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Resumo 

 

A importância de usar as ferramentas estatísticas, matemáticas e computacionais certas pode 

certamente influenciar o processo de decisão. Com os recentes avanços computacionais, as 

metodologias Deep-Learning, baseadas em Inteligência Artificial apontam para uma 

ferramenta promissora para o estudo de séries temporais de dados financeiros, 

caracterizadas por padrões que são fora do normal. As criptomoedas são uma nova classe 

de ativos que são caracterizados por alta volatilidade, elevado número de quebras de estrutura 

e outras características que podem dificultar o estudo e previsão por parte de modelos 

clássicos. 

O objetivo deste trabalho é analisar de forma crítica as capacidades de previsão das 

metodologias clássicas (ARCH e GARCH) comparativamente a metodologias de Deep-

Learning (nomeadamente arquiteturas de redes neuronais: MLP, RNN e LSTM) para a 

previsão da volatilidade da bitcoin. O estudo empírico deste trabalho foca-se na previsão da 

volatilidade da bitcoin com os modelos supramencionados e comparar a sua qualidade 

preditiva usando as medidas de erro MAE e MAPE para horizontes de previsão de um, três e 

sete dias. 

As metodologias de Deep-Learning apresentam algumas vantagens no que respeita à 

qualidade de previsão (pela análise da métrica de erro MAPE) mas apresentam um custo 

computacional superior. Também foram realizados Testes de Diebold-Mariano para comparar 

as previsões, concluindo-se a superioridade das metodologias de Deep-Learning. 
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Abstract 
 

The importance of using the right statistical, mathematical and computational tools can highly 

influence the decision-making process. With the recent computational progress, Deep 

Learning methodologies based on Artificial Intelligence seem to be pointed out as a promising 

tool to study financial time series, characterised by out-of-the-ordinary patterns. 

Cryptocurrencies are a new asset class with several specially interesting characteristics that 

still lack deep study and differ from the traditional time series. Bitcoin in particular is 

characterised by extraordinary high volatility, high number of structural breaks and other 

identified characteristics that might further difficult the study and forecasting of the time series 

using classical models. 

The goal of this study is to critically compare the forecasting properties of classic 

methodologies (ARCH and GARCH) with Deep Learning Techniques (with MLP, RNN and 

LSTM architectures) when forecasting Bitcoin’s Volatility. The empirical study focuses on the 

forecasting of Bitcoin’s Volatility using such models and comparing its forecasting quality using 

MAE and MAPE for one, three- and seven-day’s forecasting horizons. 

The Deep learning methodologies show advantages in terms of forecasting quality (when 

we take in consideration the MAPE) but also require huge computational costs.  Diebold-

Mariano tests were also performed to compare the forecasts concluding the superiority of Deep 

Learning Methodologies. 

 

 

 

Keywords: cryptocurrencies; Bitcoin; volatility; predicting; garch; arch; deep-learning 

 

Branding JEL Classification System: C01, C02, C10, C22, C45, C53, C58, C60, G17 

 

 

  



vi 
 

  



 

vii 
 

Index 

1 – Literature Review ......................................................................................................... 5 

1.1 – Bitcoin: General Concepts ..................................................................................... 5 

1.2 – Volatility ................................................................................................................ 7 

1.2.1 – Price and Volatility Drivers ............................................................................... 7 

1.2.2 – Forecasting Volatility ......................................................................................11 

2 – Time Series ................................................................................................................17 

2.1 – General Concepts of Time Series..........................................................................17 

2.1.1 – Time Series Components ...............................................................................17 

2.1.2 – Stationarity.....................................................................................................17 

2.1.3 – Unit Root .......................................................................................................18 

2.1.4 – Structural Breaks............................................................................................20 

2.2 – Univariate Linear Models ......................................................................................22 

2.2.1 – Autoregressive Models – AR(p) ......................................................................22 

2.2.2 – Moving Average Models – MA(q) ....................................................................23 

2.2.3 – Autoregressive Conditional Heteroskedasticity – ARCH(q) ...............................24 

2.2.4 – Generalized Autoregressive Conditional Heteroskedasticity – GARCH (p, q) ....25 

2.2.5 – Comparison: Models and Forecasting Evaluation Metrics ................................25 

2.3 – Deep Neural Network Models ...............................................................................27 

2.3.1 – Multilayer Perception ......................................................................................31 

2.3.2 – Recurrent Neural Networks .............................................................................32 

2.3.3 – Long Short-Term Memory ...............................................................................32 

2.3.4 – Model Comparison .........................................................................................33 

2.3.5 – Training and Evaluating Networks ...................................................................34 

3 – Methodology...............................................................................................................35 

3.1 – Data.....................................................................................................................35 

3.2 – Computational Implementation ..............................................................................35 

3.2.1 – Exploratory Time Series Data Analyses...........................................................36 

3.2.2 – Model Implementation: ARCH, GARCH and Neural Networks ..........................36 

3.2.3 – Forecasting and Error Evaluation ....................................................................37 

4 – Empirical Study ..........................................................................................................39 

4.1 – Exploratory Analysis of the Time Series ................................................................39 

4.1.1 – BTC-USD ......................................................................................................39 

4.1.2 – BTC-USD-VOL...............................................................................................40 



viii 
 

4.2 – Modelling and Forecasting ....................................................................................42 

4.2.1 – Autoregressive Conditional Heteroskedastic Models ........................................42 

4.2.2 – Neural Network Model ....................................................................................44 

4.2.3 – Model Comparison Analyses ..........................................................................46 

5 - Conclusion ..................................................................................................................49 

6 – References .................................................................................................................53 

7 – Appendix ....................................................................................................................59 

 

 

 

 



 

ix 
 

Figure Index 

Figure 1.1 - A Price-Hashrate Spiral diagram Source: Pagnotta and Buraschi (2018) 7 

Figure 2.1 - Non-Linear Model of a perceptron 26 

Figure 2.2 - Examples of Activation Functions (linear and nonlinear) 27 

Figure 2.3 - Neural Network with two Hidden Layers 28 

Figure 2.4 - Three main Learning Paradigms 29 

Figure 2.5 - RNN Architecture 31 

Figure 2.6 - LSTM Architecture 32 

Figure 3.1 - Computacional Implementacion of Neural Networks 36 

Figure 4.1 - BTC-USD: Graphic Representation 39 

Figure 4.2 - BTC-USD-VOL: Graphic Representation 40 

Figure 4.3 - BTC-USD-VOL: Cumulative Distribution Function with zoomed view 41 

Figure 4.4 - ARCH(4) Forecasting Values and Prediction Error comparison 43 

Figure 4.5 - GARCH(4,2) Forecasting Values and Prediction Error comparison 43 

Figure 4.6 - MLP Forecasting Values and Prediction Error comparison 45 

Figure 4.7 - RNN Forecasting Values and Prediction Error comparison 45 

Figure 4.8 - LSTM Forecasting Values and Prediction Error comparison 46 

Figure 4.9 - Forecasting Comparison of all Models 46 

 

 

 

 

 

 



x 
 

 

 

 

  



 

xi 
 

Table Index  

Table 1.1 - Bitcoin’s minting quantities over time 6 

Table 4.1 - BTC-USD: Main Statistics 39 

Table 4.2 - BTC-USD: Normality, Stationarity and Independence Tests 40 

Table 4.3 - BTC-USD-VOL: Main Statistics 41 

Table 4.4 - BTC-USD-VOL: Main Statistics 41 

Table 4.5 - BTC-USD: Normality, Stationarity and Independence Tests 42 

Table 4.6 - ARCH(4) and GARCH(4,2) Out-of-Sample Forecasting Errors Comparison 44 

Table 4.7 - Neural Networks Out-of-Sample Forecasting Errors Comparison 45 

Table 4.8 - Diebold-Mariano Test 47 

 

 
 
 
 
 
 
 
 
 

 

 

 
 

 

  



xii 
 

 

 

 



Introduction 

1 
 

Introduction 

Civilisation as we know it would not exist without money. 

However, the concept of money has evolved over-time not only from a physical 

perspective, from seashells to paper-money, but also from how we transfer money, from 

wagons full of gold to online transfers.  

As the concept of money evolves, it will continue to transcend and transform our societies. 

With the recent advancements on blockchain technology, for the first time in history it was 

possible to transfer value, from any point of world, without the use of an intermediary like a 

bank or an exchange. Slowly but surely, cryptocurrencies are becoming part of the global 

financial and economical ecosystem. Nonetheless, this new type of asset, it’s also bringing 

new and interesting questions that currently present research opportunities by academia from 

the most different fields of knowledge.  

The current macro-economic conditions, with parity the of Euro and U.S Dollar in hand with 

worldwide high inflation, result in the right time, more than ever, to question the concepts of 

money, the role of central banks and to better understand what opportunities these alternative 

systems can actually bring to the discussion and ultimately, if these new ideas can actually 

help improving our societies as whole.  

These opportunities surge, from a technological perspective, with blockchain technologies 

at their core, where cryptocurrencies are revolutionising the way humans can exchange and 

store value; from a philosophical perspective, on what is value, what is money, how humans 

can create value; but mainly from an economical perspective and how can we make use of 

theoretical and econometric models and better understand this phenomenon and better 

prepare for future events, weather its price or volatility, with the most different range of 

forecasting methodologies.  

This forecasting models are of extreme importance on our modern societies, as forecasting 

financial and economic data has become a crucial tool for the decision making of economic 

agents, investors and governments that can help create competitive advantages.  

According to the literature, there are several econometric models, like ARCH and GARCH, 

that can help us to model and understand the volatility of financial assets. However, the high 

volatility and out-of-the-ordinary patterns and behaviours of the cryptocurrency markets 

present a difficulty for this type of model as stated by the literature. 

Several authors suggest that a possible solution for this issue can be the use of more 

modern techniques such as machine learning in the search for models that can better help us 

understand and explain the nature of these new and exciting markets as means to help 

businesses understanding the risks surrounding these assets or a mean to help pricing 

derivatives.  
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With this said, the aim of this work will consist in three aspects: (i) aggregate the latest 

literature around the topic while trying to focus on aggregate information on how Bitcoin works 

and what are its main out-of-ordinary volatility drivers for future researchers; (ii) study and 

analysis of forecasting models for Bitcoin’s Volatility on short-term time horizons and find out 

which one might be most suited for this time series; (iii) compare the forecasting quality of 

classical models to the results of Deep-Learning forecasting methodologies and analyse if 

Deep-Learning Methodologies are best suited than classical methodologies this time series. 

With goals that define the scope of the research set, this are the research questions we 

are looking forward to answer:  

(A) How Bitcoin functions and what are the out-of-ordinary volatility drivers? 

(B) From the models in study, which one is the best forecasting Model for Bitcoin’s 

Volatility?  

(C) Are Deep-Learning Methodologies an improvement of classical methodologies? 

To achieve this goal, this work was divided in five parts: 

On the Chapter 1, it was performed a general literature review of the topic in study, with a 

first section where it explored briefly what Bitcoin is and how it functions. The second section 

is divided in two parts: (i) where we explain how some inner protocol mechanics might be the 

drivers of out-of-ordinary volatility; (ii) where we explore the importance of forecasting as a tool 

for decision making and a general review of previous research regarding forecasting price and 

volatility, using classical approaches and deep-learning models, for cryptocurrencies and 

traditional asset classes.   

On Chapter 2, we focus on general concepts of Time Series analysis and the different 

methodologies and test to help our analysis. This Chapter is divided in three parts. First, we 

cover general econometric concepts such as unit root, stationarity, structural breaks and Auto-

Correlation and Auto-Covariance. Secondly, we cover Univariate Linear Models such as 

Moving Average and Autoregressive Models. In also on this section, when we introduce 

Autoregressive Conditional Heteroskedasticity models like ARCH and GARCH. On the last 

section, we discuss three Deep Learning Models function and how their training and evaluation 

works.  

The Chapter 3, where we discuss the variables that are going to be used on this study and 

a explanation of the computational implementations that allowed for the data treatment and for 

the implementation of our models. 

The Chapter 4 is the practical Chapter where we present the results from the forecasting 

of our models in study. We started by performing a statistical analysis of Bitcoin’s Price and 

Volatility using Python. The next step was modelling and forecasting using the five models in 
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study and comparing the prediction errors among the models also using Python. Lastly, its 

performed Diebold-Mariano Test to compare the forecasting accuracy of some models. 

On the Conclusion, we present a critical summary of the main discoveries from our study 

while briefly describing our methodology. It is also proposed a few suggestions and possible 

improvements of the current work, that open the path for future research. 

Last but not least, it's also important to mention that several important outputs of this work 

are on the final part of this dissertation, in the Appendix, that are crucial for a full understanding 

of this study as a whole, but particularly, for Chapter 4.  
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1 – Literature Review 

The goal of this chapter is to present a review of the existing literature regarding three different 

areas: (1) reviewing the main concepts regarding Bitcoin1 by briefly explaining how it works 

and what makes this asset unique but with the focus on what might explain its volatility and 

price2; (2) a review on what is volatility and its importance on the decision-making process for 

companies and policymakers; (3) and a review on prior research work regarding the 

forecasting of volatility and prices of traditional financial assets and cryptocurrencies, using 

econometric and deep-learning models with the focus of comparing the quality and accuracy 

of such models as this is metric might be the more interesting for investors and policy makers.  

 

1.1 – Bitcoin: General Concepts  

According to Bitcoin’s creator Nakamoto (2008), Bitcoin is a peer-to-peer version of electronic 

cash that allows for online payments to be sent directly from one party to another without going 

through a financial institution, meaning you can transfer the ownership of private property 

without any third-party validating that transfer.  

This technology was able to solve the double-spending and byzantine generals’ problem 

for the first time in a purely decentralised way with the use of a decentralised public ledger 

known as the Blockchain.  

Several other projects with the goal of implementing a digital currency like Bitcoin have 

been tried over the last decades. Examples of these can be the ‘’B-money’’, described by Dai 

(1998) as cryptography-based currency, but still centralised as it would be necessary for a 

centralised third-party to validate transactions in order to avoid double-spending. However, 

Bitcoin was the only one that has done it in a purely decentralised way, preventing what is 

known as a single-point-of-failure, common on prior projects.  

Is also important to take notice that blockchain technology is a merge of several existing 

technologies such as Pretty Good Privacy (PGP) with Zimmermann (1991); Merkle trees with 

Merkle (1987); Sha-256 encryption3; or Hashcash, a proof-of-work system used to limit email 

spam and denial-of-service attacks, developed by Back (1997), that is used in the Bitcoin 

mining process. The way Bitcoin can ensure the validity of the transactions in a purely 

decentralised way,  is through a proof-of-work mechanism, generally called ‘’Mining’’, that is a 

decentralised security mechanism based on computational power and energy spending that 

                                              
1 Bitcoin with capital ‘’B’’ stands for the Bitcoin project as a whole, while bitcoin, without the capital letter, 
stands for the currency as a unit of account (like euro, dollar, etc). 
2 For a broader explanation of how Bitcoin works, I recommend reading two books: ‘’Mastering Bitcoin’’ 
by (Antonopoulos, 2015) and ‘’Bitcoin - A moeda na era digital’’ by Fernando Ulrich. 
3 The Sha-2 Hash Algorithm family was developed by a group of researchers of NSA.  
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allows not only for the maintenance and security of the validity of the transactions stored on 

the blockchain as it serves the purpose of creating monetary incentives to alight the good 

behaviour of its participants, the miners, while allowing for the minting of new bitcoins and 

therefore programmatically increasing bitcoin’s monetary supply every time a block, a set of 

blockchain transactions, is processed (or mined). 

Antonopoulos (2015), explains that bitcoin is a system of trust is based on computation as 

transactions are bundled into blocks that require a large amount of computational power, and 

therefore energy, to validate the transactions. According to the author, this serves two main 

goals: (1) creating new bitcoins in each block, like a central bank issuing new money and (2) 

creating trust on the system, by ensuring that the transactions are only confirmed if enough 

computational power is devoted to the particular block that contains them.  

Ferreira (2018), based on the ideas of Antonopoulos (2015) and Nakamoto (2008), adds 

that due to this procedure, we create and alight monetary incentives for miners to participate 

in the validating process of new transactions of the network while assuring that the blockchain 

security is increased and becomes more resilient regarding attacks.  

Another important characteristic that is important to mention, is the fact that there is a long-

term fixed supply of BTC. The total number of BTC that is ever going to exist is fixed at 21 

million units and currently, from each block that is mined, there is the creation of a new 6.25 

BTC. However, for every 210,000 blocks that are mined the bitcoin reward that is given to 

miners is slashed in half and therefore reducing the amount of bitcoin that is produced. This 

happens every four years if we considered that each block is mined every 10 minutes on 

average. This is a very important concept for understanding the ideas discussed in Chapter 

1.2. The aim is to maintain each block being processed at around 10 minutes and ensure 

network security, Nakamoto (2008) programmed watch is called the ‘’mining difficulty’’.  

As the proof-of-work mechanisms are simply a brute-force mechanism to find the nonce of 

a given block, it’s easy to understand how the increasing of new miners will reduce the amount 

of time per block and therefore put at risk the network security as it was easier to perform a 

51% attack. Imagine that we were trying to find the number 5 from a machine by continually 

asking for the numbers 1 to 5 until we get a valid answer. This process is called brute-force. It 

would take us 5 tries to find that number 5, if we start from 1. However, if several other people 

were asking for numbers of random numbers from 1 to 5 at the same time, the amount of time 

we take to find that number would reduce substantially.  

To tackle this issue, Bitcoin algorithm increases the amount prime numbers the miners 

need to brute-force in order to increase the time needed to find the nonce that makes that 

transaction valid. This is known as difficulty adjustment that can be increased or decreased in 

order to maintain the 10-minute block time.  
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This adjustment happens automatically every 2,016 blocks, or around every two weeks. 

These adjustments have several implications since the rise in the difficulty of mining will impact 

the profitability of the mining operations and therefore the total amount of miners and therefore 

the total amount of computational power that the network has. This is usually known as hash 

rate. Again, this concepts are important to take in mind when we discuss the ideas of ‘’Price-

Hashrate Spirals‘’, further discussed on Chapter 1.2. 

 

1.2 – Volatility 

 

1.2.1 – Price and Volatility Drivers 

Since Bitcoin is not controlled by a Central Governmental Authority, many may question the 

economic value and price of this intangible asset. However, this discussion is not new for the 

literature. From what may be the fundamental value or the inerrant internal protocol mechanics 

that may be the cause of volatility, this chapter will focus on what might be the price and 

volatility determinants of bitcoin.  

Hayes (2017) argues that one of the main price determinants of bitcoin is the relative cost 

of production and therefore the price can be described by its cost of production (electricity 

costs). This has interesting implications as everything that serves to reduce the cost of 

producing new bitcoins, like hardware energy efficiency, low electricity prices or lower mining 

difficulty will result in negative price pressure for bitcoin.  

Garcia et al. (2014), shares similar views, introducing a lower bound model to estimate 

fundamental value based on the cost of electricity of mining. They also state that bitcoin 

dynamics are originated by two types of users: those who mine and those who influence the 

exchange rate. They also discussed the existence of two positive feedback loops: ‘’a 

reinforcement cycle between search volume, word of mouth and price (social cycle), and a 

second cycle between search volume, number of new users and price (user adoption cycle).’’ 

Hanley (2013) disagrees with such ideas, stating that the value of bitcoin doesn’t have any 

fundamental value and that is based on set false claims. He argues that ‘’the valuation of 

bitcoin will always be determined by speculation’’ and therefore, people buying and selling 

against other currencies. In his words, ‘’Bitcoin’s developers combine technical implementation 

proficiency with ignorance of currency and banking fundamentals.’’ 

Regarding the Halving events and the minting process described on the previous chapter 

and in Table 1.1, Yermack (2013) highlights their importance as ‘’all of the quantities and 

growth rates of Bitcoins are known with certainty by the public’’, since the rules for the minting 

of new bitcoins are already embedded in the computer code that makes this protocol operate 

and therefore will stay unchanged forever. This gives a clear and transparent understanding 
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of how many bitcoins are going to be minted over-time and let all the participants anticipate 

minting changes.   

Gronwald (2019), also explains that the long-term fixed supply of Bitcoin is just like other 

‘’exhaustible resource commodities such as crude oil and gold’’. Just like gold or crude oil, the 

more you extract from nature, the less there is available to extract making it more scare and 

harder to extract. A similar process occurs with Bitcoin. The author mentions that the 

production and available quantity of bitcoin is known with certainty where, for example, the 

future oil production rates are controlled by OPEC and can be adjusted based on several 

factors. In addition, technological developments, weather conditions or strikes on oil platforms 

can change the amount of oil that is being produced or total quantity that is estimated to exist.  

Table 1.1 - Bitcoin’s minting quantities over time 

Source: https://bit2me.com/ 

Is also important to mention that halving’s are nothing less that programmed supply shocks 

of the production of bitcoin and therefore, this is expected to result on price volatility as buyers 

and sellers adjust for an equilibrium price. However, as shown on Table 1.1, these supply 

shocks became less relevant over time, as the supply-shock becomes smaller. On the first 

halving, there was a decrease of the production of bitcoins by 25 BTC per block, on the second 

12.5 BTC, on the third 6.25 BTC. Therefore, is expected that the possible volatility caused by 

such events, should be reduced over time.  

https://www.sciencedirect.com/topics/economics-econometrics-and-finance/exhaustible-resources
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This idea has been discussed by authors, such as Chaim and Laurini (2018), that state 

that ‘’Volatility was highest in late 2013 and during 2014.’’ when comparing data from May 

2013 to April 2018, suggesting the validation of the previous thoughts.  

Gronwald (2019), also discusses a new term entitled ‘’demand shocks’’, as he argues that 

since the monetary supply expansion of bitcoin is programmatically predictable and the short-

run supply of gold and oil is uncertain, he argues that the movements we can observe in bitcoin 

prices surges can be interpreted as demand shocks. He also argues that bitcoin has a lot of 

similarities to other commodities and therefore we should analyse bitcoin with similar 

frameworks. 

Another event that might help understanding the volatility of bitcoin is an event called the 

Price-Hashrate Spirals, as shown on Figure 1.1, Pagnotta and Buraschi (2018) explain this 

process in detail, when modelling an equilibrium valuation for Bitcoin as a decentralised 

financial network.  

 
Figure 1.1 - A Price-Hashrate Spiral diagram  

Source: Pagnotta and Buraschi (2018) 

To sum up, if Bitcoin is a network and its price is a function of its total size and trust, a 

decreasing in the hashrate will translate in negative price action. This negative price action will 

result in further mining operations being shut down due to unprofitability, resulting in further 

decreasing in decreasing of the hashrate.   

Mueller (2020) argues that we need to make a distinction between miners using ASIC and 

GPU equipment since the ASIC miners, usually bitcoin miners, ‘’have asymmetric reactions to 

price shocks’’ and ‘’respond only to negative disequilibria (when hashrate is relatively low 

compared to price)’’. 

Another event that is important to understand, are the liquidation cascades. They occur 

when a huge price movement leads to the liquidation of the trader’s position, which makes the 
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trader forced to exit their position in the direction of that price movement, which contributes for 

the continuation of the price movement, leading to more liquidations and leveraging the overall 

effect of that price movement.  

This is particularly important since the unregulated nature of the majority of crypto markets 

allows for the usage of high leverage and market manipulation, which may contribute to this 

issue and increase volatility.  

Yu (2019), studied the effects and links of leverage when robustly forecasting bitcoin’s 

volatility on 5-min high-frequency data using a Leverage Heterogeneous Auto-Regressive with 

Continuous, Volatility and Jumps (LHAR-CJ) model. It was concluded that the leverage effect 

significantly impacts future volatility and that the leverage effect has more power than jump 

components when forecasting bitcoin volatility and therefore contains predictive information.  

However, Senarathne (2019), states that the Bitcoin return variance cannot be effectively 

explained by GARCH (1,1), Glosten, Jagannathan, and Runkle GARCH (GJR-GARCH) or 

Exponential GARCH models (EGARCH) given the stationarity of variance of return and that 

the leverage effect is not even observed on the EGARCH model.  

Other final considerations about this asset we should take in consideration, were discussed 

by Liu and Tsyvinski (2021), where it was concluded that cryptocurrency returns have low 

exposures to traditional asset classes such as currencies, commodities, and stocks, and to 

macroeconomic factors, making it an uncorrelated and unique asset class which increases the 

interest for research studying.  

De Nicola (2021) have done extensive research on traditional assets stylised facts and to 

compare the set common empirical properties of bitcoin’s returns from March of 2015 and June 

of 2018. He highlights Bitcoin’s high volatility, by comparing it to the EUR/USD pair, stating 

that bitcoin is 10 times more volatile than the pair. He states that such extreme volatility 

conditions exist since there is no “book” to base valuations on and therefore the price discovery 

is much more subject to news, events and speculation’’. It is also stated that Bitcoin is the least 

volatile asset in the cryptocurrency class. It is also mentioned that there is less volume on the 

weekends and the distribution of returns follows the non-gaussian character distribution, and 

price jumps are present on the time series, just like on the traditional markets. 

However, regarding Gain/Loss Asymmetry, the authors conclude that on shorter time 

frames such as the 5, 15 and 30 minutes, the negative returns are significantly larger in 

absolute values but that this asymmetry becomes less significant at larger timeframes. The 

authors explains that this might be caused by investor overreaction, loss aversion effects, and 

high levels of volatility. In terms on autocorrelation of the returns, traditional liquid assets do 

not exhibit any significant autocorrelation behaviour. However, his research shows the 

existence of shows that autocorrelation not only of lower time intervals but also medium-
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frequency returns meaning that this partial predictability of Bitcoin’s returns can suggest the 

market inefficiencies. 

He also mentions there is a positive correlation between jump size and absolute correlation 

and that despite the volatility conditions, the tendency for price after a movement is a given 

direction, is to revert and move to the opposite direction. This can be attributed to market 

microstructure effects, stating that the bigger the price movements are, the bigger the 

overreaction and cascading liquidations will be. 

Taleb (2021) disagrees with most of the previously mentioned characteristics. The author 

doesn’t agree with the previously discussed cost models and that states that any non-dividend 

yield asset must have a present value of 0, if it has the tiniest constant probability of hitting an 

absorbing barrier, resulting in its value becoming 0. He also states that if from any other reason 

bitcoin can drop do zero, due to technological obsolescence for example, then its present value 

must also be zero now. He also argues that bitcoin do not have inflation hedging proprieties 

and that is has failed as a payment network due to high transaction costs and volatility in value, 

which makes it now a bad medium-of-exchange or unit-of-account that results in arbitrage 

opportunities.  

 

1.2.2 - Forecasting Volatility 

Whether we are exploring the field of economics or finance, volatility plays an important role in 

measuring and accessing potential risks resulting in policymakers making more informed 

decisions on the future of our economies and financial markets by giving them a better 

understanding of what can be expected from the future. Some examples of these are due to 

the fact that, if we can accurately forecast volatility, it can help us not only predict the price of 

financial derivatives, as the risk of this particular asset.   

With this, every researcher, business owner or police maker can be aware of potential 

future risks and implement precautionary measures and directly help their decision-making 

processes.  

This importance and interest are clearly observed by the vast available literature and 

research regarding this topic but why understanding volatility is important? How predicting 

volatility can help our societies?  

According to Kim and Won (2018) in their works regarding forecasting the volatility of stock 

price indexes, volatility is described as ‘’the degree to which asset prices fluctuate’’. These 

authors also state that volatility ‘’plays crucial roles in financial markets, such as in derivative 

pricing, portfolio risk management, and hedging strategies’’.  

Black and Scholes (1973) would corroborate this importance due to their work and 

research regarding option pricing models such as Black-Sholes.  
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These authors developed one of the most commonly used methodologies for option pricing 

and where volatility is one of the variables that is utilised in their calculations, represent by 

sigma, on the following formula: 

 

𝑝𝑡 =  𝐾𝑒−𝑟𝑇𝑁(−𝑑2) − 𝑆0𝑒
−𝑞𝑇𝑁(−𝑑1)

  (1.1) 

and 

 

𝑐𝑡 = 𝑆0𝑒
−𝑞𝑇𝑁(𝑑1)  − 𝐾𝑒−𝑟𝑇𝑁(𝑑2)

  (1.2) 
 

 

where 

𝑑1 = 
𝑙𝑛(

𝑆0
𝐾
) +  (𝑟 −  𝑞 +  

𝜎2
 

2
)𝑇

𝜎√𝑇
 

(1.3) 

 

and  

𝑑2 = 
𝑙𝑛(

𝑆0
𝐾
) + (𝑟 −  𝑞 − 

𝜎2
 

2
)𝑇

𝜎√𝑇
 

 

(1.4) 

 

Markowitz (1952) on his work on Portfolio Theory also considers that volatility is one of the 

key indicators to measure risk and uncertainty implying that the higher the volatility, the higher 

is the risk of the asset or portfolio of assets. In his works, he theorises important concepts such 

as Efficient Frontier or Minimum Variance Portfolio where the risk (and hence the volatility) 

should be taken into consideration in order to statistically optimise the risk of a given portfolio.  

Hang (2019), highlighted the importance of forecasting stating that ‘’Forecasting is an 

important tool, an indispensable part in the operation of businesses to help create a competitive 

advantage’’. This becomes clear whether you are a financial institution that wants to optimise 

its portfolio exposure to bitcoin and speculate on financial options or the owner of a bitcoin 

mining operation that has several fixed costs and wants to protect its revenue from the high 

volatility of the cryptocurrency markets, by applying hedging techniques.  

Engle and Patton (2001), point out several stylised facts about asset price volatility that we 

should take in consideration: (i) volatility exhibits persistence, in the sense that large changes 

on the price of a given assets are usually follower by other large changes and small changes 

and usually followed by small changes (clustering); (ii) Volatility is mean reverting, meaning 

that it there is a mean level where the volatility will tend to return to; (iii) There might be 

asymmetric impacts, as positive and negative shocks in price might impact volatility differently; 

(iv) exogenous variables may influence volatility; (v) Tail probabilities, since unconditional 

distribution of asset returns has heavy tails. 
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Faced with this, several authors have applied the most different techniques to forecast the 

volatility of time series data, from more classical econometric models to the use of new 

computational techniques such as deep-learning that was made possible with the latest 

technological advancements. 

Some of the most important models to forecast volatility across the literature include ARCH 

developed by Engle (1982), and later a model improved by Bollerslev (1986) entitled 

Generalised Autoregressive Conditional Heteroscedasticity (GARCH), allowing lagged 

conditional variances.  

Bergsli et al. (2022) made a paper discussing which models would be most suitable for 

Bitcoin’s Realised Volatility Forecasting.  In their research, they analysed a range of GARCH 

models (GARCH, EGARCH, GJR-GARCH, IGARCH, MSGARCH, and APARCH) and two 

HAR models (regular and logarithmic). They utilise several different types of forecasting 

horizons on their predictions (1, 2, 5, 10, and 15 days ahead) concluding that from the GARCH 

models, EGARCH and APARCH performed better. However, both HAR models perform better 

than any GARCH models analysed.  

Gronwald (2019), discussed the implications of both linear and non-linear GARCH models 

with the goal of analysing extreme price movements in the Bitcoin Market and utilising the 

same set of models for crude oil and gold, considering a GARCH(1,1) as the benchmark. 

Kim and Won (2018) agree on the advantages of such models since they are able to 

capture the volatility clustering and heteroskedasticity (proprieties that Financial time-series 

seems to have) and leptokurtosis, which consists of statistical distributions that have a kurtosis 

that is higher than three. 

However, as mentioned before, when dealing with Bitcoin’s volatility, we need to take into 

consideration that historically, cryptocurrencies have higher volatility than other asset 

traditional classes and their returns have a set of anomalies which might result in predictive 

problems for the mentioned models, as discussed by De Nicola (2021) regarding his research 

on the intraday behaviour of Bitcoin. 

Ramos (2021) state that although with a simple application, classic linear methodologies 

have some difficulties dealing with events that have out-of-the-ordinary patterns based on the 

thoughts of Pesaran and Timmermann (2004), that argue that structural instability can have a 

negative impact on several traditional predictive econometric models and Chatfield (2016), 

stating that constant instability regarding financial-series can result in behaviours on the 

historical data that can make them difficult to model and predict. 

Figlewski (1997) reinforces this idea in his research work regarding Forecasting Volatility, 

stating that ‘’important implications for volatility estimation tend to be overlooked by those 

following traditional lines of thought’’.  
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Although most economists try to model volatility using more classical models, the 

advancements of computational power are currently providing interesting alternatives to face 

the issues mentioned before with the help of Neural-Networks. 

This situation is discussed by Wilson and Spralls (2018), it is of great importance of 

adapting the forecasting tools that are taught to real live scenarios, highlighting the fact that 

most of the forecasting methodologies currently utilised in business by professionals are the 

classic models, such as moving averages, linear regression and exponential smoothing.  

The literature on forecasting and artificial neural networks methodologies is vast, as we 

can be confirmed by several literature review compendiums such as the ones compiled by 

Sezer et al. (2020) which covers financial time series forecasting with deep learning from 2005 

to 2019, and Tealab (2018) that compiled a systematic review of time series forecasting using 

neural network models from 2006 to 2016.   

Nevertheless, there is the need to highlight the research work after those periods forecast, 

with the focus on forecasting volatility and prices of cryptocurrencies and/or financial time 

series using classical econometric methodologies such as ARCH and GARCH, deep-learning 

models and hybrid models with both methodologies. Here are some examples: 

Pichl and Kaizoji (2017) implemented a Heterogeneous Autoregressive (HAR) model for 

realised volatility of bitcoin and fed these values to a neural network with 2 hidden layers using 

a 10-day moving window in order to predict the next-day logarithmic return. Although the 

authors conclude that such a neural network model is capable of forecasting, they suggest that 

RNN and LSTM techniques might be useful if we aim for better prediction accuracy. 

Balcilar et al. (2017) explore the relationship between returns and volatility (squared values 

of returns) with trading volume and try to forecast it with the causality-in-quantiles technique. 

They conclude that there is no evidence that volume granger causes returns or volatility but 

when forecasting using the causality-in-quantiles they argue that transaction volume can 

sometimes help predict returns but convey no information on volatility and that they detected 

nonlinearity and structural breaks on the two variable relations. The authors also emphasise 

the importance of studying the nonlinearity of the variables when analysing predictability.  

Bariviera (2017) when researching about bitcoin’s inefficiency, concludes that there is 

empirical evidence bitcoin returns and volatility display long-memory characteristics when 

using the Hurst exponent technique. They also identified a regime shift for the daily returns, 

since from 2011 to 2014, the returns were persistent and after this period, the behaviour was 

more similar to white noise. However, for volatility (measured as the logarithmic difference 

between daily maximum and minimum price), the behaviour was consistent during all the data 

used for the research.  

Mallqui and Fernandes (2019) also tried to forecast the direction, maximum, minimum and 

closing prices of daily Bitcoin Exchange Rate with machine learning algorithms, concluding 

https://www.sciencedirect.com/topics/economics-econometrics-and-finance/returns-volatility
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that a combination of RNN and a Tree Classifier are the best model to predict the Bitcoin price 

direction and a Support Vector Machines (SVM) for forecasting the Bitcoin exchange rate, 

stating that the results obtain with the machine learning model achieved an improvement of 

more than 10% accuracy for price direction forecasting when compared to other state-of-the 

art papers that studied the same periods.  

Kristjanpoller and Minutolo (2018) proposed a hybrid volatility forecasting framework that 

utilises the different types of GARCH models to feed to a Neural Network Model in order to 

forecast price volatility of bitcoin, forming what they conceptualised as an Artificial Neural 

Network-Generalised Autoregressive Conditional Heteroskedasticity (ANN-GARCH), showing 

again, how the application of Neural Networks has become a trend to improve the forecast of 

the classical auto-regressive models. The authors also mention that several volatility studies 

have demonstrated improved forecasting results when neural networks are included in the 

model. 

Lahmiri and Bekiros (2019) applied deep learning models to forecast the price of Bitcoin, 

Digital Cash and Ripple, which the authors considered as chaotic financial data structures. 

From the nonlinearity tests performed, the digital currencies analysed exhibit fractal dynamics, 

long memory and self-similarity. The authors concluded that the best model to forecast the 

price was an LSTM model.  

Lahmiri and Bekiros (2020) also made research regarding forecasting high-frequency 

Bitcoin price series by employing two statistical models, with Support Vector Regression (SVR) 

and Gaussian Regression Poisson (GRP) models; two algorithmic models: with regression 

trees (RT) and the k-nearest neighbours (kNN); and finally three artificial intelligence models: 

Feedforward Neural Networks (FFNN), Bayesian Regularisation Network (BRNN), and Radial 

Basis Function Networks (RBFNN). They conclude that BRNN has the best forecasting 

properties and highlight the overall superiority of artificial neural networks with a set of 

advantages when forecasting and modelling large data sets such as bitcoin.  

Ramos (2021) in his works regarding modelling and forecasting the Portuguese Stock 

Index 20 (PSI 20) and the Standard & Poor's 500 Exchange-Traded Fund (SPY) using classical 

models such as ARMA and ETS with DNN. He states that nonlinear neural networks can be 

an alternative to model and forecasting financial time series, however, with the need for higher 

computational power and resources to execute them. The author also argues that LSTM 

models seems to underperform when forecasting stationary data series.  

Ramos et al. (2022) proposed a new hybrid approach using Box&Jenkins methodology for 

Neural Networks. This solution resolves the issue of high computational costs of running 

Neural Network methodologies since it was able to reduce the implicit computational time by 

20% while keeping the forecasting quality when compared to MLP and LSTM models taking in 

consideration the MAPE.  
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Nevertheless, even with this research work, authors such as Hayes (2017), Pichl and 

Kaizoji (2017), and Lahmiri and Bekiros (2019) point out the fact that there still is a reduced 

number of research work done regarding Bitcoin and cryptocurrencies which creates value to 

the development of the current dissertation as few works regarding these subjects have been 

developed since the previously cited authors. In addition to these, the mentioned research 

showed different models and methods to forecast, hence the necessity of this research to verify 

which one might be the best fit to forecast the volatility of this particular asset, that as shown 

before exhibits unique characteristics, as to do it with more recent data available. 
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2 - Time Series 

2.1 - General Concepts of Time Series 

In simple terms, a Time Series might be characterised as a successive sequence of data points 

over a certain period of time, as explained by Kitagawa (2022).  It can be characterised as: 

𝑌𝑡(𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒), 𝑡 =  1,2, . . .  , 𝑛 , 𝑡 ∈  𝑇 ⊆ ℕ  or 𝑌(𝑡) (𝑐𝑜𝑛𝑡𝑖𝑛𝑜𝑢𝑠), 𝑡 ∈  𝑇 ⊆  𝑅 

   

2.1.1 -Time Series Components 

As mentioned by Ramos 2021), in order to perform a deep analysis of the time series, it is of 

great importance to take in consideration its trend, cyclicity, seasonality and randomness 

where: 

● Trend reflects an evolution of the directions (increasing or decreasing) of the monotony 

of the series on the long term. It can show linear and non-linear dynamics. 

● Cyclicity reflects fluctuation pattern on the medium-term that can directly affect the 

trend of the series. They can be periodic and non-periodic but don’t show a fixed 

frequency.  

● Seasonality reflects regular cyclical movements that are observed in constant but 

smaller periods. On the opposite of cyclicity, these movements show a fixed frequency 

and are usually related to natural factors, like time of the year.  

● Randomness reflects unpredictable fluctuations that cannot be modelled by any of the 

previously mentioned components.  

 

2.1.2 – Stationarity 

When we aim for analysing and modelling time series data, we need to take to take in 

consideration the assumption that the values are generated from an unknown stochastic 

process where the evolution of a set of variables indexed by time is a random phenomenon.  

Nonetheless, in order to been able to make valid statistical inferences we still need to test 

for several factors such as stationarity, as the models also make such assumptions.  

The definition of stationarity consists in the fact that a given time series {𝑦𝑡}𝑡 ∈ 𝑇 is weakly 

stationary or covariance stationary if, to 𝑡, 𝑡 − 𝑘, 𝑡 − 𝑗, 𝑡 − 𝑗 − 𝑘 ∈ 𝑇 arbritary. 

1. Average Expected Values as: 

𝐸(𝑦𝑡  )  =  𝐸(𝑦𝑡−𝑘 )  =  𝜇 (2.1) 

2. Variance Values as: 

𝐸((𝑦𝑡  −  𝜇)2)  =  𝐸((𝑦𝑡−𝑘  −  𝜇)2 )  =  𝜎𝑦
2  <  ∞ (2.2) 
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3. Covariance Values as:  

  𝐸((𝑦𝑡  −  𝜇)(𝑦𝑡−𝑘  −  𝜇))  =  𝐸 ((𝑦𝑡−𝑗  −  𝜇)(𝑦𝑡−𝑗−𝑘 −  𝜇))  =  𝛾𝑘 (2.3) 

 

Therefore, a given time series is weakly stationary if the average and variance are constant 

over time and not a function of time, just as the covariances between lagged values are equally 

constant. If the time series do not follow this requirement, we say that the time series is non-

stationary.  

Non-Stationary is a very common feature of financial time series, as they usually have 

trends and/or seasonality and do not show constant mean values and variance. However, 

regarding volatility (the aim of this study), there is a tendency to see stationary features within 

the series.  

 

2.1.3 – Unit Root  

The existence and analysis of unit roots on financial time series have been the objective of the 

study of several authors such as Libanio (2005). 

Taking in consideration the following model: 

𝑦𝑡  =  𝜌𝑦𝑡−1 + 𝛽0  + 𝛽1𝑡 +  𝑢𝑡 (2.4) 

When we are trying to infer the nature of the time series in order to understand if there is 

the existence of a deterministic or stochastic trend, we need to take into consideration the 

following four scenarios:  

1. If 𝜌 = 0,  we are in the presence of a stochastic process that has a linear trend, and 

therefore, a deterministic trend.  

2. If 𝜌 = 1 and 𝛽1 = 0, there is a stochastic trend where we obtain a purely stochastic 

process on first differences, also known as a random walk.  

3. If 𝜌 = 1 and 𝛽𝑖=0,1 ≠ 0, we obtain a random walk with drift4 and deterministic trend.  

4. If 0 < 𝜌 < 1,  there is a serial correlation but not a stochastic trend.   

The first three scenarios will result in the series being non-stationary. In general terms, 

when we test if 𝜌 = 1 we are testing the non-stationary of the time series, or in other terms, 

test the unit root.  

 Unit Root Test  

𝐻𝑂 : 𝜌 = 1 
 

vs 𝐻1: 𝜌 < 1 

(Non-Stationary Series)  (Stationary Series) 
   

                                              
4 As explained by (Ramos, 2021), one of the characteristics of these types of processes is the 
persistence of random shocks (processes with infinite memory). The effect of each error term does not 
dissipate over time and the process saves the information of all the shocks that have occurred.  
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Thus, in the case of not rejecting 𝜌 = 1, we can assume that there is a unit root, and the 

series is non-stationary. 

From the different Unit Root Tests on existence, the most common ones we find on the 

literature are Dickey-Fuller (DF) / Augmented Dickey-Fuller (ADF) and the Kwiatkowski-

Phillips-Schmidt-Shin (KPSS) test.  

The Dickey-Fuller (DF) test has the assumption that the errors are independent and 

identically distributed (i.i.d.) and therefore do not have any autocorrelation. 

When we subtract 𝑌𝑡−1 in both sides of the equation: 

𝑌𝑡  =  𝜌𝑌𝑡−1  + 𝛽0 + 𝛽𝑡 + 𝜀𝑡   (2.5) 

We obtain: 

𝑌𝑡 − 𝑌𝑡−1  = (𝜌 − 1)𝑌𝑡−1  + 𝛽0 + 𝛽𝑡 + 𝜀𝑡   (2.6) 

Where: 

𝐻0:𝜌 = 1 , (and the series is non-stationary). 

𝐻1: 𝜌 < 1, (and the series is stationary). 

In situations where 𝜀𝑡 is not white noise, there is the need to introduce a correction, known 

as Augmented Dickey-Fuller (ADF). Phillips and Perron (1988), suggested that the solution 

should include the increase of the regression with lagged components with the objective of 

cleaning the residues and eliminating the autocorrelation. Therefore, the ADF test is 

considered a new model from (2.6) that we obtain by adding the lagged values of the 

independent variables 𝑌𝑡 − 𝑌𝑡−1 , represented as ∆y on the following equation: 

∆𝑦𝑡  = (𝜌 − 1)𝑦𝑡−1 + ∑(𝜌 − 1)𝑖∆𝑦𝑡−1 + 𝛽0 + 𝛽𝑡 + 𝜀𝑡

𝑘

𝑖=1

 (2.7) 

In addition to the previously mentioned tests, KPSS serves as a complement to testing the 

unit root and evaluating the stationarity of a time series.  

This test complements the Unit Root Test results, and it tests the null hypothesis of the 

stationarity of a given timeseries against the hypothesis of non-stationary. This might help to 

clarify some cases where there is not enough information to guarantee the existence of the 

Unit Root. 

Therefore, assuming a series with n observations is expressed as the sum of trend, random 

walk and a residual that is stationary, these tests test if the random walk having null variance.  

Therefore, we can consider: 

 𝑦𝑡 = 𝛽1𝑡 + 𝜉𝑡 + 𝜀𝑡  (2.8) 
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where 𝜉𝑡 represent the random walk and 𝜀𝑡 is stationary with: 

𝜉𝑡 = 𝜉𝑡−1 + 𝜁𝑡 , 𝜁𝑡  ~ 𝑊𝑁(0, 𝜎𝜈
2) (2.9) 

and where we can say that in the case of 𝜎𝜁
2 = 0, we have 𝜉𝑡 = 𝜉0 for any 𝑡 ∈ 𝑇 and 

therefore 𝑦𝑡  where 𝑡 ∈ 𝑇 is stationary. 

With this said, we can write KPSS with the following form: 

 
Kwiatkowski-Phillips-Schmidt-Shin Test (2) 

 

 
 

𝐻𝑂: 𝜎𝜁
2 = 0 
 

vs 𝐻1: 𝜎𝜁
2 > 0 

When we consider that 𝑆𝑡  =  ∑ 𝜀𝑡
𝑡
𝑖=1  and the 𝜎 𝜀𝑡

2
 as the estimator for the variance of the 

error, the test statistic is given by: 

 𝜏𝐾𝑃𝑆𝑆 =
1

𝑛2
∑

𝑆𝜀𝑡
2

𝜎 𝜀𝑡
2  

𝑛

𝑡=1

  (2.10) 

As mentioned by Kwiatkowski et al. (1992) the KPSS has a distribution that converges to 

a Brownian Movement asymptotically for the critical values for the significance of (1%, 5% and 

10%). 

 

2.1.4 – Structural Breaks 

Although it was previously discussed the implications of modelling and analysing non-

stationary time series and how the literature proposes some solutions, they make the 

assumption that the behaviour of parameters of the series will remand constant. However, 

there are several examples where we can have sudden changes on such parameters. This is 

what the literature calls ‘’structural breaks’’ or ’’structural changes’’, usually common on 

financial time series.   

According to Hansen (2001) we are dealing with a structural break when at least one of 

the parameters used in the model suffers a change in its behaviour on a given moment – break 

dates. Structural Breaks in time series data is defined as an instability of the parameters of a 

given forecasting model or any other data generation process. 

Structural breaks can be shown in several different ways: They could affect all the 

parameters of the model or just a few; they can be abrupt or be a gradual process they can 

occur on a known specific date or an unknown one; they can occur once or several times.  

The author also highlights the importance of considering structural changes when 

researching and modelling with time series as its negligence might result in misleading results, 
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wrong economic inferences and detriment of the stability and accuracy of the forecasting 

models.  

When discussing this issue, is also important to mention the research of Valentinyi-Endrész 

(2004), as it allows to understand the reasons why such changes might occur.  

According to the author, structural breaks are usually associated with meaningful economic 

and political shifts. The implementation on new political and economic policies, the change in 

interest rates by the Central Banks or implementation of new regulation are some examples of 

events that can result in such breaks.   

With this said, the importance of understanding structural breaks when analysing or 

forecasting time series data is abundant and evident on the literature as by not doing so, it can 

lead the researcher to incorrect conclusions.  

There are several different tests can help us test for structural breaks of the data series in 

study. The focus of this study will take in consideration the CUSUM test that was developed 

by Brown et al. (1975). This test analyses of the variances of the residual component over time 

in order to find structural breaks. This test takes the null hypothesis the stability of the 

parameters. This can be seen has a test to the stability of 𝑢𝑡, the variance of the residual 

component. (Ramos, 2021) 

𝑉𝑎𝑟(𝑢𝑡) =  {
𝜎1
2, 𝑡 ≤ 𝑇1

𝜎2
2, 𝑡 > 𝑇1

  (2.11) 

 

Therefore, for each 1 ≤ 𝑡 ≤ 𝑛 moment, we consider the hypothesis test as: 

 
Structural Breaks - CUSUM  

 

 
 

𝐻𝑂: ∀ 𝑖 ≠ 𝑗, 𝜎𝑖
2 = 𝜎𝑖

2 , 𝑖, 𝑗 = 1,… 𝑛 
 

vs 𝐻1: ∃ 𝑖 ≠ 𝑗, 𝜎𝑖
2 ≠ 𝜎𝑖

2 , 𝑖, 𝑗 = 1,… 𝑛 

 
(No evidence of Structural Breaks)  (Evidence of Structural Breaks) 

 

2.1.5 – Auto-Covariance and Auto-Correlation Functions  

In order to fully study and analyse stationary processes, there is the need to consider auto-

covariance (FACV), autocorrelation (FAC) functions.  

Considering that the series {𝑦𝑡}𝑡∈𝑇 is stationary and that the stochastic processes are at 

least, stationary on the 2nd order and therefore weakly stationary, we define: 

● The mean and the variance of the series as: 

𝐸(𝑦𝑡) =  𝜇    and   𝑉𝑎𝑟(𝑦𝑡) =  𝜎
2 (2.12) 
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● The FACV of the series as: 

𝛾𝑘  =  𝐶𝑜𝑣(𝑦𝑡  , 𝑦𝑡+𝑘) =  𝐸[𝑦𝑡  , 𝑦𝑡+𝑘  ] −  𝜇𝑡𝜇𝑡+𝑘   ,     𝑘 ∈  𝑍 (2.13) 

  

● The FAC of the series as: 

𝜌𝑘  =  
𝐶𝑜𝑣(𝑦𝑡  , 𝑦𝑡+𝑘)

√𝑉𝑎𝑟(𝑦𝑡) 𝑉𝑎𝑟(𝑦𝑡+𝑘)
=  

𝛾𝑘

𝛾0
,     𝑘 ∈  𝑍 

Since  𝑉𝑎𝑟(𝑦𝑡+𝑘) =  𝑉𝑎𝑟(𝑦𝑡) =  𝛾0 

(2.14) 

With the exception of very specific cases, an increase in k will result in a decrease of 𝛾𝑘 

and 𝜌𝑘 and is expected for the memory capacity of the process to be limited. Nonetheless, on 

the majority of cases, we have |𝑘|  →  ∞ ⟹ 𝛾𝑘  →  0 and 𝜌𝑘  →  0 . 

 

2.2 – Univariate Linear Models 

Univariate Linear Models consist in models that only take in consideration data from the time 

series itself.  

From this type of models, the most common ones would be ARMA, when we are trying to 

study stationary time series and ARIMA, when we are trying to study non-stationary time 

series.  

However, when we are discussing volatility, according to Engle and Patton (2001), we can 

separate the volatility models in two types: the models that utilises conditional variances as a 

function of observables, like ARCH and GARCH models, and the second type that model 

volatility not as a function but purely of observable variables, like stochastic volatility models.  

 

2.2.1 – Autoregressive Models – AR(p) 

The autoregressive model is a linear regression model in which the regression variables are 

the process values at 𝑝 previous times. 

If we take in consideration that the values of time (t, t – 1 , t – 2 , …) as (𝑦𝑡 , 𝑦𝑡−1, 𝑦𝑡−2, … ) we 

obtain:  

𝑦𝑡 = 𝑐 + ∑𝑎𝑖𝑦𝑡−𝑗 + 𝜀𝑡

𝑝

𝑖=1

 (2.15) 

This is the basis of what we called the autoregressive model of order 𝑝 , AR(𝑝), where 

(𝑎1,𝑎2, 𝑎3, … ) is a vector of the coefficients ( real constants or parameters) and where the white 

noise (a random process) is given by 𝜀𝑡 . 
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If we consider L as the lag operator, represented by 𝐿(𝑦𝑡) =  𝑦𝑡−1, the AR(𝑝) can also be 

represented as: 

𝜙𝑝(𝐿)𝑦𝑡  =  𝑐 + 𝜀𝑡  (2.16) 

 

and where 𝜙𝑝(𝐿) = 1 − ∑ 𝑎𝑖𝐿
𝑖𝑝

𝑖=1  . 

Therefore, we can state that a given autoregressive model of order 𝑝, AR(𝑝), is stationary 

if all the roots 𝑧 = 
1

𝑎𝑖
 of the characteristic polynomial: 

𝜙(𝑧) = 1 −  𝑎1𝑧 − 𝑎2𝑧
2 −⋯ − 𝑎𝑝𝑧

𝑝 (2.17) 

are situated in the exterior of the unitary circle, or |𝑎1 |  <  1. 

The autocorrelation function of an stationary AR(𝑝) process with a mean of 𝐸(𝑦𝑡) =  0 and 

taking in consideration equations (2.14) and (2.15), is given by: 

𝜌𝑘  =  𝑎1𝜌𝑘−1 + 𝑎2𝜌𝑘−2 −⋯+ 𝑎𝑝𝜌𝑘−𝑝 (2.18) 

 

and its variance by:  

𝑉𝑎𝑟(𝑦𝑡)  =  
𝜎2

𝑎1𝜌1 + 𝑎2𝜌2 −⋯+ 𝑎𝑝𝜌𝑘
 (2.19) 

 

 

2.2.2 – Moving Average Models – MA(q)  

The moving average (MA) processes of order 𝑞, use the average of a given number of previous 

observations to forecast new predictions.  

As mentioned by Murteira et al. (2000), these models aim to represent 𝑦𝑡 in terms of a 

random process 𝜀𝑡. The effects produced by innovation of such processes, only last for a short 

period of time, on the contrary of autoregressive processes effects, that last longer.  

With this said, we can describe a MA process of order q, MA(q), can be described as: 

𝑦𝑡  =  𝜀𝑡 −∑𝑏𝑡𝜀𝑡−𝑗

𝑞

𝑗=1

 (2.20) 

Where 𝜀𝑡 is white noise (random process) and 𝑏1, … , 𝑏𝑞 are real constants.  

Therefore, a MA process of order q, results on a weighted average of the last q + 1 

observations of a white noise process in each instant t. A MA process is always an independent 

stationary process of 𝑏1, … , 𝑏𝑞 values.  

Because of this, since 𝐸(𝜀𝑡) = 0, we can also verify that  𝐸(𝑦𝑡) = 0, where the 𝜀𝑡 is not 

correlated, we have: 
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● Variance as: 

𝑉𝑎𝑟(𝑦𝑡) =  𝜎2(1 + 𝑏1
2 +⋯+ 𝑏𝑞

2)  (2.21) 

● FACV (with 𝛾0 =  𝑉𝑎𝑟(𝑦𝑡)) as: 

𝛾𝑘 =  {    −𝜎
2 (𝑏𝑘 + 𝑏𝑘+1𝑏1 +⋯+𝑏𝑞𝑏𝑞−𝑘 ,     0 <  𝑘 ≤ 𝑞 0 , 𝑘 > 𝑞  (2.22) 

● FAC as: 

𝜌𝑘 =  {    −
𝑏𝑘 + 𝑏𝑘+1𝑏1 +⋯+ 𝑏𝑞𝑏𝑞−𝑘  

1 + 𝑏1
2 +⋯+ 𝑏𝑞

2 ,      𝑘 ≤ 𝑞 0 , 𝑘 > 𝑞  (2.23) 

 It is also important to mention that a MA(q) processes are, meaning that it is possible to 

transform MA(q) into AR(∞). In addition to this, the first q autocorrelation coefficients are not 

null and the rest being equal to zero. FAC is null from order q and FACP has an exponential 

decay smoothed to zero.   

2.2.3 – Autoregressive Conditional Heteroskedasticity – ARCH(q) 

According Engle and Patton (2001) the volatility models are separated in two types: the models 

that utilises conditional variances as a function of observables, like ARCH and GARCH models, 

and the second type that model volatility not as a function but purely of observables5. 

Engle (1982) introduced stochastic models in the form of: 

𝑦𝑡 = 𝜀𝑡ℎ𝑡
1/2  (2.24) 

where: 

ℎ𝑡 = 𝛼0 +𝛼1𝑦𝑡−1
2 +⋯𝛼𝑞𝑦𝑡−𝑞

2 ,      𝛼0 > 0,𝛼𝑖  ≥ 0,∑𝛼1

𝑞

𝑖=1

< 1           (2.25) 

It also important to mention that 𝜀𝑡 are i.i.d. with 𝐸(𝜀𝑡) = 0 and the 𝑉𝑎𝑟(𝜀𝑡) = 1. This is 

nothing less than the ARCH model of order 𝑞.  

When we add the assumption of conditional normality and 𝛷𝑡−1 as the set of information 

available at 𝑡 − 1, we can write the model as it follows: 

𝑦𝑡  | 𝛷𝑡−1 ~ 𝑁(0, ℎ𝑡) (2.26) 

The author also adds that the non-negativity of the 𝛼𝑖𝑠 is required for the variance to be 

non-negative, whereas the requirement that the 𝛼𝑖𝑠 sum to less than one is needed for 𝑦𝑡 to 

be wide sense stationary.  

 

                                              
5 For examples of such models, consult the original paper of Engle and Patton (2001). 
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2.2.4 – Generalized Autoregressive Conditional Heteroskedasticity – 

GARCH (p, q) 

Bollerslev (1986) proposed the incorporation of a moving average component with an 

autoregressive component to the ARCH(q) model, forming what we know as GARCH.  

This difference allows for the conditional variance to be dependent of its own past values 

of squared errors and past conditional variances.  

On this model, the conditional variance is given as: 

ℎ𝑡 = 𝛼0 +∑𝛽𝑖ℎ𝑡−𝑖

𝑝

𝑖=1

+∑𝛼𝑖𝑦𝑡−𝑖
2

𝑞

𝑖=1

,     𝛼0, 𝛽𝑖 , 𝛼𝑖 > 0,∑𝛽𝑖

𝑝

𝑖

+ ∑𝛼𝑖

𝑞

𝑖

<  1    (2.27) 

The non-negative conditions also imply a non-negative variance, while the condition that 

the sum of 𝛼𝑖𝑠 and 𝛽𝑖𝑠 is smaller than on required for wide sense stationarity of 𝑦𝑡.  

2.2.5 – Comparison: Models and Forecasting Evaluation Metrics 

As discussed by Campbell et al. (1997), GARCH models show advantages to ARCH models 

since the model uses fewer parameters, results in less probably of violating the non-negativity 

constraints and that they incorporate the previous forecasted variance to forecast the following 

estimations.  

As mentioned by Zivot (2008), the GARCH(p , q)  seems to be a better model to study and 

forecast time series data that exhibits heteroskedasticity and volatility clustering. However, this 

model seems to have difficulties capturing ‘’leverage effects’’. 

Several authors agree that a GARCH(1,1) is often sufficient to forecast volatility (such as 

Brooks (2014) and the other works cited on the literature review). However, both models are 

not able to capture asymmetric volatility, and to cope with this problem, several GARCH based 

models have been proposed, such as EGARCH by Nelson (1991). 

Nonetheless, there are several criteria that can be used to empirically select the models 

with most know methodologies be Akaike Information Criterion (AIC) developed by Akaike 

(1974) and Bayesian information Criterion (BIC) by Schwarz (1978). The AIC values precision 

with a function that penalises models with a high number of parameters whereas the BIC, 

incorporates the likelihood function with a Bayesian formalism that penalises models with a 

higher number of parameters more rigorously. 

In a strict sense, if k is the number of parameters of the model and ℒ the value of the 

correspondent maximum likelihood function, the statistic value of AIC is given by: 

𝑆𝐴𝐼𝐶 = −2 𝑙𝑜𝑔(ℒ) + 2𝑘   (2.28) 

 



2 - Time Series 

 

26 
 

The statistic value of BIC, where k is the number of parameters of the model and ℒ the 

value of the correspondent maximum likelihood function is given by:  

𝑆𝐵𝐼𝐶 = −2 𝑙𝑜𝑔(ℒ) + 𝑘 𝑙𝑜𝑔(𝑛)   (2.29) 

In addition to this, we can complement our analyses with the use Diebold-Mariano Test 

proposed by Diebold and Mariano (1995). If you take in consideration the forecasts results of 

two models (e.g Model A and Model B), the test evaluates the null hypothesis 𝐻𝑂 of the mean 

of the loss differential on Model A being lower or equal than of the model B. Therefore, by 

rejecting 𝐻𝑂, is means that the forecast of Model B is significantly more accurate than the 

forecasts of Model A.  

If we define the residuals of two forecasts as: 

𝑒𝑖 =   �̂�𝑖𝑡 − 𝑦𝑡 ,    𝑖 = 1,2 (2.30) 

Where 𝑦𝑡 are the real values and �̂�𝑖𝑡 is the two forecast values and let the loss-differential 

function be defined as6: 

𝑑𝑖 =  |𝑒1| − |𝑒2|    or   𝑑𝑖 =  𝑒1
2 − 𝑒2

2   or … (2.31) 

 With this, we can define:  

𝑑 =   
1

𝑛
∑𝑑𝑖

𝑛

𝑖=1

            𝜇 = 𝐸[𝑑𝑖] (2.32) 

And define the Autocorrelation Function 𝛾𝑘 as the autocovariance of lag 𝑘 for 𝑛 >  𝑘 ≥  1 

as: 

𝛾𝑘 =   
1

𝑛
∑ (𝑑𝑖 − 𝑑)(𝑑𝑖−𝑘 − 𝑑)

𝑛

𝑖=𝑘+1

 (2.33) 

We can define the Diebold-Mariano statistic for ℎ ≥  1 as7 : 

𝐷𝑀 =   
𝑑

√[𝛾0 + 2∑ 𝛾𝑘
ℎ−1
𝑘=1 ]/𝑛

 (2.34) 

Regarding the statistical hypothesis testing, we could describe it as it follows:  

                                              
6 Note that this formula will be based on the error statistic we decide to define. On this case, the first 
formula is for MAE and the second formula for MSE, but others may be applied to the test.  

7 Where is generally sufficient to use the value h = 𝑛
1

3 + 1 
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 Diebold-Mariano Test 

 

 

𝐻𝑂 :𝐸(𝑑𝑖) = 0   ∀𝑡  
 

vs 𝐻1: 𝐸(𝑑𝑖)  ≠ 0 

(Forecasts have the same 

accuracy) 

 (Forecasts have different 

levels of accuracy) 

Where under the assumption of the null hypothesis 𝐻𝑂 it follows a normal distribution 

𝐷𝑀~𝑁(0,1). 

 

2.3 – Deep Neural Network Models 

The interest on Artificial Intelligence, Machine Learning and Neural Networks to solve 

economic problems has increased clearly increased on the last couple of years. This interested 

is justified as the several researchers using this type of approaches and techniques seem to 

have improved results over the more ‘’classical’’ methodologies in various cases and therefore, 

help us better understand the non-linear part of our economic reality.  

The main components of neural network are neurones (or perceptron’s) and layers. 

Artificial neurons behave in similar way to a human neuron, where it receives a set of inputs, 

processes its inputs based on its function and produces an output signal that is transmitted to 

other neurones.  

The most common version of neurone model is the ones described by Rosenblatt (1958) 

and Minsky & Papert (1969) where generically we can describe a perceptron 𝑘, 𝑝𝑘, by the sum 

of m inputs, 𝑋 = (𝑥1, 𝑥2, … 𝑥𝑚), each one with a weight 𝑤𝑘𝑗 with 𝑗 = 1,… ,𝑚,  with an output 

𝑦𝑘 , that is defined by a given activation function 𝜑 an external bias, 𝑏𝑘, as shown in on the 

Figure 2.1 . 

 
Figure 2.1 – Non-Linear Model of perceptron 

 
Source: Adapted from Ramos (2021) 
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This can be represented as:  

𝑝𝑘 = ∑𝑤𝑘𝑗𝑥𝑗

𝑚

𝑗=1

= 𝑊𝑇𝑋 
(2.35) 

 

𝑦𝑘 =   𝜑 (𝑣𝑘) (2.36) 

where 𝑊 = (𝑤𝑘1, 𝑤𝑘2, … , 𝑤𝑘𝑚) represents the vector of synaptic weights associated with 

perceptron k, that is known as parameterization vector and 𝑣𝑘 is the activation potential of the 

bias 𝑏𝑘, that is equal to 𝑝𝑘 +𝑏𝑘 .  

Another important feature is that each neurone can have an activation function 𝜑, that acts 

as a filter that defines if a given neurons should be activated or not, allowing it to give a neural 

network non-linear propriety. A few examples of activation functions can be seen on Figure 

2.2. 

 
Figure 2.2 –   Examples of Activation Functions (linear and non-linear) 

Source: Adapted from Ramos (2021) 

The other component of a neural network are the Layers. Layers are an organised set of 

neurons that have the same activation function and a given number of neurons.  

Their connections of the neurons are related to its weight, as the signal outputted by a 

given neuron is multiplied by the weight of its own weight, before being passed to the other 

neurons of the layer.  

There are three common layers, shown on Figure 2.3, that should be highlighted:  



2 - Time Series 

29 
 

● Input Layer: This layer has the goal of receiving the inputs of the explanatory 

variables of each observation and therefore will have as many neurons as inputs 

that we wish our model to have. It will pass act as a pass through to the hidden 

layers without altering any data of the input variables.  

● Hidden Layer: This layer is characterised by having an arbitrary number of neurons 

and a single activation function. There can be many hidden layers that can 

transform the inputs into new information to pass as output to the next layers. You 

can have several Hidden Layers where 𝑙, denotes the number of it.  

● Output Layer: This layer is the last layer of the neural network, and it will have as 

many neurons as the desired output number. It will have an activation function 

according to nature of our problem.  

 

Figure 2.3 – Neural Network with two Hidden Layers 

Source: Adapted from Ramos (2021) 

The synaptic weights, W, are calculated in a methodology called ‘’Learning Process’’. This 

training process depends on the type of network, the learning algorithm, learning paradigm 

and the training set. After this training, we can evaluate the performance of the model with a 

given independent subset. 

Regarding the learning paradigms, as shown on Figure 2.4, there are three8 main classes 

that should be highlighted: 

● Supervised Learning: where the parameters are optimized trough iteration having 

in consideration the input patterns and the error signal to reach our output goal. It 

is used for regression and classification problems and generally uses 

Backpropagation algorithm. 

● Unsupervised Learning: where is given to the neural network a set of weight 

adaptation rules and the network iterates in order to understand the patterns of the 

                                              
8 There are also authors that use a fourth option called ‘’semi-supervised learning’’ that is a mix of 
supervised and unsupervised learning. 
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data set. It is mainly used on clustering, association, and dimensionality reduction 

problems. (Becker and Plumbley, 1996) 

● Reinforcement Learning: where the network is rewarded or punished based on 

the desired goal and it will try to maximise the reward through trial and error with a 

given environment. There is only a qualitative evaluation, and the network receives 

a heuristic reinforcement signal. (Barto et al., 1983) 

 

Figure 2.4 – Three main Learning Paradigms 

Source: Adapted from Ramos (2021) 

Focusing on the supervised learning paradigm, when we consider 𝑑𝑖(𝑡) and 𝑦𝑖(𝑡) as the 

desired output signal and the one obtained by the neurone 𝑖 of the output layer on instant 𝑡, 

we can define the error signal as: 

𝑒𝑖(𝑡) =   𝑑𝑖(𝑡)− 𝑦𝑖(𝑡) (2.37) 

The error signal and converted into real numbers by an error function, 𝒞(𝑾), and the 

weights and bias of the network will be optimized based on the minimization of such function. 

According to Bishop (1995), there are the most common cost functions for supervised learning: 

● Error Sum of Squares: 

 ∑𝑒𝑖
2

𝑚

𝑖=1

 
(2.38) 

● Minkowski Error: 

∑|𝑒𝑖|
𝑅

𝑚

𝑖=1

,   𝑤𝑖𝑡ℎ 𝑅 ∈  𝑁 
(2.39) 
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● Mean Squared Error: 

1

𝑚
∑𝑒𝑖

2

𝑚

𝑖=1

 
(2.40) 

● Cross-entropy:  

−∑[𝑡𝑖 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑦𝑖 + (1 − 𝑡𝑖) 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑦𝑖   ]

𝑚

𝑖=1

 (2.41) 

The minimization problem of 𝒞(𝑾) solution can be found with the error surface gradient9 

where the hypersurface is the cost function in a space with dimesons 𝑛, with 𝑛 the dimension 

of 𝑾: 

𝛻𝐶(𝑊) = 
𝜕𝐶(𝑊)

𝜕𝑊
 (2.42) 

And the minimization problem is reach trough iteration, by a applying a learning rate, 𝜂, in 

each iteration given by: 

𝑊(𝑡 + 1) = 𝑊(𝑡) − 𝜂 𝛻𝐶(𝑊) |𝑤=𝑤(𝑡) (2.43) 

The most common learning method for supervised learning was published by (Rumelhart 

et al., 1986) and is called Backpropagation. On simple terms, the goal of this algorithm is to 

minimize the error function by using a gradient technique.  

However, it’s important to notice that the training process can become extremely slow, 

regardless of the learning rate, due to the non-linearity of the activation function or the high 

number of parameters and it has the potential of converging to local minimums on the error 

function that will be different from the global minimums.  10 

 

2.3.1 – Multilayer Perception 

The Multilayer Perceptron (MLP) architecture (previously shown on Figure 2.3) are a simple 

form of Neural Network that have the goal of training the model using a set of input data in 

order to reach a generalisation. The training of this model is done using the Backpropagation11 

algorithm where the network parameters, weights, and bias, are adjusted by minimising the 

error. However, is important to mention that on the majority of the cases, the learning process 

duration (training epochs) is set by the researcher as an hyper parameter of the network. In 

                                              
9 In cases where the cost function is the Error Sum of Squares and the activation function is linear, the 
solution can be calculated analytically. 
10 For a deep explanation on this algorithm, consult Ramos (2021) 
11 In cases where is impossible to escape to the converge of the local minimum, the literature suggests 
the use of some adaptations like Mini-Bach Gradient Descendent or ADAM, introduced by Kingma and 
Ba (2014)as mentioned by Haykin (2009). 
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addition, this model tends to be less robust over other methodologies has it doesn’t take in 

consideration a time factor, that might be a limitation when dealing with time series data. 

 

2.3.2 – Recurrent Neural Networks  

The Recurrent Neural Network Architecture (RNN) is characterised by having a double learning 

process. This model has a first training cycle (following the methodologies of MLP networks) 

and an auto-learning process.  

Although it can have an arbitrary number of hidden layers, its characterised by having a 

feedback loop where the neuron uses its last output as an input on a following future (that is, 

following training epoch), sharing the weights matrices over time as shown on Figure 2.5. 

Because of this, they tend to perform better when modelling and forecasting time series data.  

 

Figure 2.5 – RNN Architecture 

Source: Adapted from Ramos (2021) 

 

2.3.3 – Long Short-Term Memory 

The Long Short-Term Memory (LSTM) networks are a type of RNN that allows the model to 

‘’learn’’ long term dependencies. This results in having a model that has memory of old 

information that it considers to be important and to eliminate short term noise that might not be 
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important for the learning process, resulting in a reduction of the errors. This type of neural 

network seems to be performing better when modelling time series data compared to RNN and 

MLP. 

The way this network functions is by having a chain structure that contains several different 

types of memory blocks, called cells. Each moment of the training, t, carries out the important 

information through the sequence, from the input received, 𝐶𝑡−1, to the output sent, 𝐶𝑡, as 

shown in Figure 2.6. This information flux can be re-fed and re-refreshed several times on each 

training iteration using three different types of gates (Forget Gate, Input Gate and Output 

Gate)12.  

 

Figure 2.6 – LSTM Architecture 

Source: Adapted from Ramos (2021) 

 

2.3.4 – Model Comparison  

Based on the three discussed models, the MLP has an element that can give Deep Learning 

a lot of potential since there might be an arbitrary number of hidden layers between the input 

and output layers. On the RNN, the information persists on the short term, meaning the model 

has memory capabilities. Therefore, while the MLP only produce a static model of the data, 

RNN produce a dynamic model with information storage. This might be useful has the 

previously stored data can be combined with the new data inputs. 

On the LSTM models, with the help of information gates, we can have long term and short-

term memory on the model that results a continuous learning process for the model. With this, 

                                              
12 For a better understanding of how such gates work, consult chapter 3.5 of Ramos (2021). 
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the model can filter irrelevant data from the pass that was once useful from past events and 

store them on different gates (Forget Gate and Input Gate). This selective mechanism of 

memory storage allows the model to learn in a recurring way as it passes to each epoch.  

 

2.3.5 – Training and Evaluating Networks  

As mentioned before, the training of a Neural Networks is done by executing given a learning 

algorithm that will adjust its synaptic weights by receiving a given dataset as input allowing to 

find patterns on the data and made forecasting.  

After this training, we need to evaluate the performance of such a model. A common 

situation on this type of techniques is a problem called overfitting where the model has a high 

predictive performance on a particular set of data, and has ‘’learn’’ them well, but doesn’t have 

good generalisation and forecasting performance. According to Brownlee (2017) overfitting 

can have two origins: the selection of the hyperparameters of the network and/or the 

determination of the stopping criteria of the training.  

In order to solve this issue, authors such as Hastie et al. (2009) use a method called cross-

validation in order to evaluate the generalisation capacity of the network during its own training. 

This technique divides the data into subsets: training sample and testing sample. The training 

sample will be divided into two subsets: one to optimise the parameters of the model (training 

set) and the other to evaluate the quality of network generalisation by the end of each training 

epoch. There are also different cross-chain methodologies such as Forward Chaining, k-Fold 

and Group K-fold.  

Is also important to mention the fact that Training and Evaluating a Neural Network is a 

fundamental step on the construction of the model whose mathematical foundation is 

extensive. Due to this fact, a detailed explanation of the implicit mathematical mechanisms of 

this models would not be feasible in this work. Nonetheless, it’s recommended to consult 

Ramos (2021) and Haykin (2009). 

 

  



3 - Methodological Study 

35 
 

3 – Methodology 

On this Chapter, it is going to be explore what variables are going to be used on this study. 

This section will be followed the explanation of the computational implementations that allowed 

for the data treatment and for the implementation of our models. 

 

3.1 – Data  

The data used on this study was obtained from the Yahoo Finance Public API by calling the 

ticker ‘’BTC-USD’’ and it refers to all the available data for the Bitcoin Daily Prices (from 07-

09-2014 to 01-05-2022) expressed in U.S. Dollars. Using this data, we computed the volatility 

by squaring the daily returns of this variable. This data was then feed to the codes previously 

created in Ramos (2021) and Ramos and Lopes (2021). 

With the goal of achieving the research purpose of this study, we take in consideration two 

time-series variables: 

1. BTC-USD: Bitcoin’s Daily Closing Prices 

2. BTC-USD-VOL: Bitcoin’s Daily Volatility 

 

3.2 – Computational Implementation  

Inspired by the methodologies developed by Ramos (2021), it was utilised a Jupyter Notebook 

environment that allows for the coding of Python programming language13.  

In order to make the code development faster and more efficient, it was used the following 

Python Open-Source Libraries: 

1. NumPy and Pandas: In order to structure, process and analyse data and perform 

basic mathematical calculations; 

2. Matplotlib: In order to implement visualisation tools; 

3. StatsModels: In order to perform multiple statistical tests; 

4. Arch: In order to implement Arch and Garch models; 

5. TensorFlow: In order to implement neural networks; 

6. DM_Test: In order to perform Diebold-Mariano test. 

In order to achieve this, four notebooks were implemented14:  

1. ExploratoryDataAnalysis.ipynb: where it was performed an exploratory data 

analyses of each Time Series evolving graphical representations, statistical metrics 

and other statistical tests;  

                                              
13 During this study, it was utilised the 3.7.3 version of Python. 
14 The notebooks 1 and 3 are available in an open-source repository at Lopes (2019) and Lopes (2020) 
whereas the notebooks 2 and 4 were implemented by the author using the previously mentioned open-
source Python libraries. 
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2. Arch_Garch.ipynb: for the implementation of the Arch and Garch models; 

3. DeepNeuralNetwork.ipynb: for the implementation of the Neural Networks; 

4. DMTest.ipynb: where the Diebold-Mariano Test was implemented. 

 

3.2.1 – Exploratory Time Series Data Analyses 

According to Ramos (2021), when we are trying to implement forecasting methodologies is 

useful to understand a few behaviours of the data such as trend or seasonality. The 

methodology proposed by Hodrick and Prescott (1997) as used in order to remove cycle and 

trend components using an Hodrick-Prescott filter on the raw data, using the hpfilter of the 

statsmodels python library. 

In order to study structural breaks of the timeseries in question, it was used the CUSUM 

algorithm. The implementation was done using detect_cusum function on Python that was 

developed by Duarte and Wantanbe (2018).  

For inferential analysis, it was applied several hypothesis tests in order to study normality 

(Jarque-Bera, Skewness and Kurtosis Tests) using scipy Python’s Library. In order to study 

independence to the data, it was implemented the BDS Test using statsmodels Library.  

 

3.2.2 – Model Implementation: ARCH, GARCH and Neural Networks 

Regarding the computational implementation of the ARCH and GARCH models 

(Arch_Garch.ipynb), they were implemented using Python’s Arch Library. ACF and PACF plots 

were calculated using plot_acf and plot_pacf functions from statsmodels. After this, it was 

made an iteration on possibilities for each model in order to find the parameters that would 

have the lower AIC and BIC. It was analysed ARCH(p) with p ∈ {1,2,3,4,5,6,7} and 

GARCH(p,q) with p,q ∈{1,2,3,4,5,6,7}. 

When it comes to the Neural Networks, it was implemented the research procedures 

suggested by Ramos (2021).   

With Python, the implementation of the MLP, RNN and LSTM models15 

(DeepNeuralNetwork.ipynb) was possible with the tensorflow library using Dense, SimpleRNN 

and LSTM functions. The methodology is described on Figure 3.1. 

 

                                              
15 ARMA models were also tested but didn’t seem to present better forecasting quality.  
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Figure 3.1 – Computational Implementation of Neural Networks. 

Source: Adapted from Ramos (2021) 

 

3.2.3 – Forecasting and Error Evaluation 

In order to systematically evaluate the quality of our forecasting models, it’s necessary to 

create a set of methodologies to evaluate the performance of the data that was extrapolated 

into the future using our first data sample and compared it with the real values. This is where 

the concept of Forecasting Error. As Ramos (2021) explores, there are two types of errors: (i) 

Random, due to the lack of knowledge of future variations whose factors are not included in 

the model; and (ii) systematic, committed consistently due, for example, to the selection of 

incorrect mathematical relationships between variables, or to differences between the true 

parameters and their estimates. According to Hamilton (1993) both of them contribute to the 

forecasting error and the best forecasting model will be the one that can minimize the 

systematic error.  

Therefore, if we consider 𝑦𝑡+ℎ the unknow value in the future and �̂�𝑡+ℎ the forecasting 

values obtained by our models based on the available information until time t, the forecasting 

error is given by: 

𝑒 𝑡+ℎ = 𝑦𝑡+ℎ − �̂�𝑡+ℎ 
(3.1) 

It is also important to establish a set of indicators that can evaluate the Forecasting Errors 

in numerical terms. Although there are several different error metrics and methodologies 

mentioned and used throughout the literature, we would like to highlight the ones that were 

used in this study. 
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If we consider s, as the number of forecasting values to perfume (forecasting window), we 

have:  

 Mean Error (ME) 

𝑀𝐸 = 
∑ 𝑒𝑖𝑆
𝑖=1

𝑠
  (3.2) 

 Mean Absolute Error (MAE) 

𝑀𝐴𝐸 = 
∑ |𝑒𝑖|𝑆
𝑖=1

𝑠
  (3.3) 

 Mean Absolute Percentage Error (MAPE) 

𝑀𝐴𝑃𝐸 = 
∑ |

𝑦𝑡+𝑖 − �̂�𝑡+𝑖
𝑦𝑡+𝑖

|𝑆
𝑖=1

𝑠
 × 100 (3.4) 

According to Ramos (2021), when you compare MAE and MAPE, it can be verified that 

there is a ‘’dimensional quantity’’ on MAE, since it is express in the unit of measure of the data, 

whereas MAPE is a ‘’dimensionless quantity’’ since we evaluate the error dimension in 

percentual terms. This is a characteristic that represents advantages in its analysis since it is 

not only a simple interpretation of the results as it allows to compare errors from data series 

with different units of measure.16 

Lastly, was performed a Diebold-Mariano Test (DMTest.ipynb) with the best performing 

model of each category (Arch/Garch vs Neural Networks). This was implemented using 

dm_test library on Python with the default values.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                              
16 It is important to mention that MAPE cannot be used when we have null values for 𝑦

𝑡+𝑖
 or when we 

have a small data sample. (Ramos, 2021) 
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4 – Empirical Study 

After such theoretical chapters, this chapter aims to explore and describe the methodological 

perspective of this research work. It will be presented a description of the financial time series 

in study, after a brief exploratory analysis of Bitcoin and Bitcoin’s Volatility, followed by the 

modelling and forecasting of Bitcoin's Volatility with the respective analyses, comparison, and 

discussion of the results.  

 

4.1 - Exploratory Analysis of the Time Series 

 

4.1.1 - BTC-USD 

The first time series in analysis is Bitcoin’s Price. This series was obtained from Yahoo Finance 

Public API with the ticker ‘’BTC-USD’’ and represents daily closing prices from 07-09-2014 to 

01-05-2022, resulting in a total of 2754 observations, that are represented on Figure 4.1 with 

complementary plots available on Appendix A. 

 

Figure 4.1 - BTC-USD: Graphic Representation 

The main statistics are shown on Table 4.1. Other complementary information available on 

the appendix shows that we the data series doesn’t show seasonality, but it has a positive 

trend. 

Table 4.1 – BTC-USD: Main Statistics 

Count Mean Std Min Q1 Q2 Q3 Max Kurtosis Skew 

2754 11771.1 164002.9 178.1 609.8 6385.7 10783.3 67566.8 1.786 1.741 

On Table 4.2, we have the results of hypothesis tests regarding normality, stationarity, and 

independence.  
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Table 4.2 – BTC-USD: Normality, Stationarity and Independence Tests 

 Normality Tests Unit Root Tests Independency Tests 

 Kurtosis Skewness Jarque- Bera ADF KPPS BDS 

Statistic 10.7195 26.3739 1756.9660 -0.8417 5.9440 9.0845 - 18.8436 

p-value* 0.0000* 0.0000* 0.0000* 0.8066 --- 0.0000* 

*We reject 𝐻0 for the significance levels of 1%,5% and 10%. 

Based on those values, we reject normality for any significance level of all the tests we 

performed. In addition, we have statistically significant evidence that led just to the conclusion 

that the series is non-stationary, as expected, since we do not reject the null hypothesis for the 

ADF Test and by having a statistic value that is superior to all the critical values for the KPSS 

Test. Regarding Independency with BDS Test, by rejecting the null hypothesis for any 

significance level, we reject the null hypothesis and conclude there is some sort of linear 

dependency of the time series.  

 

4.1.2 - BTC-USD-VOL 

This is the second time series in analysis and where we will be focusing our modelling and 

forecasting efforts.  

This series, plotted on Figure 4.2, was obtained by squaring the daily returns of BTC-USD 

time series resulting in 2753 observations from 08-09-2014 to 01-05-2022. Complementary 

Plots are available on Appendix B. 

 
Figure 4.2 - BTC-USD-VOL: Graphic Representation 

On the equation 4.1, is shown the formula in order to achieve such calculation: 

𝐷𝑎𝑖𝑙𝑦 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝑅𝑒𝑡𝑢𝑟𝑛𝑠 = (
𝑦𝑡+1
𝑦𝑡

− 1)
2

  (4.1) 
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As observed in Figure 4.3 and complemented on Appendix B, the series shows some signs 

of heavy tailed distribution with several outlier values that occur when we have volatility spikes 

(high volatility) which is a characteristic of this particular asset.  

However, this needs to be further confirmed with Normality tests, (that will be represented 

on Table 4.5). 

 

Figure 4.3 - BTC-USD-VOL: Cumulative Distribution Function with zoomed view 

On Table 4.3 and Table 4.4, we have a summary of BTC-USD-VOL statistics. Other 

complementary information on Appendix B where we can observe the lack of any trend and 

seasonality.17 

Table 4.3 - BTC-USD-VOL: Main Statistics 

Count Mean Std Min 

2753 0.001513 0.004576 0.000000 

Table 4.4 - BTC-USD-VOL: Main Statistics  

Q1 Q2 Q3 Max Kurtosis Skew 

0.000038 0.000251 0.001196 0.138157 319.950 13.469 

Based on those values, we observe a very high positive Leptokurtic Kurtosis and a very 

high Skew meaning that the timeseries is strongly positively skewed to the right with a right 

tail. Nonetheless, we need to further validate these ideas, using the Normality Tests.  

With the Normality Tests, we reject all the null hypothesis for normality, and we can 

conclude that our timeseries does not have a normal distribution. In addition, both ADF and 

KPPS tests confirm that the series is stationary, as we expected.  

When testing for Independency, we conclude that by not rejecting the null hypothesis for 

any significance level and therefore the data is i.i.d.. This can be observed on Table 4.5.  

                                              
17 Note that is not possible to perform multiplicative decomposition to the series since we have zero 
values on the timeseries.  
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Table 4.5 - BTC-USD-VOL: Normality, Stationarity and Independence Tests 

 Normality Tests Unit Root Tests 
Independency 

Tests 

 Kurtosis Skewness Jarque-Bera ADF KPPS 
BDS 

(Dim.2 – Dim. 6) 

Statistic 36.4657 61.5091 11825693.6472 -15.1772 0.2025 
0.2417 - 0.4654 

 

p-value* 0.0000* 0.0000* 0.0000* 0.0000* --- 0.8090 - 0.6416 

*We reject 𝐻0 for the significance levels of 1%,5% and 10%. 

 

As previously explored, on Chapter 2, this highlights the importance of implementing non-

linear models for forecasting timeseries data.  

Lastly, by applying a CUSUM algorithm, we identified several structural break situations, 

as shown on Appendix B, where we observe several regimes shifts throughout our series 

(highlighted with red circles). These shifts occur when the cumulative sum of the variations 

reach a value that is higher than our threshold (marked with a red line, on the lower chart on 

Appendix B) regardless of the variations being positive or negative. Is important to reenforce 

the fact that the series in study represents volatilities and therefore have a high number of 

structural breaks. 

As pointed out on Chapter 2, the high number of structural breaks might represent 

forecasting difficulties for the classical econometric models and an advantage for the deep 

learning methodologies. 

 

4.2 - Modelling and Forecasting  

Following the models previously described in Chapter 2, this section will present the results 

from the implementation, modelling and forecasting using such models and techniques. This 

will be separated into two groups: The Classical models and the Neural Networks models.  

 It’s important to mention that we considered all the values above 0.06 as outliers and 

were excluded from the dataset. This resulted in an exclusion of only 2 data points out of 2753 

observations but resulted in an overall decrease in MAPE across all models, especially with 

the neural network models (with some models doubling their forecasting accuracy). On 

GARCH and ARCH, this was less noticeable.  

 

4.2.1 - Autoregressive Conditional Heteroskedastic Models 

Although several variations on such models have been discussed and presented, this research 

will be focusing on the use of two models: ARCH and GARCH. As the time series in question 

is stationary, the following step would be to perform the Autocorrelation and Partial 

Autocorrelation test functions to find the number of lags for our models. 
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As shown in Appendix B, the time series has a slight correlation in the first few lags. After 

iteration with different lags18, it was confirmed that ARCH(4) and GARCH(4,2) have the best 

expected generalisation properties with both AIC and BIC showing the lower values for the 

given parameters.  

After this model selection, we plotted the forecast estimations and its respective for seven 

days, as observed in Figure 4.4 and Figure 4.5. 

 
Figure 4.4 – ARCH(4) Forecasting Values and Prediction Error comparison 

 
Figure 4.5 – GARCH(4,2) Forecasting Values and Prediction Error comparison 

 

On the Table 4.6, we computed the values for MAE and MAPE for each error metric (MAE 

and MAPE) for each forecast horizons in study. 

                                              
18 As mentioned in Chapter 3, ARCH(p) with p ∈ {1,2,3,4,5,6,7} and GARCH(p,q) with p,q ∈{1,2,3,4,5,6,7}. 
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Table 4.6 – ARCH(4) and GARCH(4,2) Forecasting Errors comparison 

 

 
Days MAE MAPE 

ARCH(4) 

1 

3 

7 

0.00216 

0.00155 

0.00198 

343.672 % 

194.452 % 

463.812 % 

GARCH(4,2) 

1 

3 

7 

0.00244 

0.00164 

0.00219 

388.740 % 

217.583 % 

519.654 % 

4.2.2 - Neural Network Model 

The neural network study will be focusing on the modelling and forecasting of using three types 

of architecture: MLP, RNN, and LSTM.  

There was a pre-processing procedure of the entire BTC-USD-VOL data set, where it 

performed an exponential smoothing of the time series as this results in better performance of 

the errors of the cross-validation tests.  

Regarding the types of architectures and their respective hyperparameters optimization, it 

is important to mention that our study was limited by the amount of the computational time we 

had available, since the training of these models can go from a few seconds to several days, 

for the more complex models. In addition, the choice of the hyperparameters can be subjective. 

From our research, choosing between three to five hidden layers will optimise the learning of 

our models without compromising its generalisation properties through overfitting.  

The other hyperparameters were adjusted based on the architecture type and suggestions 

made Brownlee (2017). With the hyper parameters set, we perform the training of our model. 

As suggested by Kingma & Ba (2014) we used ADAM optimization algorithm and ran 200 

epochs for each model. Regarding the cross-validation, it was tested using Forward Chaining 

methodology, as suggested by Ramos (2021). In order to evaluate the networks, we will use 

MAE and MAPE calculated based on a one-, three- and seven-day prediction. 

Based on these assumptions, after training, validation and evaluation of our models, we 

plotted our forecasting estimations for each model. On the Appendix E, we can observe: (1) 

the real volatility (plotted in black); (2) the data window used to train our models (orange area); 

(3) our in sample-predictions (plotted in orange) and (4) our out-of-sample forecast (plotted in 

blue).  

On Table 4.7, it is presented the values for MAE and MAPE computed from the out-of-

sample predictions where we have each error metric for forecast horizons in study. 
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Table 4.7 – Neural Networks Out-of-Sample Forecasting Errors Comparison 

 Days MAE MAPE 

MLP 

1 

3 

7 

0.00003 

0.00123 

0.00074 

4.911 % 

56.738 % 

61.633 % 

RNN 

1 

3 

7 

0.0002 

0.00128 

0.00067 

31.852 % 

61.909 % 

49.017 % 

 

LSTM 

1 

3 

7 

0.00043 

0.001517 

0.00089 

69.427 % 

96.774 % 

149.801 % 

On Figures 4.6, 4.7 and 4.8, it is plotted, in black, the real value and, in blue, the predicted 

value of each model in analysis followed by the prediction error.   

 
Figure 4.6 – MLP Forecasting Values and Prediction Error comparison 

 

 
Figure 4.7 – RNN Forecasting Values and Prediction Error comparison 
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Figure 4.8 – LSTM Forecasting Values and Prediction Error comparison 

 

4.2.3 – Model Comparison Analyses  

With all the models computed and results shown, it is of great importance to finish with a 

comparison between all the five models (Figure 4.9 that is complemented on Appendix F) that 

we studied throughout this research and conclude which one is the most accurate to forecast 

Bitcoin’s Volatility – one of the research questions of this work.  

 

Figure 4.9 – Forecasting Comparison of all Models  

From the classical approach, it was confirmed that ARCH(4) and GARCH(4,2) have the 

best expected generalisation properties with both AIC and BIC showing the lower values for 

the given parameters. Based on the Forecasting Error Metrics of Table 4.6, ARCH(4) has the 
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best forecasting quality. Although the literature tend to prefer the use the GARCH(1,1) for 

volatility forecasting, in the case of BTC-USD-VOL, this are not the best GARCH parameters 

(in conformity with  Senarathne (2019)).  

Regarding the Deep-Learning models with the graphic representation of Figure 4.6, Figure 

4.7 and Figure 4.8 (with complements on Appendix E), we can observe that all the models 

show some degree of forecasting properties, however MLP model had performed the better 

on the shorter time horizons (one-day and three-days) while RNN was the model with lower 

forecasting errors on the seven-day horizon (as shown on Table 4.7).  Although LSTM was the 

most complex model it had performed the worst. This was an expected phenomena since 

LSTM models tend to underperform when forecasting stationary time series as highlighted by 

Ramos et al. (2022). In addition to this, this type of neural network is the one that requires the 

most computational cost and time, so is highly inefficient to use it on our forecast. Nonetheless, 

both MLP and RNN seem to have a smoother prediction that fluctuate less but fails to capture 

the big volatility spikes, like the one that occur on day two, while seems to LSTM react strongly 

to such movements and tries to adjust their forecast accordingly. This happens due to its long-

term memory proprieties that allows the model to ‘’remember’’ that such volatility spikes in the 

past might result on high volatility spikes on the following days known as volatility clustering 

(as explored on Chapter 2).  

In addition to this, we will also implement the Diebold-Mariano Test proposed by Diebold 

and Mariano (1995) with modification suggested by Harvey et al. (1997) to statistically identify 

forecast accuracy equivalent for two sets of forecasting results and therefore also evaluate 

with the difficulties to model a neutral network really represent significant advantages 

compared to the classical models.  

Based on the metrics in study, we have chosen the models with lower MAE and MAPE 

and decided to compare the ARCH(4) model with the MLP neural network and perform the 

Diebold-Mariano Test for the seven-day horizon and presented the results on Table 4.8. 

Table 4.8 – Diebold-Mariano Test 

 Diebold-Mariano 

Statistic -3.2724894 

p-value 0.03345 

Based on Diebold-Mariano test, for the significance level of 5%, we reject 𝐻0. With this, 

there is statistically significant evidence to assume that the forecasts don’t have equal 

predictive accuracy and that one is significantly more accurate than the other.  

 

 

 



4 - Empirical Study 

 

48 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 - Conclusion 

 

49 
 

5 - Conclusion 

On the last years, Bitcoin has sparked the interest of researchers for a variety of reasons. The 

fact that this new asset class has several patterns and characteristics that fall out of the 

ordinary such as high volatility, high number of structural breaks and unusual probability 

distributions result in several interesting research subjects. Nonetheless, as mentioned by the 

literature, the amount of academic research that we have about the topic remains particularly 

low. From the current study, here is a synthesis of some contributions to topic, despite the fact 

that we also acknowledge its limitations that should be considered as future research ideas. 

 

I. Contributions 

Aligned with the initial motivation of this study, the research goals of this work where 

achieved, from where highlight the following: (i) systematic literature review on how Bitcoin 

operates and identification of several inner protocol mechanics that generate price volatility 

and that can be used has a base for future research; (ii) compilation on computational 

methodologies that can automate parts of the model construction process, making it more 

efficient; (iii) compared the forecasting results of classical models vs Deep-Learning 

methodologies and discussed the ones that have more forecasting quality. 

These contributions were baselined on the research questions mentioned on the 

Introduction. On this section, we aim to synthesize the main facts and Ideas that were 

developed on this work. 

 

(A) How Bitcoin functions and what are the out-of-ordinary volatility drivers? 

 

This study was able to aggregate and organise several works on the history of Bitcoin, how 

it functions, it’s main characteristics as a new asset class discussed on Section 1.1. 

Secondly, a revision on what the literature discussed on what can be the main reasons 

behind its price and the extraordinary volatility of this asset. According to the literature, this 

includes the price of production (electricity costs), programmed scarcity, programmed supply 

shocks (halving’s), Demand Shocks (Price-Hash Rate Spirals), hash rate, Network Trust and 

Liquidation Cascades. It also discussed some stylised facts about bitcoin such has the fact 

that the returns have low exposure to traditional asset classes, it has a positive trend, it is 

characterised by high volatility, that is has less trading volumes on weekends, and doesn’t 

have inflation hedge proprieties. However, is important to mention that some authors also 

suggest that the price and volatility of bitcoin happens only because of the speculative nature 

of its investors or that the cost models cannot explain price since a non-dividend yield asset 
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that has the probability of going to zero (e.g., due to technical obsolescence), should have a 

present value of zero. 

 

(B) From the models in study, which one is the best forecasting Model for Bitcoin’s 

Volatility?  

 

In order to discuss this research question, we compared the five different types of models 

where the approach was to separated them in two sections: Classical vs Deep Learning 

Methodologies.  

According to the literature, one of the most common models to study and forecast volatility 

of financial timeseries is GARCH(1,1), however, as mentioned by Senarathne (2019), this is 

not the case for bitcoin. The results of this work are in line with this fact, has for the forecasting 

time horizons and data in study, the model that best fit the data, when we took in consideration 

ARCH and GARCH models, were ARCH(4) and GARCH(4,2), with ARCH(4) being the one 

with best forecasting quality when you consider MAPE.  

From the Deep Learning approach, MLP model had performed the better on the shorter 

time horizons (one-day and three-days) while RNN was the model with lower forecasting errors 

on the seven-day horizon. As mentioned on Chapter 2, this might be explained by the fact that 

the RNN model has basic memory capabilities, producing a dynamic model with information 

storage while the MLP only produce a static model of the data.  

Although LSTM was the most complex model it had performed the worst of the Deep-

Learning methodologies. These results corroborate with the literature since this type of 

architecture seems to underperform when the series is stationary. Despite of that, the neural 

network long-term memory properties seem have ‘’learned’’ the concept of volatility clustering’’, 

a well-known and studied characteristic of volatility, where model seems to ‘’remember’’ that a 

volatility spikes in the past might result on high volatility spikes in the future. 

Nonetheless, the MLP neural network model that has built was the model that had more 

forecasting quality and lower forecasting error from the five models explored on this work while 

having the lowest computational costs of the deep-learning Methodologies.  

 

(C) Are Deep-Learning Methodologies an improvement of classical methodologies? 

 

The Deep-Learning Methodologies seem to show advantages to classical methodologies 

when it comes to forecasting quality mainly due to the fact that they are a more complex 

methodology that can capture non-linear dependencies of the data in a more robust way. 

Nonetheless, is important to highlight that Deep-Learning models have much higher 

computational costs and are much harder to implement than the classical techniques. 
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However, the implementation of such models resulted in a very significant improvement of the 

forecasting errors allowing us to reach the conclusion that the increase on the computational 

costs justify the implementation of such models especially if it’s taken in consideration that 

MLP is not the most complex model to implement or has the biggest computational costs when 

we compare it to RNN or LSTM. 

Lastly, when it was compared the forecasting accuracy of ARCH(4) an MLP models with 

a Diebold-Mariano test for the seven-day time horizon, it was concluded that the accuracy of 

the models is not the same, and one is better for the significance, where it can be inferred that 

MLP is the one that performs better. 

 These facts are in line with the literature and previous research work. It also highlights 

the importance of these new methodologies and how researchers should be equipped with the 

knowledge on how these models work in order to help them better explain the world by better 

understanding the economic reality.  

II. Limitations and Future Research Perspectives 

Although it is believed that this work contains valuable contributions to the scientific debate 

of the topic in question, it is also important to highlight the limitations associated with our study 

and its conclusions with the goal of opening room for future research. 

The first limitation of the volatility drivers resides in the fact that this study tried to focus on 

inner protocol mechanisms that can result in volatility drivers. Although we briefly touched on 

the subject, there are more room to explore market dynamics that only exist on the 

cryptocurrency markets such as the low liquidity and its effects on slippage, the market 

microstructure, high availability of leverage or even market manipulation.  

Secondly, is important to mention that we used a limited range of ARCH/GARCH models. 

With this, we want to highlight the fact there are more advanced models on this category that 

might be able to compete with Deep-learning Methodologies and even have similar forecasting 

capabilities without the necessary of the difficulties in the implementation or the computational 

power. 

Thirdly, our models only have one variable, and we didn’t introduce external factors. This 

type of univariate analysis is the simplest form of analysing data and when we are dealing with 

complex financial timeseries with non-linear proprieties, there is room for improvement with 

the implementation of more variables in the model. 

With this said and with the perspective of continue improvement of this work and human 

knowledge, we leave the suggestion of trying to approach volatility with a multi-variable 

perspective. This might result in more accurate forecasting models although it could also out-

turn in more complex model that requires more computation time and power to ‘’learn’. 
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Nonetheless, we would suggest researching models with three types of variables: (1) 

Derivatives Data - such as futures funding rates, volumes, open-interest or options realized, 

unrealized and implied volatility, premiums and volumes; (2) On-chain Data - such as big 

transactions, networks hash-rate and difficulty or number of network transactions; (3) Market 

Sentiment Data - using Fear and Greed Indexes or number of mentions of the ticker on social 

media. Nonetheless, it’s important to mention that these variables only serve as suggestions 

and need to be further analysed as Bitcoin’s volatility may help explain them and not the other 

way around.  

In addition to this, there is also suggestion of approaching the volatility of Bitcoin with the 

usage of Hybrid models. These new models can not only combine the potential of several 

methodologies has they can improve the current ones by reducing the computational time while 

keeping similar forecasting quality. (e.g., Ramos et al. (2022)) 

To sum up, it is hoped that the work developed on this study could be a valuable 

contribution to better understand Bitcoin’s volatility and the potential of deep-learning 

methodologies. Most researchers seem to be using a more classical approach to volatility 

forecasting with Autoregressive Conditional Heteroskedastic models but the recent 

advancements of the computational power and easy access pre-build open-source python 

libraries, show deep-learning methodologies as a promising option to improve the forecasting 

quality and research should embrace it in order to better these new types of excited asset 

classes that are becoming part of our economic reality. 
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Time Series Analysis Plots for Bitcoin Volatility 
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Cross Validation Plots - MLP  
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Cross Validation Plots – RNN 

 

   
 

Cross Validation Plots – LSTM 
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Appendix D 
Arch Model 

Garch Model
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ACF and PACF Plots 

 

 
Examples of AIC and BIC Values for ARCH models 

 
Examples of AIC and BIC Values for GARCH models 
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Appendix E 

 
MLP Model: Forecasting and Sample Fitting 

 
 

RNN Model: Forecasting and Sample Fitting 
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LSTM Model: Forecasting and Sample Fitting 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



7 - Appendix 

 

71 
 

Appendix F 
Table with Real Values in Comparison to Model Forecast 

 

Days Real Arch Garch MLP RNN LSTM 

1 0,000628 0,002808 0,002831 0,000604 0,000429 0,000192 

2 0,003348 0,002786 0,002837 0,000517 0,000423 0,000383 

3 0,000869 0,002783 0,002824 0,000256 0,000291 0,002019 

4 0,000184 0,002817 0,002894 0,000496 0,000184 0,001458 

5 0,000856 0,002808 0,002866 0,000079 0,000242 0,001027 

6 0,000537 0,002802 0,002858 0,000018 0,000326 0,000756 

7 0,000487 0,002801 0,002837 0,000202 0,000584 0,000512 

 
 


