
Standardized Evaluation of Haptic Rendering Systems

Emanuele Ruffaldi1, Dan Morris2, Timothy Edmunds3, Federico Barbagli2, Dinesh K.Pai3

1PERCRO, Scuola Superiore S. Anna
2Computer Science Department, Stanford University
3Computer Science Department, Rutgers University

pit@sssup.it, {dmorris,barbagli}@robotics.stanford.edu, {tedmunds,dpai}@cs.rutgers.edu

ABSTRACT

The development and evaluation of haptic rendering

algorithms presents two unique challenges. Firstly, the

haptic information channel is fundamentally bidirectional,

so the output of a haptic environment is fundamentally

dependent on user input, which is difficult to reliably

reproduce. Additionally, it is difficult to compare haptic

results to real-world, “gold standard” results, since such a

comparison requires applying identical inputs to real and

virtual objects and measuring the resulting forces, which

requires hardware that is not widely available. We have

addressed these challenges by building and releasing

several sets of position and force information, collected by

physically scanning a set of real-world objects, along with

virtual models of those objects. We demonstrate novel

applications of this data set for the development,

debugging, optimization, evaluation, and comparison of

haptic rendering algorithms.

CR Categories: H.5.2 [User Interfaces]: Haptic I/O

Keywords: haptics, ground truth, evaluation

1. INTRODUCTION AND RELATED WORK

Haptic rendering systems are increasingly oriented toward

representing realistic interactions with the physical world.

Particularly for simulation and training applications,

intended to develop mechanical skills that will ultimately

be applied in the real world, fidelity and realism are crucial.

A parallel trend in haptics is the increasing availability

of general-purpose haptic rendering libraries [1,2,3],

providing core rendering algorithms that can be re-used for

numerous applications. Given these two trends, developers

and users would benefit significantly from standard

verification and validation of haptic rendering algorithms.

In other fields, published results often “speak for

themselves” – the correctness of mathematical systems or

the realism of images can be validated by reviewers and

peers. Haptics presents a unique challenge in that the vast

majority of results are fundamentally interactive,

preventing consistent repeatability of results. Furthermore,

it is difficult at present to distribute haptic systems with

publications, although several projects have attempted to

provide deployable haptic presentation systems [1,4].

Despite the need for algorithm validation and the lack of

available approaches to validation, little work has been

done in providing a general-purpose system for validating

the physical fidelity of haptic rendering systems.

Kirkpatrick and Douglas [5] present a taxonomy of haptic

interactions and propose the evaluation of complete haptic

systems based on these interaction modes, and Guerraz et al

[6] propose the use of physical data collected from a haptic

device to evaluate a user’s behavior and the suitability of a

device for a particular task. Neither of these projects

addresses realism or algorithm validation. Raymaekers et

al [7] describe an objective system for comparing haptic

algorithms, but do not correlate their results to real-world

data and thus do not address realism. Hayward and Astley

[8] present standard metrics for evaluating and comparing

haptic devices, but address only the physical devices and

do not discuss the software components of haptic rendering

systems. Similarly, Colgate and Brown [9] present an

impedance-based metric for evaluating haptic devices.

Numerous projects (e.g. [10,11]) have evaluated the

efficacy of specific haptic systems for particular motor

training tasks, but do not provide general-purpose metrics

and do not address realism of specific algorithms. Along

the same lines, Lawrence et al [12] present a perception-

based metric for evaluating the maximum stiffness that can

be rendered by a haptic system.

This paper addresses the need for objective,

deterministic haptic algorithm verification and comparison

by presenting a publicly available data set that provides

forces collected from physical scans of real objects, along

with polygonal models of those objects, and several

analyses that compare and/or assess haptic rendering

systems. We present several applications of this data

repository and these analysis techniques:

 Evaluation of rendering realism: comparing the forces

generated from a physical data set with the forces

generated by a haptic rendering algorithm allows an

evaluation of the physical fidelity of the algorithm.

225

Symposium on Haptic Interfaces for
Virtual Environment and Teleoperator Systems 2006
March 25 - 26, Alexandria, Virginia, USA
1-4244-0226-3/06/$20.00 ©2006 IEEE

 Comparison of haptic algorithms: Running identical

inputs through multiple rendering algorithms allows

identification of the numeric strengths and weaknesses

of each.

 Debugging of haptic algorithms: identifying specific

geometric cases in which a haptic rendering technique

diverges from the correct results allows the isolation of

implementation bugs or scenarios not handled by a

particular approach, independent of overall accuracy.

 Performance evaluation: Comparing the computation

time required for the processing of a standard set of

inputs allows objective comparison of the performance

of specific implementations of haptic rendering

algorithms.

The data and analyses presented here assume an

impedance-based haptic rendering system and a single

point of contact between the haptic probe and the object of

interested. This work thus does not attempt to address the

full range of possible contact types or probe shapes.

Similarly, this work does not attempt to validate the realism

of an entire haptic rendering pipeline, which would require

a consideration of device and user behavior and perceptual

psychophysics. Rather, we present a data set and several

analyses that apply to a large (but not universal) class of

haptic rendering systems. We leave the extension of this

approach to a wider variety of inputs and to more

sophisticated metrics as future work.

The remainder of this paper is structured as follows:

Section 2 will describe our system for physical data

acquisition, Section 3 will describe the process by which

we simulate a contact trajectory for evaluation of a haptic

rendering algorithm, Section 4 will describe some example

results we have obtained through this process, and Section

5 will discuss the limitations of our method and several

scenarios in which our data and methods may be useful to

others in the haptics community. We conclude with a

description of our public data repository and a discussion

of future extensions to this work.

2. DATA ACQUISITION

Haptic rendering algorithms typically have two sources of

input: a geometric model of an object of interest and real-

time positional data collected from a haptic interface. The

output of this class of algorithms is typically a stream of

forces that is supplied to a haptic interface. A key goal of

our data and analyses is to compare this class of algorithms

to real-world data, which requires: (a) collecting or creating

a geometric model of a real-world object and (b) collecting

a series of correlated forces and positions on the surface of

that object.

We have constructed a sensor apparatus that allows the

collection of this data. Our specific goal is to acquire data

for haptic interaction with realistic objects using a hand-

held stylus or pen-like device (henceforth called “the

probe”). We use the HAVEN, an integrated multisensory

measurement and display environment at Rutgers, for

acquiring measurements interactively, with a human in the

loop.

In previous work [13,14], we acquired such

measurements using a robotic system called ACME (the

UBC Active Measurement facility). This robotic approach

has many advantages, including the ability to acquire

repeatable and repetitive measurements for a long period of

time, and the ability to acquire measurements from remote

locations on the Internet. However, our current goals are

different, and a hand-held probe offers a different set of

advantages that are important for evaluating interaction

with a haptic device.

First, it measures how a real probe behaves during

natural human interaction, and therefore provides more

meaningful data for comparison. This is important, because

contact forces depend in part on the passive, task-

dependent impedance of the hand holding the probe, which

is difficult to measure or to emulate with a robot arm.

Second, the dexterity of robot manipulators available today

is very poor in comparison with the human hand.

Furthermore, acquiring measurements in concave regions

or near obstacles using a robot is very difficult, but is easy

for a human.

We acquired three types of measurements for each

object in our data repository:

1. The object’s 3D shape

2. Motion of the probe tip relative to the object

3. The force on the probe tip during contact

Figure 1. The sensor used to acquire force and torque

information, alongside a coin to indicate scale.

226

We describe these measurements in the remainder of

this section, in reverse order.

Force data are acquired using a custom-designed hand-

held probe built around a Nano17 6-axis force/torque

sensor (Figure 1) (ATI Industrial Automation, Apex, NC,

USA). The reported spatial resolution of the force sensor is

as follows (the z-axis is aligned with the axis of the probe):

Fx,Fy 1/320 N; Fz 1/640 N; Tx,Ty 1/128 N·mm; Tz 1/128

N·mm.

A replaceable sphere-tipped Coordinate Measuring

Machine (CMM) stylus is attached to the front face of the

force sensor, and a handle to the rear, allowing a user to

drag the probe tip over the surface being measured. The

interchangability of the probe tip is important, since the

curvature of the contact area kinematically filters the probe

motion and thus impacts the acquired data.

As the surface is being probed, the force/torque

measurements from the Nano17 are sampled at 5kHz using

a 16-bit A/D converter (National Instruments, Austin,

Texas, USA). The static gravitational load due to the probe

tip is compensated for based on the measured orientation of

the probe. The force and torque measured at the force

sensor are transformed to the center of the probe tip to

compute the contact force on the tip.

In addition to measuring force and torque, the probe’s

motion is tracked to provide simultaneous position data.

The probe is tracked using a six-camera motion-capture

system (Vicon Peak, Lake Forest, CA, USA). Several

small retroreflective optical markers are attached to the

probe, allowing the camera system to record and

reconstruct the probe’s position and orientation at 60Hz.

The reconstructed position is accurate to less than 0.5mm.

The object being measured is also augmented with

optical tracking markers, so the configuration of the probe

with respect to the object is known even when the user

moves the object to access different locations on the

surface. The object is scanned with a Polhemus FastScan

laser scanner (Polhemus, Colchester, VT, USA) to generate

a mesh representation of the object's surface. The

manufacturer reports an accuracy of 1mm for the surface.

A water-tight triangular mesh is extracted from the scans

using a fast RBF method. The location of the optical

tracking markers are included in the scan to allow

registration of the surface geometry with the motion

capture data acquired during contact measurement. Figure

2 shows an example data series acquired with our setup.

The full data set is available in the public repository (see

Section 7).

Our initial scanning effort has focused on rigid objects,

to constrain the analysis to static geometry.

3. DATA PROCESSING

Given a set of scanned trajectories, we evaluate a haptic

rendering algorithm by feeding a sequence of scanned

probe positions into the algorithm and comparing the

computed forces to the physically-scanned forces. For

penalty-based haptic rendering algorithms, this requires a

pre-processing step to create a virtual trajectory that is

inside the virtual representation of the scanned object.

This section will describe this process, which can be

summarized in three stages:

1. Pre-processing of a scanned trajectory to allow direct

comparison to rendered trajectories.

2. Computation of rendered forces and a surface contact

Figure 2. Data collected from our scanning apparatus.

Normal (z) forces are indicated in red, tangential (x,y)

forces are indicated in green and blue. The data

presented here represent a scanning motion, primarily

on the y axis, on a flat plane. Brief initial and final taps

were added to aid registration of force and motion data;

they are visible in the normal force.

out-

trajectory

in-

trajectory

rendered

forces and

trajectory

projection

below model

surface

haptic

rendering

physical model
range

scan

surface probe

“true”

forces

surface

mesh
algorithm

evaluation
out-

trajectory

in-

trajectory

rendered

forces and

trajectory

projection

below model

surface

haptic

rendering

physical modelphysical model
range

scan

surface probe

“true”

forces

surface

mesh

surface

mesh
algorithm

evaluation

Figure 3. An overview of our data processing and

algorithm evaluation pipeline. An object is scanned,

producing a 3D geometric model and an out-trajectory.

An in-trajectory is synthesized from this out-trajectory

and is fed as input to a haptic rendering system, which

produces force and trajectory information. This

information can be compared to the physically-scanned

forces and the original trajectory.

227

point trajectory by the haptic rendering algorithm that

is being evaluated, using the pre-processed input

positions.

3. Computation of performance metrics from the output

of the haptic rendering system.

Figure 3 summarizes this process.

3.1 Data pre-processing

The haptic rendering algorithms on which we have

performed initial analyses are penalty-based: the virtual

haptic probe is allowed to penetrate the surface of a

simulated object, and a force is applied to expel the haptic

probe from the object. A physical (real-world) probe

scanning the surface of a physical object never penetrates

the surface of the object. Therefore a virtual scanning

trajectory is not expected to be identical to a physical

trajectory, even if a user intends to perform the same probe

motions on the real and virtual objects. We therefore

perform a pre-processing step that – given a physical

scanning trajectory – generates a sub-surface trajectory that

(under ideal conditions) produces a surface contact

trajectory that is equivalent to the scanned trajectory. This

allows a direct comparison of a trajectory collected from a

haptic simulation with the ideal behavior that should be

expected from that simulation.

We refer to an ideal trajectory (one in which the probe

never penetrates the surface of the object) as an “out-

trajectory”, and a trajectory that allows the probe to travel

inside the object as an “in-trajectory”. Figure 4

demonstrates this distinction.

The penetration depth (the distance between the in- and

out-trajectories) of a virtual haptic probe into a surface is

generally dependent on an adjustable spring constant,

which is an input to the algorithm and should be considered

part of the system that is under evaluation; this constant is

reported along with all results in our online repository. The

spring constant is assumed to be homogeneous for purposes

of the present analysis.

Typically, penetration depth and the resulting penalty

force are related to this spring constant according to

Hooke’s Law:

fp = -kx (1)

Here fp is the penalty force vector, k is the scalar

stiffness constant, and x is the penetration vector (the

vector between the haptic probe position and a surface

contact point computed by the haptic rendering algorithm).

We use this relationship to compute a corresponding in-

trajectory for a physically-scanned out-trajectory.

Surface normals are computed at each point in the out-

trajectory, using the scanned geometric model of the object.

These surface normals are then used to extract the normal

component of the recorded force at each point. Each point

in the sampled out-trajectory is then converted to a

corresponding point in the in-trajectory by projecting the

surface point into the object along the surface normal, by a

distance inversely proportional to the chosen stiffness and

directly proportional to the recorded normal force (for a

given normal force, higher stiffnesses should result in

lower penetration depths):

pin = pout - Fn / k (2)

Here pin and pout are corresponding in- and out-

trajectory points, Fn is the recorded normal force at each

point, and k is the selected stiffness constant. This

relationship is illustrated in Figure 5. Each in-trajectory

point is assigned a timestamp that is equal to the

corresponding out-trajectory point’s timestamp.

Following this computation, the in-trajectory

corresponding to a physical out-trajectory is the path that a

haptic probe would need to take in a virtual environment so

that the surface contact point corresponding to that haptic

probe path precisely follows the sampled out-trajectory.

3.2 Trajectory processing

The input to a haptic rendering algorithm is typically a

geometric model of an object of interest and a series of

positions obtained from a haptic interface. For the present

analysis, we obtain a geometric model from the laser-

scanning system described in Section 1, and we present a

stream of positions – collected from our position-tracking

system – through a “virtual haptic interface”. From the

perspective of a rendering algorithm implementation, this

interface plays the role of a haptic device that is able to

report its position in Cartesian space.

Given an in-trajectory computed from a physical out-

trajectory, we can thus simulate a virtual haptic interaction

with an object, which will produce a stream of forces and –

in the case of many common haptic rendering algorithms –

a new out-trajectory (which we refer to as a “rendered

trajectory”), representing the path that a virtual contact

point traveled on the surface of the virtual object.

The computational complexity of this simulation is

identical to the case in which a haptic interface is used

Figure 4. An “out-trajectory” represents the path taken

by a physical probe over the surface of an object; a

haptic rendering algorithm typically approximates this

trajectory with an “in-trajectory” that allows the probe

to enter the virtual object.

228

interactively, allowing assessment of computational

performance in addition to algorithm output.

3.3 Metric extraction

Each time an in-trajectory is fed through a haptic rendering

algorithm, producing a stream of forces and surface contact

point locations, we collect the following evaluation metrics:

 Output force error: the difference between the forces

produced by the haptic rendering algorithm and the

forces collected by the force sensor. This is

summarized as a root-mean-squared Euclidean

distance, i.e.:

N

i

ii rFpF
N

e
1

1
 (3)

 Here N is the number of samples in the out-trajectory,

Fpi is the physically-scanned force at sample i and Fri

is the rendered force at sample i. This metric is

referred to as “RMS Force Error” in Section 4. The

physically-scanned forces have been resampled to

align in time with the position samples.

 Output position error: the difference between the

surface contact point position produced by the haptic

rendering algorithm and the physically sampled out-

trajectory. This can also be summarized as a root-

mean-squared Euclidean distance, although we have

found that it is more valuable to collect the cases that

exceed a threshold instantaneous error, representing

“problematic” geometric cases.

 Computational cost: the mean, median, and maximum

numbers of floating-point operations required to a

compute a surface contact point and/or penalty force

and the floating-point operation count for the complete

trajectory. While this is not a truly platform-

independent measure of computational complexity, it

scales well among CPU speeds and is roughly

proportional to computation time on a particular CPU.

We do not present these metrics as a comprehensive

representation of haptic rendering performance, rather we

present them as examples of immediately-useful data that

can be extracted using our data collection system, data

repository, and offline processing approach. We anticipate

that future work and future contributions by the haptics

community will expand the set of available metrics and

assess their correlations to the perceptual quality of haptic

environments.

4. EXPERIMENTS AND RESULTS

We used the analyses discussed in Section 3 to conduct

four experiments that attempt to quantify and compare

haptic rendering algorithms. Specifically, we explored:

1. The relative accuracy and computational cost of a

haptic proxy algorithm and a rendering scheme based

on voxel sampling.

2. The impact of simulated friction on the accuracy of

haptic rendering and the use of ground truth data for

friction identification.

3. The impact of mesh resolution on the accuracy of

haptic rendering.

4. The impact of force shading on the accuracy of haptic

rendering.

For consistency, these analyses have all been performed

using the same model (a scanned plastic duck) and input

trajectory (see Figure 6), which is available in the online

repository.

These results are presented as examples of analyses that

can be derived from our data sets, and their generalization

to a wider variety of rendering algorithms, models, and

trajectories is left for future work and is the primary goal of

our online repository.

4.1 Proxy-based vs. voxel-based rendering

Our approach was used to compare the computational cost

and force errors for a public-domain implementation [1] of

the haptic proxy (god-object) algorithm [15] and a voxel-

based rendering scheme [16], and to assess the impact of

voxel resolution on rendering accuracy. This analysis does

not include any cases in which the proxy provides

geometric correctness that the voxel-based rendering could

not; i.e. the virtual haptic probe never “pops through” the

model.

Fn

pout

pin

-Fn

k

surface

Fn

pout

pin

-Fn

k

-Fn

k

surface

Figure 5. Computation of an in-trajectory point from a

sampled out-trajectory point.

Figure 6. The model and scanned trajectory used for the

experiments presented in section 4.

229

Voxel-based rendering was performed by creating a

fixed voxel grid and computing the nearest triangle to each

voxel center. The stored triangle positions and surface

normals are used to render forces for each voxel through

which the probe passes.

Results for the proxy algorithm and for the voxel-based

algorithm (at two resolutions) are summarized in Table 1,

including the computational cost in floating-point

operations, the initialization time in seconds (on a 1.5GHz

Pentium), and the memory overhead. We observe that the

voxel-based approach offers comparable force error and a

significant reduction in floating-point computation, at the

cost of significant preprocessing time and memory

overhead, relative to the proxy (god-object) approach. It

should be noted that analysis of this particular trajectory

does not capture the fact that the proxy-based approach

offers geometric correctness in many cases where the

voxel-based approach would break down. We will discuss

this further in section 5.

4.2 Friction identification and evaluation

Our approach was used to evaluate the impact of simulated

friction on the accuracy of haptic rendering, using a public-

domain implementation [1] of the friction-cone algorithm

[17]. This analysis also demonstrates the applicability of

our approach for identifying rendering parameters – in this

case a friction radius – from ground-truth data.

This analysis uses the friction cone algorithm available

in CHAI 3D (version 1.31). The in-trajectory derived from

the physical-scanned (raw) trajectory is fed to CHAI for

rendering, and the resulting forces are compared to the

physically-scanned forces. The coefficient of dynamic

friction is iteratively adjusted until a minimum error

between the physical and rendered forces is achieved.

Static (stick-slip) friction was not considered for this

analysis.

Results for the no-friction and optimized-friction cases

are presented in Table 2, including the relative

computational cost in floating-point operations. We

observe that the trajectory computed with friction enabled

contains significantly lower force-vector-error than the no-

friction trajectory, indicating a more realistic rendering,

with only a slightly higher computational cost.

4.3 Impact of mesh resolution

Our approach was used to assess the impact of varying

mesh resolution on the accuracy of haptic rendering. This

is a potentially valuable application of our data, since mesh

resolution is often varied to trade off performance for

accuracy for specific applications, and the use of ground

truth data will allow application developers to select

minimal models that meet application-specific accuracy

bounds.

The haptic proxy algorithm was provided with an in-

trajectory and with eight versions of the duck model, each

at a different tessellation level. The results for each

resolution are presented in Table 3 and Figure 7. We

observe that the error is fairly stable for a large range of

resolutions between 1000 and 140000 triangles, and

increases sharply for lower resolutions.

4.4 Impact of force shading

The analysis presented in Section 4.3 was repeated with

force shading [18] enabled, to quantify the impact of force

shading on the accuracy of rendering this trajectory. Force

shading uses interpolated surface normals to determine the

direction of feedback within a surface primitive, and is the

haptic equivalent of Gouraud shading.

Results are presented in Figure 7, along with the results

assessing the impact of model size on rendering accuracy.

We observe that for a large range of model sizes – between

1k and 10k triangles, a typical range for object sizes used in

virtual environments – force shading significantly reduces

the RMS force error for rendering our duck model. Note

that the impact of force shading is related to the curvature

Algorithm Voxel resolution RMS force error (N) Floating-point ops Init time (s) Memory (MB)

voxel 323 .136 484K 0.27 1.0

voxel 643 .130 486K 2.15 8.0

proxy N/A .129 10.38M 0.00 0.0

Table 1. Accuracy and cost of haptic rendering using proxy- and voxel-based rendering schemes.

Friction radius (mm) RMS force error (N) Flops

0.0000 (disabled) 0.132 10.4M

0.3008 0.067 10.8M

Table 2. Rendering accuracy with and without simulated

dynamic friction.

Model size

(kTri)

Flops RMS force

error (N)

Relative

error

0.2 9.7136M 0.085 9.92

0.5 10.361M 0.031 3.55

1 9.7921M 0.031 3.61

3 10.380M 0.022 2.61

6 10.560M 0.022 2.61

9 10.644M 0.015 1.80

64 10.064M 0.013 1.51

140 9.2452M 0.009 1.00

Table 3. Rendering accuracy of the duck model at

various mesh resolutions, computed using the proxy

algorithm. “Relative error” is computed as a fraction of

the error obtained using the maximum-resolution model.

230

of the object being rendered, and an object with smoothly-

varying curvature (like our duck model) is expected to

benefit significantly from force shading.

5. DISCUSSION

We have provided a series of “ground truth” data sets for

haptic rendering, acquired with a novel scanning paradigm

that allows force and position data to be acquired during a

natural, human-driven scanning motion. We have also

presented an approach for preprocessing this data to make

it suitable as input for a variety of haptic rendering

algorithms, and we have provided a series of example

analyses that demonstrate our approach’s ability to

quantitatively assess haptic rendering systems.

A key application of these data and analyses is to assess

the accuracy of a particular haptic rendering system and to

approximately bound the difference between the forces

experienced by a user through a haptic interface and the

forces the user would experience performing the same

interactions with a real object. This analysis can also be

used to compare haptic rendering algorithms more

objectively: if one algorithm consistently produces a lower

force error relative to a real data set than another algorithm,

it is objectively “more realistic” by our metrics. In this

context, our ground truth data set and preliminary analysis

techniques may play a role in haptics similar to the role

played by [19] in stereo computer vision.

This approach has an application not only in evaluating

published rendering systems, but also in debugging

individual implementations. Debugging haptic rendering

systems is often difficult relative to debugging other

computer systems, due to the hard-real-time constraints, the

nondeterminism introduced by physical devices, and the

difficulty of reliably replicating manual input. Our

approaches and our data sets allow a developer to

periodically test a haptic rendering system via a series of

objective evaluations, and thus rapidly identify problems

and isolate the changes that caused them.

We have also provided an objective series of input data

that can be used to evaluate the computational performance

of an algorithm. In this context, our data sets and analyses

provide a “haptic benchmark”, analogous to the rendering

benchmarks available to the graphics community, e.g.

3DMark (Futuremark Corp). Computational performance

of a haptic rendering system can vary significantly with

input, but it is difficult to describe and distribute the input

stream used to generate a performance analysis result. By

providing a standard data series and a set of reference

results, we present a performance benchmark that authors

can use to describe algorithmic performance. This is

particularly relevant for objectively presenting the value of

optimization strategies for rendering and collision detection

whose primary value may lie in performance

improvements. Performance results are still dependent on

the platform used to generate the results, but this

information can be reported concisely along with results.

The analyses presented here have focused primarily on

“force correctness”, with the ultimate metric of algorithmic

correctness being the accuracy of output forces relative to

ground truth forces. However, the use of standardized, pre-

recorded haptic input data is also suited to assessing the

geometric correctness of rendering algorithms, and for

identifying anomalous cases that cause incorrect behavior

in haptic rendering systems.

For example, figure 8 illustrates a problematic geometry

that can be captured by our analysis approach. In this case,

for certain stiffness values and angles of extrusion (i.e.

“bump sharpness”), the surface contact point produced by

the proxy algorithm becomes “stuck” on the bump,

producing an incorrect trajectory that misrepresents object

geometry. Our approach allows a rapid evaluation of this

geometry using a variety of synthetic models and a variety

of algorithmic parameters (friction values, stiffnesses),

allowing quantification of such problematic cases for

particular renderer implementations. These cases are very

difficult to reliably isolate when a user and physical device

are in the debugging loop.

Our current approach and available data sets, however,

suffer from significant limitations. While a direct

comparison of an algorithm’s output forces to ground truth

forces is expected to correlate to some degree with

perceptual realism, it is not nearly a comprehensive metric.

Furthermore, algorithmic performance and even results are

expected to vary somewhat when collected with a user and

a physical device in the loop, and no set of reference data

can completely capture all possible cases that may have

particular impacts on various rendering algorithms.

Despite these limitations, we propose that a standard

approach to haptic rendering analysis and standard data

series will significantly enhance the quality and objectivity

of haptic rendering system evaluation. In the following

section, we will discuss future work and planned

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1 1 10 100 1000

Model Size (kTri)

R
M

S
 F

o
rc

e
 E

rr
o

r
(N

)

Shading disabled

Shading enabled

Figure 7. Impact of mesh size (logarithmic on the x-axis)

and force shading on RMS Force Error (y-axis) for our

duck model, rendered with the proxy algorithm.

231

improvements to our online repository that will broaden the

applicability of our data and methods.

6. FUTURE WORK

To address the limitations discussed in the previous section,

future work will add both data and additional analyses to

our repository. In particular, we hope to capture a wide

variety of geometries, material types, contact pressures, and

contact trajectories. Subsequent acquisitions will focus on

adding more complex contact shapes (our current probe

approximates a single point of contact).

Furthermore, the simple RMS force error metric used in

this paper is not expected to be an optimal representation of

perceptual accuracy of haptic rendering. Future work will

include the development and psychophysical evaluation of

more appropriate metrics for “haptic correctness”.

Given a sufficient variety of data, our approach also

may have value in the automated optimization of various

parameters used in haptic rendering; the identification of a

dynamic friction coefficient in section 4.2 is a preliminary

example of this application. Future work will include the

generalization of this optimization scheme to a wider

variety of parameters, e.g. static friction, local compliance,

roughness, and haptic texture.

7. DATA REPOSITORY

To provide a standard reference that can be used by the

community for evaluation of haptic rendering systems, the

data, methods, and results discussed in this paper are

publicly available at:

http://jks-folks.stanford.edu/haptic_data/

ACKNOWLEDGEMENTS

Support for this work was provided by NIH grant LM07295, the

AO Foundation, and NSF grants IIS-0308157, EIA-0215887,

ACI-0205671, and EIA-0321057. We also thank our reviewers

for detailed and helpful feedback.

REFERENCES

[1] F. Conti, F. Barbagli, D. Morris, and C. Sewell, “CHAI: An

Open-Source Library for the Rapid Development of Haptic

Scenes”, IEEE World Haptics, Pisa, Italy, March 2005.

[2] SenseGraphics AB, “H3D API”, http://www.h3d.org/

[3] SensAble Technologies, Inc., “OpenHaptics toolkit”,

http://www.sensable.com

[4] U.O. Gretarsdottir, F. Barbagli, and J.K. Salisbury, “Phantom-

X”, EuroHaptics 2003, Dublin, Ireland.

[5] A.E. Kirkpatrick and S.A. Douglas, “Application-based

Evaluation of Haptic Interfaces”, 10th IEEE Haptics Symposium,

2002, Orlando, USA.

[6] A. Guerraz, C. Loscos, and H.R. Widenfeld, “How to use

physical parameters coming from the haptic device itself to

enhance the evaluation of haptic benefits in user interface?”,

EuroHaptics 2003, Dublin, Ireland.

[7] C. Raymaekers, J. De Boeck, and K. Coninx, “An Empirical

Approach for the Evaluation of Haptic Algorithms”, IEEE World

Haptics 2005, Pisa, Italy.

[8] V. Hayward and O.R. Astley, “Performance measures for

haptic interfaces”, Proc Robotics Research: 7th Intl Symp. 1996.

[9] J.E. Colgate and J.M. Brown, “Factors Affecting the Z-Width

of a Haptic Display”, Proc IEEE Conf on Robotics and

Automation, San Diego, CA, USA, May 1994.

[10] D. Feygin, M. Keehner, and F. Tendick, “Haptic Guidance:

Experimental Evaluation of a Haptic Training Method for a

Perceptual Motor Skill”, 10th IEEE Haptics Symposium, 2002.

[11] H.Z. Tan, “Identification of sphere size using the

PHANToM: Towards a set of building blocks for rendering haptic

environments”, Proc ASME Annual Meeting, Vol. 61, Nov 1997.

[12] D. A. Lawrence, L. Y. Pao, A. M. Dougherty, M. A. Salada,

and Y. Pavlou. “Rate-Hardness: a New Performance Metric for

Haptic Interfaces”, IEEE Transactions on Robotics and

Automation, 16(4): 357-371, Aug. 2000.

[13] D. K. Pai, J. Lang, J. E. Lloyd, and R. J. Woodham.

“ACME, A Telerobotic Active Measurement Facility”.

Proceedings of the Sixth International Symposium on

Experimental Robotics, Sydney, Australia, March 1999.

[14] D. K. Pai, K. van den Doel, D. L. James, J. Lang, J. E. Lloyd,

J. L. Richmond, and S. H. Yau, “Scanning Physical Interaction

Behavior of 3D Objects,” in Computer Graphics (ACM

SIGGRAPH 2001 Conference Proceedings), August 2001.

[15] C. B. Zilles and J.K. Salisbury, “A Constraint-based God-

object Method for Haptic Display”, Intl Conference on Intelligent

Robots and Systems, 1995.

[16] W.A. McNeely, K.D. Puterbaugh, and J.J. Troy, “Six degree-

of-freedom haptic rendering using voxel sampling”, Proceedings

of ACM SIGGRAPH 1999, pages 401-408.

[17] W.S. Harwin and N. Melder, “Improved Haptic Rendering

for Multi-Finger Manipulation using Friction Cone based God-

Objects”, Proceedings of EuroHaptics 2002, Edinburgh, UK.

[18] H. B. Morgenbesser and M. A. Srinivasan, “Force shading

for haptic shape perception”, Proceedings of ASME Dynamic

Systems and Control Division, (DSC-Vol.58): 407-412, 1996.

[19] D. Scharstein and R. Szeliski, “A Taxonomy and Evaluation

of Dense Two-Frame Stereo Correspondence Algorithms”,

International Journal of Computer Vision. 47(1/2/3):7-42, April-

June 2002.

Figure 8. This failure case for the Proxy algorithm is an

example of a geometric anomaly that can be captured

and quantified using pre-recorded trajectories.

232

