
The Multi Supply Function Abstraction for
Multiprocessors

Enrico Bini, Giorgio Buttazzo, Marko Bertogna
Scuola Superiore Sant’Anna

Pisa, Italy
Email: {e.bini,g.buttazzo,m.bertogna}@sssup.it

Abstract—Multi-core platforms are becoming the dominant
computing architecture for next generation embedded systems.
Nevertheless, designing, programming, and analyzing such sys-
tems is not easy and a solid methodology is still missing.

In this paper, we propose two powerful abstractions to model
the computing power of a parallel machine, which provide a gen-
eral interface for developing and analyzing real-time applications
in isolation, independently of the physical platform. The proposed
abstractions can be applied on top of different types of service
mechanisms, such as periodic servers, static partitions, and P-
fair time partitions. In addition, we developed the schedulability
analysis of a set of real-time tasks on top of a parallel machine
that is compliant with the proposed abstractions.

I. INTRODUCTION

Multi-core architectures represent the next generation of
computing devices for providing an efficient solution to the
problem of increasing the processing speed with contained
power dissipation. In fact, increasing the operating frequency
of a single processor would cause serious heating prob-
lems and considerable power consumption [13]. Programming
multi-core systems, however, is not trivial, and the research
community is working to produce new theoretical results or
extend the well established theory for uniprocessor systems
developed in the last 30 years. The core of the difficulties
in multiprocessor scheduling can be synthesized as follows:
two unit-speed processors provide less computational resource
than one double-speed processor.

One of the most useful concepts developed in the last
years that needs to be extended to multiprocessors is the
Resource Reservation paradigm [21], [1], according to which
the capacity of a processor can be partitioned into a set
of reservations, each equivalent to a virtual processor (VP)
that provides a fraction of the available computing power. A
reservation is often modelled by a pair (Qi, Pi) indicating that
Qi units of time are available every period Pi, meaning that
the virtual processor has an equivalent bandwidth αi = Qi/Pi.
The main advantage of this approach is for soft real-time
applications with highly variable computational requirements,
for which a worst-case guarantee would cause a waste of
resources and degrade system efficiency. In fact, when the
worst case is rare, a more optimistic reservation increases
resource usage while protecting other tasks from being de-
layed by sporadic overruns [9]. Such a property is referred

This work has been partially supported by the ACTORS European project
under contract 216586.

to as temporal protection (also called temporal isolation or
bandwidth isolation).

Temporal protection has the following advantages: (i) it
prevents an overrun occurring in a task to affect the temporal
behavior of the other tasks, and (ii) it allows to guarantee
an application allocated to a virtual machine in “isolation”
(that is, independently of the other applications in the system)
only based on its timing requirements and on the amount of
allocated resource.

Below we discuss some works related to our approach.

A. Related works

One of the first papers addressing resource reservations
was published in 1993 by Parekh and Gallager [24], who
introduced the Generalized Processor Sharing (GPS) algorithm
to share a fluid resource according to a set of weights. Mercer
et al. [21] proposed a more realistic approach where a resource
can be allocated based on a required budget and period. Stoica
et al. [28] introduced the Earliest Eligible Virtual Deadline
First (EEVDF) for sharing the computing resource. Deng and
Liu [10] achieved the same goal by introducing a two-level
scheduler (using EDF as a global scheduler) in the context
of multi-application systems. Kuo and Li [16] extended the
approach to a Fixed Priority global scheduler. Kuo et al. [17]
extended their previous work [16] to multiprocessors. However
they made very stringent assumptions (such as no task migra-
tion and period harmonicity) that restricted the applicability
of the proposed solution.

Moir and Ramamurthy [22] proposed a hierarchical ap-
proach, where a set of P-fair tasks can be scheduled within a
time partition provided by another P-fair task (called “super-
task”) acting as a server. However, the solution often requires
the weight of the supertask to be higher than the sum of the
weights of the served tasks [15].

Many independent works proposed to model the service
provided by a uniprocessor through a supply function. Mok,
Feng, and Chen introduced the bounded-delay resource parti-
tion model [12]. Almeida et al. [2] provided timing guarantees
for both synchronous and asynchronous traffic over the FTT-
CAN protocol by using hierarchical scheduling. Lipari and
Bini [20] derived the set of virtual processors that can feasibly
schedule a given application. Shin and Lee [26] introduced
the periodic resource model also deriving a utilization bound.

2009 15th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications

1533-2306/09 $25.00 © 2009 IEEE
DOI 10.1109/RTCSA.2009.39

294

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on February 10, 2010 at 08:35 from IEEE Xplore. Restrictions apply.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca della Scuola Superiore Sant'Anna

https://core.ac.uk/display/54929364?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Easwaran et al. [11] extended this model allowing the server
deadline to be different than the period.

The research on global EDF algorithms has been also very
active. Funk, Goossens, and Baruah [14] derived the EDF
analysis on uniform multiprocessors, later extended by Baruah
and Goossens [5] to the constrained deadline model. Baker [4]
proposed a method for estimating the maximum possible
interference for each task. Bertogna et al. [7] proposed a very
efficient test for multiprocessor systems under both EDF and
fixed priority scheduling.

Shin et al. [25] proposed a multiprocessor periodic resource
model to describe the computational power supplied by a
parallel machine. They model a virtual multiprocessor by
the triplet 〈Π, Θ, m′〉 meaning that an overall budget Θ is
provided by m′ processors every period Π. The big advantage
of this interface is that it is simple and captures the most
significant features of the platform. Nonetheless, it has two
main drawbacks. First, the same periodicity Π is provided to
all the tasks scheduled on the same virtual multiprocessor.
This can lead to a quite pessimistic interface design. In fact,
the period of the interface is typically constrained by the task
with the shortest period. However, tasks with longer period
could be scheduled by a server with larger period, saving
runtime overhead. Hence, an approach that reserves time with
different periodicity is more efficient and can better capture
the needs of an application composed by tasks with different
periods. Second, considering the cumulative budget Θ supplied
by all the processors leads to a more pessimistic analysis,
than considering the contribution of each VP. This happens
because the worst-case scenario in multiprocessor systems
occurs when the available processors allocate resources with
the maximum possible level of parallelism. Hence, the analysis
must assume that the overall resource Θ is provided with a
level of parallelism that is often higher than it really is.

Leontyev and Anderson [19] proposed a very simple, though
effective, multiprocessor interface with a single parameter, the
bandwidth. The authors suggest that a bandwidth requirement
w > 1 is best allocated by an integer number �w� of dedicated
processors plus a fraction of w−�w� allocated onto the other
processors. This choice is supported by the evidence that a
given amount of computing speed is better exploited on the
minimum possible number of processors. However, there are
some circumstances in which this approach is not best suited.
In fact, the authors illustrate an example in which a set of
real-time tasks is not schedulable when the suggested policy
is adopted, whereas the tasks can meet their deadlines under
a different bandwidth allocation strategy. Moreover, there are
situations in which the proposed allocation strategy cannot
be adopted, when the physical platform is already allocated
to other applications, and processors may not be entirely
available.

B. Contribution of the paper

In this paper, we propose two abstractions for a parallel
machine: (i) the Multi Supply Function (MSF) abstraction,
which describes the exact amount of resource provided by the

platform, and (ii) the Multi-(α, Δ) (MαΔ) abstraction, which
is much simpler to use for the programmer but introduces
some waste of the available resource.

We propose a schedulability test that can be used on top
of both resource abstractions for verifying the feasibility of a
real-time task set under global EDF, global fixed priority (FP),
and any work-conserving algorithm.

The rest of the paper is organized as follows. Section II
introduces the terminology and notation. Section III shows
the reference architecture. Section IV defines the multi supply
function (MSF) abstraction. Section V proposes a guarantee
test on top of a multiprocessing device abstracted by the multi
supply function. Finally, Section VI states our conclusions and
presents some future work.

II. TERMINOLOGY AND NOTATION

We model an application as a set of n sporadic tasks
Γ = {τi}

n
i=1. Each task τi = (Ci, Ti, Di) is characterized

by a worst-case computation time Ci, a minimum interarrival
time Ti (also referred to as period), and a relative deadline
Di. Each task τi releases a sequence of jobs τi,k , where
each job is characterized by an arrival time ri,k , an absolute
deadline di,k, a computation time ci,k. We have that ci,k ≤ Ci,
ri,k ≥ ri,k−1 + Ti, and di,k = ri,k + Di. In this paper, we
assume a constrained deadline model, where Di ≤ Ti. Time is
continuous and time variables are represented by real numbers.

Each application Γ is scheduled onto a virtual platform V ,
modelled as a set of m virtual processors (VP) V = {νj}

m
j=1.

Each VP νj is characterized by a supply function Zj(t) that
models the amount of time νj can provide. The concept of
supply function is recalled in Section IV-A.

All the VPs belonging to all the virtual platforms in the
system are allocated onto the physical platform Π, which
consists of a set of p physical processors Π = {πk}

p
k=1.

Finally, to lighten the notation, we may denote max{0, x}
as (x)0.

III. THE OVERALL ARCHITECTURE

The quick evolution of hardware platforms strongly mo-
tivates the adoption of appropriate design methodologies that
simplify portability of software on different architectures. This
problem is even more crucial for multi-core systems, where the
performance does not grow linearly with the number of cores
and the efficiency of resource usage can only be achieved by
tailoring the software to the specific architecture and exploiting
the parallelism as much as possible. As a consequence, an
embedded software developed to be highly efficient on a
given multi-core platform, could be very inefficient on a new
platform with a different number of cores.

To reduce the cost of porting software on different multi-
core architectures, we propose to abstract the physical ar-
chitecture with a set of virtual processors. In general, the
system should be designed as a set of abstraction layers,
each offering a specific service according to a given interface.
The advantage of this approach is that one can replace a
mechanism inside a layer without modifying the other layers,

295

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on February 10, 2010 at 08:35 from IEEE Xplore. Restrictions apply.

. . .

. . .

. . .

Application

platform

layer

platform

layer
Scheduling

Virtual

Allocation

Physical

Application Scheduler

Resource Allocation

τ1 τ2 τ3 τ4 τn

ν1 ν2 νm

π1 π2 π3 π4 π5 π6 π7 π8 πp

Fig. 1. Architecture overview.

as long as the new mechanism complies with the specified
interface. To virtualize the multi-core platform, we use the
general architecture depicted in Figure 1.

At the upper layer, the application is developed as a set
of real-time tasks with deadline constraints running on a set
of virtual processors. Either global or partitioned scheduling
schemes can be used at this level to assign tasks to virtual pro-
cessors. Each virtual processor νj is implemented by a server
mechanism capable of providing execution time according to a
given supply function. Virtual processors are then allocated to
physical processors based on a different scheduling policy. In
this way, a change in the hardware platform does not affect the
application and the upper-layer scheduler, but only the server
allocation layer.

In this paper, we focus on the virtual processor abstraction,
proposing a general interface for describing a virtual processor
and presenting a feasibility analysis to guarantee the applica-
tion on the virtual processors using global EDF, global FP, and
any work conserving scheduler.

IV. THE MULTI SUPPLY FUNCTION ABSTRACTION

In this section, we describe a suitable abstraction for a set of
m VPs that allows exploiting arbitrary fractions of processing
time available in the physical platform. With respect to other
interfaces proposed in the literature [25], [19], our approach is
more general and more precise, because it can capture arbitrary
reservations.

The reason for proposing a new interface is that, in multi-
application systems, some fraction of the processor can already
be occupied by other applications that are not under our
control; hence, we often cannot assume that each processor
is fully available. Second, considering the amount of resource
provided by each VP individually is more precise than dealing
with the cumulative value and allows achieving tighter results.

For these reasons, we introduce the following definition to
abstract a parallel machine.

Definition 1: A Multi Supply Function (MSF) of a set V =
{νj}

m
j=1 of VPs is a set of m supply functions {Zνj

}m
j=1, one

for each VP, respectively.
Below, we illustrate the definition of supply function as
proposed in the literature [23], [20], [26] and then we extend
it to more general cases.

A. The supply function

The supply function of a single VP represents the minimum
amount of resource that the VP can provide in a given interval
of time. The VP allocates time to the application during a
“resource time partition” (Def. 3 in [23]) that here is extended
to non-periodic partitions.

Definition 2 (compare with Definition 3 in [23]): A time
partition P ⊆ R is a countable union of non-overlapping
intervals1

P =
⋃
i∈N

[ai, bi) ai < bi < ai+1. (1)

Without loss of generality we set the instant when the VP is
created in the system equal to 0. Hence we have a0 ≥ 0.

Given a partition P , its supply function [23], [20], [26]
measures the minimum amount of time that is provided by
the partition in any interval.

Definition 3 (Def. 9 in [23], Def. 1 in [20]): Given a par-
tition P , we define the supply function ZP(t) as the minimum
amount of time provided by the partition in every interval of
time of length t ≥ 0, that is

ZP(t) = min
t0≥0

∫
P∩[t0,t0+t]

1 dx. (2)

Definition 3 requires the knowledge of the exact time
partition P allocated by the VP to the application, which is
often known only at run-time (and not at design time). In fact,
the actual allocation typically depends on events (such as the
contention with other VPs) that cannot be easily predicted. In
the following, we extend Definition 3 by removing the need
for such a knowledge.

Definition 4: Given a VP ν, we define legal(ν) as the set
of partitions P that can be allocated by ν.

Definition 5: Given a virtual processor ν, its supply func-
tion Zν(t) is the minimum amount of time provided by the
virtual processor ν in every time interval of length t ≥ 0,

Zν(t) = min
P∈legal(ν)

ZP(t). (3)

Below we report the supply function for several well known
server mechanisms.

a) Explicit Deadline Periodic: The Explicit Deadline Pe-
riodic (EDP) model [11], that generalizes the periodic resource
model [20], [26], has the following supply function

Z(t) = max{0, t − D + Q − (k + 1)(P − Q), kQ} (4)

with k =
⌊

t−D+Q

P

⌋
, where the VP provides Q time units

every period P within a deadline D.
b) Static partition: When a VP ν allocates time statically

according to a partition P , then the set of legal partitions
legal(ν) consists of the unique element P . In this special case
of Eq. (3), the supply function Zν(t) can be computed as
follows (Lemma 1 by Mok et al. [23]):

Zν(t) = min
t0=0,b1,b2,...

∫
P∩[t0,t0+t]

1 dx. (5)

1The mathematical development does not change if P is any Lebesgue
measurable set.

296

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on February 10, 2010 at 08:35 from IEEE Xplore. Restrictions apply.

c) P-fair time partition: Now we investigate the imple-
mentation of a VP through a P-fair server [6], [3] with weight
w. We think that this case is relevant, because P-fair algorithms
allow full resource usage on multiprocessors to be achieved.

Holman and Anderson proposed the following lower bound
of P-fair supply function (Corollary 2 in [15])

Zν(t) ≥ �w(�t� − 1)� − 1. (6)

However, the supply function proposed in this paper (Eq. (11))
is tighter (see Figure 3).

In P-fair schedules the processing resource is allocated to
the different tasks by time quanta. Without loss of generality,
the length of the time quanta can be assumed unitary. Using
the notation of Def. 2, it means that a P-fair partition P has

ai ∈ Z bi = ai + 1. (7)

A time partition P associated to a weight w is defined to be
P-fair [6] when

∀t ≥ 0 − 1 < w t −

∫
[0,t]∩P

1dx < 1. (8)

From Equation (8), it follows [6], [3] that the jth time
quantum (we start counting from j = 0 to be consistent with
Def. 2) allocated in [aj , aj + 1), must be within the interval[⌊

j

w

⌋
,

⌈
j + 1

w

⌉)
(9)

denoted as the jth subtask window. Figure 2 shows an example
of the subtask windows (represented by horizontally aligned
segments) when w = 7

17 .

222120191817161514131211109876510 2 3 4

Fig. 2. An example of the subtask window.

For expressing the supply function of a P-fair server mech-
anism we first define the following quantity.

Definition 6: Let ν be a VP implemented by a P-fair server.
We define len(k) as the length of the longest interval where
at most k time quanta are allocated. Formally

len(k) = max
P∈legal(ν),t0∈N

{
h ∈ N :

∫
[t0,t0+h)∩P

1 dx ≤ k

}
(10)

The introduction of len(k) allows the definition of the
supply function by the following Lemma.

Lemma 1: The supply function of a VP ν implemented by
a P-fair server whose weight is w, is given by:

Zν(t)=

⎧⎪⎨
⎪⎩

0 0 ≤ t ≤ len(0)

t +k − len(k) len(k) ≤ t ≤ len(k) + 1

k + 1 len(k)+1≤ t≤ len(k + 1)

(11)

Proof: Since a P-fair task allocates time by integer time
quanta, we have that

∀t ∈ N, Zν(t) ∈ N. (12)

We start by proving that

∀k ∈ N Zν(len(k)) = k. (13)

From Definition 6, it follows that Zν(len(k)) ≥ k, because
there exists a legal time partition P and an interval [t0, t0 +
len(k)) that contains at least k time quanta. Nonetheless, it
cannot happen that Zν(len(k)) > k, because len(k) is the
maximum length among the intervals that contains at most k
time quanta. Hence, Eq. (13) follows.

From Equations (12) and (13) it follows that

∀k ∈ N Zν(len(k) + 1) ∈ {k, k + 1}

because, for every integer step, Zν can either increment by
one or remain constant. Nonetheless, it cannot happen that
Zν(len(k)+1) = k, because len(k) is the maximum length of
an interval, where ν allocates k quanta. Hence,

∀k ∈ N Zν(len(k) + 1) = k + 1. (14)

Since Zν can be either constant or increase with unitary slope,
the lemma follows.

In the next lemma, we compute the value of len(k) when
the weight w of the VP is a rational number.

Lemma 2: Given a weight w = p

q
, p, q ∈ N \ {0}, we have

len(k) = max
j=0,...,p−1

{⌈
(j + k + 2) q

p

⌉
−

⌊
j q

p

⌋}
− 2 (15)

when k = 0, . . . , p − 1. Moreover we have

len(k + p) = len(k) + q. (16)

Proof: Let P be the critical time partition and t0 be
the start of the interval [t0, t0 + len(k)) that originates the
maximum interval length len(k), as defined in Def. 6. We
claim that.

• t0 must coincide with the end of an allocated time
quantum (that we call the jth time quantum), otherwise it
would be possible to left shift t0, achieving a larger len(k)
without increasing the amount of resource provided in
[t0, t0 + len(k)).

• In the critical partition P , the jth time quantum must start
at the beginning of the jth subtask window (that is, the
interval of Eq. (9)), otherwise we can build another P-
fair time partition that anticipates the jth time quantum,
so achieving a larger len(k).

Hence, t0 =
⌊

j

w

⌋
+ 1 for some j, because it must be one

unit after the start time of the jth subtask window. Since the
interval [t0, t0 + len(k)) must contain (at most) k time quanta,
by similar arguments as those exposed before, we conclude

297

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on February 10, 2010 at 08:35 from IEEE Xplore. Restrictions apply.

that the end of the critical interval occurs one quantum before
the end of the j + k + 1 time window, that is

t0 + len(k) =

⌈
j + k + 2

w

⌉
− 1.

Since we do not know what is the jth time window that
originates the critical interval, we must check all of them,
that is

len(k) = sup
j∈N

{⌈
j + k + 2

w

⌉
−

⌊
j

w

⌋}
− 2.

However, if the weight is rational (w = p/q), then we only
need to test for j from 0 to p − 1. This proves Eq. (15).

Finally, we conclude by proving Eq. (16).

len(k+ p) = max
j=0,...,p−1

{⌈
(j + k + p +2) q

p

⌉
−

⌊
j q

p

⌋}
−2

= max
j=0,...,p−1

{⌈
(j + k + 2) q

p

⌉
−

⌊
j q

p

⌋}
−2 +q

= len(k) + q

as required.
In Table I we evaluate the values of len(k), as indicated

by Eq. (15), for a VP implemented by a P-fair server with
weight w = 7

17 . Figure 3 illustrates the corresponding supply
function.

k j=0 j=1 j=2 j=3 j=4 j=5 j=6 len(k)
0 3 4 4 4 4 3 4 4
1 6 6 7 6 6 6 6 7
2 8 9 9 8 9 8 9 9
3 11 11 11 11 11 11 11 11
4 13 13 14 13 14 13 14 14
5 15 16 16 16 16 16 16 16
6 18 18 19 18 19 18 18 19
7 20 21 21 21 21 20 21 21
8 .

TABLE I
EVALUATION OF len(k), WHEN w = 7

17
.

0 42 6 8 10 12 14 16 18 20 22

Zν(t)

t
(len(0), 0)

(len(1), 1)
(len(2), 2)

(len(3), 3)
(len(4), 4)

(len(5), 5)
(len(6), 6)

(len(7), 7)

Δ=4+4/7

exact supply, Eq. (11)
α, Δ lower bound, Eq. (19)

Holman, Anderson [15]

Fig. 3. The supply function for a P-fair server with weight w = 7

17
.

B. The (α, Δ) Virtual Processor

The supply function defined in Def. 5 represents a tight
model of the service provided by a VP. As shown in Sec-
tion IV-A, however, it depends on the specific server imple-
menting the reservation and it may not be straightforward to

derive. A simpler abstraction able to describe the reservation
through a few parameters, independently of the specific virtual
processor implementation, would be often more desirable.

Mok et al. [23] introduced the “bounded delay partition”,
which is described by two parameters: a bandwidth α and a
delay Δ. The bandwidth α measures the amount of resource
that is assigned to the demanding application, whereas Δ
represents the worst-case service delay. This abstraction has
also the additional benefit of being common to other fields,
such as networking [27], disk scheduling [8], and network
calculus analysis [18]. This means that the analysis proposed
here can easily be extended to a more complex system
including different architecture components. The α and Δ
parameters are formally defined below.

Definition 7 (compare Def. 5 in [23]): Given a VP ν with
supply function Zν , the bandwidth αν of the VP is defined as

αν = lim
t→∞

Zν(t)

t
. (17)

Indeed the bandwidth captures the most significant feature
of a VP. However, two VPs with the same bandwidth can
allocate time in a significantly different manner. Suppose that
a VP allocates the processor for one millisecond every 10 and
another one allocates the processor for one second every 10
seconds. Both the VPs have the same bandwidth (10% of the
physical processor), however, the first VP is more responsive
in the sense that an application can progress more uniformly.
The Δ parameter provides a measure of the responsiveness,
as proposed by Mok et al. [23].

Definition 8 (compare Def. 14 in [23]): Given a VP ν with
supply function Zν and bandwidth αν , the delay Δν of the
VP is defined as

Δν = sup
t≥0

{
t −

Zν(t)

αν

}
. (18)

Informally speaking, given a VP ν with bandwidth αν , the
delay Δν is the minimum horizontal displacement such that
the line αν(t − Δν) is a lower bound of Zν(t).

Once the bandwidth and the delay are computed, the supply
function of the VP ν can be lower bounded as follows:

Zν(t) ≥ αν(t − Δν)0. (19)

This linear lower bound of the supply function allows the
definition of an abstraction of the multiprocessor that is
simpler than the MSF.

Definition 9: The Multi-(α, Δ) (MαΔ) abstraction of a
set V = {νj}

m
j=1 of VPs, represented by the m pairs

{(αj , Δj)}
m
j=1, is a special MSF defined by {Zνj

: Zνj
(t) =

αj(t − Δj)0}
m
j=1.

Below we propose the computation of the α, Δ parameters
for some classes of servers.

d) Explicit Deadline Periodic: For a VP ν modeled by
EDP we have [11]

αν =
Qν

Pν

Δ = Pν + Dν − 2Qν (20)

298

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on February 10, 2010 at 08:35 from IEEE Xplore. Restrictions apply.

where ν provides Qν time units every period Pν within a
deadline Dν .

e) Static partition: The interested reader can find the
computation of the α and Δ parameters of a static partition
in the work by Feng and Mok [12].

f) P-fair time partition: Let ν be a VP implemented by
a P-fair server with weight w = p

q
. From Equation (16) it

follows immediately that

αν = lim
t→∞

Zν(t)

t
= lim

k

k

len(k)
=

p

q
= w (21)

For computing the delay Δν we observe (Eq. (11), Fig. 3)
that the linear lower bound is constrained by the points
(len(k), k). It follows that

Δν = sup
k∈N

{
len(k) −

k

w

}
. (22)

In the example of Figure 3 (w = 7
17) the delay results to be

Δ = 7 − 17
7 ≈ 4.571. More in general, Figure 4 shows the

delay Δ as a function of the bandwidth of the VP. From the

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
1
2
3
4
5
6
7
8
9
10

bandwidth α

Δ

Fig. 4. Values of Δ for a P-fair VP.

graph, it can be noticed that the delay is upper bounded by a
function that is inversely proportional to the bandwidth α.

Lemma 3: Given a P-fair VP ν with bandwidth w ∈ R, we
have

Δν ≤
2

w
. (23)

Proof: From Lemma 2 we have

len(k) ≤ sup
j∈N

{⌈
j + k + 2

w

⌉
−

⌊
j

w

⌋}
− 2

≤ sup
j∈N

{
j + k + 2

w
+ 1 −

j

w
+ 1

}
− 2

≤
k + 2

w

Hence, from Eq. (22), we have

Δν = sup
k∈N

{
len(k) −

k

w

}
≤ sup

k∈N

{
k + 2

w
−

k

w

}
=

2

w

as required.

P1

P2

P3

P4

a=0 b c d e f g h i j l m Dk=n

Fig. 5. Example of supply distribution.

V. GLOBAL SCHEDULING ALGORITHMS OVER A MSF
In this section, we analyze the schedulability of a task set

Γ = {τi}
n
i=1 on a virtual platform V = {νj}

m
j=1 abstracted by

a MSF. To simplify the notation, we denote Zνj
by Zj . Let τk

be the task that we are analyzing. Without loss of generality,
we set the activation of τk’s job under analysis equal to 0.
We label the VPs by decreasing value of Zj(Dk) (notice that,
differently than in uniform multiprocessors [14], [5] where
Zj(t) = αjt, this ordering is task dependent).

First, we assume that the time partition Pj provided by each
VP νj in [0, Dk) is known in advance. Later, in Theorem 2,
we will compute the worst-case partition Pj starting from the
supply functions Zj . For each Pj , we define its characteristic
function Sj(t) as

Sj(t) =

{
1 t ∈ Pj

0 t /∈ Pj

(24)

We introduce the subset L� ⊆ [0, Dk) during which the time
is provided by � VPs in parallel.

∀� = 0, . . . , m, L� =

⎧⎨
⎩t ∈ [0, Dk) :

m∑
j=1

Sj(t)= �

⎫⎬
⎭ (25)

To simplify the presentation, we use L� to denote both the set
defined by the previous equation and its measure |L�|. Whether
we refer to the set or its length will be clear from the context.
To lighten the notation, we do not report the dependency of
the lengths L� on the task index k.

Figure 5 shows an example of time partitions and the corre-
sponding lengths L�. Using the labels introduced in the figure,
we have: L0 = h−g, L1 = b−a+g−f +i−h+l−j+n−m,
L2 = c−b+j− i+m− l, L3 = d−c+f−e, and L4 = e−d.
In the rest of the paper we will often use the lengths {L�}

m
�=0

as an alternate representation of the set of partitions {Pj}
m
j=1

allocated by the MSF platform.
Moreover, Wk denotes the workload of jobs with higher

priority interfering on τk, and Ik denotes the total duration
in [0, Dk) in which τk is ready, but cannot execute (due to
either preemption or unavailability of computing resources).
Bertogna et al. [7] proposed several techniques to upper bound
the interfering workload Wk when global EDF, global FP or
a generic work-conserving (WC) scheduler is used. Below we
report these upper bounds [7]. When global EDF is used, we
have

Wk ≤W
EDF

k =

n∑
i=1
i�=k

⌊
Dk

Ti

⌋
Ci+min

{
Ci, Dk−

⌊
Dk

Ti

⌋
Ti

}
(26)

299

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on February 10, 2010 at 08:35 from IEEE Xplore. Restrictions apply.

For a generic work conserving algorithm, instead, we have:

Wk ≤ W
WC

k =
n∑

i=1,i�=k

W k,i (27)

where

W k,i =Nk,iCi + min {Ci, Dk + Di − Ci − Nk,iTi} (28)

with Nk,i =
⌊

Dk+Di−Ci

Ti

⌋
. Finally, for a global FP scheduler,

we have:

Wk ≤ W
FP

k =

k−1∑
i=1

W k,i (29)

assuming that tasks are ordered by decreasing priority.
We highlight that the upper bounds on the workload can be

refined by iterating the computation of the interference Ik with
the reduction of the workload Wk , as suggested by Bertogna
et al. [7]. However we do not report the details here, due to
space limitations.

Given the lengths {L�}
m
�=0, we can compute an upper bound

on the interference Ik produced on a job belonging to τk by
an interfering workload Wk.

Theorem 1: Given a window [0, Dk) with MSF charac-
terized by the lengths {L�}

m
�=0, the interference Ik on τk

produced by a set of higher priority jobs with total workload
Wk cannot be larger than

Ik ≤ Ik = L0 +
m∑

�=1

min

⎛
⎝L�,

(
Wk −

∑�−1
p=0 pLp

)
0

�

⎞
⎠ (30)

Proof: Given a window [0, Dk) with MSF characterized
by {L�}

m
�=0, we first find the distribution of the interfering

workload Wk that maximizes the interference Ik on τk.
We will prove that Ik is maximized when the workload is
distributed over the sets L� with smallest �, according to the
following strategy A:

• start allocating the workload on the single processor
available in time instants ∈ L1;

• as long as there is remaining workload to allocate,
continue distributing it over the subsequent set L� (with
� = 2, . . . , m), with parallelism �.

• Let z be the index if the first set Lz that is not entirely
occupied by the interfering workload Wk .

Suppose, by contradiction, that a different distribution of the
workload Wk produces a larger interference on τk. In this latter
distribution, consider the set of instants ∈ L�, � = 1, . . . , m,
where the workload Wk has been allocated on strictly less than
� processors. Since there is at least one processor available, τk

is not interfered in any such instant. Therefore, a larger Ik can
be produced redistributing the workload that was allocated in
these instants, so that it is executed on all available processors,
i.e., on � processors in instants ∈ L�. This new distribution A′

still produces a Ik larger than A.
Since in A the workload is distributed among all sets L�

with 1 ≤ � ≤ z, the larger interference produced in A′ must be
due to workload allocations over at least one set Ly with y >

z. Let ξ ≤ Ly be the amount of time for which Wk is allocated
in Ly (on all y processors). There are ξy workload units that
are used by A′ to produce ξ units of interference. These ξy
units were scheduled by A on a lower number of processors
≤ z. Therefore, the interference produced by A allocating the
above ξy units over intervals with parallelism at most z is
greater than ξy

z
> ξ. The same argument can be applied to any

other share of Wk that is being executed with parallelism > z,
reaching a contradiction. Therefore, the largest interference
is produced when the workload is distributed over the time
instants ∈ L� with smallest �.

The contributions to the interference from each L� are
therefore
• L� for each set L�, with 0 ≤ � ≤ z − 1;
•

1
�

(
Wk −

∑z−1
�=0 �L�

)
for Lz; and

• 0 for sets L�, with � > z.
Eq. (30) follows summing all contributions.

By replacing the workload Wk of Eq. (30) by W
EDF

k , W
WC

k ,
and W

FP

k (see Equations (26), (27) and (29)), we can compute
the upper bounds of the interferences I

EDF

k , I
WC

k , and I
FP

k

for global EDF, a work-conserving algorithm, and global FP,
respectively.

Theorem 1 assumes that the MSF platform provides time
by a set of static partitions {Pj}

m
j=1 over [0, Dk). However

MSF is described by the set of supply functions {Zj}
m
j=1,

and the partitions Pj actually provided to the application can
be anything that complies with the supply function description.
The theorem below finds the most pessimistic time partitions,
i.e. the partitions such that if the task set is guaranteed on them,
it is guaranteed on any time partition that can be allocated by
the MSF.

Theorem 2: Given a MSF platform modeled by {Zj}
m
j=1,

if the task τk is feasible on the set of time partitions

{Pj}
m
j=1 = {[Dk − Zj(Dk), Dk)}m

j=1, (31)

then it is feasible on any set of partitions {Pj}
m
j=1 complying

with the MSF.
Proof: As explained in the proof of Theorem 1, the largest

interference of a workload Wk on a task τk is produced
distributing the workload over the sets L� with the smallest
level of parallelism �.

We prove this theorem by transforming any other set of
partitions {P ′j}

m
j=1 into the one of Eq. (31) without decreasing

the associated interference bound. First we shift rightward all
the intervals of each partition, then we reduce the amount of
resource of the partition to Zj(Dk) (Figure 6 represents these
two steps). First, we shift rightwards one or more particular in-
tervals in P ′j . For each partition P ′j , we are interested in chunks
[a, b) of continuous supply, i.e., [a, b) ⊆ P ′j, limt→a− Sj(t) =
limt→b+ Sj(t) = 0, Sj(t) = 1 ∀t ∈ [a, b). While shifting
rightwards a supply chunk, there are three possible situations,
each one causing a different effect on the lengths L′0, . . . , L

′
m.

1) Shifts that increase the supply parallelism. A shift of this
kind decreases L′x and L′y<x, and increases L′x+1 and
L′y−1 by the same amount. This happens, for instance,

300

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on February 10, 2010 at 08:35 from IEEE Xplore. Restrictions apply.

P ′j

P ′j

Pj
Zj(Dk)

0 Dk

Fig. 6. The transformations of a partition.

(a)

(b)

(c)

P
′

1

P
′

1

P
′

1

P
′

2

P
′

2

P
′

2

P
′

3

P
′

3

ε

ε

ε L′

0 ← L′

0 + ε
L′

1 ← L′

1 − ε

L′

2 ← L′

2 − ε
L′

3 ← L′

3 + ε

L′

0 ← L′

0 − ε
L′

1 ← L′

1 + ε

L′

2 ← L′

2 + ε
L′

3 ← L′

3 − ε

L′

1 ← L′

1

L′

2 ← L′

2

Fig. 7. Typologies of right shifts.

with the shift in Figure 7(a), where shifting rightwards
the chunk of P ′1 by ε causes an increase in L3 and L0,
and a decrease in L2 and L1.

2) Shifts that do not vary any L′j (Figure 7(b)).
3) Shifts that decrease the supply parallelism. A shift of

this kind decreases L′x and L′y<x, and increases L′x−1

and L′y+1 by the same amount (Figure 7(c)).

The upper bound on the interference (Equation (30)) might
increase in the first case, is left unchanged in the second case,
and might decrease in the third case. For instance, consider the
first situation: there is an increase in the length with smallest
index (y−1) and with largest index (x+1), and a decrease in
the lengths with “central” indexes L′y and L′x. Let L′z be the
first set for which Wk −

∑z−1
p=0 pL′p < zL′z holds. If z < y−1

or z > x+1 the interference does not change. If y− 1 ≤ z ≤
x+ 1, the resulting interference is larger than the interference
computed with the original values L′y−1, L

′
y, L

′
x, L′x+1 before

the shift.
Hence we apply to {P ′j}

m
j=1 only transformation of the first

two kinds. We proceed as follows.

1) We start from the leftmost chunk among all the parti-
tions. Let a be the start of this chunk, and b its end.

2) We shift the chunk rightwards until some of the follow-
ing conditions occurs.

a) a reaches the beginning of a chunk of a different
partition. In this case, we continue shifting the
other chunk together with the first one, forming
a block of chunks with identical start time a, but
different end times b1 and b2.

b) b reaches the beginning of a chunk on the same
partition. We merge both chunks.

c) b reaches the end of the window (at Dk), we

P
′

1

P
′

2

P
′

3

P
′

4

Z1(Dk)
Z2(Dk)

Z3(Dk)
Z4(Dk)

Dk

ε

Fig. 8. Reducing the allocated time.

continue shifting the next chunk if any.
If the above operations are correctly performed, each move
will increase the supply parallelism, avoiding situations as
the one in Figure 7(c). At the end of the procedure we have
transformed any set of partitions {P ′j}

m
j=1 into the following

set
{[Dk − Qj , Dk)}m

j=1, (32)

with Qj ≥ Zj(Dk). However the interference experienced on
the partition of Eq. (32) cannot exceed the interference on the
partition of Eq. (31). In fact, for any partition P ′j of Eq. (32), if
we reduce the supplied resource by an amount ε then for one
length L′x decreasing by ε, there is a length L′x−1 increasing
by ε, as shown in Figure 8. Hence this transformation cannot
reduce the interference. Since this transformation leads to the
set of partitions of Eq. (31), the Theorem is proved.

Finally, the following theorem provides a sufficient schedu-
lability condition.

Theorem 3: A task set Γ = {τi}
n
i=1 is schedulable by the

algorithm ALG on a MSF platform modeled by {Zj}
m
j=1, if

∀k = 1, . . . , n Ck + I
ALG

k ≤ Dk (33)

where the I
ALG

k is computed from Eq. (30), assuming the
lengths {L�}

m
�=0 equal to

L0 = Dk − Z1(Dk)

L� = Z�(Dk) − Z�+1(Dk)

Lm = Zm(Dk).

(34)

Proof: The schedulability condition simply checks if
the relative deadline of each task τk is large enough to
accommodate the worst-case computation time of τk together
with the interference Ik imposed by other tasks. The amount
of interference follows from Theorem 1, upper bounding the
workload Wk using Equations (26), (27), or (29).

For any job τk,i, from the definition of supply function,
we can say that every VP νj provides an amount of resource
Qj ≥ Zj(Dk) that is distributed by some unknown partition
over the interval [rk,i, rk,i +Dk). Thanks to Theorem 2, if τk,i

is schedulable on a set of partitions that allocate Zj(Dk) at
the end of the interval [0, Dk), then it is schedulable on any
set of partitions that allocate Qj ≥ Zj(Dk) in any way.

Since the lengths of Eq. (34) are derived assuming this time
partition (see also Figure 8), the theorem follows.

VI. CONCLUSIONS

In this paper we proposed to abstract a parallel machine as
a set of virtual processors, each implemented through a re-
source reservation mechanism described by a supply function.

301

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on February 10, 2010 at 08:35 from IEEE Xplore. Restrictions apply.

The proposed approach is useful to design parallel real-time
applications independently of the actual platform and of the
specific server used to implement the reservation.

A sufficient schedulability test has also been presented
to guarantee the feasibility of real-time applications under
global EDF, global fixed priority algorithms and generic work-
conserving schedulers.

In the future we plan to implement the proposed abstraction
on existing open source operating systems. Moreover, from
the theoretical point of view, we plan to tighten the results
by relaxing some pessimistic assumptions that we had to
introduce to simplify the analysis.

g) Acknowledgements: The authors wish to thank Sanjoy
Baruah for his insightful comments. We also like to thank the
anonymous reviewers of a previously submitted version for
their detailed comments, which helped to improve the quality
of this paper.

REFERENCES

[1] Luca Abeni and Giorgio Buttazzo. Resource reservation in dynamic
real-time systems. Real-Time Systems, 27(2):123–167, July 2004.

[2] Luı́s Almeida, Paulo Pedreiras, and José Alberto G. Fonseca. The
FTT-CAN protocol: Why and how. IEEE Transaction on Industrial
Electronics, 49(6):1189–1201, December 2002.

[3] James H. Anderson and Anand Srinivasan. Early-release fair scheduling.
In Proceedings of the 12th Euromicro Conference on Real-Time Systems,
pages 35–43, Stockholm, Sweden, June 2000.

[4] Theodore P. Baker. Multiprocessor EDF and deadline monotonic
schedulability analysis. In Proceedings of the 24th IEEE Real-Time
Systems Symposium, pages 120–129, Cancun, Mexico, December 2003.

[5] Sanjoy Baruah and Joël Goossens. The EDF scheduling of sporadic
task systems on uniform multiprocessors. In Proceedings of the 29th

Real-Time Systems Symposium, 2008, pages 367–374, Barcelona, Spain,
December 2008.

[6] Sanjoy K. Baruah, Neil K. Cohen, Greg Plaxton, and Donald A. Varvel.
Proportionate progress: a notion of fairness in resource allocation.
Algorithmica, 15(6):600–625, June 1996.

[7] Marko Bertogna, Michele Cirinei, and Giuseppe Lipari. Schedulability
analysis of global scheduling algorithms on multiprocessor platforms.
IEEE Transactions on Parallel and Distributed Systems, 2008.

[8] John Bruno, José Brustoloni, Eran Gabber, Banu Özden, and Abraham
Silberschatz. Disk scheduling with quality of service guarantees. In
IEEE International Conference on Multimedia Computing and Systems,
volume 2, pages 400–405, Firenze, Italy, July 1999.

[9] Giorgio C. Buttazzo, Giuseppe Lipari, Luca Abeni, and Marco Caccamo.
Soft Real-Time Systems: Predictability vs. Efficiency. Springer, 2005.

[10] Zhong Deng and Jane win-shih Liu. Scheduling real-time applications in
Open environment. In Proceedings of the 18th IEEE Real-Time Systems
Symposium, pages 308–319, San Francisco, CA, U.S.A., December
1997.

[11] Arvind Easwaran, Madhukar Anand, and Insup Lee. Compositional
analysis framework using EDP resource models. In Proceedings of the
28th IEEE International Real-Time Systems Symposium, pages 129–138,
Tucson, AZ, USA, 2007.

[12] Xiang Feng and Aloysius K. Mok. A model of hierarchical real-time
virtual resources. In Proceedings of the 23rd IEEE Real-Time Systems
Symposium, pages 26–35, Austin, TX, U.S.A., December 2002.

[13] Laurie J. Flynn. Intel halts development of 2 new microprocessors. The
New York Times, May 2004.

[14] Shelby Funk, Joël Goossens, and Sanjoy Baruah. On-line scheduling
on uniform multiprocessors. In Proceedings of the 22nd IEEE Real-
Time Systems Symposium, pages 183–192, London, United Kingdom,
December 2001.

[15] Philip Holman and James H. Anderson. Group-based pfair scheduling.
Real-Time Systems, 32(1–2):125–168, February 2006.

[16] Tei-Wei Kuo and Ching-Hui Li. Fixed-priority-driven open environment
for real-time applications. In Proceedings of the 20th IEEE Real-Time
Systems Symposium, pages 256–267, Phoenix, AZ, U.S.A., December
1999.

[17] Tei-Wei Kuo, K. Lin, and Y. Wang. An open real-time environment for
parallel and distributed systems. In Proceedings of the 20th International
Conference on Distributed Computing Systems, pages 206–213, Taipei,
Taiwan, April 2000.

[18] Jean-Yves Le Boudec and Patrick Thiran. Network Calculus, volume
2050 of Lecture Notes in Computer Science. Springer, 2001.

[19] Hennadiy Leontyev and James H. Anderson. A hierarchical multi-
processor bandwidth reservation scheme with timing guarantees. In
Proceedings of the 20th Euromicro Conference on Real-Time Systems,
pages 191–200, Prague, Czech Republic, July 2008.

[20] Giuseppe Lipari and Enrico Bini. Resource partitioning among real-
time applications. In Proceedings of the 15th Euromicro Conference on
Real-Time Systems, pages 151–158, Porto, Portugal, July 2003.

[21] Clifford W. Mercer, Stefan Savage, and Hydeyuki Tokuda. Processor
capacity reserves: Operating system support for multimedia applications.
In Proceedings of IEEE International Conference on Multimedia Com-
puting and Systems, pages 90–99, Boston, MA, U.S.A., May 1994.

[22] M. Moir and S. Ramamurthy. Pfair scheduling of fixed and migrating
periodic tasks on multiple resources. In Proceedings of the 20th IEEE
Real-Time Systems Symposium, pages 294–303, Phoenix, AZ, U.S.A.,
December 1999.

[23] Aloysius K. Mok, Xiang Feng, and Deji Chen. Resource partition for
real-time systems. In Proceedings of the 7th IEEE Real-Time Technology
and Applications Symposium, pages 75–84, Taipei, Taiwan, May 2001.

[24] Abday K. Parekh and Robert G. Gallager. A generalized processor
sharing approach to flow control in integrated services networks: the
single-node case. IEEE/ACM Transactions on Networking, 1(3):344–
357, June 1993.

[25] Insik Shin, Arvind Easwaran, and Insup Lee. Hierarchical scheduling
framework for virtual clustering multiprocessors. In Proceedings of
the 20th Euromicro Conference on Real-Time Systems, pages 181–190,
Prague, Czech Republic, July 2008.

[26] Insik Shin and Insup Lee. Periodic resource model for compositional
real-time guarantees. In Proceedings of the 24th Real-Time Systems
Symposium, pages 2–13, Cancun, Mexico, December 2003.

[27] Dimitrios Stiliadis and Anujan Varma. Latency-rate servers: A general
model for analysis of traffic scheduling algorithms. IEE/ACM Transac-
tions on Networking, 6(5):611–624, October 1998.

[28] Ion Stoica, Hussein Abdel-Wahab, Kevin Jeffay, Sanjoy K. Baruah,
Johannes E. Gehrke, and Charles Gregory Plaxton. A proportional
share resource allocation algorithm for real-time, time-shared systems.
In Proceeding of the 17th IEEE Real Time System Symposium, pages
288–299, Washington, DC, U.S.A., December 1996.

302

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on February 10, 2010 at 08:35 from IEEE Xplore. Restrictions apply.

