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Abstract—Many distributed and multiprocessor real-time be allocated to the same processor: in the figure, tasks

applications consist of pipelines of tasks that must compte and 74 reside on processor 2, angs and 5 reside on
before their end-to-end deadlines. Different schedulabity anal- processor 3

yses have been proposed for both Fixed Priority and Earli- . L L
est Deadline First scheduling. All the schedulability anglses Real-time pipelines can be used to model distributed as

proposed so far assume that a global clock synchronization Well as multi-core systems. In the first case, the networks
protocol is used to synchronize the deadlines of jobs alloted ~ can be modeled as specjabcessorsand messages can be

on different processors. This assumption may limit the appt  modeled as speciatommunication taskflowing through
cability of EDF to such systems. the network. The operating system schedules the tasks on

In this paper, we propose the Distributed Deadline Synchro- . .
nization Protocol (DDSP) for computing the absolute deadlines ~ €ach node, while a MAC protocol resolves contention among

of jobs. The protocol is a non-trivial extension of the Relese ~ Messages over the network.
Guard Protocol proposed for fixed priority systems. DDSP When a fixed priority scheduler is assumed on each node,
does not require a global clock synchronization, yet existig  such model has been extensively studied in the real-time
Ecé‘gg”'ab'“ty analyses are valid for schedules generatelly |itaratyre. From the point of view of the analysis, the hitis

' analysis, first proposed by Tindell [1], is used to test the
feasibility of the system, i.e. to see if all pipelines will
. . L complete before their EE deadlines. Recently, other asalys
Many distributed real-time embedded applications CONY .ve been proposed based on event streams [2], or on the
sist of cyclically activated pipelines of tasks executiny o reduction to a single-processor problem [3], [4]

dlffe_rent_ Processors. For example, multimedia strear_mng Similar methodologies have been developed when Earliest
applications are typically structured as sequences oérdiff Deadline First (EDF) is used as a scheduler [5][7]. In EDF,

ent stz(iges(,j_gach one perforrpe_zd by a tasdk exer]cuting I(')n éhch task’s instance (b) is assigned aabsolute deadline
.(pOSSI. y) fiferent processor; in an encoder, the PIEElN 4, js ysed both for checking feasibility and as dynamic
is periodically activated at each frame period, while in apriority of the job

decoder it is activated every time a new frame is available. However. the deadline of each job is assigned relatively
Every pipeline must be completed beforedtsd-to-endEE) -y, 46 activation of the first task in the pipeline, which may

d_eadlll_ne relative to _thel_acnv?tlon Iof_the flrs'Ltask. IF tb:l;;” be mapped onto a different node. Hence a common time
tlmle literature, a .plp_?r:.ne 0 drela -t|m? tasks s azo_ 1e reference is required between nodes, which can be possibly
real-time transactionThis model was first proposed in [1]. é)rovided by a clock synchronization protocol.

In general, an application can consist of many of thes This requirement limits the applicability of EDF to dis-

pipelines, each one with its timing parameters and EE deaqﬁbuted systems where the overhead of a global clock
line. An example Of. system V.Vith _three pipelines eXecmmgsynchronization may be unacceptable. In this paper we
on four processors is shown in Figure 1. propose a new protocol, called Distributed Deadline Syn-
chronization Protocol@IDSP) that removes the requirement

of a global clock synchronization. Systems that 0d2SP

for assigning absolute deadlines can be analyzed using the
classical holistic analysis [5], [6] or the processor dedthan
[7]. The idea is similar to the one behind the Release Guard
Protocol (RGP) by Sun and Liu [8]. However, the extension
of RGP to EDF is not trivial, as shown in Section V.

After describing the problem in Section Il, we introduce
the notation in Section Ill, and recall the existing schedu-
lability analysis for real-time pipelines of tasks in Seati
Please notice that two tasks of the same pipeline may. Then, in Section V we propose a simple protocol and

I. INTRODUCTION

Figure 1: An example of 3 pipelines over 4 processors.
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we show that it does not solve the problem when the EE In this case (as with the PM and MPM protocols),
deadline is larger than the period of the pipeline. In Sectio the schedulability analysis reduces #o single processor
VI we present our protocol, and prove its correctnessanalyses. The protocol requires one timer for each task.

Finally, in Section VII we present our conclusions. B. Synchronization protocols with EDF

Under EDF scheduling, we have the additional problem

] ) S , of setting the absolute deadlidg of every jobr?. In single
In our model, the first task in a pipeline is activated processor systems, the absolute deadiiiean be simply

periodically or by external events with minimum inter—aerl_i computed as the job release timg plus the task relative
times. The release of successor tasks can be done in tV\fﬂeadIineDi, which is a fixed parametedf _ af +D;.
ways. _ o _ _ In distributed systems, if we choose a time-driven activa-
Event-driven activation. When an intermediate task {jon strategy the absolute deadline can simply be computed
completes, it sends a signal (or a message) to the followings the release time plus the relative deadline. Also, we can
task in the pipeline, which is immediately activated upa th se any single processor schedulability analysis, like the
reception of the signal. This is the simplest method as isdoegne based on the demand bound function, as we suggest
not require any specific protocol or time synchronization.j,, [7]. However, we still have the same problems as in fixed
Its drawback is that it may introduce a large release jitterpriority: the need for a global clock synchronization and th
because the activation instant depends on the completiggck of robustness.
time of the previous task, which in turn depends on the conyersely, if we choose a purely event-driven activation
interference of other unrelated tasks in the system. Thgtategy without a clock synchronization protocol, the ab-
schedulability analysis can be carried out usinglttwdistic  sojute deadline of a job depends on its release time, which
Analysis first proposed by Tindell et al. [1]. in turn depends on the completion time of the preceding
Time-driven activation. Intermediate tasks are activated task, which can be subject to a large jitter. Therefore, the
periodically, with period equal to the period of the pipelin  analysis becomes quite pessimistic, because we must take
and an offset (ophasg equal to the worst-case completion the worst-case jitter into account.
time of the preceding task. This method is callebdase In this paper, we propose tHRistributed Deadline Syn-
Modification (PM) protocol and has been first proposed by chronization Protocol(DDSP), a protocol to correctly set
Bettati and Liu [9]. In order to set the offsets so that thethe absolute deadlines of the jobs that does not requireblob
precedence between tasks is respected, the protocol@squirciock synchronization. The protocol allows us to use both
global clock synchronization. However, this protocol idyon an analysis based on the demand bound function, as the
valid for periodic pipelines (not sporadic ones), and it isone proposed in [7], and the holistic analysis for EDF [5],
not robust to any variation of the parameters, like the task6]. The protocol uses an idea similar to the Release Guard
computation times. In fact, when a task completes latepProtocol by Sun and Liu for EDF scheduling. However,
than expected, the successor task may start before sueltending the Release Guard Protocol to EDF is not trivial,
completion, violating the precedence constraint. In theesa as we will discuss in Section V.
paper, Bettati and Liu also proposed tModified Phase
Modification(MPM) protocol to overcome such limitation.
The advantage of using a time-driven protocol is that the A distributed real-time application is modeled by a set
analysis of the distributed system can be decoupledsinto ©Of pipelines{7i,..., 7, }. To simplify the presentation, if
single-processor schedulability analysis. In fact, tHeage Not otherwise specified, for most of the paper we will drop
time of a job does not depend on the completion of thethe index of the pipelines, since our analysis focuses on one

Il. PROBLEM FORMULATION

IIl. SYSTEM MODEL AND NOTATION

preceding jobs. pipeline in isolation.
The pipeline 7 is composed by a set of tasks
A. Synchronization protocols for fixed priority {r1,...,m}. Taskr;, with i > 1, is activated upon the com-

. pletion of the preceding ong_; and it has a computation
The Release Guard Protocoproposed by Sun and Liu time C;. The first taskr; of the ¢ instance of the pipeline

[8], takes the best of the two approaches_. The |<_jea IS % activated atb’, which is calledabsolute activationWe
control the release of_a t_ask S0 that the Inter-arnva! UM& onsider sporadic pipelines with minimum inter-arrivahé
between two consecutive jobs is no shorter than the plpelln%' Hence we have
period. The protocol maintains a variahle for each task ’ 1
7; that stores the activation time of the last job. When an -0 2T )
activation signal arrives from the preceding task at time We denote byr! the ¢ instance (job) of task;. Each
the difference — a; is compared against the pipeline period pipeline 7 has anend-to-end (EE) deadlin® that is the
T:if t < a;+7T, then the task release is delayed uatit- T, maximum tolerable time from the activation of the first task

otherwise it is immediately released. 71 to the completion of the last task,.



When D > T, it may happen that a task is activated V. SCHEDULABILITY ANALYSIS
before its previous instance has completed. In this paper, | this section, we recall the two main schedulability
we assume that the different activations of each task argnalyses used in the literature for analyzing distributs-r
served in a FIFO order. time pipelines.

The application is distributed acrogsprocessing nodes,
and each task; of the pipeline7 is mapped onto compu- A. Holistic analysis

tational noder; € {1,...,p}. Hence, we defing;, = {r; € The holistic analysis was initially proposed for fixed
T : x; = k} as the subset of tasks ii mapped onto node priority scheduling [1], and later extended to EDF [5], [6],
k andn; as the cardinality offy. o [10].

Each task is assigned artermediate deadlin®;, that is The basic idea is to analyze the system iteratively until the

the interval of time between the activation of the pipelinda analysis converges to a fixed point. The WCDO algorithm
the absolute deadline of the task. Hence, using the notatiopy Palencia and Gonzalez [5] works as follows: every task is
introduced so far, the absolute deadline of tHeinstance assigned aelease timand arelease jitterequal to the best-
of 7, is . case and worst-case response times of the preceding task in
df =o' +D,. (2)  the chain, respectively. Absolute deadlines of jobs arénset
accordance to Eq. (2).
Once the parameters of every task have been set, the
response times are computed using a single processor
T schedulability analysis. In the case of EDF, the algoritbm f
¢1=0, ¢;=Di1 i=2,...,n. (3)  computing the response time has been originally proposed
The absolute offsefor job 7/ is simply: by Spuri [10]. The new response times are used to set the
new release times and jitters. The computation is iterated

For each task we define theffset ¢;, relative to the
activation of the pipeline®‘, equal to the intermediate
deadline of the preceding one:

0 _ gt ,
¢ ="+ oi. (4) until a fixed point is reached, or the EE deadline is missed.

We define the taskelative deadlineD; as Pellizzoni and Lipari proposed the algorithm MDO-TO
D% D, - & [6], an improvement of WCDO that simply ignores the jitter

] ) ) ) and only uses the release time, which is set equal to the
The relationship between offsets and relative deadlines ig,grst-case response time of the preceding task in the chain.

depicted in Figure 2. Clearly, Moreover, MDO-TO uses a less pessimistic single processor
" analysis for EDF that was proposed in [11].
> D;=D. (5)
i=1 B. Processor Demand Analysis

The release time of a job/ depends on the activation  Holistic analysis isglobal, in the sense that the designer
method. If we use a time-driven activation, then the releasenust know the parameters of all pipelines in the system
time will be equal to the pipeline release time plus the dffse before being able to start analyzing its schedulability.

al = o + . (6) Recently, it_ has _begn proposeo_lcampone_nt-based ap-
) o . . proachanalysis of distributed real-time pipelines [7]. In this

If we use an event-driven activation, the release time W'”analysis, the computational requirement of the subgef
be equal to the completion time of the preceding job in the,gks aliocated on nodeis modeled by itdemand bound
chain. If all tasks complete no later than their deadlines, qunctiondbfk(t) that is the maximum execution requirement
have: in any interval of lengtht. An algorithm for computing the
dbfwas developed [7]. We highlight that, differently from
what one may expect, thibf of sporadic pipelines may be

D=D, larger than the corresponding periodic one.
D,=D, Dy D, The demand based analysis has the advantage of enabling
a component-based approach to the analysis of complex
jg % e o o o LCn ﬂ distributed systems, since the demand of each pipeline
does not depend on other pipelines. However, it is more
o2 $3=D> — pessimistic than the holistic analysis, due to the fact tthet
$n=Dn activation of every job is set ta! = ®¢ + ¢;, while holistic

T analysis can take advantage of early completion of tasks.

Figure 2: Notation for tasks. Nonetheless, at run-time we can release jobs earlier as long
as the absolute deadline is correctly setifo= af + D;.

The values ofT", ¢, D, C;, D;, D;, ¢; are all real num- Lemma 1:An early release of any job’ without modi-

bers. Finally, we use the notatign, = max{0, -}. fying its absolute deadline does not increase dhg

Vil al < ® + ¢, (7)




Proof: Let ¢! = ®° + ¢; be the offset of jobr/, d
its absolute deadline and lef < ¢¢ be its actual release at P1 hﬁ l TH
run-time.

The demand on any intervil, ¢,] that containga’, d?] is

1)

the same as demand jn¢, d¢]. Instead, the demand on any P2 Hz hm l

e
interval [to, 1] that does not contaifu!, d{] may be lower
when[to, t1] 2 [¢¢, dS).

= Rt

Hence activating jobs earlier cannot increase the demand Figureo 3: Deadfnes %\ssigenedlBy th2 or}ﬁmal protocol.
bound function. [ |

Thanks to Lemma 1, we can analyze pipelines assuming
a time-driven activation, while at run-time we can safelg us
an event-driven activation method.

While the demand-based analysis has the advantage of
enabling composability, it requires indeed a common time
reference among the nodes. This can be achieved through
a global synchronization protocol. However, to avoid the
additional cost of such a protocol, we describe below a
distributed implicit synchronization protocol.

3) The distance between the absolute deadlines of two
jobs of the same pipeline is never less than the same
distance computed off-line. In formula, for every task
7; that is a predecessor of, and that is allocated on
the same processdr, it must hold thatd! — df >
D; — D;.

The protocol VSP assigns a job the minimum absolute

deadline that respects the three rules above, that is
Y. SIMP.LE SYNCHROI\.IIZATION. PROTOCOL . df _ max{dffl Y af 4D, dﬁ LD 53-}. ®)
In this section we describe a simple synchronization , ,
protocol that is a direct extension of the Release Guardiotice that we do notequire that the distance between the
Protocol (RGP) by Sun and Liu [8]. We show that, in the absolute deadline of tasks allocated on different proessso

case ofD > T, such protocol does not guarantee a correciS Maintained. This distance can indeed be less than the
absolute deadline computation. Hence in Section VI we fix°ne com_put_ed by the optlmal algorithd with clock
this problem by proposing a new protocol. synchronization, as we show in the example below.

Let us first define aroptimal protocol A that relies on A Example

global synchronization. As the first task in the pipeline is Consider a pipeline witht tasks or2 processors: tasks

. p ) . )
activated atd‘, the optimal protocold communicates this and 3 are allocated on processbr whereas tasks, and

Ejtsgsréitslsl?deeqsuzig Taggoﬂ %ach node job deadlines cag are allocated on process2rThe EE deadline is equal to
i = i

k 12, and the relative deadlind3; are 3, 2, 3, 4, respectively,
In order to correctly sc_:hedule JOb.s' any other protosol while computation times of all tasks &, C; = 1. Job 7

must possess the followmg properties. is activated at time:} = 0 with deadlined} = 3. According

1) Under the assumption that all jobs complete beforq the optimal protocol4, the absolute deadline of is at
their deadlines, the absolute deadline of a job assigneé)1 W Dy =5 (see’ gy oty

by BB must be_ less than or eq“?" to the Correqundinqﬁsp ar%d we assume that completes at timé (and then
_absolut_e a55|gned_ by the_ op_tlmal protocal Th's_ releases job on processoR), the absolute deadline is set
is required to avoid the violation of the EE pipeline ;. » _ 1 + Dy = 3, in accordance with Eq. (8). The

2 = 2 - ’ . .

deadline. o : : :
. we assume job, completes at time¢ = 2 and signals job
2) The demandgenerated on-line by the protocd .73 on processot. Following the rules of the protocol, the
should not _exceed the_ demanq computed_ Oﬁ'l'neminimum deadline il = d! + Dy — D, = 8. Notice that
(corr_espondlng to deadlines g_sagned Ay This is in this case, the absolute deadline set by VSP is the same
required to ensure schedulability.

a ~ as the deadline set by the optimal protogbl
To eliminate the need for global clock synchronization, Finally, taskr; completes at time = 8 due to interference

th_e basic idea is to reason on a per processor basis. Tr_le VehY jobs of other pipelines (not shown in the figures). Thus,
Simple Protocol (VSP) that we propose has the following 3ia5k 7, is activated on processgs at timet = 8, and VSP

rules. assigns it an absolute deadline equatifo= ¢ + Dy = 12,

1) The distance between the absolute deadlines of tweghe same as the optimal protocdl
consecutive jobs of the same task must always be Notice that the deadlines assigned by VSP are never later
greater than or equal to the pipeline peri@d in  than the deadlines computed by the optimal protocol.
formula,d! —d'~' > T. _

2) The distance between the release time and the absolufe Failure of VSP
deadline of a job must always be greater than the job Although VSP is a direct translation of the RGP, when
relative deadlineD;; in formula, df - af > D;. D > T it may generate an interval in which the demand is



The same steps hold for the release time:

where the numbely of past instances is:
P1 Hﬁ ' TH D
lo= {ﬂ -1 (10)
In practice, to avoid the problem highlighted earlier, the
p2 jQ i‘* J deadlined! must necessarily follow all the deadlines of jobs
P¢ under all possible activation patterns. Intuitively, it is
clear that we only need to look & instances in the past.
Figur@ 4: Beadfinesassi§ned by tte sithiple protocol. Jobs of earlier instances, in fact, cannot overlap wjthin
the example of Figure P2 = {7}, 74} .
The following lemma guarantees that we only have to
- - > examine periodic activation patterns.
P El ' Ti ]]Tl Lemma 2:If Equation (9) holds for jobr) when we as-
sume a periodic activation pattern (i.e. all pipeline ins&s
X b from h to ¢ are separated HY), then it is valid for any other
p2 j2 E‘* [:T feasible activation pattern.
Proof: The proof follows from the definition of ab-
solute offset and absolute deadline (see Equations (4) and
Figufe 5:Coufiterekample df thd*simple protocol.  (2))- Under the assumption of periodic activatioh; =
®" + (¢ — h)T, while a sporadic activation pattern leads
to ®* > ®" + (¢ — h)T. Then
higher than the demand computed according to the optimal d.;'l <dj =" +D;
protocol A. Consider the pipeline of the previous example, =o" + (L — )T +D;
and suppose that it is periodically activated with periodadq <3’ 1D, = d".
to T = 9. If we use the optimal protocald to assign - i !
deadlines, we expect the jobs Bfto be assigned deadlines
5,14,23,32,... while those ones belonging tq deadlines ¢ < ¢f = + ¢
12,21, 30, 39, ... =o" 4 (0 —h)T + ¢
Suppose that the second job of taglkcompletes at = 10 <o’ 4 b = (b/Z_
and immediately activates, (Figure 5 shows this scenario, - ! v
jobs of the second instance are in white). According to ) u
VSP, the deadline is set @ = a2 + Do = 12. However The pr_ecedence set of a jet§ does not depend on the
in this circumstance, the interva#, 12] contains the two N'Stance index, as stated by the following lemma.
jobs 7} and 72 with an overall demand of units of time. Lemma 3:If 7' € P;, thenvu < h <1, 7/~ € P,
With the deadlines assigned by the optimal protoddhere Thl;:(;?é.rgolfwsadw;ec():tlr)i/aftr:lm tsf;ﬁﬂ?nef'n.'ggn'm dexes. the
is no interval of length4 that can contains two units of recedence,set); ofpgll 'F;)bs o¥ the sagne] task can bé made
time. Hence the protocol VSP is not correct because it mag 10bs ot . X
generate a demand higher than ongruer_lt (e_xcgpt for the firdy instances in which some
o : . element is missing). Hence, the precedencePsdor a task
_I_:ortunately this “bug can be fixed by setting an ad- 7; can be computed off-line: after fixing a generic instance
d|t|on_al rulle that prevents_ this phenomenon to happen, a8 dex > lo, we compute the list of jobs of previous
explained in the next section. instances that are part of the set, and store them in the set
using relative instance indexes. Thé®, can be obtained
V1. DISTRIBUTED DEADLINE SYNCHRONIZATION from P; by shifting the job indexes by.
PROTOCOL The main property of the precedence set is expressed by
. ) ~ the following lemma.
Befqre describing the protocol, we introduce the following | emma 4: The distance betweed{ and the deadline’
definition. , , of any of the jobs inP! has to satisfy the inequality
Definition 1: The precedence seP; of job 7; allocated ¢ _ gh _ B,
on processok is the set of all jobs! of taskst; € T, _ di —dy = (L=WT+ Di = D; 1)
with b € {£,0—1,6—2,...0—1,} that, under any possible Proof: Follows dlre_ctly from trla definitions. In fact
activation patterns, have di —dj = @' +D; - 9" - D;
dh < d! o > "+ (-~ T +D; —d" - D,
o < of ®) — (- mT+D,-D,
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Figure 8: The exémplg of ﬁigwlg 5 é(z,hedﬁledEDDSP.
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A. The protocol

We now present the Distributed Deadline Synchronization

Protocol DDSP) to compute the absolute deadline of a job
r{ at the instant of its releas€. The protocol consists of
four simple rules.

Rule 1 The separation between activation and deadline of

7/ must always be greater than its relative deadline:
df > af + D; (12)

Rule 2 There must be a minimum separation between the

deadlines of the jobs of the same task:
di>dmt T (13)

Rule 3 The distance betweedf and any job inP! must

not be less than the minimum possible distance as computed

by Lemma 4. In formula:
vt ePl, di>d'+(-nT+D;-D; (14)

Rule 4 At run-time, it may happen that a jatj is released

before a job of its precedence set, due to the fact that
the end-to-end deadline can be larger than the period and
previous jobs may complete much earlier than their deadline
In such a case;/ is suspended because its deadline cannot
be computed until we have computed the deadlines of all

the jobs in its precedence set.
From the previous rules, the job deadlide can simply

be computed as the maximum among the RHS of the three 1o minimal precedence B for a taskr;
. oy . ] 7
inequalities. Notice that we only use parameters that ar'Brocessok contains at mosinin(ly + 1, 1)

local to each nodeaf, d), or statically known D;, T, D;
andP; for each task).

B. Example revisited
We first apply theDDSP protocol to the simple example

C. Minimal Precedence Set

SetP; can contain up tow, (I + 1) jobs. We can reduce
such number by using eninimal setP; that contains at
most one job per past instance.

Therefore, we now present an algorithm to build a min-
imal subsetP; for each taskr;. Then, we show that the
reduced set contains all the jobs necessary to implement the
DDSP protocol.

Algorithm to compute P;.

Initially, P} is empty.

We fix an arbitrary instancé of the pipeline.

SetP; contains at most one job per each instafide-
1,...4—1p.

We start from instancé = ¢. We only need to know
the deadline of task; € 7 that immediately precedes
7; in the pipeline. Thenrf is added toP;. If 7; has

no preceding task iff, we skip this step.

Then, we enter a cycle in which we compute the job for
instanceh € £—1,¢—2,...,{—1y. As stated by Lemma
2, we can safely assume that the distance between two
consecutive instances of the pipeline, with index from
h to ¢, is equal to the period. We have two sub-cases:

1) If P is empty, we consider the latest joﬁ that
has absolute deadline smaller th#rand absolute
offset less thamt. If such a job exists, it is added
to P>. Else, we move to the previous instance.

2) If P} contains one or more jobs, let' be the
job with the largest deadline i®;. Consider the
latest jObTJh that has absolute deadline in interval
(d“,d%) and absolute offset less thaf. If such a

job exists it is added t®;". Otherwise we look for

jobs that are in the precedence set-bbut not in
the one ofrY; this means that we have to search
the latest job*j’-‘ that has absolute deadline smaller
thand“ and absolute offset in intervap? , ¢¢). If
such a job exists, it is added ®'. Else, we move
to the previous instance.

« We iterate until instancé = ¢ — [,.

allocated on
jobs, wheré,
is defined by Equation (10), and, is the number of tasks
of the pipeline allocated on processar

D. Example
An example of the procedure is shown in Figure 7. To

of Section V-B. First of all, we compute the precedence sesimplify the graphical presentation, in this figure we show

of task, asP; = {r; *, 7, '}. Under a periodic activation
pattern,dff1 must always precedd by at least2 time
units. Therefore, when job? is activated at time = 10, its
deadline is computed according to Rule 3 of the protocol:

d3=d;+T—-Dy+Dy=12+9—-12+5=14

as expected. The situation is depicted in Figure 6.

one instance of the same pipeline per each time-line.
Consider a pipeline having 6 tasks, with peridd= 10
and end-to-end deadlin® = 25. Hence, we need to
consider [ 2 instances. The intermediate deadlines
are respectively3, 6,10, 14,21, 25. We assume that tasks
T1,73,75, are allocated on processér = 1, while task
T9,T4,Tg are allocated on processér = 2. We want to



compute the precedence set of jgb(the second task in the job, related to the same instance, the first ong? Ihas been
third line of Figure 7). By setting all preceding release at acomputed according to Eq. 12, then
Qistancg equal t@’, we have the activatiop pattern shown d=a®+D;=f°, +D; <d’ | +D;
in the figure. The precedence setrfcontains: — R
. . <a +Di1+D;=a +D;
1) no job of instance, because no task precedeson ) ) ) .
processor 2: as required. If, instead Rule 3 applies, ti*&h contains one
2) job 741 job, 79 and we have
3) jObTG_Q' d?:dg‘i‘ﬁi_ﬁj§a0+ﬁj+5i—ﬁj=ao+ﬁi
which concludes the proof for instanée= 0.
Now, we perform an inductive step dh Let us assume
Rule 3 of the protocol mandates that all the deadlineshat Eq. 15 holds true fof — 1. By induction ori. If i = 1,
in the precedence s@&’ must be computed before we can then we have to prove that
compute deadlinel!. The following lemma proves that at d<a'+D
run-time it is sufficient to only consideP;. ] . t= !
Theorem 1:If all the jobs in P have been assigned a !f Rulé 1 is applied, then
deadline at run-time, then all the jobs i/ have been d¢=a"+ Dy =a"+ D,
assigned a deadline. as required. If, instead Rule 2 is applied, then

Proof: By contradiction. Suppose that aj@ﬁ € Pf— ¢ -1 r—1 )
P; has not been assigned a deadline, anddte the first Gi=d +T=sa +Di+T<a+D

E. Equivalence betweeR; and P}

JOb for which this happens at run-time. as required. If Rule 3 is applied, it means that
Sinced < df but7] € Pf and7 ¢ P;, from the df = max {d!+ (¢~ h)T + D, - D}
. . . . - h £ J
algorithm used to buildP/, it must exist a jobr? € P} €P
such thath < 2z < ¢ anddh <di<dt andth < ¢Z. Then Suppose thact; is the job that gives the max, then
& Sihoee s beensssgned s esdine st e =+ (17 + T D
7 s = _ = T
against the hypothesis. [ ] se +£“ +({=2)T+ D1~ Dy
< at + D1
F. Proof of correctness We conclude by proving it for any, assuming it true for

The following lemma proves that the absolute deadlineghe preceding ones. ! has been computed according to
assigned by algorithnDDSP never exceed the absolute Rule 1, then
deadlines_ as_signed by an optimal algorithm that uses global d=a'+D;=fl ,+D;<d' |, + D,
synchronization.

Lemma 5:Let ®¢ be the release time of theth instance
of pipeline 7. Under the assumption that the pipeline is@s required. If Rule 2 applies then

<a"4+Di1+D;=d" +D;

schedulable, the absolute deadliffeof every jobr!, com- d=d '+ T<a" ' +D;+T <d"+D;
putedédy@mically using algorithrdDSP, is never larger As before, if Rule 3 is applied, it means that
thana® + D;.
h
Proof: We want to prove that di = 1?37))‘ {dj + (¢ —h)T+D; - D;}
Veio di <a'+D; (15)  Suppose that? is the job that gives the max, then we have

We prove it by induction on botli (the instance index) df=d? + (0 —2)T +D; — D,
andi (the task index). <a*+ Dy + (- 2)T+D; — D,

We start proving the first instance, whén= 0. Notice ;a" 4D,

that since/ = 0 then only Rules 1 and 3 can be applied. By

induction oni. If i = 1 then we have to prove that which concludes the proof. u
& <o+ Dy (16) Lemma 5 guarantees that, if the pipeline is locally schedu-

lable on each node, then no task misses the deadlines that a
In this case only rule 1 (Eq. 12) applies. Hence global algorithm would have assigned on each node.
Now we want to prove that, if the system results schedula-
ble according to one of the schedulability analyses desdrib
as required. in Section IV, then it never misses deadlines at run-time
Now we prove it for anyi assuming it is true for all when absolute deadlines are computedd®SP. First, an
smaller task indexes. Notice th&" contains at most one important Lemma.

d(l):ao—i—Dl:aO—i-El
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Figure 7: Example of computation of the precedence set.

Lemma 6:Let Tjh be any job inP!. Under the assumption [3] P. Jayachandran and T. F. Abdelzaher, “Transforming dis

that the pipeline is schedulable and all deadlines aremesgig tributed acyclic systems into equivalent uniprocessors un
using DDSP, the distance betweed;l and df is never der preemptive and non-preemptive scheduling,E@BRTS

smaller than the distance as computed in Equation (11). IEEE Computer Society, 2008, pp. 233-242.

Proof: For 7/ € P;, the lemma follows directly from  [4] P.Jayachandran and T. Abdelzaher, “Delay compositige-a
Rule 3. For the other jobs, it is easy to see that we can  DPra: A reduction-based schedulability algebra for distihl
L . : . real-time systems,” irProceedings of the9™ |IEEE Real-
apply a similar reasoning to the one in Lemma 1 to derive .o Systems SymposiuBarcelona, Spain, Dec. 2008, pp.
the thesis. | 250-269.
Now the main theorem.

. : : ; - [5] J. Palencia and M. G. Harbour, “Offset-based response ti
Theorem 2:Consider a system that is feasible according analysis of distributed systems scheduled under EDFL5ih

to the processor demand analysis [7]. Assume that all tasks  E,romicro Conference on Real-Time SysteRtsto, Portugal,
execute for less than their WCET and that, for any pipeline, July 2003.

the d_lsta.nce between any two copsecutlve r.eleases of th‘fG] R. Pellizzoni and G. Lipari, “Holistic analysis of asyn-
pipeline is never less than the period.DDSP is used to chronous real-time transactions with earliest deadlihedual-
assign the absolute deadlines of jobs at run-time, then for  ing” Journal of Computer and System Scienees 73, no. 2,
every interval of time the demand produced by one pipeline  pp. 186-206, Mar. 2007.

never exceeds the demand computed off-line. [7] N. Serreli, G. Lipari, and E. Bini, “The demand bound
Proof: The proof is very long and tedious and has been function interface of distributed sporadic pipelines ofk®
removed for space constraints. The interested reader @an fin ~ scheduled by edf,” inProceedings of the22" Euromicro
it in [12]. Conference on Real-Time SysterBsuxelles, Belgium, Jul.
m 2010, available at http://retis.sssup-hini/publications/.

[8] J. Sun and J. W.-S. Liu, “Synchronization protocols is-di
_V”' CONCLUSIONS AND FUTURE WORK tributed real-time systems,” im ICDCS 1996, pp. 38—45.
In this paper we presentddDSP, a protocol for com- (9] R. Bettati and J. W.-S. Liu, “End-to-end scheduling toam
: : . R ) . Bettati and J. W.-S. Liu, “End-to-end scheduling toehe
puting the absolute deadlines of jobs in distributed real deadlines in distributed systems,” IBDCS 1992, pp, 452—

time systems modeled as pipelines of tasks. The protocol  4cq
does not require a global clock synchronization, and jOb,sL}O] M. Souri. “Holisti vsis for dead heduledike
can be released at the completion of the preceding job i . Spuri, HOISUC analysis for deadliné schedule@rame

. . L. distributed systems,” INRIA, France, Tech. Rep. RR-2873,
the chain. The system can thus be analyzed using holistic Apr. 1996. y P
schedulability analysis, or processor demand analysis. ) ] o o )

The protocol can easily be extended to more general taskt! R- Pe”'z.zg.”' ang G. I'I;Ip?fn’ Feas||l%_|!|ty asnaly5|s JOéal' |
topologies, like directed acyclic graphs (DAGS), by slight Sg?.es%ergoo.lcl t%;sl\(/)vét_lcz)sseztgol?; al-Time System Journa
modifying the definition of precedence set. As a future work,
we also plan to implement the algorithm both in Linux and inl
ERIKA [13], [14], a real-time operating systems for limited

2] N. Serreli, “Component-based analysis and synchgdita of
distributed transactions scheduled by edf,” Ph.D. dissent,
Scuola Superiore Sant’Anna, http://retis.sssup.it/egrei65,

resource platforms. Jan 2010.
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