
Towards Transparent and Secure IoT:

Device Intents Declaration, and User Privacy Self-Awareness and Control

João Pedro Santos Lola

Master's Degree in Telecommunications and Computer Engineering

Supervisor:

PhD Carlos José Corredoura Serrão, Associate Professor,

ISCTE - Instituto Universitário de Lisboa

November, 2021

Department of Information Sciences and Technologies

Towards Transparent and Secure IoT:

Device Intents Declaration, and User Privacy Self-Awareness and Control

João Pedro Santos Lola

Master's in Telecommunications and Computer Engineering

Supervisor:

PhD Carlos José Corredoura Serrão, Associate Professor,

ISCTE - Instituto Universitário de Lisboa

November, 2021

Dedication

It is with genuine gratitude and warm regard that I dedicate this work to the Truphone R&D

team and Professor Carlos Serrão. Their support was essential to the work that will be

presented in this dissertation and I am very grateful for their guidance every step of the way,

ensuring that I was always on the right track.

I would also like to thank my family for the support they showed throughout this time;

they made me see the light at the end of the tunnel, and for always pushing me to go further

and not to quit when I wanted to give up my master’s degree studies and devote my time and

attention to professional work.

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

i

Thanks

To my family for their unconditional support.

To Professor Carlos Serrão for his availability, motivation and shared knowledge.

To João Casal and the entire R&D team for their availability, motivation and shared

knowledge during the six months of the internship I did at Truphone.

A sincere thank you to everyone.

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

ii

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

iii

Resumo

Nos últimos anos, assistimos a uma onda de crescimento da integração de novas tecnologias

IoT (Internet Of Things) na sociedade. A integração massiva destas tecnologias levou ao

aparecimento de vários aspetos críticos que, consequentemente, criou novos desafios, para os

quais ainda não foram dadas respostas óbvias. Um dos principais desafios diz respeito à

segurança e privacidade da informação dos dispositivos IoT presentes no nosso dia-a-dia.

Atualmente, não existem quaisquer garantias por parte dos fabricantes destes equipamentos

IoT, que estão conectados nas nossas redes, relativamente à recolha e envio de informação

pessoal realizada pelos mesmos, bem como um comportamento expectável.

Assim, neste trabalho, desenvolvemos e testamos uma solução que cujo objetivo é

aumentar a privacidade e segurança da informação em redes de dispositivos IoT, na

perspetiva do controlo da comunicação dos dispositivos inteligentes na rede. Para incluir-se

uma ferramenta capaz de efetuar análise dos pacotes enviados pelos dispositivos IoT e uma

outra capaz de definir e permitir a aplicação de regras de controlo de tráfego de rede aos

pacotes mencionados. Estas ferramentas foram indispensáveis para a investigação dos dois

aspetos centrais desta dissertação, que são a investigação de como as declarações de intenções

de comunicação dos dispositivos IoT especificados pelos fabricantes são utilizadas, para

facilitarem o controlo de comunicação destes pelos consumidores e permitir-lhes detetar

violações dessas intenções e como atribuir ao utilizador/consumidor controlo sobre a

comunicação IoT, para que este possa explicitar o pretende e não pretende que os seus

dispositivos comuniquem.

Palavras-Chave: Segurança; Privacidade; Redes IoT; Declaração de intenções; Direitos e

permissões de comunicação; Análise de tráfego

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

iv

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

v

Abstract

In recent years, we have seen a growing wave of integration of new IoT (Internet of Things)

technologies into society. The massive integration of these technologies has led to the

emergence of several critical issues which have consequently created new challenges, for

which no obvious answers have yet been found. One of the main challenges has to do with the

security and privacy of information processed by IoT devices present in our daily life. At

present there are no guarantees from the manufacturers of such IoT devices, which are

connected on our networks, as regards the collection and sending of personal information, nor

an expected behavior.

Thus, in this work, we developed and tested a solution that aims to increase the privacy

and security of information in Networks of IoT devices, from the perspective of controlling

the communication of smart devices on the network. To include one tool capable of analyzing

packets sent by IoT devices and another capable of defining and allowing the application of

network traffic control rules to the packets in question. These tools were indispensable for

investigation of the two central aspects of this dissertation, which are investigating how the

declarations of communication intentions of the IoT devices specified by the manufacturers

are used, in order to facilitate control of communication by consumers and enable them to

detect violations of those intentions, and how to give users/consumers control over IoT

communication, so that they can define what they do and do not want their devices to

communicate.

Keywords: Security; Privacy; IoT Networks; Intent declaration; Communication rights and

permissions; Traffic analysis

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

vi

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

vii

Index

Thanks ... i

Resumo .. iii

Abstract .. v

Index ... vii

Index of Figures .. xi

Index of Tables .. xiii

List of Abbreviations and Acronyms ... xv

Chapter 1 – Introduction .. 1

1.1. Context .. 1

1.2. Research Question ... 3

1.3. Research Goals .. 3

1.4. Methodology Approach ... 4

1.5. Dissertation Structure and Organization ... 6

Chapter 2 - Literature Review .. 7

2.1. Network Based Rules Enforcement .. 7

2.2. Content Filtering & Blocking .. 12

2.3. Device Communication Permissions... 17

2.4. Rights Expression Techniques .. 20

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

viii

2.4.1. Yara Rules .. 20

2.4.2. Open Digital Rights Language ... 21

Chapter 3 - System Architecture and Workflow .. 23

3.1. System Architecture .. 23

3.1.1. Intents & User Rule Management REST API .. 28

3.1.2. Translator (Integration layer with filtering tool) .. 29

3.1.3. Snort IPS... 30

3.1.4. Web Management Interface ... 31

3.2. Snort Implementation Workflow... 33

Chapter 4 – Tests and Evaluation ... 37

4.1. Test System Deployment... 37

4.2. Functional Tests .. 40

4.2.1. Description of Test Scenario I – Violations of the manifest of intents 41

4.2.2. Test Scenario I - Results Presentation .. 43

4.2.3. Test Scenario I - Discussion of Results .. 44

4.2.4. Description of Test Scenario II - Violations of user-defined rules 45

4.2.5. Test Scenario II – Results Presentation .. 46

4.2.6. Test Scenario II - Discussion of Results .. 47

4.3. System Performance .. 48

4.3.1. Intents Scenario – Results Presentation.. 49

4.3.2. Intent Scenario – Discussion of Results ... 53

4.3.3. Rules Scenario – Results Presentation ... 54

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

ix

4.3.4. Rules Scenario – Discussion of Results ... 58

Chapter 5 - Conclusions and Future Work ... 59

5.1. Main Conclusions .. 59

5.2. Future Work .. 60

Bibliography ... 61

Appendices ... 67

Appendix A – PCRF and PCEF Solutions Comparison Table .. 67

Appendix B – ODRL Code Examples ... 69

Appendix C – Intents & User Rule Management REST API Documentation 70

Appendix D – Translator REST API Documentation .. 77

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

x

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

xi

Index of Figures

FIGURE 1 - DESIGN SCIENCE RESEARCH METHODOLOGY PROCESS MODEL (PEFFERS ET AL.,

2007) ... 5

FIGURE 2 - SIMPLIFIED OPEN5GS ARCHITECTURE ... 9

FIGURE 3 - SIMPLIFIED MAGMA ARCHITECTURE.. 10

FIGURE 4 - METHODOLOGY FOR DPI USING SNORT (HAFEEZ,2016).. 14

FIGURE 5 - MANIFEST STATEMENT TO SEND SMS MESSAGES (GOOGLE, 2021) 17

FIGURE 6- INITIAL PERMISSION DIALOG (LEFT) AND SECONDARY PERMISSION REQUEST WITH

OPTION TO DISABLE OTHER REQUESTS (RIGHT)(GOOGLE, 2021) .. 18

FIGURE 7- MANIFEST PERMISSION REQUEST (GOOGLE, 2021) ... 19

FIGURE 8- MANIFEST STATEMENTS TO ACCESS OPERATING SYSTEM RESOURCES (GOOGLE, 2021)

 .. 19

FIGURE 9 - YARA RULE EXAMPLE (NAIK ET AL., 2020).. 20

FIGURE 10 - ODRL INFORMATION MODEL (IANNELLA, 2004) ... 22

FIGURE 11 - SYSTEM HIGH-LEVEL ARCHITECTURE ... 24

FIGURE 12 - SNORT LAUNCH COMMAND ... 30

FIGURE 13 - INTENTS & RULES LIST TABLE ... 31

FIGURE 14 – INTENT & RULE INSERT/UPDATE FORM .. 32

FIGURE 15 – DOWNLOAD/UPDATE FORM .. 33

FIGURE 16 – INTENT SCENARIO - SYSTEM WORKFLOW .. 34

FIGURE 17 – RULE SCENARIO - SYSTEM WORKFLOW ... 35

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

xii

FIGURE 18 – SOLUTION TESTBED ARCHITECTURE ... 37

FIGURE 19 -TRAFFIC GENERATOR (VM A) NETWORK ADAPTER ... 39

FIGURE 20 – TRANSLATOR AND SNORT IPS (VM B) NETWORK ADAPTERS 39

FIGURE 21 - INTENT VIOLATION ALERTS .. 43

FIGURE 22 - RULE DROP PACKET ALERT .. 46

FIGURE 23 - 1000 PACKETS RUNTIME DATA .. 49

FIGURE 24 - 5000 PACKETS RUNTIME DATA .. 51

FIGURE 25 - 10000 PACKETS RUNTIME DATA .. 52

FIGURE 26 - 1000 PACKETS RUNTIME DATA .. 54

FIGURE 27 - 5000 PACKETS RUNTIME DATA .. 56

FIGURE 28 - 10000 PACKETS RUNTIME DATA ... 57

FIGURE 29 - DELEGATION AS TRANSFER (KEBEDE ET AL., 2021) ... 69

FIGURE 30 - DELEGATION AS S GRANTING CONDITIONAL USAGE (KEBEDE ET AL., 2021) 69

FIGURE 31 - DELEGATION AS NESTED GRANTING OF CONDITIONAL USAGE (KEBEDE ET AL.,

2021) ... 69

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

xiii

Index of Tables

TABLE 1 - TESTBED SYSTEM SPECS ... 38

TABLE 2 - TEST INTENTS ... 41

TABLE 3 - CONTENT TEST INTENT PACKET .. 42

TABLE 4 - DESTINATION TEST INTENT PACKET .. 42

TABLE 5 - TEST RULES .. 45

TABLE 6 - CONTENT TEST RULE PACKET .. 46

TABLE 7 - 1000 PACKETS VARIABLE DATA .. 50

TABLE 8 - 5000 PACKETS VARIABLE DATA .. 51

TABLE 9 - 10000 PACKETS VARIABLE DATA .. 53

TABLE 10 - INTENT SCENARIO RESULTS SUMMARY .. 54

TABLE 11 - 1000 PACKETS VARIABLE DATA .. 55

TABLE 12 - 5000 PACKETS VARIABLE DATA .. 56

TABLE 13 - 10000 PACKETS VARIABLE DATA .. 57

TABLE 14 - RULE TEST SCENARIO RESULTS SUMMARY .. 58

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

xiv

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

xv

List of Abbreviations and Acronyms

AAA - Authentication, Authorization and Accounting

AGW – Access Gateway

API – Application Programming Interface

ARP – Address Resolution Protocol

DAQ – Data Acquisition Library

DPI – Deep Packet Inspection

EPC - Evolve Packet Core

FTP – File Transfer Protocol

HSS – Home Subscriber Server

HTTP/HTTPS - Hypertext Transfer Protocol / Hypertext Transfer Protocol Secure

IDS – Intrusion Detection System

IMEI – International Mobile Equipment Identity

IMSI - International Mobile Subscriber Identity

IoT – Internet of Things

IP – Internet Protocol

IPS – Intrusion Prevention System

ISP – Internet Service Provider

LTE – Long Term Evolution

MIME - Multipurpose Internet Mail Extensions

MME - Mobility Management Entity

MNO - Mobile Network Operator

NIDPS - Network Intrusion Detection and Prevention Systems

NIDS – Network Intrusion Detection System

ODRL - Open Digital Rights Language

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

xvi

OSI – Open System Interconnection

PCEF – Policy and Charging Enforcement Function

PCRF – Policy and Charging Rules Function

PDU - Protocol Data Unit

PGW – Packet Gateway

QoS – Quality of Service

REL - Rights Expression Language

RTSP – Real Time Streaming Protocol

SIP - Session Initiation Protocol

SMF/PGW-C – Session Management Function/Packet Gateway Control Plane

SMTP – Simple Mail Transfer Protocol

SSH – Secure Socket Shell

TAC – Type Allocation Code

TCP – Transmission Control Protocol

UDP – User Datagram Protocol

UPF/PGW-U – User Plane Function/Packet Gateway User Plane

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

1

Chapter 1 – Introduction

1.1. Context

Privacy and security of information are issues when we discuss any Internet-related

technology, as they represent the two most fundamental elements in establishing a level of

trust between companies and their users. Privacy can be related to any rights a person

possesses to control their personal information and how it is used, while security refers to

preventing and reducing the probability of unauthorized access, use, disclosure, disruption,

modification, inspection, recording or destruction of personal or sensitive information

(Pelteret & Ophoff, 2016). Although it is possible to have security without privacy, we can’t

have privacy without security.

If an organization does not possess strong data security, it can represent a significant

differentiating factor for many users and result in loss of trust, as it can lead to potential risks

of compromising personal identifiable information, personal health information, medical

records, banking information, intellectual property, social security numbers, insurance

information and other types of data. If data security is not taken seriously enough, this can

result in permanent damage to a company’s reputation in the event of a public, high-profile

breach or hack trumpeted in the media. Another important consideration are the financial and

logistical consequences of a data breach. It is therefore important that information security

systems enforce three important principles, namely Confidentiality, which means the

protection of information against unauthorized disclosure, Integrity, which means the

protection of information against unauthorized modification and, finally, Availability, which

means the protection of information against unauthorized destruction and ensuring data is

accessible when needed (Pelteret & Ophoff, 2016).

Information of that nature also provides companies and governments with control over an

individual, because the more someone knows about a person, the more power they can have

over that person. Such information can be used to affect our reputations, influence our

decisions and shape our behavior, so if it falls into the wrong hands great harm can be done to

us. Therefore, privacy is what keeps companies and governments from having power over

people and removing their autonomy, freedom of thought and speech (Pelteret & Ophoff,

2016).

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

2

The rapid growth of IoT devices connected to the Internet is causing problems in the

market due to privacy and security of information concerns, as reported in several studies

(Sivaraman, Gharakheili, Vishwanath, Boreli, & Mehani, 2015), because many of them lack

communication security at the end of the communication channel with other systems to

prevent against security infringements and data leaks, and a detailed understanding of how

they communicate with the network. Looking at the literature, it is possible to find multiple

examples of how IoT devices are disrupting security and privacy, such as, for instance,

Amazon's Alexa sending private recorded conversations to random numbers on the owner's

list of contacts (D. Lee, 2018); Google Nest IP cameras, doorbells and thermostats that could

be hacked by third parties (Sears, 2019); Google Home Hub capturing footage from Xiaomi

Mijia surveillance cameras from other dwellings (Coble, 2020); and Samsung Smart TVs,

which had a vulnerability that allowed third parties to view everything that was going on in

the room where the TV was located via the embedded camera and microphone (Chakraborty,

2017).

This has generated a wave of criticism of the lack of transparency among IoT device

manufacturers with regard to customer security and privacy. One example of this was

Google's failure to disclose in the specifications of its Nest Guard product that the device had

a built-in microphone (Blum, 2019). Another example was Amazon's revelation that, in

addition to artificial intelligence algorithms, their employees listened to samples of recordings

of Amazon Echo devices to improve quality of service (Statt, 2019).

Recent inquiries highlight current consumer concerns about lack of transparency and

security and privacy issues in the IoT ecosystem, with respect to gathering and misuse of

personal information by the devices and the lack of good quality, reliable consumer

information from the organizations about the devices' terms and conditions and privacy

disclaimers (Thorun, Vetter, Reisch, & Zimmer, 2017) (CIGI-IPSOS global survey, 2019).

A study conducted by Mozilla revealed that 45% of the 190,000 participants surveyed

considered that privacy was the biggest concern when it came to the use of IoT devices and

34.5% of them considered that was up to them to keep connected IoT devices secure and

private, versus 34% who considered that it was up to manufacturers to ensure the privacy and

security of their devices (Caltrider, 2017). This study shows that consumers do not really trust

manufacturers to keep their devices secure and feel it is up to them to safeguard their own

privacy and security, which exemplifies the main issue that we have identified in this section.

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

3

 In another study conducted by the Economist Intelligence Unit, global leader in business

intelligence, 92% of the 1629 IoT consumers surveyed said that privacy was their main

concern and wished to be informed when their personal information was being collected by

IoT devices and to have greater control over the information collected and transmitted

(McCauley & Lara, 2018).

To address this problem, this work will focus on developing a proof of concept to ensure

transparency of information transmitted by consumers' IoT devices on networks, providing

them with control over how they communicate and their behavior, to achieve higher levels of

privacy and security.

The work was carried out in the context of the Truphone (www.truphone.com) IoT

service provider, which supported the dissertation, providing the necessary context and

support to help achieve the stated objectives.

1.2. Research Question

In the context of this work, we are seeking to obtain answers to the following research

question:

➢ How to design and implement a system capable of ensuring transparency in the

communication intentions of IoT devices, and user control over data privacy and

security when using IoT devices?

1.3. Research Goals

To work towards an answer to the research question identified above, it will be necessary to

study and model the statements of communication intentions of IoT devices, i.e., through

formulation of how to model what the device will transmit to the network (temperature,

brightness, sound, video, among many other things). At the same time, it will also be

necessary to study the applicability of rights and permissions techniques to user data and

which security policies will govern them.

On the other hand, in order to control communication, it will be necessary to study and

test traffic analysis tools capable of identifying various types of communication used by

traditional IoT devices.

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

4

The main research goals of this dissertation will be:

• To research and develop a system to enable IoT device makers to declare their

devices' intentions of communication and a process for verifying the devices’

communication compliance with the intentions declared.

• To research and develop a tool that allows users/consumers to control their IoT

device traffic, allowing them to define rules to manage the privacy and security of

the corresponding data.

1.4. Methodology Approach

The research method used in this dissertation is the Design Science Research methodology

(Peffers et al., 2007), which consists of six distinct phases, as illustrated in Figure 1:

1. Identification of the Problem and Motivation - Sets out the target problem of the study

and explains the importance of resolving it.

2. Definition of the objectives of the solution - Sets out the objectives of the solution after

defining the problem, to know what is possible and feasible.

3. Design and Development - This activity involves determining the functional

requirements and architecture of the solution, and then proceeding with its creation.

4. Demonstration – Show how the solution developed can solve one or more instances of

the problem through experiments, simulations, case studies or other appropriate

activities.

5. Evaluation - Observe and measure how the solution meets the desired objectives, by

comparing the initial objectives of the solution with the observed results. This implies

testing the built solution.

6. Communication - Writing a scientific paper to communicate the problem and the

importance of resolving it.

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

5

In this thesis, our initial approach, corresponding to step 1 to step 4, was described in a

sequential pattern. Identification of the Problem and Motivation and Definition of the

objectives of the solution are described in section 1.1. Context and 1.3. Research Goals,

respectively. Design and Development are described in Chapter 3 - System Architecture and

Workflow. The Demonstration and Evaluation steps are described in Chapter 4 – Tests and

Evaluation. The last step, we evaluate the final version and move on to the Communication

phase which consisted of writing this proposal.

Figure 1 - Design Science Research Methodology Process Model (Peffers et al., 2007)

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

6

1.5. Dissertation Structure and Organization

This dissertation is organized into five chapters. The first chapter introduces the motivation

and theme of the investigation in this dissertation, defines the different objectives and presents

the structure of the work to be undertaken.

The second chapter reflects the literature review, providing an overview of the most

recent and relevant topics in the context of this dissertation.

The subsequent chapter is devoted to design, specification, and implementation of the

proposal, which will address the issue of the research previously identified.

The fourth chapter describes how the proposal will be evaluated. It also discusses in a

comprehensive manner the various results of the evaluation.

Finally, the last chapter of this work presents the conclusions and provides some

directions for future work.

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

7

Chapter 2 - Literature Review

In this chapter, we present a literature review on the research subjects wherein we list some of

the key issues and topics that will be relevant for this project, to pursue the research objectives

stipulated in the previous chapter. These concepts will be crucial for the research, as they will

enable the necessary experiments to be carried out to produce results capable of satisfying the

requirements that are the object of this research.

To better understand each concept and topic, we have chosen to divide them into sections,

which we describe below, explaining how each of them contributes to the objectives.

2.1. Network Based Rules Enforcement

In this section, we present a set of network traffic control functions called PCRF (Policy and

Charging Rules Function) and PCEF (Policy and Charging Enforcement Function). These

functions are relevant because they allow automatic creation of network traffic control rules

and enforcement thereof, which enables control of network traffic (permitted or not) during

communication by IoT devices, based on device and content types. These functions are

important components of an IoT network, as they represent management and control of the

network service. They ensure that QoS (Quality of service) rules and regulations are applied

to network packets data, a very valuable aspect of any network policy and security

management system.

PCRF represents a node that works in real time to make policy decision control decisions

to apply traffic control rules on an IoT network. It is a component which plays a central role

in communication networks, operating at the core of the network, to access subscribers’

databases and other specialized functions centrally. As it operates in real time, PCRF has a

broader strategic significance and potential compared to other policy engines (Li, Brouard, &

Cai, 2012).

As part of the network architecture, PCRF aggregates information that enters and leaves

the network, supports the system and other sources in real time, through the automatic

creation of rules, which are then automatically applied to each of the subscribers who are

active on the network (Li et al., 2012).

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

8

Its main functions are:

• Real-time management of network and subscriber policy.

• Efficient and dynamic management of network traffic to set priorities for certain

types of traffic.

• To define subscriber context based on device type, network, location, and billing

information.

• Quality of service assurance and bandwidth management.

PCEF is responsible for the enforcement of rules configured statically or dynamically by

PCRF, providing access and information from subscribers to the PCRF through a secure

communication interface. Located at the network gateway, PCEF controls traffic through the

appropriate inspection of IoT device network packets to ensure that IoT device traffic flows

are handled according to network policies defined in the PCRF (Li et al., 2012).

Open5gs

Open5gs (S. Lee, 2020) is a C-Language Open-Source implementation for a 5G Core and

EPC (Evolve Packet Core) network that provides PCRF and PCEF for all devices that connect

to this network. Subscribers are identified by their IMSI (International Mobile Subscriber

Identity), a 15-digit unique number that identifies each device within a network, to which a set

of policy control rules are applied specific to each device.

Open5gs is divided into two main planes: the control plane and the user plane. The

control plane represents the hub of the core of the solution and contains all the necessary

components to manage sessions, mobility, paging and bearers. Those components, as shown

in Figure 2, are:

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

9

Figure 2 - Simplified Open5Gs architecture

• MME – The Mobility Management Entity is the main component that the user

equipment communicates with inside a 5G network; the UE has to communicate with

MME to connect to the network and to start the procedure for registration on the

network. When this happens, the MME runs an authentication procedure providing the

UE with a temporary identifier to communicate inside the network; in this way the

permanent identifier of the user equipment is not tampered with by anybody else.

When the registration procedure finishes, the MME needs to keep temporary data

related to the user equipment stored in the HSS, while it stays connected to the network

(Rommer et al., 2020).

• HSS – The Home Subscriber Server is the master user database that supports the LTE

(Long Term Evolution) network. Its main role is to communicate with the network and

provide subscriber profile and authentication information, to help with authorization,

details of devices, as well as the user’s location and service information. The HSS must

provide this information to the MME, to ensure that the LTE network works with

legacy or concurrent services (Rommer et al., 2020).

• SMF/PGW-C – The Session Management Function or Packet Gateway Control Plane is

responsible for setting up connectivity for the user equipment towards the Data

Networks as well as managing the user plane for that connectivity. It also manages user

sessions, including establishment, modification and release of sessions, and it can

allocate IP (Internet Protocol) addresses for the IP PDU (Protocol Data Unit) sessions.

Interacts with the PCRF to retrieve policies that are used by the PCEF to enforce on

incoming device traffic (Rommer et al., 2020).

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

10

• UPF/PGW-U – The User Plane Function or Packet Gateway User Plane is responsible

for processing and forwarding of user data, which is controlled by the SMF. Acts as an

anchor point for the user equipment to allow it to interconnect with external IP

networks. The UPF is also responsible for performing various types of processing of

the forward data, such as generating charging data records and traffic usage reports.

Most importantly in this context, UPF is able to apply packet inspection of the content

of packets, for input to policy decisions or basic traffic reporting (Rommer et al.,

2020).

Magma Core

Magma (LF Projects LLC, 2021) represents an open-source software platform that gives

network operators an open, flexible, and extendable mobile core network solution. Like

Open5GS, it also provides PCRF and PCEF for all devices that connect to the network.

Subscribers are also identified by their IMSI but, unlike Open5GS, the subscribers are

associated with the policies and not the policies with the subscriber. An advantageous feature

of Magma is that it makes it possible to create more than one network, with which a different

set of policies and subscribers can be associated.

The Magma architecture is divided into three major components, as shown in Figure 3:

Figure 3 - Simplified Magma architecture

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

11

• Access Gateway (AGW): Represents a component that provides network services and

policy enforcement. In an LTE network, the AGW implements an EPC, and a

combination of an AAA (Authentication, Authorization and Accounting) and a PGW

(Packet Gateway). It works with existing, unmodified commercial radio hardware (LF

Projects LLC, 2021).

• Orchestrator: Represents a cloud service that provides a simple and consistent way to

configure and monitor the wireless network securely that can be hosted on a public or

private cloud. The metrics acquired through the platform allow the user to see the

analytics and traffic flows of the wireless users through the Magma Web user interface

frontend that is supported by REST API (Application Programming Interface) backend

(LF Projects LLC, 2021).

• Federation Gateway: Its main job is integrating the MNO (Mobile Network Operator)

core network with Magma using standard 3GPP interfaces to existing MNO

components. Also acts as a proxy between the Magma AGW and the operator's

network and facilitates core functions, such as authentication, data plans, policy

enforcement and charging to stay uniform between an existing MNO network and the

expanded network with Magma (LF Projects LLC, 2021).

Both Open5gs and Magma (Appendix A – PCRF and PCEF Solutions Comparison

Table), represent open-source network connectivity solutions that offer built-in PCRF and

PCEF, allowing the possibility of filtering the traffic flows of devices that connect to these

networks. For that reason, we can implement a mechanism to ensure the privacy and security

of users.

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

12

2.2. Content Filtering & Blocking

In this section, we present the DPI (Deep Packet Inspection) technique that is relevant for the

analysis of data packets that are exchanged during the communication of IoT devices, which

in combination with functions mentioned in section 2.1. Network Based Rules Enforcement

decide whether the packet is complying with its communication manifest, based on its origin,

destination, and content, by applying the correct traffic control rules to each of the IoT

devices to prevent them from violating the privacy and security of the owner.

DPI is an advanced method for examining and managing network traffic. It is a form of

packet filter that finds, identifies, sorts, redirects or blocks packets with specific information

compared to conventional packet filtering, which only analyses packet headers, making it

unable to detect certain content within packets (El-Maghraby, Elazim, & Bahaa-Eldin, 2018).

The DPI process begins by examining the contents of packets that pass through layers 3

and 4 of the OSI (Open System Interconnection) Model, where the IP and TCP (Transport

Control Protocol) protocols are located, respectively. Here it makes a real-time decision

whether the packet can continue to its destination, considering the content it carries. That

decision is based on the rules assigned to it by the entity that established the initial setup, the

ISP (Internet Service Provider) or the network manager. Unlike conventional packet filters,

DPI can examine the content of messages and identify the application or service that creates

it, offering the ability to program filters to search for or redirect traffic from a specific IP

address or online service (El-Maghraby et al., 2018).

An IPS (Intrusion Prevention System) represents a network security/threat prevention

technology that examines network traffic flows to detect and prevent vulnerability exploits,

identifying problems with security policies and deterring individuals from violating said

security policies. Unlike an IDS (Intrusion Detection System), a passive system that scans

traffic and reports back on threats, the IPS is placed inline, in the direct communication path

between the source and destination, to actively analyze and take automated actions on all

traffic flows that enter the network.

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

13

Some of those actions are (Lakshminarayana, Philips, & Tabrizi, 2019):

• Sending alarms.

• Dropping the malicious packets.

• Blocking traffic from the source address.

• Resetting the connection.

The IPS detection method can be based on signatures or anomalies. Signatures are based

on patterns of well-known network attacks. The signature match process is done by

comparing packet flows with the signatures to see if there is a pattern match. An anomaly-

based method, however, use heuristics to identify threats, for instance by comparing a sample

of traffic against a known baseline. Therefore, it must work efficiently to avoid degrading

network performance, because exploits can happen in near real-time. Additionally, it must

also detect and respond accurately to eliminate threats and false positives, legitimate packets

that are misread as threats (Lakshminarayana et al., 2019).

Deep Packet Inspection using Snort IPS

(Hafeez, 2016) proposed a solution that uses an effective open-source IPS software called

Snort (Roesch, 2016), a tool for detecting network traffic whose primary use is intrusion

detection in systems. This works by creating rules for network traffic control, having all the

features necessary to perform DPI in an entire network, implemented on a single computer.

This eliminates the need for expensive devices such as routers or routing services with extra

costs to perform this service, offering a low-cost solution with a low degree of

implementation.

According to (Bhosale & Mane, 2016), Snort has the advantage of being easy to install on

any type of network, possessing a detailed and scrutinized database of signatures, being

lightweight and offering the possibility of acting as an IPS. Despite being the most popular

IDS/IPS, Snort has the disadvantage of possessing a very large rule database, being expensive

for monitoring packets in large networks and of failing to detect fragmented packets at high

network speeds (greater than 5 Gbps).

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

14

To perform DPI, (Hafeez, 2016) configured Snort in inline NIDS (Network Intrusion

Detection System) mode to block and track network traffic. In inline mode, a bridge network

is created, through which all network traffic passes through Snort, so that the desired policies

can be implemented.

In Figure 4, we can see the methodology used by (Hafeez, 2016) in his project, using

Snort for DPI and configuring it to operate in IPS mode.

Figure 4 - Methodology for DPI using Snort (Hafeez,2016)

According to (Hafeez, 2016), the first step in creating a rule for a Web application is to

get the content of the application by capturing Web traffic from it. For this process, (Hafeez,

2016) used Wireshark (Combs, Ramirez, Harris, & Sharpe, 2016) software to capture traffic

at the expense of Snort, simply because it is easier to read packets. Wireshark is an open-

source program that allows you to view the details of each packet sent and received on a

network in real time. After capturing Web traffic, it is filtered to remove unwanted traffic by

using filters to get the desired results.

The purpose of the packet traffic filter is to get traffic to rule creation, which is then

stored in the automatically generated packet capture file by Wireshark. With this content, you

can create rules so that Snort generates alerts when it finds the same content in network

traffic.

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

15

During validation of the rules created, if Snort encounters an inconsistency in the rule, it

shows an error message and does not validate the rule until it is corrected. When validation is

complete, the rules are tested on the packet capture files to see if they work and give the

desired results. They are implemented on real traffic to receive alerts only after they are

tested.

Another alternative to Snort is open-source software called Suricata (Julien, Jonkman, &

Metcalf, 2007) that also can be implemented as an IDS or an IPS. According to (Bhosale &

Mane, 2016), the advantages of Suricata are its multithreaded architecture, automatic

detection of protocols, NSM (Network Security Monitoring) and the filtering of alerts and

events. The main disadvantage of Suricata is its high consumption of system resources.

Deep Packet Inspection using Suricata

(Shah & Issac, 2018) published a study that investigated the performance of Snort and

Suricata in accurately detecting malicious traffic on computer networks. In their study, (Shah

& Issac, 2018) observed and measured the performance costs on CPU (Central Process Unit),

memory utilization and network drop rate of both solutions for 10 Gbps and 20 Gbps network

speeds to determine their detection accuracy. They were able to prove that both solutions were

efficient and capable of high-performance IDS, each with its own strengths and weaknesses.

Their experimental results show that Snort uses less computational resources to process

10 Gbps worth of network traffic in comparison to Suricata, which required higher

computational resources to process network traffic due to the three detection stages built into

it. The results also showed that Suricata's multi-threaded architecture possessed a higher

ability to process 10 Gbps worth of traffic with minimal packet drop rate in comparison with

Snort's single threaded architecture, which proved less efficient for the same load.

Furthermore, (Shah & Issac, 2018) test results showed that Snort was able to process only

60866 packets/second, while Suricata processed 82223 packets/second.

According to (Shah & Issac, 2018) both solutions triggered a high rate of false positive

alarms, in terms of malicious and legitimate traffic detection accuracy. Snort registered

55.2%, while Suricata triggered 74.3%. (Shah & Issac, 2018) also claim that Snort had high

detection of false negative alarms, of 6.7% against Suricata’s 16.7% for the same malicious

traffic. (Shah & Issac, 2018) concluded by saying that Snort has proved itself to be the

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

16

superior IDS in various respects notwithstanding a high rate of false positive alarms, in

comparison with Suricata, which is incapable of detecting data link layer traffic.

In his master's thesis in IT security at the Science Faculty of the University of Lisbon,

(Calado, 2018) found Suricata to be easier to install, set up and configure than Snort, while

also offering highly customizable options, enabling it to be integrated with several external

software’s and deployable in different types of hardware. Even performing scaling of Snort,

he came to the conclusion that he could not reach Suricata’s performance in his setup with

every tuning technique Snort had to offer.

(Calado, 2018) also highlighted that both these tools provide extensive support

documentation with all the necessary answers to the most important questions. Their

community-driven approach also means that we can collaborate with other developers to

share knowledge and experience and report errors that contribute to improving the solution.

The IPS process will be crucial for the solution that will be implemented, as it will be

necessary to inspect the contents of the packets, to ascertain what type of information they

carry and how this corresponds to what is specified by the communication intentions of the

devices. The IPS technique can be applied at the PCEF level, as presented in section 2.1.

Network Based Rules Enforcement, to analyze the contents of the packets and, based on this,

to ask the PCRF which policies are appropriate and applicable to the case in question.

Alternatively, to the PCRF and PCEF solutions present in section 2.1. Network Based

Rules Enforcement, we can implement Snort or Suricata in IPS mode, as described by

(Hafeez, 2016), (Shah & Issac, 2018) and (Calado, 2018), which has its own system of rules

to control network traffic, based on the information that is contained within the packets it

receives and analyses.

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

17

2.3. Device Communication Permissions

In this section, we present how permissions are manifested in the Android operating system,

so that apps have access to device resources. Understanding how devices manifest their

permissions is relevant to allow us to define traffic control rules using section 2.1. Network

Based Rules Enforcement functions, which detect when those permissions are being violated,

by analyzing the content using the section 2.2. Content Filtering & Blocking.

Permissions on an Android device are intended to protect privacy. Therefore, applications

that can be installed on the operating system need permission to access sensitive data e.g.

(Contacts and SMS Messages), as well as system-specific resources e.g. (Camera and

Internet). Depending on the resource, the system may automatically grant the necessary

permissions, or ask the device user to approve that application's access to the device's

resources (Felt, Chin, Hanna, Song, & Wagner, 2011).

One of the most important points of security of the Android operating system architecture

is that, by default, no application has permissions to perform any type of operation, which

may be harmful to other applications that are installed on the device, to the operating system

itself, or even to the device owner. In this context, it includes reading and writing user private

data (contacts or emails), reading or writing files from another application, Internet access,

keeping the device in the active state, among other actions (Felt et al., 2011).

Applications disclose the permissions required for their execution through their manifest

file, using the tag <uses- permission>, as can be seen in Figure 5.

Figure 5 - Manifest statement to send SMS messages (Google, 2021)

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

18

This manifest file is the most important resource for analyzing the communication

behavior of components. Through this file, a developer can specify which components will be

able to communicate with components from other applications and whether that component

can communicate explicitly or implicitly (Jha, Lee, & Lee, 2015).In simple terms, explicitly

communication can be referred to expressing something clearly and unambiguously, without

leaving any room for confusion, in another hand, implicitly communication can be referred to

expressing something indirectly or implied, which may lead to misinterpretation or confusion

(Morgan, 2021).

The system, automatically, considers application of permissions that are not identifiable

has risks to the invasion of the user's privacy or the operation of the device, in its manifest

(Felt et al., 2011). Otherwise, the application lists its required permissions, that can only be

granted by the device user, e.g., sending an SMS message, as shown in Figure 5. Therefore,

when it comes to permissions classified as dangerous, only the user has the power to grant

them. The Android operating system cannot grant any permissions to this type of application.

On devices running the Android 6.0 operating system or newer, the user does not receive

any notification about application permissions at the time of installation. The application only

interacts with the user for consent to dangerous permissions when the application runs after

installation. When the application requests permission from the user, a system dialogue box is

shown with two options, Allow or Deny. In some cases, the system may require permission

again from the user, if the user initially denied it. Secondarily, the user will have the option

Never ask again to tell the system that they do not want this permission to be requested again

(Felt et al., 2011). Both cases are illustrated in Figure 6.

Figure 6- Initial permission dialog (left) and secondary permission request with option to

disable other requests (right)(Google, 2021)

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

19

Access to some device hardware features such as Bluetooth or the Camera requires

granting permission to the application that will use them. However, not all Android devices

have these hardware features. If the application requests permission for the Camera, the

<uses-feature tag > must be included in the application manifest to declare those features (Felt

et al., 2011), as shown in Figure 7.

Figure 7- Manifest permission request (Google, 2021)

If we want to obtain permissions to use camera-related features such as storage, audio

recording, location access, we must also specify this information in the application manifest

via the <uses-permission /> tag (Felt et al., 2011), as shown in Figure 8.

Figure 8- Manifest statements to access operating system resources (Google, 2021)

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

20

2.4. Rights Expression Techniques

In this section, we present some rights expression techniques that are relevant to specify

traffic control rules that are applied to packets issued by devices, which should nevertheless

be analyzed using the section 2.2. Content Filtering & Blocking technique to verify whether

they comply with the device permissions specified in section 2.3. Device Communication

Permissions.

2.4.1. Yara Rules

Yara rules are a way to identify malware or other files by creating rules that look for

certain characteristics. They are part of Yara software, initially developed by VirusTotal

(Quintero et al., 2004), with the intention of helping researchers identify and classify malware

samples by building a common security knowledge platform to share among cybersecurity

professionals. With this software it is possible to create descriptions of malware families,

based on textual and binary patterns (Naik, Jenkins, Cooke, Gillett, & Jin, 2020).

Yara rules are easy to write and understand, because all rules start with the word rule,

followed by the name or identifier, as can be seen in Figure 9.

Figure 9 - Yara rule example (Naik et al., 2020)

The rules are composed of two mandatory sections:

• The strings section is the part of the rules that is defined; however, this section can

be omitted if the rule is not dependent on any string. Each string is identified by

the $ symbol, followed by a string of alphanumeric characters and underscores.

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

21

• The conditions section is where the rule logic resides and is the only section that is

required because it contains a Boolean expression that determines when a file or

process satisfies the rule or not. Generally, the condition refers to strings

previously defined by their identifiers. In this context, the string identifier acts as a

Boolean variable to evaluate for true, if the rule was found in the memory of the

file or process, or false if otherwise.

2.4.2. Open Digital Rights Language

ODRL (Open Digital Rights Language) is an expression policy language that provides a

flexible and interoperable information model, vocabulary, and coding mechanisms to

represent statements about the use of content and services. This model describes the

underlying concepts, entities and relationships that form the foundation of language policy

semantics (Iannella, 2004).

This model consists of the following classes, as seen in Figure 10:

• Policy - Non-empty group of permissions, prohibitions, or duties. This class is the

parent class of the Set, Offer and Agreement subclasses:

o Set - A policy subclass that supports generic rules.

o Offer – A policy subclass that supports assigned party rule offerings.

o Agreement – A subclass that supports compliance with party rules.

• Asset - A resource or collection of resources that are subject to a rule.

• Party - An entity or a collection of entities to take roles in rules.

• Action - The operation of a resource.

• Rule – An abstract concept that represents the common characteristics of

permissions, prohibitions, and duties.

o Permission – The ability to act on a resource. This permission may also

have the right to express an agreed action, which must be enforced.

o Prohibition – The inability to act on an appeal.

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

22

o Duty - The obligation to act.

• Constraint/ Logical Constraint - A Boolean expression that redefines an action or

group collection or resources applicable to a rule.

Figure 10 - ODRL information model (Iannella, 2004)

An example of the application of the ODRL, could be an institutional delegation scenario.

If suppose that Organization called OrganizationX, located in the Netherlands that maintains a

registry of patient data, forms a data-sharing agreement with OrganizationY, an institution in

Belgium. The data-sharing agreement grants OrganizationY the permission to acess the data

and the possibility of delegating this permission to a third party, OrganizationZ. As a result,

the latter will be allowed acess to have access if OrganizationY decides to delegate the

permission received from OrganizationX (Kebede, Sileno, & Van Engers, 2021).

This means we can use an ODRL Agreement to represent the Permission of the transfer of

the ownweship of the patient data from OrganizationX to OrganizationY. Since that

OrganizationY possess now the ownership of the data, we can assume that ownership includes

the possibility of transferring the asset again to someone else (e.g., OrganizationZ). But has a

safety measure, OrganizationX can use grantUse, to create policies about the target asset, and

nextPolicy, to indicate the policy applies to a third party, to restraint the use of the data only to

a third party and not further (Kebede et al., 2021). Code representation located in Appendix B

– ODRL Code Examples.

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

23

Chapter 3 - System Architecture and Workflow

In this chapter, we present the prototype that was implemented and the components that

ensure the transparency of the information transmitted by consumers' IoT devices in the

networks, providing them with control over their devices' communications and ensuring that

these devices communicate in accordance with what is stated on their manifests.

3.1. System Architecture

For the present prototype, we decided to create two separate entities, the device manufacturer

and the IoT device owner. The device manufacturer traffic control rules are represented by the

Intent rules and IoT device owner traffic control rules are represented by the User rules.

The Intent rules represent the intentions and specifications of the manufacturer, to be

defined in the device manifest, regarding the device communication requirements, the

information the device sensors gather and what is transmitted to the network. These rules will

make the communication specifics transparent to anyone using the device and will make it

possible to check whether the device is complying with its declared manifest or not. If the

device is complying with the manifest intentions, this is considered normal behavior. If not,

the IoT device owner will be informed by the system and it will be up to them to decide what

to do next (e.g., to block a device from communicating sound to the internet). The device

owner is empowered to act upon their device's behavior with the User rules.

The User rules represent the IoT device owner's intentions and specifications, as regards

what they permit the device to send to the Internet. These rules give the owner of the device

complete control over it. In this way, the owner can create rules to block the device from

sending unwanted information that in their view violates their privacy and security.

Figure 11 represents the overall system architecture made up of the three main services

needed to implement the concepts described: Intent & User Rule Management, Translator and

Network Traffic Capturing & Filtering. The services referred to are intended to live inside the

Truphone core network performing the actions described for both rules.

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

24

Figure 11 - System high-level architecture

By creating these two types of traffic control rules, we have introduced the concepts of

whitelist and blacklist. The blacklist concept is applied to User rules. In this case, we create

rules that prevent the packets from reaching their destination to enforce the user's control over

their IoT traffic and control over their privacy and security. The whitelist concept is applied to

Intent rules and aims to describe the rules that are based on the devices' transparent / clear

intentions. It is used to learn when devices are not complying with their manifest, by creating

rules that trigger specific alarms (e.g., according to the packets' content and destination). We

can also create blacklist rules from the whitelist rules if we wish.

The Intent & User Rules Management service consists of two components: the Web

management interface, which provides the appropriate mechanisms for IoT device owner and

manufacturer to enter, modify and delete user-defined rules and manufacturer intents,

respectively. The Network Traffic Rules component represents the backend of the interface,

where the CRUD (Create, Read, Update and Delete) database operations of the user rules and

manufacturer intents are implemented.

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

25

To specify the traffic control rules in the Intents & User Rule Management service, we

decided to design our own rules specification, to the detriment of the rights expression

methodologies that we presented, in section 2.4. Rights Expression Techniques of Chapter 2 -

Literature Review.

The reason we did not opt for the methodologies mentioned was that rights expression

methodologies like the one presented in section 2.4.1. Yara Rules, were designed to detect

malware samples, based on text or binary string patterns by matching signatures/strings with

existing malware signatures/strings to match against files, folders, or processes. This meant

most traffic control systems would not understand these rules directly and translating them

into a traffic control system would have been more difficult, because the way they are

expressed is not the same as Yara rules. Regarding section 2.4.2. Open Digital Rights

Language, we also came to the conclusion that these were designed to be applied to digital

content to protect against copyright infringement and how content is used by third parties,

rather than for use in network traffic control. However, these can be extended to add more

functionalities but, as regards network traffic control, we could find no available studies that

present proofs that the adaptation is relevant to our purpose.

Additionally, using these expression techniques would have made translation to the

expression technique used by traffic control rules solutions or others more complex than

necessary for the purpose of this work. Our traffic control rules specification in contrast is

much more compact, generic, and much easier to understand, which means it can be adapted

to the different expression techniques used by some of the solutions presented in sections 2.1.

Network Based Rules Enforcement Open5gs and Magma and 2.2. Content Filtering &

Blocking Deep Packet Inspection using Snort IPS, because it was created from scratch with

network traffic control in mind.

The Translator represents a service that receives the traffic control rules from the Intent

& User Rules Management service and translates them into the expression technique that is

used by the Network Traffic Capturing & Filtering service to define traffic control rules. This

service is implemented in the same machine that the Network Traffic Capturing & Filtering

service is installed on and configured to store the translated rules directly in the rules folder of

the Network Traffic Capturing & Filtering service configuration folders.

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

26

However, this translation service could have been implemented directly in the Intent &

User Rules Management service. But after some research and reflection, we decided to

implement it in a complementary micro service to ensure its portability and interoperability

with other existing traffic policy control systems.

The Network Traffic Capturing & Filtering service consists of three components:

Network Traffic Identifier, Network Traffic Analyzer and Alarms. These components

represent the core of Snort IPS that we have installed and configured to perform the IoT

devices network traffic control.

For the sake of simplicity and to focus on proving the central concepts of device intention

declarations and user controlled IoT privacy and security, we assumed that the content of the

packets issued by the IoT devices and captured by the Network Traffic Capturing & Filtering

service is transported via HTTP (Hypertext Transfer Protocol) messages and not HTTPS

(Hypertext Transfer Protocol Secure) messages, so the content that is parsed is not encrypted.

This option also finds strengths in the research of (Amar et al., 2018), where some of the

devices used in their studies revealed that the communication of device states and credentials

was done via plain HTTP with other devices and the outside world. Their study also showed

that some devices received their software updates via HTTP and that most of this traffic

corresponds to requested images and video thumbnails from manufacturer servers. In another

study by (Mazhar & Shafiq, 2020), they noted that all smart home IoT devices with the

exception of smart cameras access the WEB over HTTP for some portion of traffic, with

health & wearables, smart assistants and smart TV corresponding to around 20% of traffic

over HTTP.

The Network Traffic Identifier is the component that identifies whether traffic being sent

to the Internet has its origin on an IoT device. If so, it is sent to the Network Traffic Analyzer,

otherwise, the network traffic goes directly to the Internet. For simulation purposes all the

generated IoT traffic that is captured by this component is created by the Ostinato (P, 2010)

traffic generator, located before the Network Traffic Capturing & Filtering service. Ostinato

simulates the IoT device's behavior when violating the manufacturer manifest communication

intents and user-defined rules. The identifier of IoT traffic is contained inside the packet that

is captured for analysis and is made up of the TAC (Type Allocation Code), a unique 8-digit

code which allows identification of the manufacturer and model of the device individually

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

27

within a network for the manufacturer intents, and the IMEI (International Mobile Equipment

Identity), a unique 15-digit code which acts as a fingerprint of the device, allowing it to be

identified within a network for the user-defined rules.

The Network Traffic Analyzer analyses the IoT traffic according to the traffic control

rules defined. If the traffic complies with what is specified, it is redirected to the Internet; if

not, alarms will be triggered if traffic is violating the manufacturer intent manifest or blocked

from reaching the Internet if the traffic is violating the user-defined rules.

The Alarms component receives information about network traffic that complied with the

rules and the traffic that did not. This component has the main task of alerting the IoT device

owner to the system activity and especially to any device with a behavior not declared by the

manufacturer. With this information, the user may choose to block traffic from the device that

falls outside the intentions manifest. The information presented to the owner consists of the

timestamp of the captured packet, the transport protocol, source and destination addresses,

and the content it was carrying that triggered the specific policy rule violation.

Regarding the Network Traffic Capturing & Filtering service, we considered multiple

alternative solutions and approaches. The first approach was to use the solution that Truphone

has implemented in their core network, based on PCRF and PCEF for network-based rule

enforcement. Unfortunately, it was not possible to use that solution without causing major

inconvenience to clients who were making use of their service and no alternative (offline)

testing environment was available or could be created for research purposes.

Next, we considered available network-based rules enforcement open-source solutions,

which led to the two solutions Open5gs and Magma, based on 5G and EPC networks that

provide PCRF and PCEF for all devices connected to the network, as presented in section 2.1.

Network Based Rules Enforcement.

In this second approach, we decided to take our study with Open5gs further, because

Magma required a paid-for DPI software component, which was not an option for this

research project. Open5gs was also found to have some major issues after implementation of

the solution, as during the testing phase it was not possible to get the PCRF and PCEF

components to talk to each other during operation. This solution was therefore dropped.

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

28

For our third approach, we decided to go with the solution Deep Packet Inspection using

Snort IPS that was presented in section 2.2. Content Filtering & Blocking, a tool designed

primarily for network traffic intrusion detection, configured to act as an IPS, enabling it to

perform DPI on packets captured from the network and apply a set of user-defined rules to

block packets or allow them to pass through to the network, as an alternative to the PCRF and

PCEF network-based rules enforcement solutions Open5gs and Magma discussed in section

2.1. Network Based Rules Enforcement.

3.1.1. Intents & User Rule Management REST API

The Intents & User Rule Management REST API, documented in technical format in

Appendix C – Intents & User Rule Management REST API Documentation, is designed to

allow manufacturers to state their communication intentions and to enable the IoT device

owner to create user rules to control the information communicated by the devices (to protect

their privacy and ensure information confidentiality). This REST API provides manufacturers

and IoT device owners alike with endpoints to allow the intents and user-defined rules to be

retrieved from the local database to be displayed. The entry methods allow the manufacturer

to enter their device communication intent statements and the IoT device owner to insert their

defined rules to control the device communication intents into the database. The update

methods allow for modification of existing intents and user-defined rules in the database.

Finally, the delete method allows withdrawal of device intents or user-defined rules from the

database.

For this REST API, two entities were created to represent the manufacturer intent and the

user-defined rules, designated as intent and rule.

An intent is defined by a UUID (Universal Unique Identifier), the device type, which is

represented by the device TAC. Also part of this intent are its properties as defined by the

content type, such as Audio, Video, or Text, by the communication protocol, which is used to

represent the message that contains that content, such as HTTP, RTSP (Real Time Streaming

Protocol) or SIP (Session Initiation Protocol), and by the destination address of the intent,

which is represented by a range of IPs to which the content is to be sent.

A rule has the same fields as the intent, with the exception of the device identifier field,

which is represented by the device's IMEI.

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

29

3.1.2. Translator (Integration layer with filtering tool)

The Translator REST API, documented in technical format in Appendix D – Translator REST

API Documentation, is designed to allow the translation of intents and IoT device owner rules

that it receives from the Intents & User Rule Management REST API into the expression

technique used by Snort. This REST API provides the methods to create Snort-compatible

rules from the manufacturer intents and user-defined rules created in the Intents & User Rule

Management REST API. The update methods allow modification of the existing Snort rules

by replacing them with new ones entered by the manufacturer or IoT device owner. The

delete method allows the withdrawal of device Snort rules from the rule files located in the

Snort configuration folders. To enable Snort to detect and interpret the content of a packet it

has captured, a method has been created to transform the content type that it receives from

Intents & User Rule Management REST API service from text format into hexadecimal

format when the Snort rule is created.

For this REST API, an additional entity has been created to complement existing ones in

Intents & User Rule Management REST API, called a Snort rule. A Snort rule is defined by:

• Rule Action - which specifies what action the Snort rule performs on the packet it

received, such as alert, drop, log, pass, reject or drop.

• Rule Protocol - which specifies which protocol should be parsed for suspicious

behavior, such as TCP, UDP, ICMP or IP.

• Source IP - which specifies which source IP(s) address(es) of the packet.

• Source Port - which specifies which source port(s) of the packet.

• Flow Direction - which specifies which direction of packet flow, unidirectional (->)

or bidirectional (<>).

• Destination IP - which specifies the destination address(es) of the packet.

• Destination Port - which specifies the destination port(s) of the packet.

• Rule Options – which specify what content the rule should analyze, where it is

located within the packet, the size of the packet, the message that is shown when the

alert is triggered, and the rule ID.

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

30

3.1.3. Snort IPS

Snort IPS (Roesch, 2016) is the chosen tool to detect violations of the manufacturer’s

intentions and allow IoT device owners to block content communication according to their

security and privacy preferences. Snort is an open-source rules based NIDPS (Network

Intrusion Detection and Prevention Systems) software, to detect and prevent malicious attacks

or information leakage, with the ability to analyze traffic in real time, log packets and

generate alerts for users when packet content matches the rules that are defined.

To enable the option to block packets with content that violates the privacy and security

of the owner from reaching their destination, it was necessary to configure Snort using the

snort.conf file, selecting the DAQ (Data Acquisition Library) module Afpacket. This allows

us to run Snort in inline mode with two network interfaces. Only in inline mode can Snort

block the packets it captures; in normal mode it only generates alerts for the packets it has

captured. Details are provided in Chapter 4 – Tests and Evaluation. Through the

buffer_size_mb variable, we can define the memory to be assigned to the DAQ, considering

the amount of traffic to be analyzed, the number of rules activated and the hardware Snort is

running on. Additionally, it was also necessary to configure Snort to consider the rule files for

each of the devices, both for the manufacturer’s intents and for the IoT device owner's rules.

Figure 12 represents the command that allows Snort to run. It is made up of four main

arguments and a fifth optional argument. The alerts mode (1)), your configuration file (2)), the

interfaces where Snort "listens" for traffic to analyze (3)) and the operation mode (4)):

Figure 12 - Snort Launch Command

1) - -A Console: this argument configures Snort so that the alerts it generates are sent to

the console.

2) -c /etc/snort/snort.conf: this argument allows you to choose the configuration file of

the Snort settings that should be executed.

3) -i ens33: ens34: this argument chooses the interfaces to listen for traffic.

4) -Q: this argument allows you to run Snort in inline mode.

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

31

3.1.4. Web Management Interface

The Web Management Interface was designed to support the Intent & User Rule Management

REST API and, in consequence, the Translator backend. This interface allows the device

manufacturer to read, insert, update, and delete the device intents rules and enables the IoT

device owner to read, insert, update, and delete the user-defined rules.

The intents and user-defined rules are displayed in tables in the intent list and rule list

tabs, respectively, as shown in Figure 13. The intents table displays Device Type (TAC),

Content Type, Communication Protocol, Destination Address and Actions (Delete and

Update). The rules table displays Device ID (IMEI), Content Type, Communication Protocol,

Destination Address and Actions (Delete and Update).

Figure 13 - Intents & Rules list table

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

32

To enter an intent the manufacturer must navigate to the intent form located in the intent

tab, where he is greeted with the fields mentioned above. After he enters the data and saves

the intent in the database, it is automatically translated by the system into a Snort rule,

completely transparent to manufacturer. The translated intents will be written in a file that

corresponds to the device TAC ID. When a device is deleted from the database by the

manufacturer, the file that contains the corresponding Snort rules for that device is deleted as

well. When the device intents are updated, the intents that existed previously are replaced

with those entered by the manufacturer. The same process is followed for the user-defined

rules entered by the IoT device owner in the rule tab, but with the slight difference that user-

defined rules are written to a file that corresponds to the device IMEI ID. Figure 14 shows a

representation of these web forms:

Figure 14 – Intent & Rule Insert/Update form

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

33

For more advanced users, who have experience of working with Snort and its rules, we

have provided an appropriate interface, as shown in Figure 15, that allows them to download

the text rule files to edit located in the download tab and upload them again located in the

upload tab, replacing the existing ones with the ones they have modified to their liking.

Figure 15 – Download/Update form

3.2. Snort Implementation Workflow

In this section, the Snort workflow is presented for each packet captured by the Network

Traffic Filtering & Capturing service. We will be focusing on two different scenarios. The

first is when the IoT device is violating the communication intents: this happens when the

device deviates from its expected behavior as defined by the manufacturer. The second

scenario is when the IoT device is violating the user-stipulated rules: this happens when the

device deviates from the behavior the user sets for it.

The flow that represents the device intent communication violation scenario is presented

in Figure 16. Snort starts by capturing a packet sent by an IoT device for inspection, so the

decoder can analyze that packet to identify the transport protocol used and check for conflicts

with the intent rules. When the decoder finishes the identification and classification process, it

sends the packet to the pre-processor, which is responsible for preparing the packet to be

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

34

processed more easily by the detection engine, which flags the traffic flow by looking for a

match in the ruleset for traffic that is violating the defined policies. If a match is found, by

TAC (device type) and content type in packet load, an intents violation alert is generated,

followed by logging of the event. Otherwise, Snort takes another packet and repeats the same

process. In this scenario, Snort acts in detection mode only, as it does not perform any action

on the packet, but simply triggers an alert for a defined policy violation.

Figure 16 – Intent scenario - System workflow

Considering the flow of the user-defined rules violation scenario presented in Figure 17,

when it is detected that a device sends a packet that represents a violation of the privacy and

security of its owner, the process is the same but, after generating the alert, Snort blocks and

discards the packet that contains the device IMEI and the content type the IoT device owner

has specified to be blocked, stopping it from reaching its destination, and then logs the event

that occurred. Again, if no packet matches the user-defined rules, another is captured for

analysis. In this scenario, Snort acts in prevention mode, because it stops the packet from

reaching its destination by performing a drop action on the packet.

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

35

Figure 17 – Rule scenario - System workflow

When the manufacturer enters the intents for the IoT device using the Web Management

Interface, the intents are stored and then sent from the Intent & User Management Rest API to

the Translator REST API to be translated from an intent into alert Snort rules, because in the

intent case our aim is only to alert the IoT device owner to the fact that their device is not

complying with their communication intents, without blocking the content. These translated

intents are written in the format and structure shown, following the Snort rule order defined in

section 3.1.2. Translator (Integration layer with filtering tool). We will explain these Snort

rules in greater detail in section 4.2. Functional Tests of Chapter 4 – Tests and Evaluation:

• alert tcp $HOME_NET any -> [192.168.19.1/24,192.168.20.1/24] any (msg:"ALERT -

DESTINATION ADDRESS NOT OK For Intent Of Device TAC 17020105.

Intent{ContentType: [audio/mpeg, video/mp4] Destination Address: [192.168.19.1/24,

192.168.20.1/24]";flow:stateless; content:"|31 37 30 32 30 31 30 35|"; offset:4;

depth:8; content:"|5b 61 75 64 69 6f 2f 6d 70 65 67 2c 76 69 64 65 6f 2f 6d 70 34

5d|"; distance:14; within:22;classtype:policy-violation; sid:1137585;)

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

36

When the IoT device owner enters the user-defined rules using the Web Management

Interface, the rules are stored and then sent from the Intents & User Rule Management REST

API to the Translator REST API to be translated from a user-defined rule into a drop Snort

rule, because in the user rule case we want to prevent some of the content sent by the devices

reaching the Internet and so violating owner privacy and security. These translated rules are

written in the format and structure shown, following the Snort rule order defined in section

3.1.2. Translator (Integration layer with filtering tool). We will explain these Snort rules in

greater detail in section 4.2. Functional Tests of Chapter 4 – Tests and Evaluation:

• drop tcp $HOME_NET any -> [192.168.0.1/24,192.168.1.1/24] any (msg:"DROP –

Rule Device IMEI 175884384586938{ Content Type: [video/quicktime, audio/x-aiff]

Destination Address: [192.168.0.1/24, 192.168.1.1/24] }"; flow:stateless; content:"|31

37 35 38 38 34 33 38 34 35 38 36 39 33 38|"; offset:5; depth:15; content:"|5b 76 69

64 65 6f 2f 71 75 69 63 6b 74 69 6d 65 2c 61 75 64 69 6f 2f 78 2d 61 69 66 66 5d|";

distance:14; within:30;classtype:policy-violation; sid:8181915;)

In this chapter, we have described this project architecture and workflow in the most

rigorous detail appropriate for this document. Even with the issues we faced during

implementation of the architecture, we were able to implement the most important

requirements to answer the research questions (Section 1.2. Research Question of Chapter 1 –

Introduction), as regards a mechanism to provide consumers with control over the information

privacy and security of their IoT devices and achieve the research goals (Section 1.3.

Research Goals of Chapter 1 – Introduction) of developing a system prototype to perform

traffic identification and filtering and violation reporting. Although we would have like to

have been able to research and develop Truphone’s existing solution based on PCRF and

PCEF without compromising their quality of service, we are confident that they will be able

to find a way to incorporate some of this research, based on Snort IPS, in their existing

infrastructure, to provide a better service to their clients.

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

37

Chapter 4 – Tests and Evaluation

In this chapter, we describe the test environment implemented to perform the required tests

(section 4.1. Test System Deployment), the functional tests carried out (section 4.2. Functional

Tests) and the performance tests carried out (section 4.3. System Performance).

4.1. Test System Deployment

The test deployment system presented in Figure 18 was created to allow us to test the

violation of manufacturer-defined intents and violation of user-defined rules scenarios.

The intents scenario is important to test if the IoT device is not complying with the

behavior defined by the manufacturer, because we need proof that guarantees to us those

manufacturers and their devices can be trusted and are not being used to spy on innocent

consumers. The user-defined rules scenario is important to test so that consumers possess a

mechanism to protect themselves against an untrustworthy manufacturer who is using the

devices in their home to gather information about them.

Figure 18 – Solution Testbed Architecture

This system consists of two different virtual machines, A and B, and a physical host

machine. The system presented was inspired by the solution presented by (Hafeez, 2016) and

described in section 2.2. Content Filtering & Blocking of Chapter 2 - Literature Review. Our

system, much like Hafeez's, uses Snort in intrusion prevention mode for network traffic

control by making all the traffic from the Traffic Generator (VM A) pass through the

Translator and Snort IPS (VM B) before reaching the Internet router allowing DPI analysis of

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

38

the packets and application of the desired traffic control rules to the packet flow. In Table 1,

we find the hardware and software specs of the system:

Table 1 - Testbed System Specs

Computer

Hardware

CPU Core i7-10610U 1.8 GHZ

RAM Memory 32 GB

Graphics Card Onboard Intel

Hard Disk SSD 512 GB

Software

OS Windows 10 Pro

VM OS Ubuntu 20.04.3 LTS

Hypervisor Vmware Workstation Player 16.1.1

Ostinato Traffic Generator 1.0 (Free Open-Source Version)

WireShark 3.4.5

Virtual machine A was created with the purpose of representing an IoT device to generate

network traffic to be collected and analyzed by Snort IPS, located on virtual machine B. (1)

Figure 18.

Virtual machine B was created with the intended purpose of containing the traffic control

and analysis software that collects and analyzes traffic from the IoT devices connected to this

virtual machine. This machine acts as an internal server to check IoT device network traffic

compliance with the traffic control rules and to forward it to the Internet if no violations

occurred; if any violation did occur, an alert will be displayed, followed by blocking of the

traffic. (2) Figure 18.

The physical host machine contains the Web Management Interface and the Intent & User

Rule Management REST API that allow the manufacturers and IoT device users to specify

intents and define rules for their devices by creating, reading, modifying and deleting rules,

which are contained within a database. The Interface component of the Rules Management

service calls the endpoint of the Translator service. (3) Figure 18.

The need for a virtual machine stems from the fact that the open-source software selected

in this thesis is designed to run on open-source Linux core-based operating systems. Also, as

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

39

this is open-source software there are no additional expenses for acquiring the software and its

licenses, nor any need for extra physical hardware that can be perfectly replicated using

appropriate open-source virtualization software with only one optimal physical host machine.

VM A, as shown in Figure 19, is configured to use only one network adapter. The adapter

is set to Host Only and is used for the connection between virtual machines A and B,

representing the network gateway of VM A.

Figure 19 -Traffic Generator (VM A) network adapter

VM B, as shown in Figure 20, is configured to use two network adapters. Adapter 1 is

configured as Bridged: it is used to connect the virtual machine to the main network, where

the router is located. Adapter 2 is configured as Host Only: it is used to connect VM B to VM

A, acting as gateway to the VM A network.

Figure 20 – Translator and Snort IPS (VM B) network adapters

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

40

A open source version of the Ostinato(P, 2010) software was chosen to generate traffic

streams, so that we can simulate the various devices that are present on an IoT network.

Ostinato is an open-source tool that allows us to test bandwidth, create and configure multiple

streams, specify how data is sent, set the number of packets or bursts to be sent per second,

view real-time statistical data for network monitoring and measurement, read statistical

measurements of lost packets per stream, and offers support for the most common standard

protocols.

Using this software, we created multiple streams to cover the IoT device owner rules and

the manufacturer-specified intents scenarios. For these streams, we defined the protocol data

settings, the source and destination IP address of the packet, the transport protocol and the

HTTP, RTSP or SIP text messages. In the intent case, the TAC of the device and the content it

transmits and, in the case of the IoT device owner's rule, the IMEI of the device and the

content it transmits.

Finally, we defined the stream control settings, the type we wish to send, whether packet or

burst, the number of packets or bursts, the rate of packets or bursts per second, and what

action is to be taken when the stream ends, as explained above.

4.2. Functional Tests

In this section, we introduce the functional scenarios used in the proposal: one that tests intent

violations and another that tests the user's control over their devices’ communication. We also

present and discuss the test results.

These tests are important to ensure that the system we have implemented performs as

expected. To prove this, we must test the system to see if it is able to detect violations of the

declared manufacturer intents and generate alerts, whenever the IoT device transmits packets

that carry information that does not match the specifications of the intents manifest of the IoT

device manufacturer. To conduct this test, the system creates test packets using the traffic

generator to simulate misbehavior of the IoT device. These packets must contain information

that diverges from the information specified in the manufacturer's intents manifest. This test is

successful if alerts are triggered for each packet that violates the specifications of the

manufacturer's intents manifest. Thus such devices will not be able to compromise the privacy

and security of the owner, who can be assured that devices do what is stated in their manifest.

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

41

To prove that the IoT device owner has control over the privacy and security of his device's

communication, we must create test packets using the same traffic generator as mentioned

above with content that violates user-defined rules, so when the system detects this content, it

blocks it from reaching its destination. In this manner, the system implemented can assure the

IoT device owner of control over their device's communication and guarantee their privacy

and security.

4.2.1. Description of Test Scenario I – Violations of the manifest of intents

In this test scenario, we simulate network traffic that violates manufacturers' intents and

analyze the system’s reaction to it. To do so, we use the intents of three different devices,

which have been specified by the manufacturer, as set out in Table 2:

Table 2 - Test Intents

Device

Device

Type

(TAC)

Declared

Content-Type

Declared

Communication

Protocol

Declared Destination Addresses

Samsung

Android Tablet
09951213

[video/mp4,

audio/mpeg]

[video/x-

msvideo,

audio/ogg]

[HTTP, RTSP]

[HTTP, RTSP]

[192.168.21.0/24,192.168.22.0/24]

[192.168.23.0/24,192.168.24.0/24]

Apple IOS

Smartphone
42245111

[audio/basic,

video/h264]

[image/jpeg,

text/plain]

[HTTP, RTSP]

[HTTP, RTSP]

[192.168.25.0/24,192.168.26.0/24]

[192.168.27.0/24,192.168.28.0/24]

Huawei

Android

Smartphone

33292418
[audio/mpeg,

video/mp4]
[SIP, RTSP] [192.168.29.0/24,192.168.30.0/24]

Analyzing the intents defined by the manufacturers in the previous table, we see how they

have specified communication intents for three well-known IoT devices. The unique eight-

digit TAC is required to identify a device by its brand and model on the network that it is

connected to. The content type that device sends to the Internet is specified using MIME

(Multipurpose Internet Mail Extensions) types. This content can originate from the device

camera, microphone, location sensor, humidity sensor or other device sensors. The

communication protocol represents the protocol that is used to transport the TAC and content-

type information to one of the IPs defined in the destination address.

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

42

The intents content-type and destination addresses, as shown in Table 2, must be denied

so that it is possible to validate whether the manufacturer-defined intent is fulfilling the device

communication intentions. This way, we can evaluate if the content type and destination

addresses defined in the device intents is the same as the content type and destination address

that the device sends to the Internet. If this is true, the user should not be confronted with

them in an execution environment, as they comply with the manufacturer-defined intent. If

not, the user should be presented with alert messages in an execution environment, alerting

them to non-compliance with the manufacturer-defined intent.

After the intents are created and translated, it is necessary to create network traffic,

meaning the packets, content type and destination address, which must be different from what

is specified by the manufacturer, so that the alerts can be triggered. Table 3 shows an example

of a packet whose content type does not match the content type specified by the manufacturer,

but whose destination address corresponds to one of the ranges. Table 4 shows a packet with a

destination address that differs from the one specified, but whose contents match those

specified.

Table 3 - Content test intent packet

Protocol Data

Source IP: 10.0.0.10 Destination IP: 192.168.21.10

Text Protocol

TAC:09951213

Content-Type: [text/plain, video/h264]

Table 4 - Destination test intent packet

Protocol Data

Source IP: 10.0.0.10 Destination IP: 192.168.30.10

Text Protocol

TAC:09951213

Content-Type: [video/mp4, audio/mpeg]

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

43

4.2.2. Test Scenario I - Results Presentation

Figure 21 represents the Snort messages displayed when it is detected that the content and

destination address of the previously created packets do not match the content and destination

address specified by the manufacturer in the intents.

Figure 21 - Intent violation alerts

Analyzing the messages displayed, we see that Snort tell us that, for example, the device

with the TAC 099551213 has committed four intent violations. The first was that the content

type the device was sending didn't match the content type the manufacturer specified in their

intent: the manufacturer specified the device was supposed to send the content [video/mp4,

audio/mpeg], but instead, after analyzing the packet on Wireshark from source IP

10.0.0.10:80 to destination IP 192.168.21.10:80 and TAC 099551213, we saw that the content

the device actually sent was [text/plain, video/h264]. The second was that the destination

address to which the packet was intended to go didn’t match the address the manufacturer

specified in their intent: the manufacturer specified that the device was supposed to send the

content [video/mp4, audio/mpeg] to one IP address from the following IP ranges

[192.168.21.1/24, 192.168.22.1/24], but instead, after analyzing the packet from source IP

10.0.0.10:80 and TAC 099551213, we saw that the actual destination IP address was

192.168.30.10. The two other intent violations are identical to those described above only

with different destination addresses and content types.

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

44

In the Snort log folder, we can view the files, with the timestamp of capture and where the

captured packets are recorded, which can be opened in a program such as Wireshark or

another relevant program. These logs represent the packets whose content triggered the alarms

for intent manifest violations. Thus we possess detailed reports that users can check for the

number of traffic control rule violations and the number of alarms that were triggered in the

process. Depending on how Snort alarm mode is configured, we also can access the log files

in the same folder of the Snort events to check the number of alarms and rules that were

triggered.

4.2.3. Test Scenario I - Discussion of Results

In this test, we have shown that the detection and alarm functional process succeeded. The

system was able to detect that the virtual device content and destination address present in the

test packets was not compliant with the content type and destination address specified in the

device intentions. It therefore generated a log of alerts for these events, reporting that content

or content destination was not correct, according to the device intent manifest specifications.

If the device was indeed complying with the device intents, no log of alerts would have been

generated, meaning no violations of intents occurred that could have jeopardized the privacy

and security of the IoT device owner.

In the eventuality of a manufacturer failing to correctly specify their device's real

communication intentions, our system will be able to inform the IoT device owner whether

their device is reliable or not, meaning it will tell the device owner if the device is complying

with the manufacturer intents or not.

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

45

4.2.4. Description of Test Scenario II - Violations of user-defined rules

In this test scenario, we simulate violation of defined rules of privacy and information security

by three devices and how the system is supposed to react when such an event occurs. To do

this, we use the following rules specified by the owner, which enable the submission of

unapproved content to be blocked, seen in Table 5:

Table 5 - Test Rules

Device Device ID (IMEI)

Content Type

allowed by

device owner

Communication

Protocol allowed

by device owner

Destination Address

allowed by device

owner

Samsung

Android

Tablet

099512133857038

[video/quicktim

e, audio/x-aiff]

[audio/basic,

video/h264]

[RTSP, SIP]

[SIP, RTSP]

[192.168.21.0/24,192.16

8.22.0/24]

[192.168.23.0/24,192.16

8.24.0/24]

Apple IOS

Smartphone
422451118095078

[audio/ogg,

video/h265]

[image/jpeg,

text/csv]

[SIP, RTSP]

[RTSP, SIP]

[192.168.25.0/24,192.16

8.26.0/24]

[192.168.27.0/24,192.16

8.28.0/24]

Huawei

Android

Smartphone

332924181938544 [image/jpeg] [RTSP] [192.168.29.0/24]

In the table above we show user-defined rules to prevent certain types of content from

three IoT devices leaking to the Internet, resulting in possible violations of users' privacy and

security. The user rules seen here are defined by their IMEI, which acts as the device

identifier, and the content type that the user has chosen to block, also specified using the

MIME types.

The user-defined rules, shown in Table 5, are written to prevent packets that meet the

specified conditions reaching the Internet. Whenever it is found that a device with a particular

IMEI is submitting the specified content to one of the specified addresses, the rule should be

activated and the event logged, followed by immediate rejection of the packet.

After creating the rules and their translation, it is necessary to create the packets. The

content must correspond to what is specified by the owner, so that the packet can be rejected

for being in violation of the rules defined by the owner. Table 6 shows an example of a packet

whose contents are specified in the rule to be dropped.

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

46

Table 6 - Content test rule packet

Protocol Data

Source IP: 10.0.0.5 Destination IP: 192.168.21.2

Text Protocol

IMEI: 099512133857038

Content-Type: [text/plain, video/h264]

4.2.5. Test Scenario II – Results Presentation

Figure 22 represents the Snort messages that inform us that a packet has been discarded for

being in violation of the user-defined rules.

Figure 22 - Rule drop packet alert

Analyzing the messages displayed, we see that Snort informs us that, for example, the

device with the IMEI 422451118095078 has committed two user-defined policy violations.

The first was that the content type of the packet sent by the device, viewed in Wireshark for

the packet sent from source IP address 10.0.0.5 to destination IP address 192.168.25.5,

matches the content type that the user has defined to be blocked [audio/ogg, video/h265]. The

second was that the content type of the packet sent by the device, viewed in Wireshark for the

packet sent from source IP address 10.0.0.5 to destination address IP 192.168.28.5, matches

the content type that the user has defined to be blocked [image/jpeg, text/csv].

In the same location as mentioned in the previous subsection, we can also see the packet

files that contain the captured packets that have violated the user-defined rules, with the

information about the content they were carrying and the capture timestamp. The log files that

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

47

contain the event logs of the rules that were triggered by the test packets are also located in

the same folder.

4.2.6. Test Scenario II - Discussion of Results

In this test, we have shown that the detection and blocking process succeeded. The system

was able to detect that the virtual IoT device content present in the test packets was in

violation of the user-defined rules, resulting in compromise of the user-defined privacy and

security rules. It therefore dropped the packets that violated the user-defined rules, stopping

them from reaching their destination.

The results of this test prove that the traffic control rules defined by the user enable them

to control how their device communicates, ensuring that the user can guarantee the privacy

and security of their personal information when the intentions of manufacturers and the

actions of their devices are not to be trusted.

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

48

4.3. System Performance

In this section, we describe the performance tests that were performed for 1000, 5000, and

10000 packets generated by the selected traffic generator for different packet throughputs. For

this test, we used 10 devices for which 19 intent rules and 15 user-defined rules were created.

The variables selected for the results were:

• Packets Received – This variable represents the number of packets that were

captured for inspection.

• Packets Analyzed – This variable represents the number of packets that were parsed

from packets that were received.

• Dropped Packets – This variable represents the number of packets that were not

found and therefore not analyzed by the analysis component.

• Packets Whitelisted/Blacklisted – This variable represents the number of packets

whose content and destination address were in violation of manufacturer's

specifications or IoT device owner rules.

• Analysis Runtime – This variable represents the time taken to perform analysis and

classification of packets received by the traffic capture component.

• Dump Runtime - This variable represents the time taken to generate and send

packets to the network.

• Delay - This variable represents the additional expense required to perform analysis

of the packets generated.

The aim of these performance tests is to test how Snort performs in the worst-case

scenarios, to measure if high throughputs have a major impact on the time taken to analyze

the content of the packet and detect that content is in violation of manufacturer intents or user-

defined rules.

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

49

4.3.1. Intents Scenario – Results Presentation

Figure 23 shows the data collected from the tests performed for 1000 packets, these are

transmitted in function of time per second. In this graph, we display the time it takes Snort to

analyze the required number of packets (Analysis Runtime), the time it takes the Ostinato

traffic generator to generate the required number of packets and send them to the network

(Dump Runtime), and finally the delay between the Snort analysis of the captured packets and

the generation of packets by Ostinato (Delay).

Figure 23 - 1000 Packets runtime data

The highest Snort analysis runtime registered for this test is 1 minute and 5 seconds for

throughput of 200 packets per second and the lowest is 15 seconds for throughput of 900

packets per second. The average Snort analysis runtime of this test is approximately 40

seconds. The highest packet dump runtime registered is 1 minute and 40 seconds for

throughput of 100 packets/s and the lowest is 10 seconds for throughput of 900 packets/s. The

average packet dump runtime in this test is approximately 30 seconds. The longest delay we

recorded was 13 seconds for throughput of 500 packets/s and the lowest was 5 seconds for

throughput of 900 packets/s. The average delay in this test was approximately 10 seconds.

00:00

00:17

00:35

00:52

01:09

01:26

01:44

02:01

100 200 300 400 500 600 700 800 900

Ti
m

e
(m

m
:s

s)

Packets/s

1000 Packets

Analysis Runtime Dump Runtime Delay

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

50

Table 7 shows the remaining data collected for other variables. All the packets captured

by Snort during the execution of this test were analyzed, meaning no packets were skipped or

dropped during that time. Of all the packets captured, a percentage between 3% and 14%

corresponded to packets whose content was in violation of the manufacturer’s intents on the

device manifest, while the remaining percentage corresponded to miscellaneous traffic

capture by Snort.

Table 7 - 1000 packets variable data

Packets/s

Throughput

Packets

Captured

Packets

Analyzed

Packets

Dropped

Packets

Whitelisted

100 11311 100% 0% 88,39%

200 10837 100% 0% 92,27%

300 11482 100% 0% 86,83%

400 10436 100% 0% 95,80%

500 10260 100% 0% 97,45%

600 10272 100% 0% 97,31%

700 10188 100% 0% 98,13%

800 51632 100% 0% 96,82%

900 51432 100% 0% 97,21%

Figure 24 shows the data collected from the tests performed for 5000 packets. The longest

Snort analysis runtime recorded for this test was 8 minutes and 36 seconds for throughput of

100 packets/s and the shortest was 1 minute and 3 seconds for throughput of 900 packets/s.

The average Snort analysis runtime was approximately 2 minutes and 49 seconds. The longest

packet dump runtime recorded in this test was 8 minutes and 18 seconds for throughput of

100 packets/s and the shortest was 11 seconds for throughput of 4000 packets/s. The longest

packet dump runtime was approximately 2 minutes and 12 seconds. The longest delay

recorded in this test was 1 minute and 24 seconds for throughput of 500 packets/s and the

shortest was 8 seconds for throughput of 900 packets/s. The average delay was approximately

37 seconds.

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

51

Figure 24 - 5000 Packets runtime data

Table 8 shows we can view the remaining data collected for other variables. All the

packets captured by Snort during the execution of this test were analyzed, meaning no packets

were skipped or dropped during that time. Of all the packets captured, a percentage between

2% and 31% corresponded to packets whose content was in violation of the manufacturer’s

intents on the device manifest, while the remaining percentage corresponded to miscellaneous

traffic capture by Snort.

Table 8 - 5000 Packets variable data

Packets/s

Throughput

Packets

Captured

Packets

Analyzed

Packets

Dropped

Packets

Whitelisted

100 71695 100% 0% 69,72%

300 54221 100% 0% 92,21%

500 65098 100% 0% 76,69%

700 51253 100% 0% 97,52%

900 50564 100% 0% 98,85%

2000 51632 100% 0% 96,82%

4000 51432 100% 0% 97,21%

00:00

01:26

02:53

04:19

05:46

07:12

08:38

10:05

100 300 500 700 900 2000 4000

Ti
m

e
(m

m
:s

s)

Packets/s

5000 Packets

Analysis Runtime Dump Runtime Delay

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

52

In Figure 25, we can view the data collected from the tests performed for 10000 packets.

The longest Snort analysis runtime recorded for this test was 16 minutes and 45 seconds for

throughput of 100 packets/s and the shortest was 1 minute and 36 seconds for throughput of

9000 packets/s. The average Snort analysis runtime was approximately 4 minutes and 23

seconds. The longest packet dump runtime recorded in this test was 16 minutes and 39

seconds for throughput of 100 packets/s and the shortest was 10 seconds for throughput of

9000 packets/s. The average packet dump runtime was approximately 3 minutes and 17

seconds. The longest delay recorded in this test was 3 minutes and 15 seconds for throughput

of 9000 packets/s and the shortest was 6 seconds for throughput of 100 packets/s. The average

delay was approximately 1 minute and 37 seconds.

Figure 25 - 10000 Packets runtime data

Table 9 shows the remaining data collected for other variables. All the packets captured

by Snort during the execution of this test were analyzed, meaning no packets were skipped or

dropped during that time. Of all the packets captured, a percentage between 2% and 12%

corresponded to packets whose content was in violation of the manufacturer’s intents on the

device manifest, while the remaining percentage corresponded to miscellaneous traffic

capture by Snort.

00:00

02:53

05:46

08:38

11:31

14:24

17:17

20:10

100 500 1000 3000 5000 7000 9000

Ti
m

e
(m

m
:s

s)

Packets/s

10000 Packets

Analysis Runtime Dump Runtime Delay

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

53

Table 9 - 10000 packets variable data

Packets/s

Throughput

Packets

Captured

Packets

Analyzed

Packets

Dropped

Packets

Whitelisted

100 113019 100% 0% 88,48%

500 102240 100% 0% 97,62%

1000 101391 100% 0% 98,62%

3000 105846 100% 0% 94,25%

5000 100941 100% 0% 98,71%

7000 102817 100% 0% 94,81%

9000 101165 100% 0% 96,37%

4.3.2. Intent Scenario – Discussion of Results

In the results displayed in subsection 4.3.1. Intents Scenario – Results Presentation, we were

able to prove that the system implemented was able to detect and handle multiple packets at

various throughputs, without ever showing service breaks during the analysis for high packet

loads, maintaining a cadence of approximately 13 seconds per packet without missing or

skipping packets.

According to the results shown in Table 10, analysis of the captured packets took longest

in the 5000 and 10000 packets per second tests when the rate of packet throughput was the

lowest at 100 packets per second, because Snort could analyze only 100 packets at a time.

With increased throughput, we saw that time decrease progressively; as we came closer to

reaching rates of 1000, 5000 and 10000 packets per second the difference between the

different rates had decreased approximately 2 seconds for the 1000-packet test and 22 seconds

for the 5000 and 10000-packet tests.

With that time decrease, the analysis displayed a tendency to become more consistent,

which meant that the system started to stabilize at around 500 packets/s in the 1000-packet

test, 700 packets/s in the 5000-packet test and 1000 packets/s in the 10000-packet test. This

gives a packet analysis average after consistency of approximately 4 seconds in the 1000-

packet test, 10 seconds in the 5000-packet test and 19 seconds in the 10000-packet test. This

meant that the test system did not possess the capacity of improving is performance further of

what already had achieved at that point.

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

54

Table 10 - Intent Scenario Results Summary

 1000 Packets/s 5000 Packets/s 10000 Packets/s

Analysis Runtime High/Low 1m49s/15s 8m36s /1m03s 16m45s/ 1m36s

Dump Runtime High/Low 1m40s/10s 8m18s /11s 16m39s / 10s

Delay Runtime High/Low 16s /5s 1m24s / 8s 1m48s / 6s

Average Analysis Runtime 40s 2m49s 4m23s

Average Dump Runtime 30s 2m12s 3m17s

Average Delay Runtime 10s 37s 1m06s

4.3.3. Rules Scenario – Results Presentation

Figure 26 shows the data collected from the tests performed for 1000 packets, these are

transmitted in function of time per second. In this graph, we display the time it takes Snort to

analyze the required number of packets (Analysis Runtime), the time it takes the Ostinato

traffic generator to generate the required number of packets and send them to the network

(Dump Runtime), and finally the delay between the Snort analysis of the captured packets and

the generation of packets by Ostinato (Delay).

Figure 26 - 1000 Packets runtime data

The longest Snort analysis runtime recorded in this test was 2 minutes and 7 seconds for

throughput of 100 packets per second and the shortest was 14 seconds for throughput of 900

packets per second. The average Snort analysis runtime in this test was approximately 43

seconds. The longest packet dump runtime recorded was 1 minute and 40 seconds for

00:00

00:17

00:35

00:52

01:09

01:26

01:44

02:01

02:18

100 200 300 400 500 600 700 800 900

Ti
m

e
(m

m
:s

s)

Packets/s

1000 Packets

Analysis Runtime Dump Runtime Delay

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

55

throughput of 100 packets/s and the shortest was 10 seconds for throughput of 900 packets/s.

The average packet dump runtime in this test was approximately 31 seconds. The longest

delay we recorded was 32 seconds for throughput of 200 packets/s and the shortest was 4

seconds for throughput of 900 packets/s. The average delay in this test was approximately 12

seconds.

Table 11 shows the remaining data collected for other variables. All the packets captured

by Snort during the execution of this test were analyzed, meaning no packets were skipped or

dropped during that time. Of all the packets captured, a percentage between 79% and 98%

corresponded to packets whose content was in violation of the user-defined rules, while the

remaining percentage corresponded to miscellaneous traffic capture by Snort.

Table 11 - 1000 Packets variable data

Packets/s

Throughput

Packets

Captured

Packets

Analyzed

Packets

Dropped

Packets

Blacklisted

100 11936 100% 0% 79,58%

200 12035 100% 0% 82,63%

300 10407 100% 0% 96,08%

400 10581 100% 0% 94,48%

500 10252 100% 0% 97,51%

600 10298 100% 0% 97,10%

700 10191 100% 0% 98,12%

800 11081 100% 0% 90,24%

900 10175 100% 0% 98,26%

Figure 27 shows the data collected from the tests performed for 5000 packets. The longest

Snort analysis runtime recorded in this test was 9 minutes and 23 seconds for throughput of

100 packets per second and the shortest was 1 minute and 9 seconds for throughput of 4000

packets per second. The average Snort analysis runtime in this test was approximately 2

minutes and 51 seconds. The longest packet dump runtime recorded was 8 minutes and 20

seconds for throughput of 100 packets/s and the lowest was 13 seconds for throughput of

4000 packets/s. The average packet dump runtime in this test was approximately 2 minutes

and 13 seconds. The longest delay we recorded was 1 minute and 3 seconds for throughput of

100 packets/s and the shortest was 14 seconds for throughput of 500 packets/s. The average

delay in this test was approximately 38 seconds.

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

56

Figure 27 - 5000 Packets runtime data

Table 12 shows the remaining data collected for other variables. All the packets captured

by Snort during the execution of this test were analyzed, meaning no packets were skipped or

dropped during that time. Of all the packets captured, a percentage between 75% and 98%

corresponded to packets whose content was in violation of the user-defined rules, while the

remaining percentage corresponded to miscellaneous traffic capture by Snort.

Table 12 - 5000 Packets variable data

Packets/s

Throughput

Packets

Captured

Packets

Analyzed

Packets

Dropped

Packets

Blacklisted

100 65882 100% 0% 75,89%

300 53650 100% 0% 97,17%

500 51304 100% 0% 97,43%

700 73174 100% 0% 97,69%

900 50766 100% 0% 98,48%

2000 56908 100% 0% 87,61%

4000 195924 100% 0% 97,36%

Figure 28 shows the data collected from the tests performed for 10000 packets. The

longest Snort analysis runtime recorded in this test was 19 minutes and 3 seconds for

throughput of 100 packets per second and the shortest was 2 minutes and 50 seconds for

throughput of 7000 packets per second. The average Snort analysis runtime in this test was

approximately 5 minutes and 53 seconds. The longest packet dump runtime recorded was 16

minutes and 40 seconds for throughput of 100 packets/s and shortest was 10 seconds for

00:00

01:26

02:53

04:19

05:46

07:12

08:38

10:05

100 300 500 700 900 2000 4000

Ti
m

e
(m

m
:s

s)

Packets/s

5000 Packets

Analysis Runtime Dump Runtime Delay

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

57

throughput of 9000 packets/s. The average packet dump runtime in this test was

approximately 3 minutes and 17 seconds. The longest delay we recorded was 2 minutes and

23 seconds for throughput of 100 packets/s and the shortest was 1 minute and 57 seconds for

throughput of 500 packets/s. The average delay in this test was approximately 2 minutes and

36 seconds.

Figure 28 - 10000 packets runtime data

Table 13 shows the remaining data collected for other variables. All the packets captured

by Snort during the execution of this test were analyzed, meaning no packets were skipped or

dropped during that time. Of all the packets captured, a percentage between 40% and 97%

corresponded to packets whose content was in violation of the user-defined rules, while the

remaining percentage corresponded to miscellaneous traffic capture by Snort.

Table 13 - 10000 packets variable data

Packets/s

Throughput

Packets

Captured

Packets

Analyzed

Packets

Dropped

Packets

Blacklisted

100 247000 100% 0% 40,44%

500 121334 100% 0% 82,40%

1000 106842 100% 0% 93,39%

3000 102444 100% 0% 97,19%

5000 101960 100% 0% 97,72%

7000 102255 100% 0% 97,33%

9000 104410 100% 0% 95,75%

00:00

02:53

05:46

08:38

11:31

14:24

17:17

20:10

100 500 1000 3000 5000 7000 9000

Ti
m

e
(m

m
:s

s)

Packets/s

10000 Packets

Analysis Runtime Dump Runtime Delay

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

58

4.3.4. Rules Scenario – Discussion of Results

In the results displayed in subsection 4.3.3. Rules Scenario – Results Presentation, we were

able to prove that the system implemented was able to detect and drop the packets

accordingly, without ever showing service breaks during the analysis for high packet loads,

maintaining a cadence of approximately 30 seconds per packet without missing or skipping

packets.

According to the results shown in Table 14, the analysis took the longest in the 5000 and

10000 packets per second tests when the rate of packet throughput was the lowest at 100

packets per second. With increased throughput, we saw that time decrease progressively; as

we came closer to reaching rates of 1000, 5000 and 10000 packets per second, the difference

between the different rates had shorten, approximately, 2 seconds for 1000 packets test, 10

seconds for 5000 and 40 seconds for 10000 packets test. This was caused by automatic

increase of speed by Snort to adjust itself to handle the extra load without causing major

delays in the analysis.

With that time decrease, the results displayed a tendency to become more consistent,

which meant that the system started to stabilize at around 500 packets/s in the 1000-packet

test, 700 packets/s in the 5000-packet test and 1000 packets/s in the 10000 packets test. This

gives a packet analysis average after consistency of approximately 5 seconds in the 1000-

packet test, 15 seconds in the 5000-packet test and 30 seconds in the 10000-packet test.

Table 14 - Rule Test Scenario Results Summary

 1000 Packets/s 5000 Packets/s 10000 Packets/s

Analysis Runtime High/Low 2m7s / 14s 9m23s / 1m09s 19m03s / 2m50s

Dump Runtime High/Low 1m40s / 10s 8m20s / 13s 16m40s / 10s

Delay Runtime High/Low 32s / 4s 1m06s / 14s 3m15s / 1m57s

Average Analysis Runtime 14s 2m51s 5m53s

Average Dump Runtime 31s 2m13s 3m17s

Average Delay Runtime 12s 38s 2m36s

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

59

Chapter 5 - Conclusions and Future Work

In this chapter we present the conclusions of our work and some directions for future research

work.

5.1. Main Conclusions

In this thesis, we designed, developed and tested a system capable of, on the one hand,

bringing transparency to IoT systems, where manufacturers declare what their devices will do

(communicate) and these declarations are verifiable and, on the other, giving IoT users control

over their data privacy and security, by controlling the communication of their networked IoT

devices. We believe that this contributes to establishing trust between device manufacturers

and their users/consumers. With the system referred to, we were able to answer the main

research question posed in section 1.2. Research Question of Chapter 1 – Introduction,

regarding the design and implementation of a mechanism to provide the user/consumer with

control of the communication of networked IoT devices.

This mechanism is composed of three main components: rule definition, incident

detection and action according to incident. The rule definition phase consists of defining the

intents and rules the system will comply with when filtering traffic to see if violations of those

rules are happening. The detection phase consists of analyzing the contents of the packets of

the network traffic that is being mirrored to Snort by checking for content that is specified in

the translated Snort rules. The action phase consists of the system's reaction when the content

and destination of a packet comply with its rules, or, if an intent is being violated, an alarm is

triggered, according to whether the violation relates to content or to destination address. If it is

a rule that is being violated, the system will drop that packet, preventing it from reaching its

destination. These three main components represent the result of the research goals defined in

section 1.3. Research Goals of Chapter 1 – Introduction.

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

60

With this mechanism, the user/consumer knows whether or not their devices are

compliant with the communication intents defined by the manufacturer, because the system

will show them alerts if such violation occurs, as demonstrated in the test results in subsection

4.2.2. Test Scenario I - Results Presentation for the section 4.2.1. Description of Test

Scenario I – Violations of the manifest of intents test scenario. With their defined traffic

control rules, the user now possesses control over communication intents by monitoring

exactly the amount and type of information the device is sending back to the manufacturer or

some other source and by blocking information that might compromise their privacy, thus

ensuring that their IoT device is secure, as demonstrated in the test results of section 4.2.5.

Test Scenario II – Results Presentation for the section 4.2.4. Description of Test Scenario II -

Violations of user-defined rules.

5.2. Future Work

As a focus of future work, we propose the integration of a component like HTTPS analyzers

for understanding HTTPS content within the proposed architecture and HTTPS traffic

generation, because the traffic of IoT devices is mostly encrypted.

Secondly, we also propose that when a new device is registered on the network for the

first time it should confront the user with the manufacturer's intents, in the same way as older

versions of Android phones used to ask the user to give the application the permissions it

required to work on the smartphone that was installed on. This feature would act as a moment

of validation for the environment's security policy.

Lastly, we propose implementation of a business intelligence system to gather traffic

captured by Snort IPS from IoT devices to analyze infringements of intents specified by

manufacturers. This Business intelligence system would compile the gather traffic

information into graphics to display it on a dashboard for the IoT device owner to visualize

for analytic proposes.

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

61

Bibliography

Amar, Y., Haddadi, H., Mortier, R., Brown, A., Colley, J., & Crabtree, A. (2018). An Analysis

of Home IoT Network Traffic and Behaviour. Retrieved from Cornell University website:

https://arxiv.org/abs/1803.05368v1

Bhosale, D. A., & Mane, V. M. (2016). Comparative study and analysis of network intrusion

detection tools. Proceedings of the 2015 International Conference on Applied and

Theoretical Computing and Communication Technology, ICATccT 2015, 312–315.

https://doi.org/10.1109/ICATCCT.2015.7456901

Blum, S. (2019, February 21). Google Calls Hidden Microphone in Its Nest Home Security

Devices an “Error.” Retrieved October 14, 2020, from

https://www.popularmechanics.com/technology/security/a26448907/google-nest-hidden-

microphone/

Calado, J. P. da C. (2018). Open source {IDS}/{IPS} in a production environment:

comparing, assessing and implementing (Master’s thesis, Science Falculty of University

of Lisbon). Retrieved from https://repositorio.ul.pt/handle/10451/35418

Chakraborty, S. (2017, October 7). When smart gadgets spy on you: Your home life is less

private than you think. Retrieved January 12, 2021, from

https://economictimes.indiatimes.com/tech/internet/when-smart-gadgets-spy-on-you-

your-home-life-is-less-private-than-you-think/articleshow/60984623.cms?from=mdr

Coble, S. (2020, January 5). Xiaomi Security Camera Shows User Wrong Video Feed.

Retrieved October 14, 2020, from https://www.infosecurity-magazine.com/news/xiaomi-

camera-shows-wrong-video/

Combs, G., Ramirez, G., Harris, G., & Sharpe, R. (2016). Wireshark - Network Protocol

Analyzer. Retrieved from https://www.wireshark.org/

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

62

El-Maghraby, R. T., Elazim, N. M. A., & Bahaa-Eldin, A. M. (2018). A survey on deep

packet inspection. Proceedings of ICCES 2017 12th International Conference on

Computer Engineering and Systems, 2018-January, 188–197.

https://doi.org/10.1109/ICCES.2017.8275301

Felt, A. P., Chin, E., Hanna, S., Song, D., & Wagner, D. (2011). Android permissions

demystified. Proceedings of the ACM Conference on Computer and Communications

Security, 627–636. https://doi.org/10.1145/2046707.2046779

Google. (2021, August 13). Permissions on Android. Retrieved September 1, 2021, from

https://developer.android.com/guide/topics/permissions/overview

Hafeez, S. (2016). Deep Packet Inspection using Snort (Master’s thesis, The Islamia

University of Bahawalpur). Retrieved from

https://dspace.library.uvic.ca/bitstream/handle/1828/7545/Hafeez_Saad_MEng_2016.pdf

?sequence=4&isAllowed=y

Iannella, R. (2004). The Open Digital Rights Language: XML for Digital Rights

Management. Information Security Technical Report, 9(3), 47–55.

https://doi.org/10.1016/S1363-4127(04)00031-7

IPSOS Institute. (2019). CIGI-IPSOS GLOBAL SURVEY - INTERNET SECURITY & TRUST

2019 PART I & II: INTERNET SECURITY, ONLINE PRIVACY & TRUST. Retrieved

from Centre for International Governance Innovation website:

https://www.cigionline.org/cigi-ipsos-global-survey-internet-security-and-trust/

Jha, A. K., Lee, S., & Lee, W. J. (2015). Modeling and Test Case Generation of Inter-

component Communication in Android. Proceedings - 2nd ACM International

Conference on Mobile Software Engineering and Systems, MOBILESoft 2015, 113–116.

https://doi.org/10.1109/MobileSoft.2015.24

Julien, V., Jonkman, M., & Metcalf, W. (2007). Suricata. Retrieved from https://suricata.io/

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

63

Kebede, M. G., Sileno, G., & Van Engers, T. (2021). A Critical Reflection on ODRL. In V.

Rodríguez-Doncel, M. Palmirani, P. Araszkiewicz Michałand Casanovas, U. Pagallo, &

G. Sartor (Eds.), AI Approaches to the Complexity of Legal Systems XI-XII (pp. 48–61).

Cham: Springer International Publishing.

Lakshminarayana, D. H., Philips, J., & Tabrizi, N. (2019). A survey of intrusion detection

techniques. Proceedings - 18th IEEE International Conference on Machine Learning

and Applications, ICMLA 2019, 1122–1129. https://doi.org/10.1109/ICMLA.2019.00187

Lee, D. (2018, May 24). Amazon Alexa heard and sent private chat - BBC News. Retrieved

October 14, 2020, from https://www.bbc.com/news/technology-44248122

Lee, S. (2020). Open5GS Open source project of 5GC and EPC. Retrieved from

https://open5gs.org/open5gs/docs/guide/01-quickstart/

LF Projects LLC. (2021). Magma An Open-Source Platform For Building Carrier-Grade

Networks. Retrieved from https://www.magmacore.org/

Li, X. Y., Brouard, K., & Cai, Y. (2012). Dynamic policy and charging control framework.

Bell Labs Technical Journal, 17(1), 105–123. https://doi.org/10.1002/BLTJ.21526

Mazhar, M. H., & Shafiq, Z. (2020). Characterizing smart home IoT traffic in the wild.

Proceedings - 5th ACM/IEEE Conference on Internet of Things Design and

Implementation, IoTDI 2020, 203–215. https://doi.org/10.1109/IoTDI49375.2020.00027

McCauley, D., & Lara, V. (2018). What the Internet of Things means for consumer privacy.

Retrieved from The Economist Intelligence Unit Limited website:

https://eiuperspectives.economist.com/technology-innovation/what-internet-things-

means-consumer-privacy-0/white-paper/what-internet-things-means-consumer-privacy

Morgan, J. (2021, July 30). Difference Between Explicit and Implicit. Difference Between

Similar Terms and Objects. Retrieved November 30, 2021, from

http://www.differencebetween.net/language/difference-between-explicit-and-implicit/

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

64

Naik, N., Jenkins, P., Cooke, R., Gillett, J., & Jin, Y. (2020). Evaluating Automatically

Generated YARA Rules and Enhancing Their Effectiveness. 2020 IEEE Symposium

Series on Computational Intelligence (SSCI), 1146–1153.

https://doi.org/10.1109/SSCI47803.2020.9308179

P, S. (2010). Ostinato Traffic Generator for Network Engineers. Retrieved from

https://ostinato.org/

Peffers, K., Tuunanen, T., Gengler, C. E., Rossi, M., Hui, W., Virtanen, V., & Bragge, J.

(2007). The design science research process: A model for producing and presenting

information systems research. ArXiv. Retrieved from

https://www.researchgate.net/publication/228650671_The_design_science_research_pro

cess_A_model_for_producing_and_presenting_information_systems_research

Pelteret, M., & Ophoff, J. (2016). A review of information privacy and its importance to

consumers and organizations. Informing Science, 19(1), 277–301.

https://doi.org/10.28945/3573

Quintero, B., Martínez, E., Álvarez, V. M., Hiramoto, K., Canto, J., Bermúdez, A., &

Infantes, J. A. (2004). VirusTotal. Retrieved from

https://www.virustotal.com/gui/home/upload

Roesch, M. (2016). Snort - Network Intrusion Detection & Prevention System. Retrieved from

https://www.snort.org/

Rommer, S., Hedman, P., Olsson, M., Frid, L., Sultana, S., & Mulligan, C. (2020). 5G Core

Network - Powering Digitalization. In T. Pitts & I. C. Silva (Eds.), Academic Press.

https://doi.org/10.1515/9783110724509-008

Sears, A. (2019, September 22). “Felt so violated:” Milwaukee couple warns hackers are

outsmarting smart homes. Retrieved October 14, 2020, from

https://www.fox6now.com/news/felt-so-violated-milwaukee-couple-warns-hackers-are-

outsmarting-smart-homes

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

65

Shah, S. A. R., & Issac, B. (2018). Performance comparison of intrusion detection systems

and application of machine learning to Snort system. Future Generation Computer

Systems, 80, 157–170. https://doi.org/10.1016/J.FUTURE.2017.10.016

Sivaraman, V., Gharakheili, H. H., Vishwanath, A., Boreli, R., & Mehani, O. (2015).

Network-level security and privacy control for smart-home IoT devices. 2015 IEEE 11th

International Conference on Wireless and Mobile Computing, Networking and

Communications, WiMob 2015, 163–167.

https://doi.org/10.1109/WiMOB.2015.7347956

Statt, N. (2019, April 10). Amazon’s Alexa isn’t just AI — thousands of humans are listening.

Retrieved October 14, 2020, from

https://www.theverge.com/2019/4/10/18305378/amazon-alexa-ai-voice-assistant-

annotation-listen-private-recordings

Thorun, C., Vetter, M., Reisch, L., & Zimmer, K. A. (2017). Indicators of consumer

protection and empowerment in the digital world Results and recommendations of a

feasibility study. Retrieved from Institute for Consumer Policy website:

https://www.bmjv.de/G20/DE/ConsumerSummit/_documents/Downloads/Studie.pdf?__

blob=publicationFile&v=1

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

66

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

67

Appendices

Appendix A – PCRF and PCEF Solutions Comparison Table

Open5gs Magma

Hardware Requirements

OS:

Debian/Ubuntu 18.04 or later

Linux CentOS

Fedora

MacOSX (Apple Silicon)

MacOS MacOSX (Intel)

FreeBSD

RAM: 4GB min 8GB max 4GB min 8GB max

CPU:
Dual Core min quad-core

max
Dual Core min quad-core max

Disk

Requirements:
20 GB min 40 GB max 20 GB min 40 GB max

Additional Software Requirements

Database: MongoDB
MariaDB (Storage Users and

Organizations)/Postgres (Model Storage)

Web UI: NodeJs, React Golang

Rules

Creation:
Graphics User Interface Graphics User Interface + Rest API

Policy Rule Configuration

In Open5Gs, the policy rules are configured

individually for each device using the Web UI or

using a provided python library interface which

writes directly to the rules database.

In Magma, unlike the other two solutions, the

policy rules are configured in a dedicated

policy table where one or more IMSI of devices

are associated with the policy rule and the

policy rule must be associated with a network.

Policies can be configured for different types of

application (Facebook, WhatsApp, Ticktock,

etc.) for different service types (audio, video or

chat).

The policy rules in Open5gs are defined by:

• QCI (QoS Class Identifier).

The policy rules in Magma are defined by:

• Policy ID.

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

68

• ARP Priority Level (1-15).

• MBR Downlink/Uplink.

• GBR Downlink/Uplink;

• Flows (Action, Direction, Protocol,

Source/Destination IP).

• Priority.

• Number of Subscribers.

• Monitoring Key (hex).

• Rating (Service Charging).

• Tracking Type;

Packet Inspection

Open5gs does not possess built-in capabilities to

detect protocols or destination address; for that

we must turn to external components like Flow-

Description AVP of type IPFilterRule to filter

packets by:

• Direction (In or Out).

• Source and Destination IP Address.

• Protocol.

• Source and Destination Port;

In Magma, if DPI (Deep Packet Inspection) is

enabled on the access gateway, protocols can

be detected and filtered. Regarding content

type, we can filter by application and content

type together with destination address when we

create the policies in the NMS.

Alarms

Open5Gs does not possess the ability to

configure alarms.

In Magma, we can configure alarms for

debugging purposes to detect potential issues

on the network, ordered by severity ('Critical',

'Major', 'Minor' and 'Misc'). It also possesses an

alarm receiver that allows pushing of

notifications of alarms in real time. Most of

these alerts come loaded with the application,

but the user can define custom alerts.

Metrics

Open5gs does possess metrics capability.

Magma possesses the ability to generate

metrics to provide a great deal of visibility into

gateways, base stations, subscribers, reliability,

throughput, etc. These metrics are stored for 30

days.

Data Dumping

Open5GS does not possess built-in data

dumping.

Magma possesses the ability to export logs for

analysis of the services it provides.

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

69

Appendix B – ODRL Code Examples

Figure 29 - Delegation as transfer (Kebede et al., 2021)

Figure 30 - Delegation as s granting conditional usage (Kebede et al., 2021)

Figure 31 - Delegation as nested granting of conditional usage (Kebede et al., 2021)

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

70

Appendix C – Intents & User Rule Management REST API Documentation

The Intent & User Rule Management REST API Documentation presents the entry points

used, the information those entry points receive as inputs and the outputs they produce. The

getAllIntents method returns 200 HTTP successful code if there is a list of intents (array)

stored in the database, 404 HTTP error code if no intents exist in the database and 500 HTTP

internal error code if an unexpected server error occurs. The createIntent method receives an

intent (json body) as an input and returns 200 HTTP successful code with the UUID ID of that

intent stored in the database, 400 HTTP error code if the intent is missing or possesses

incorrect parameters and 500 HTTP internal error code if an unexpected server error occurs.

The getIntentByID method receives the ID of the intent to be returned and returns 200 HTTP

successful code if the intent has been found, 400 HTTP error code if the intent UUID does not

correspond to a version 4 UUID, 404 HTTP error code if no intent has been found and 500

HTTP internal error code if an unexpected server error occurs. The updateIntentByID

receives the ID of the intent to be updated and the intent itself (json) has an input and returns

200 HTTP successful code if the intent has successfully updated, 400 HTTP error code if the

intent is not specified correctly, 404 HTTP error code if the intent ID has not found and 500

HTTP internal error code if an unexpected server error has occurred. The deleteIntentByID

receives as an intent UUID ID as an input and returns 200 HTTP successful code if the intent

was deleted successfully, 400 HTTP error code if the UUID entered is not a valid version 4

UUID, 404 HTTP error code if the intent does not exist and 500 HTTP internal error code if

an unexpected server error occurs. The user-defined rules methods receive and return the

same as an intent, but for a user-defined rule instead.

 ###Intents###

 /intent:

 get:

 tags:

 - intent-controller

 summary: Get all intents

 operationId: getAllIntents

 responses:

 200:

 description: Get OK - Successfully got all intents.

 content:

 application/json:

 schema:

 type: array

 items:

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

71

 $ref: '#/components/schemas/Intent'

 404:

 description: Get Error - No intents exist.

 500:

 description: Get - Server unexpected error.

 post:

 tags:

 - intent-controller

 summary: Create intent

 operationId: createIntent

 requestBody:

 required: true

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/Intent'

 responses:

 200:

 description: Post OK - Created a new intent successfully.

 content:

 application/json:

 schema:

 type: object

 properties:

 intentId:

 type: string

 format: uuid

 example: e4768e24-80b6-11eb-9439-0242ac130002

 400:

 description: Post Error - The intent is missing or may

have incorrect parameters.

 500:

 description: Post Error - Server unexpected error.

 /intent/{intentId}:

 get:

 tags:

 - intent-controller

 summary: Get a intent by intent ID

 operationId: getIntentById

 parameters:

 - name: intentId

 in: path

 required: true

 schema:

 type: string

 format: uuid

 responses:

 200:

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

72

 description: Get OK - Successful pull of intent info.

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/Intent'

 400:

 description: Get Error - The UUID enter is not a version 4

UUID.

 404:

 description: Get Error - Intent not found.

 500:

 description: Get - Server unexpected error.

 put:

 tags:

 - intent-controller

 summary: Update a intent by ID

 operationId: updateIntentById

 parameters:

 - name: intentId

 in: path

 required: true

 schema:

 type: string

 format: uuid

 requestBody:

 required: true

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/Intent'

 responses:

 200:

 description: Put OK - Successfully updated.

 400:

 description: Put Error - Invalid intent arguments.

 404:

 description: Put Error - Intent not found.

 500:

 description: Put - Server unexpected Error.

 delete:

 tags:

 - intent-controller

 summary: Delete a intent by ID

 operationId: deleteIntentById

 parameters:

 - in: path

 name: intentId

 required: true

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

73

 schema:

 type: string

 format: uuid

 responses:

 200:

 description: Delete OK - Successfully deleted.

 400:

 description: Delete Error - The UUID enter is not a

version 4 UUID.

 404:

 description: Delete Error - Intent not found.

 500:

 description: Delete - Server unexpected error.

 ###Rules###

 /rule:

 get:

 tags:

 - rule-controller

 summary: Get all user rules

 operationId: GetAllRules

 responses:

 200:

 description: Get OK - Successfully got all user rules.

 content:

 application/json:

 schema:

 type: array

 items:

 $ref: '#/components/schemas/Rule'

 404:

 description: Get Error - No rules exist.

 500:

 description: Get - Server unexpected error.

 post:

 tags:

 - rule-controller

 summary: Create user rule

 operationId: createRule

 requestBody:

 required: true

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/Rule'

 responses:

 200:

 description: Post OK - Rule created successfully.

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

74

 content:

 application/json:

 schema:

 type: object

 properties:

 ruleId:

 type: string

 format: uuid

 example: e4768e24-80b6-11eb-9439-0242ac130002

 404:

 description: Post Error - The user rule is missing or may

have incorrect parameters.

 500:

 description: Post Error - Server unexpected error.

 /rule/{ruleId}:

 get:

 tags:

 - rule-controller

 summary: Get a user rule by rule ID

 operationId: getRuleById

 parameters:

 - name: ruleId

 in: path

 required: true

 schema:

 type: string

 format: uuid

 responses:

 200:

 description: Get OK - Successful pull of rule info.

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/Rule'

 400:

 description: Get Error - The UUID enter is not a version 4

UUID.

 404:

 description: Get Error - Rule not found.

 500:

 description: Get - Server unexpected error.

 put:

 tags:

 - rule-controller

 summary: Update user rule by ID

 operationId: updateRuleById

 parameters:

 - name: ruleId

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

75

 in: path

 required: true

 schema:

 type: string

 requestBody:

 required: true

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/Rule'

 responses:

 200:

 description: Put OK - Successfully updated.

 400:

 description: Put Error - Invalid rule arguments.

 404:

 description: Put Error - Rule not found.

 500:

 description: Put - Server unexpected Error.

 delete:

 tags:

 - rule-controller

 summary: Delete user rule by ID

 operationId: deleteRuleById

 parameters:

 - name: ruleId

 in: path

 required: true

 schema:

 type: string

 format: uuid

 responses:

 200:

 description: Delete OK - Successfully deleted.

 400:

 description: Delete Error - The UUID enter is not a

version 4 UUID.

 404:

 description: Delete Error - Rule not found.

 500:

 description: Delete - Server unexpected error.

components:

 schemas:

 Intent:

 description: Model containing intent info

 type: object

 required:

 - deviceType

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

76

 - intentProperties

 properties:

 deviceType:

 type: string

 intentProperties:

 type: array

 items:

 type: object

 properties:

 contentType:

 type: array

 items:

 type: string

 communicationProtocol:

 type: array

 items:

 type: string

 destinationAddress:

 type: array

 items:

 type: string

 Rule:

 description: Model containing user rule info

 type: object

 required:

 - deviceId

 - ruleProperties

 properties:

 deviceId:

 type: string

 ruleProperties:

 type: array

 items:

 type: object

 properties:

 contentType:

 type: array

 items:

 type: string

 communicationProtocol:

 type: array

 items:

 type: string

 destinationAddress:

 type: array

 items:

 type: string

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

77

Appendix D – Translator REST API Documentation

The Translator REST API Documentation presents the entry points used, the information

those entry points receive as inputs and the outputs they produce. The createSnortIntent

method receives an Intent as input to convert into a Snort rule and returns 200 HTTP

successful code if the intent has been translated successfully, 400 HTTP error code if the

intent received contains empty values or incorrect parameters, and 500 HTTP internal server

error if an unexpected server error has occurred. The updateSnortIntent method receives an

intent to be updated as input and replaces the existing Snort rules in the device file with the

updated ones. This method returns 200 HTTP successful code if the intent has been updated

successfully, 400 HTTP error code if the updated intent received contains empty or incorrect

parameters and 500 HTTP internal server error code if an unexpected server error has

occurred. The deleteSnortIntent method receives a filename as input to delete the file that

contains the Snort rules for the device and returns 200 HTTP successful code if the file has

been deleted successfully, 404 HTTP error code if the file or directory doesn't exist and 500

HTTP invalid server code if the file permissions are not defined on the Linux operating

system. The user-defined rules methods receive and return the same as the intent, but for a

user-defined rule instead. The downloadFile method receives the filename as input and

downloads the file selected by the user in the WEB Management Interface and returns 200

HTTP successful code if the download has been successful or 500 HTTP internal server error

code if a server error stops the file download. The uploadFiles method receives one or more

files selected by the user using the WEB Management Interface as inputs to be uploaded into

the server and returns 200 HTTP successful code if the file or files have been uploaded

successfully or 500 HTTP internal server error code if a server error stops the upload of the

files.

###Intent###

 /intent:

 post:

 tags:

 - intent-translation-controller

 summary: Translate an manufacturer intent into a snort rule.

 operationId: createSnortIntent

 requestBody:

 required: true

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/Intent'

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

78

 responses:

 200:

 description: Post OK - Intent translated successfully.

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/SnortRule'

 400:

 description: Post Error - Snort rule must not contain empty

values.

 500:

 description: Post Error - Unexpected error.

 /intent/update:

 post:

 tags:

 - intent-translation-controller

 summary: Updates an exisiting intent snort rule by replace it with a

updated one.

 operationId: updateSnortIntent

 requestBody:

 required: true

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/Intent'

 responses:

 200:

 description: Post OK - Intent updated successfully.

 400:

 description: Post Error - Snort rule must not contain empty

values.

 500:

 description: Post - Unexpected error.

 /intent/{filename}:

 delete:

 tags:

 - intent-translation-controller

 summary: Deletes the snort rules file of a device.

 operationId: deleteSnortIntent

 parameters:

 - name: filename

 in: path

 required: true

 schema:

 type: string

 example: intent_tac_09951213.rules

 responses:

 200:

 description: Delete OK - File deleted successfully.

 404:

 description: Delete Error - No such file/directory exists.

 500:

 description: Delete Error - Invalid permissions.

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

79

###Rule###

 /rule:

 post:

 tags:

 - rule-translation-controller

 summary: Translate an user defined rule into a snort rule.

 operationId: createSnortRule

 requestBody:

 required: true

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/Rule'

 responses:

 200:

 description: Post OK - User Rule translated successfully.

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/SnortRule'

 400:

 description: Post Error - Snort rule must not contain empty

values.

 500:

 description: Post - Unexpected error.

 /rule/update:

 post:

 tags:

 - rule-translation-controller

 summary: Updates an exisiting user snort rule by replace it with a

updated one.

 operationId: updateSnortRule

 requestBody:

 required: true

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/Rule'

 responses:

 200:

 description: Post OK - Rule updated successfully.

 400:

 description: Post Error - Snort rule must not contain empty

values.

 500:

 description: Post Error - Unexpected error.

 /rule/{filename}:

 delete:

 tags:

 - rule-translation-controller

 summary: Deletes the snort rules file of a device.

 operationId: deleteSnortRule

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

80

 parameters:

 - name: filename

 in: path

 required: true

 schema:

 type: string

 example: rule_imei_099512133857038.rules

 responses:

 200:

 description: Delete OK - File deleted successfully.

 404:

 description: Delete Error - No such file/directory exists.

 500:

 description: Delete Error - Invalid permissions.

###FileData###

 /{filename}:

 get:

 tags:

 - file-data-controller

 summary: Download snort rule file from server.

 operationId: downloadFile

 parameters:

 - name: filename

 in: path

 required: true

 schema:

 type: string

 example: filename.rules

 responses:

 200:

 description: Get OK - Intent/Rule Snort downloaded successfully.

 content:

 text/plain:

 schema:

 type: string

 format: binary

 example: intent_tac_XXXXXXXX.rules

 500:

 description: Download - Unexpected error.

 /upload:

 post:

 tags:

 - file-data-controller

 summary: Upload snort rule files to server.

 operationId: uploadFiles

 parameters:

 - name: files

 in: query

 required: true

 schema:

 type: array

 items:

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

81

 type: string

 example: filename.rules

 responses:

 200:

 description: Post OK - Intent/ Rule Snort file uploaded

successfully.

 content:

 text/plain:

 schema:

 type: array

 items:

 type: string

 format: binary

 example: intent_tac_XXXXXXXX.rules

 500:

 description: Upload - Unexpected error.

components:

 schemas:

 Intent:

 description: Model containing intent info.

 type: object

 required:

 - deviceType

 - intentProperties

 properties:

 deviceType:

 type: string

 intentProperties:

 type: array

 items:

 type: object

 properties:

 contentType:

 type: array

 items:

 type: string

 communicationProtocol:

 type: array

 items:

 type: string

 destinationAddress:

 type: array

 items:

 type: string

 Rule:

 description: Model containing user rule info.

 type: object

 required:

 - deviceId

 - ruleProperties

 properties:

 deviceId:

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

82

 type: string

 ruleProperties:

 type: array

 items:

 type: object

 properties:

 contentType:

 type: array

 items:

 type: string

 communicationProtocol:

 type: array

 items:

 type: string

 destinationAddress:

 type: array

 items:

 type: string

 SnortRule:

 description: Model containing snort rule info.

 type: object

 required:

 - ruleAction

 - ruleProtocol

 - sourceIP

 - sourcePort

 - flowDirection

 - destinationIP

 - destinationPort

 - ruleOptions

 properties:

 ruleAction:

 type: string

 ruleProtocol:

 type: string

 sourceIP:

 type: string

 sourcePort:

 type: string

 flowDirection:

 type: string

 destinationIP:

 type: string

 destinationPort:

 type: string

 ruleOptions:

 type: string

Towards Transparent and Secure IoT: Device Intents Declaration, and User Privacy Self-Awareness and Control

83

