Di −Dj
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Figure 6: The example of Figure 5 scheduled byDDSP.

A. The protocol

We now present the Distributed Deadline Synchronization
Protocol (DDSP) to compute the absolute deadline of a job
τ ℓi at the instant of its releaseaℓi . The protocol consists of
four simple rules.

Rule 1 The separation between activation and deadline of
τ ℓi must always be greater than its relative deadline:

dℓi ≥ aℓi +Di (12)

Rule 2 There must be a minimum separation between the
deadlines of the jobs of the same task:

dℓi ≥ dℓ−1

i + T. (13)

Rule 3 The distance betweendℓi and any job inPℓ
i must

not be less than the minimum possible distance as computed
by Lemma 4. In formula:

∀τhj ∈ Pℓ
i , dℓi ≥ dhj + (ℓ − h)T +Di −Dj (14)

Rule 4At run-time, it may happen that a jobτ ℓi is released
before a job of its precedence set, due to the fact that
the end-to-end deadline can be larger than the period and
previous jobs may complete much earlier than their deadline.
In such a case,τ ℓi is suspended because its deadline cannot
be computed until we have computed the deadlines of all
the jobs in its precedence set.

From the previous rules, the job deadlinedℓi can simply
be computed as the maximum among the RHS of the three
inequalities. Notice that we only use parameters that are
local to each node (aℓi , d

ℓ
i ), or statically known (Di, T , Di

andPi for each task).

B. Example revisited

We first apply theDDSP protocol to the simple example
of Section V-B. First of all, we compute the precedence set
of task τ2 asPi = {τ−1

4
, τ−1

2
}. Under a periodic activation

pattern,dℓ−1

4
must always precededℓ

2
by at least2 time

units. Therefore, when jobτ2
4

is activated at timet = 10, its
deadline is computed according to Rule 3 of the protocol:

d22 = d14 + T −D4 +D2 = 12 + 9− 12 + 5 = 14

as expected. The situation is depicted in Figure 6.

C. Minimal Precedence Set

SetPi can contain up tonk(l0 + 1) jobs. We can reduce
such number by using aminimal setP∗

i that contains at
most one job per past instance.

Therefore, we now present an algorithm to build a min-
imal subsetP∗

i for each taskτi. Then, we show that the
reduced set contains all the jobs necessary to implement the
DDSP protocol.
Algorithm to compute P∗

i .
• Initially, P∗

i is empty.
• We fix an arbitrary instanceℓ of the pipeline.
• SetP∗

i contains at most one job per each instanceℓ, ℓ−
1, . . . ℓ− l0.

• We start from instanceh = ℓ. We only need to know
the deadline of taskτj ∈ Tk that immediately precedes
τi in the pipeline. Then,τ ℓj is added toP∗

i . If τi has
no preceding task inTk, we skip this step.

• Then, we enter a cycle in which we compute the job for
instanceh ∈ ℓ−1, ℓ−2, . . . , ℓ−l0. As stated by Lemma
2, we can safely assume that the distance between two
consecutive instances of the pipeline, with index from
h to ℓ, is equal to the period. We have two sub-cases:

1) If P∗
i is empty, we consider the latest jobτhj that

has absolute deadline smaller thandℓi and absolute
offset less thanφℓ

i . If such a job exists, it is added
to P∗

i . Else, we move to the previous instance.
2) If P∗

i contains one or more jobs, letτuz be the
job with the largest deadline inP∗

i . Consider the
latest jobτhj that has absolute deadline in interval
(duz , d

ℓ
i) and absolute offset less thanφℓ

i . If such a
job exists it is added toP∗

i . Otherwise we look for
jobs that are in the precedence set ofτ ℓi but not in
the one ofτuz ; this means that we have to search
the latest jobτhj that has absolute deadline smaller
thanduz and absolute offset in interval(φz

u, φ
ℓ
i). If

such a job exists, it is added toP∗
i . Else, we move

to the previous instance.

• We iterate until instanceh = ℓ− l0.

The minimal precedence setP∗
i for a taskτi allocated on

processork contains at mostmin(l0 +1, nk) jobs, wherel0
is defined by Equation (10), andnk is the number of tasks
of the pipeline allocated on processork.

D. Example

An example of the procedure is shown in Figure 7. To
simplify the graphical presentation, in this figure we show
one instance of the same pipeline per each time-line.

Consider a pipeline having 6 tasks, with periodT = 10
and end-to-end deadlineD = 25. Hence, we need to
consider l0 = 2 instances. The intermediate deadlines
are respectively,3, 6, 10, 14, 21, 25. We assume that tasks
τ1, τ3, τ5, are allocated on processork = 1, while task
τ2, τ4, τ6 are allocated on processork = 2. We want to



compute the precedence set of jobτ ℓ2 (the second task in the
third line of Figure 7). By setting all preceding release at a
distance equal toT , we have the activation pattern shown
in the figure. The precedence set ofτ ℓ2 contains:

1) no job of instanceℓ, because no task precedesτ2 on
processor 2;

2) job τ ℓ−1

4
;

3) job τ ℓ−2

6
.

E. Equivalence betweenPi andP∗
i

Rule 3 of the protocol mandates that all the deadlines
in the precedence setPℓ

i must be computed before we can
compute deadlinedℓi . The following lemma proves that at
run-time it is sufficient to only considerP∗

i .
Theorem 1:If all the jobs in P∗

i have been assigned a
deadline at run-time, then all the jobs inPℓ

i have been
assigned a deadline.

Proof: By contradiction. Suppose that a jobτhj ∈ Pℓ
i −

P∗
i has not been assigned a deadline, and letτ ℓi be the first

job for which this happens at run-time.
Since dhj < dℓi but τhj ∈ Pℓ

i and τhj /∈ P∗
i , from the

algorithm used to buildP∗
i , it must exist a jobτzu ∈ P∗

i

such thath ≤ z ≤ ℓ anddhj < dzu < dℓi andφh
j < φz

u. Then,
τhj ∈ Pz

u. Sinceτzu has been assigned a deadline at run-time,
according to rule 3,τhj must have been assigned a deadline,
against the hypothesis.

F. Proof of correctness

The following lemma proves that the absolute deadlines
assigned by algorithmDDSP never exceed the absolute
deadlines assigned by an optimal algorithm that uses global
synchronization.

Lemma 5:Let Φℓ be the release time of theℓ-th instance
of pipeline T . Under the assumption that the pipeline is
schedulable, the absolute deadlinedℓi of every jobτ ℓi , com-
puted dynamically using algorithmDDSP, is never larger
thanaℓ +Di.

Proof: We want to prove that

∀ℓ, i dℓi ≤ aℓ +Di (15)

We prove it by induction on bothℓ (the instance index)
and i (the task index).

We start proving the first instance, whenℓ = 0. Notice
that sinceℓ = 0 then only Rules 1 and 3 can be applied. By
induction oni. If i = 1 then we have to prove that

d0
1
≤ a0 +D1 (16)

In this case only rule 1 (Eq. 12) applies. Hence

d0
1
= a0 +D1 = a0 +D1

as required.
Now we prove it for anyi assuming it is true for all

smaller task indexes. Notice thatP∗
i contains at most one

job, related to the same instance, the first one. Ifd0i has been
computed according to Eq. 12, then

d0i = a0i +Di = f0

i−1
+Di ≤ d0i−1

+Di

≤ a0 +Di−1 +Di = a0 +Di

as required. If, instead Rule 3 applies, thenP∗
i contains one

job, τ0j and we have

d0i = d0j +Di −Dj ≤ a0 +Dj +Di −Dj = a0 +Di

which concludes the proof for instanceℓ = 0.
Now, we perform an inductive step onℓ. Let us assume

that Eq. 15 holds true forℓ− 1. By induction oni. If i = 1,
then we have to prove that

dℓ1 ≤ aℓ +D1

If Rule 1 is applied, then

dℓ1 = aℓ +D1 = aℓ +D1

as required. If, instead Rule 2 is applied, then

dℓ1 = dℓ−1

1
+ T ≤ aℓ−1 +D1 + T ≤ aℓ1 +D1

as required. If Rule 3 is applied, it means that

dℓ
1
= max

τh
j
∈Pℓ

1

{

dhj + (ℓ− h)T +D1 −Dj

}

Suppose thatτzu is the job that gives the max, then

dℓ
1
= dzu + (ℓ− z)T +D1 −Du

≤ az +Du + (ℓ− z)T +D1 −Du

≤ aℓ +D1

We conclude by proving it for anyi, assuming it true for
the preceding ones. Ifdℓi has been computed according to
Rule 1, then

dℓi = aℓ +Di = f ℓ
i−1 +Di ≤ dℓi−1 +Di

≤ aℓ +Di−1 +Di = aℓ +Di

as required. If Rule 2 applies then

dℓi = dℓ−1

i + T ≤ aℓ−1 +Di + T ≤ aℓ +Di

As before, if Rule 3 is applied, it means that

dℓi = max
τh
j
∈Pℓ

i

{

dhj + (ℓ− h)T +Di −Dj

}

Suppose thatτzu is the job that gives the max, then we have

dℓi = dzu + (ℓ − z)T +Di −Du

≤ az +Du + (ℓ− z)T +Di −Du

≤ aℓ +Di,

which concludes the proof.
Lemma 5 guarantees that, if the pipeline is locally schedu-

lable on each node, then no task misses the deadlines that a
global algorithm would have assigned on each node.

Now we want to prove that, if the system results schedula-
ble according to one of the schedulability analyses described
in Section IV, then it never misses deadlines at run-time
when absolute deadlines are computed byDDSP. First, an
important Lemma.
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Figure 7: Example of computation of the precedence set.

Lemma 6:Let τhj be any job inPℓ
i . Under the assumption

that the pipeline is schedulable and all deadlines are assigned
using DDSP, the distance betweendhj and dℓi is never
smaller than the distance as computed in Equation (11).

Proof: For τhj ∈ P∗
i , the lemma follows directly from

Rule 3. For the other jobs, it is easy to see that we can
apply a similar reasoning to the one in Lemma 1 to derive
the thesis.

Now the main theorem.
Theorem 2:Consider a system that is feasible according

to the processor demand analysis [7]. Assume that all tasks
execute for less than their WCET and that, for any pipeline,
the distance between any two consecutive releases of the
pipeline is never less than the period. IfDDSP is used to
assign the absolute deadlines of jobs at run-time, then for
every interval of time the demand produced by one pipeline
never exceeds the demand computed off-line.

Proof: The proof is very long and tedious and has been
removed for space constraints. The interested reader can find
it in [12].

VII. C ONCLUSIONS AND FUTURE WORK

In this paper we presentedDDSP, a protocol for com-
puting the absolute deadlines of jobs in distributed real-
time systems modeled as pipelines of tasks. The protocol
does not require a global clock synchronization, and jobs
can be released at the completion of the preceding job in
the chain. The system can thus be analyzed using holistic
schedulability analysis, or processor demand analysis.

The protocol can easily be extended to more general task
topologies, like directed acyclic graphs (DAGs), by slightly
modifying the definition of precedence set. As a future work,
we also plan to implement the algorithm both in Linux and in
ERIKA [13], [14], a real-time operating systems for limited
resource platforms.
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