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ABSTRACT 
 

The development and evaluation of haptic rendering 

algorithms presents two unique challenges.  Firstly, the 

haptic information channel is fundamentally bidirectional, 

so the output of a haptic environment is fundamentally 

dependent on user input, which is difficult to reliably 

reproduce. Additionally, it is difficult to compare haptic 

results to real-world, “gold standard” results, since such a 

comparison requires applying identical inputs to real and 

virtual objects and measuring the resulting forces, which 

requires hardware that is not widely available.  We have 

addressed these challenges by building and releasing 

several sets of position and force information, collected by 

physically scanning a set of real-world objects, along with 

virtual models of those objects.  We demonstrate novel 

applications of this data set for the development, 

debugging, optimization, evaluation, and comparison of 

haptic rendering algorithms. 
 

CR Categories:  H.5.2 [User Interfaces]: Haptic I/O 
 

Keywords: haptics, ground truth, evaluation 

 

1. INTRODUCTION AND RELATED WORK 
 

Haptic rendering systems are increasingly oriented toward 

representing realistic interactions with the physical world.  

Particularly for simulation and training applications, 

intended to develop mechanical skills that will ultimately 

be applied in the real world, fidelity and realism are crucial. 

A parallel trend in haptics is the increasing availability 

of general-purpose haptic rendering libraries [1,2,3], 

providing core rendering algorithms that can be re-used for  

numerous applications.  Given these two trends, developers 

and users would benefit significantly from standard 

verification and validation of haptic rendering algorithms. 

In other fields, published results often “speak for 

themselves” – the correctness of mathematical systems or 

the realism of images can be validated by reviewers and 

peers.  Haptics presents a unique challenge in that the vast 

majority of results are fundamentally interactive, 

preventing consistent repeatability of results.  Furthermore, 

it is difficult at present to distribute haptic systems with 

publications, although several projects have attempted to 

provide deployable haptic presentation systems [1,4]. 

Despite the need for algorithm validation and the lack of 

available approaches to validation, little work has been 

done in providing a general-purpose system for validating 

the physical fidelity of haptic rendering systems.  

Kirkpatrick and Douglas [5] present a taxonomy of haptic 

interactions and propose the evaluation of complete haptic 

systems based on these interaction modes, and Guerraz et al 

[6] propose the use of physical data collected from a haptic 

device to evaluate a user’s behavior and the suitability of a 

device for a particular task.  Neither of these projects 

addresses realism or algorithm validation.  Raymaekers et 

al [7] describe an objective system for comparing haptic 

algorithms, but do not correlate their results to real-world 

data and thus do not address realism.  Hayward and Astley 

[8] present standard metrics for evaluating and comparing 

haptic devices, but address only the physical devices and 

do not discuss the software components of haptic rendering 

systems.  Similarly, Colgate and Brown [9] present an 

impedance-based metric for evaluating haptic devices.  

Numerous projects (e.g. [10,11]) have evaluated the 

efficacy of specific haptic systems for particular motor 

training tasks, but do not provide general-purpose metrics 

and do not address realism of specific algorithms.  Along 

the same lines, Lawrence et al [12] present a perception-

based metric for evaluating the maximum stiffness that can 

be rendered by a haptic system. 

This paper addresses the need for objective, 

deterministic haptic algorithm verification and comparison 

by presenting a publicly available data set that provides 

forces collected from physical scans of real objects, along 

with polygonal models of those objects, and several 

analyses that compare and/or assess haptic rendering 

systems.  We present several applications of this data 

repository and these analysis techniques: 

 

 Evaluation of rendering realism: comparing the forces 

generated from a physical data set with the forces 

generated by a haptic rendering algorithm allows an 

evaluation of the physical fidelity of the algorithm. 
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 Comparison of haptic algorithms: Running identical 

inputs through multiple rendering algorithms allows 

identification of the numeric strengths and weaknesses 

of each. 

 

 Debugging of haptic algorithms: identifying specific 

geometric cases in which a haptic rendering technique 

diverges from the correct results allows the isolation of 

implementation bugs or scenarios not handled by a 

particular approach, independent of overall accuracy. 

 

 Performance evaluation: Comparing the computation 

time required for the processing of a standard set of 

inputs allows objective comparison of the performance 

of specific implementations of haptic rendering 

algorithms. 

 

The data and analyses presented here assume an 

impedance-based haptic rendering system and a single 

point of contact between the haptic probe and the object of 

interested.  This work thus does not attempt to address the 

full range of possible contact types or probe shapes.  

Similarly, this work does not attempt to validate the realism 

of an entire haptic rendering pipeline, which would require 

a consideration of device and user behavior and perceptual 

psychophysics.  Rather, we present a data set and several 

analyses that apply to a large (but not universal) class of 

haptic rendering systems.  We leave the extension of this 

approach to a wider variety of inputs and to more 

sophisticated metrics as future work. 

The remainder of this paper is structured as follows: 

Section 2 will describe our system for physical data 

acquisition, Section 3 will describe the process by which 

we simulate a contact trajectory for evaluation of a haptic 

rendering algorithm, Section 4 will describe some example 

results we have obtained through this process, and Section 

5 will discuss the limitations of our method and several 

scenarios in which our data and methods may be useful to 

others in the haptics community.  We conclude with a 

description of our public data repository and a discussion 

of future extensions to this work. 

  

2. DATA ACQUISITION 
 

Haptic rendering algorithms typically have two sources of 

input: a geometric model of an object of interest and real-

time positional data collected from a haptic interface.  The 

output of this class of algorithms is typically a stream of 

forces that is supplied to a haptic interface.  A key goal of 

our data and analyses is to compare this class of algorithms 

to real-world data, which requires: (a) collecting or creating 

a geometric model of a real-world object and (b) collecting 

a series of correlated forces and positions on the surface of 

that object. 

We have constructed a sensor apparatus that allows the 

collection of this data.  Our specific goal is to acquire data 

for haptic interaction with realistic objects using a hand-

held stylus or pen-like device (henceforth called “the 

probe”).  We use the HAVEN, an integrated multisensory 

measurement and display environment at Rutgers, for 

acquiring measurements interactively, with a human in the 

loop. 

In previous work [13,14], we acquired such 

measurements using a robotic system called ACME (the 

UBC Active Measurement facility). This robotic approach 

has many advantages, including the ability to acquire 

repeatable and repetitive measurements for a long period of 

time, and the ability to acquire measurements from remote 

locations on the Internet. However, our current goals are 

different, and a hand-held probe offers a different set of 

advantages that are important for evaluating interaction 

with a haptic device. 

First, it measures how a real probe behaves during 

natural human interaction, and therefore provides more 

meaningful data for comparison. This is important, because 

contact forces depend in part on the passive, task-

dependent impedance of the hand holding the probe, which 

is difficult to measure or to emulate with a robot arm.  

Second, the dexterity of robot manipulators available today 

is very poor in comparison with the human hand.  

Furthermore, acquiring measurements in concave regions 

or near obstacles using a robot is very difficult, but is easy 

for a human. 

We acquired three types of measurements for each 

object in our data repository: 

  

1. The object’s 3D shape 

2. Motion of the probe tip relative to the object 

3. The force on the probe tip during contact 

 

 

Figure 1.  The sensor used to acquire force and torque 

information, alongside a coin to indicate scale. 

226



We describe these measurements in the remainder of 

this section, in reverse order. 

Force data are acquired using a custom-designed hand-

held probe built around a Nano17 6-axis force/torque 

sensor (Figure 1) (ATI Industrial Automation, Apex, NC, 

USA).  The reported spatial resolution of the force sensor is 

as follows (the z-axis is aligned with the axis of the probe): 

Fx,Fy 1/320 N; Fz 1/640 N; Tx,Ty 1/128 N·mm; Tz 1/128 

N·mm. 

A replaceable sphere-tipped Coordinate Measuring 

Machine (CMM) stylus is attached to the front face of the 

force sensor, and a handle to the rear, allowing a user to 

drag the probe tip over the surface being measured.  The 

interchangability of the probe tip is important, since the 

curvature of the contact area kinematically filters the probe 

motion and thus impacts the acquired data. 

As the surface is being probed, the force/torque 

measurements from the Nano17 are sampled at 5kHz using 

a 16-bit A/D converter (National Instruments, Austin, 

Texas, USA).  The static gravitational load due to the probe 

tip is compensated for based on the measured orientation of 

the probe.  The force and torque measured at the force 

sensor are transformed to the center of the probe tip to 

compute the contact force on the tip. 

In addition to measuring force and torque, the probe’s 

motion is tracked to provide simultaneous position data. 

The probe is tracked using a six-camera motion-capture 

system (Vicon Peak, Lake Forest, CA, USA).  Several 

small retroreflective optical markers are attached to the 

probe, allowing the camera system to record and 

reconstruct the probe’s position and orientation at 60Hz.  

The reconstructed position is accurate to less than 0.5mm. 

The object being measured is also augmented with 

optical tracking markers, so the configuration of the probe 

with respect to the object is known even when the user 

moves the object to access different locations on the 

surface.  The object is scanned with a Polhemus FastScan 

laser scanner (Polhemus, Colchester, VT, USA) to generate 

a mesh representation of the object's surface.  The 

manufacturer reports an accuracy of 1mm for the surface.  

A water-tight triangular mesh is extracted from the scans 

using a fast RBF method.  The location of the optical 

tracking markers are included in the scan to allow 

registration of the surface geometry with the motion 

capture data acquired during contact measurement.  Figure 

2 shows an example data series acquired with our setup. 

The full data set is available in the public repository (see 

Section 7). 

Our initial scanning effort has focused on rigid objects, 

to constrain the analysis to static geometry. 

 

3. DATA PROCESSING 
 

Given a set of scanned trajectories, we evaluate a haptic 

rendering algorithm by feeding a sequence of scanned 

probe positions into the algorithm and comparing the 

computed forces to the physically-scanned forces.  For 

penalty-based haptic rendering algorithms, this requires a 

pre-processing step to create a virtual trajectory that is 

inside the virtual representation of the scanned object. 

This section will describe this process, which can be 

summarized in three stages: 
 

1. Pre-processing of a scanned trajectory to allow direct 

comparison to rendered trajectories. 

2. Computation of rendered forces and a surface contact 

Figure 2.  Data collected from our scanning apparatus. 

Normal (z) forces are indicated in red, tangential (x,y) 

forces are indicated in green and blue.  The data 

presented here represent a scanning motion, primarily 

on the y axis, on a flat plane.  Brief initial and final taps 

were added to aid registration of force and motion data; 

they are visible in the normal force. 
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Figure 3. An overview of our data processing and 

algorithm evaluation pipeline.  An object is scanned, 

producing a 3D geometric model and an out-trajectory. 

An in-trajectory is synthesized from this out-trajectory 

and is fed as input to a haptic rendering system, which 

produces force and trajectory information.  This 

information can be compared to the physically-scanned 

forces and the original trajectory. 
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point trajectory by the haptic rendering algorithm that 

is being evaluated, using the pre-processed input 

positions. 

3. Computation of performance metrics from the output 

of the haptic rendering system. 

 

Figure 3 summarizes this process. 

 

3.1 Data pre-processing 
 

The haptic rendering algorithms on which we have 

performed initial analyses are penalty-based: the virtual 

haptic probe is allowed to penetrate the surface of a 

simulated object, and a force is applied to expel the haptic 

probe from the object.  A physical (real-world) probe 

scanning the surface of a physical object never penetrates 

the surface of the object.  Therefore a virtual scanning 

trajectory is not expected to be identical to a physical 

trajectory, even if a user intends to perform the same probe 

motions on the real and virtual objects.  We therefore 

perform a pre-processing step that – given a physical 

scanning trajectory – generates a sub-surface trajectory that 

(under ideal conditions) produces a surface contact 

trajectory that is equivalent to the scanned trajectory.  This 

allows a direct comparison of a trajectory collected from a 

haptic simulation with the ideal behavior that should be 

expected from that simulation. 

We refer to an ideal trajectory (one in which the probe 

never penetrates the surface of the object) as an “out-

trajectory”, and a trajectory that allows the probe to travel 

inside the object as an “in-trajectory”.  Figure 4 

demonstrates this distinction.   

The penetration depth (the distance between the in- and 

out-trajectories) of a virtual haptic probe into a surface is 

generally dependent on an adjustable spring constant, 

which is an input to the algorithm and should be considered 

part of the system that is under evaluation; this constant is 

reported along with all results in our online repository.  The 

spring constant is assumed to be homogeneous for purposes 

of the present analysis. 

Typically, penetration depth and the resulting penalty 

force are related to this spring constant according to 

Hooke’s Law: 

 

fp = -kx                         (1) 
 

Here fp is the penalty force vector, k is the scalar 

stiffness constant, and x is the penetration vector (the 

vector between the haptic probe position and a surface 

contact point computed by the haptic rendering algorithm).  

We use this relationship to compute a corresponding in-

trajectory for a physically-scanned out-trajectory. 

Surface normals are computed at each point in the out-

trajectory, using the scanned geometric model of the object.  

These surface normals are then used to extract the normal 

component of the recorded force at each point.  Each point 

in the sampled out-trajectory is then converted to a 

corresponding point in the in-trajectory by projecting the 

surface point into the object along the surface normal, by a 

distance inversely proportional to the chosen stiffness and 

directly proportional to the recorded normal force (for a 

given normal force, higher stiffnesses should result in 

lower penetration depths): 

 

pin = pout - Fn / k                (2) 
 

Here pin and pout are corresponding in- and out-

trajectory points, Fn is the recorded normal force at each 

point, and k is the selected stiffness constant.  This 

relationship is illustrated in Figure 5.  Each in-trajectory 

point is assigned a timestamp that is equal to the 

corresponding out-trajectory point’s timestamp. 

Following this computation, the in-trajectory 

corresponding to a physical out-trajectory is the path that a 

haptic probe would need to take in a virtual environment so 

that the surface contact point corresponding to that haptic 

probe path precisely follows the sampled out-trajectory. 

 

3.2 Trajectory processing 
 

The input to a haptic rendering algorithm is typically a 

geometric model of an object of interest and a series of 

positions obtained from a haptic interface.  For the present 

analysis, we obtain a geometric model from the laser-

scanning system described in Section 1, and we present a 

stream of positions – collected from our position-tracking 

system – through a “virtual haptic interface”.  From the 

perspective of a rendering algorithm implementation, this 

interface plays the role of a haptic device that is able to 

report its position in Cartesian space. 

Given an in-trajectory computed from a physical out-

trajectory, we can thus simulate a virtual haptic interaction 

with an object, which will produce a stream of forces and – 

in the case of many common haptic rendering algorithms – 

a new out-trajectory (which we refer to as a “rendered 

trajectory”), representing the path that a virtual contact 

point traveled on the surface of the virtual object. 

The computational complexity of this simulation is 

identical to the case in which a haptic interface is used 

 
 
Figure 4.  An “out-trajectory” represents the path taken 

by a physical probe over the surface of an object; a 

haptic rendering algorithm typically approximates this

trajectory with an “in-trajectory” that allows the probe 

to enter the virtual object. 
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interactively, allowing assessment of computational 

performance in addition to algorithm output. 

 

3.3 Metric extraction 
 

Each time an in-trajectory is fed through a haptic rendering 

algorithm, producing a stream of forces and surface contact 

point locations, we collect the following evaluation metrics: 

 

 Output force error: the difference between the forces 

produced by the haptic rendering algorithm and the 

forces collected by the force sensor.  This is 

summarized as a root-mean-squared Euclidean 

distance, i.e.: 
 

N

i

ii rFpF
N

e
1

1
                  (3) 

 

 Here N is the number of samples in the out-trajectory, 

Fpi is the physically-scanned force at sample i and Fri 

is the rendered force at sample i.  This metric is 

referred to as “RMS Force Error” in Section 4.  The 

physically-scanned forces have been resampled to 

align in time with the position samples.  

 

 Output position error: the difference between the 

surface contact point position produced by the haptic 

rendering algorithm and the physically sampled out-

trajectory.  This can also be summarized as a root-

mean-squared Euclidean distance, although we have 

found that it is more valuable to collect the cases that 

exceed a threshold instantaneous error, representing 

“problematic” geometric cases. 

 

 Computational cost: the mean, median, and maximum 

numbers of floating-point operations required to a 

compute a surface contact point and/or penalty force 

and the floating-point operation count for the complete 

trajectory.  While this is not a truly platform-

independent measure of computational complexity, it 

scales well among CPU speeds and is roughly 

proportional to computation time on a particular CPU. 

 

We do not present these metrics as a comprehensive 

representation of haptic rendering performance, rather we 

present them as examples of immediately-useful data that 

can be extracted using our data collection system, data 

repository, and offline processing approach.  We anticipate 

that future work and future contributions by the haptics 

community will expand the set of available metrics and 

assess their correlations to the perceptual quality of haptic 

environments. 

 

4. EXPERIMENTS AND RESULTS 
 

We used the analyses discussed in Section 3 to conduct 

four experiments that attempt to quantify and compare 

haptic rendering algorithms.   Specifically, we explored: 

 

1. The relative accuracy and computational cost of a 

haptic proxy algorithm and a rendering scheme based 

on voxel sampling. 

2. The impact of simulated friction on the accuracy of 

haptic rendering and the use of ground truth data for 

friction identification. 

3. The impact of mesh resolution on the accuracy of 

haptic rendering. 

4. The impact of force shading on the accuracy of haptic 

rendering. 

 

For consistency, these analyses have all been performed 

using the same model (a scanned plastic duck) and input 

trajectory (see Figure 6), which is available in the online 

repository. 

These results are presented as examples of analyses that 

can be derived from our data sets, and their generalization 

to a wider variety of rendering algorithms, models, and 

trajectories is left for future work and is the primary goal of 

our online repository. 

 

4.1 Proxy-based vs. voxel-based rendering 
 

Our approach was used to compare the computational cost 

and force errors for a public-domain implementation [1] of 

the haptic proxy (god-object) algorithm [15] and a voxel-

based rendering scheme [16], and to assess the impact of 

voxel resolution on rendering accuracy.  This analysis does 

not include any cases in which the proxy provides 

geometric correctness that the voxel-based rendering could 

not; i.e. the virtual haptic probe never “pops through” the 

model. 
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Figure 5. Computation of an in-trajectory point from a 

sampled out-trajectory point. 

 
Figure 6. The model and scanned trajectory used for the 

experiments presented in section 4. 
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Voxel-based rendering was performed by creating a 

fixed voxel grid and computing the nearest triangle to each 

voxel center.  The stored triangle positions and surface 

normals are used to render forces for each voxel through 

which the probe passes. 

Results for the proxy algorithm and for the voxel-based 

algorithm (at two resolutions) are summarized in Table 1, 

including the computational cost in floating-point 

operations, the initialization time in seconds (on a 1.5GHz 

Pentium), and the memory overhead.  We observe that the 

voxel-based approach offers comparable force error and a 

significant reduction in floating-point computation, at the 

cost of significant preprocessing time and memory 

overhead, relative to the proxy (god-object) approach.  It 

should be noted that analysis of this particular trajectory 

does not capture the fact that the proxy-based approach 

offers geometric correctness in many cases where the 

voxel-based approach would break down.  We will discuss 

this further in section 5. 

 

4.2 Friction identification and evaluation 
 

Our approach was used to evaluate the impact of simulated 

friction on the accuracy of haptic rendering, using a public-

domain implementation [1] of the friction-cone algorithm 

[17].  This analysis also demonstrates the applicability of 

our approach for identifying rendering parameters – in this 

case a friction radius – from ground-truth data. 

This analysis uses the friction cone algorithm available 

in CHAI 3D (version 1.31). The in-trajectory derived from 

the physical-scanned (raw) trajectory is fed to CHAI for 

rendering, and the resulting forces are compared to the 

physically-scanned forces. The coefficient of dynamic 

friction is iteratively adjusted until a minimum error 

between the physical and rendered forces is achieved.  

Static (stick-slip) friction was not considered for this 

analysis. 

Results for the no-friction and optimized-friction cases 

are presented in Table 2, including the relative 

computational cost in floating-point operations.  We 

observe that the trajectory computed with friction enabled 

contains significantly lower force-vector-error than the no-

friction trajectory, indicating a more realistic rendering, 

with only a slightly higher computational cost. 

 

4.3 Impact of mesh resolution 
 

Our approach was used to assess the impact of varying 

mesh resolution on the accuracy of haptic rendering.  This 

is a potentially valuable application of our data, since mesh 

resolution is often varied to trade off performance for 

accuracy for specific applications, and the use of ground 

truth data will allow application developers to select 

minimal models that meet application-specific accuracy 

bounds. 

The haptic proxy algorithm was provided with an in-

trajectory and with eight versions of the duck model, each 

at a different tessellation level.  The results for each 

resolution are presented in Table 3 and Figure 7.  We 

observe that the error is fairly stable for a large range of 

resolutions between 1000 and 140000 triangles, and 

increases sharply for lower resolutions. 

 

4.4 Impact of force shading 
 

The analysis presented in Section 4.3 was repeated with 

force shading [18] enabled, to quantify the impact of force 

shading on the accuracy of rendering this trajectory.  Force 

shading uses interpolated surface normals to determine the 

direction of feedback within a surface primitive, and is the 

haptic equivalent of Gouraud shading. 

Results are presented in Figure 7, along with the results 

assessing the impact of model size on rendering accuracy.  

We observe that for a large range of model sizes – between 

1k and 10k triangles, a typical range for object sizes used in 

virtual environments – force shading significantly reduces 

the RMS force error for rendering our duck model.  Note 

that the impact of force shading is related to the curvature 

Algorithm Voxel resolution RMS force error (N) Floating-point ops Init time (s) Memory (MB) 

voxel 323 .136  484K 0.27 1.0 

voxel 643 .130  486K 2.15 8.0 

proxy N/A .129  10.38M 0.00 0.0 
 

Table 1. Accuracy and cost of haptic rendering using proxy- and voxel-based rendering schemes.   

Friction radius (mm) RMS force error (N) Flops 

0.0000 (disabled) 0.132  10.4M 

0.3008 0.067  10.8M 
 

Table 2. Rendering accuracy with and without simulated 

dynamic friction.  

Model size 

(kTri) 

Flops RMS force 

error (N) 

Relative 

error 

0.2 9.7136M 0.085 9.92 

0.5 10.361M 0.031 3.55 

1 9.7921M 0.031 3.61 

3 10.380M 0.022 2.61 

6 10.560M 0.022 2.61 

9 10.644M 0.015 1.80 

64 10.064M 0.013 1.51 

140 9.2452M 0.009 1.00 
 

Table 3. Rendering accuracy of the duck model at 

various mesh resolutions, computed using the proxy 

algorithm.  “Relative error” is computed as a fraction of 

the error obtained using the maximum-resolution model. 
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of the object being rendered, and an object with smoothly-

varying curvature (like our duck model) is expected to 

benefit significantly from force shading. 

 

5. DISCUSSION 
 

We have provided a series of “ground truth” data sets for 

haptic rendering, acquired with a novel scanning paradigm 

that allows force and position data to be acquired during a 

natural, human-driven scanning motion.  We have also 

presented an approach for preprocessing this data to make 

it suitable as input for a variety of haptic rendering 

algorithms, and we have provided a series of example 

analyses that demonstrate our approach’s ability to 

quantitatively assess haptic rendering systems. 

A key application of these data and analyses is to assess 

the accuracy of a particular haptic rendering system and to 

approximately bound the difference between the forces 

experienced by a user through a haptic interface and the 

forces the user would experience performing the same 

interactions with a real object.  This analysis can also be 

used to compare haptic rendering algorithms more 

objectively: if one algorithm consistently produces a lower 

force error relative to a real data set than another algorithm, 

it is objectively “more realistic” by our metrics.  In this 

context, our ground truth data set and preliminary analysis 

techniques may play a role in haptics similar to the role 

played by [19] in stereo computer vision. 

This approach has an application not only in evaluating 

published rendering systems, but also in debugging 

individual implementations.  Debugging haptic rendering 

systems is often difficult relative to debugging other 

computer systems, due to the hard-real-time constraints, the 

nondeterminism introduced by physical devices, and the 

difficulty of reliably replicating manual input.  Our 

approaches and our data sets allow a developer to 

periodically test a haptic rendering system via a series of 

objective evaluations, and thus rapidly identify problems 

and isolate the changes that caused them. 

We have also provided an objective series of input data 

that can be used to evaluate the computational performance 

of an algorithm.  In this context, our data sets and analyses 

provide a “haptic benchmark”, analogous to the rendering 

benchmarks available to the graphics community, e.g. 

3DMark (Futuremark Corp).  Computational performance 

of a haptic rendering system can vary significantly with 

input, but it is difficult to describe and distribute the input 

stream used to generate a performance analysis result.  By 

providing a standard data series and a set of reference 

results, we present a performance benchmark that authors 

can use to describe algorithmic performance.  This is 

particularly relevant for objectively presenting the value of 

optimization strategies for rendering and collision detection 

whose primary value may lie in performance 

improvements.  Performance results are still dependent on 

the platform used to generate the results, but this 

information can be reported concisely along with results. 

The analyses presented here have focused primarily on 

“force correctness”, with the ultimate metric of algorithmic 

correctness being the accuracy of output forces relative to 

ground truth forces.  However, the use of standardized, pre-

recorded haptic input data is also suited to assessing the 

geometric correctness of rendering algorithms, and for 

identifying anomalous cases that cause incorrect behavior 

in haptic rendering systems. 

For example, figure 8 illustrates a problematic geometry 

that can be captured by our analysis approach.  In this case, 

for certain stiffness values and angles of extrusion (i.e. 

“bump sharpness”), the surface contact point produced by 

the proxy algorithm becomes “stuck” on the bump, 

producing an incorrect trajectory that misrepresents object 

geometry.  Our approach allows a rapid evaluation of this 

geometry using a variety of synthetic models and a variety 

of algorithmic parameters (friction values, stiffnesses), 

allowing quantification of such problematic cases for 

particular renderer implementations.  These cases are very 

difficult to reliably isolate when a user and physical device 

are in the debugging loop. 

Our current approach and available data sets, however, 

suffer from significant limitations.  While a direct 

comparison of an algorithm’s output forces to ground truth 

forces is expected to correlate to some degree with 

perceptual realism, it is not nearly a comprehensive metric.  

Furthermore, algorithmic performance and even results are 

expected to vary somewhat when collected with a user and 

a physical device in the loop, and no set of reference data 

can completely capture all possible cases that may have 

particular impacts on various rendering algorithms.  

Despite these limitations, we propose that a standard 

approach to haptic rendering analysis and standard data 

series will significantly enhance the quality and objectivity 

of haptic rendering system evaluation.  In the following 

section, we will discuss future work and planned 
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Figure 7. Impact of mesh size (logarithmic on the x-axis) 

and force shading on RMS Force Error (y-axis) for our 

duck model, rendered with the proxy algorithm.
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improvements to our online repository that will broaden the 

applicability of our data and methods. 

 

6. FUTURE WORK 
 

To address the limitations discussed in the previous section, 

future work will add both data and additional analyses to 

our repository.  In particular, we hope to capture a wide 

variety of geometries, material types, contact pressures, and 

contact trajectories.  Subsequent acquisitions will focus on 

adding more complex contact shapes (our current probe 

approximates a single point of contact). 

Furthermore, the simple RMS force error metric used in 

this paper is not expected to be an optimal representation of 

perceptual accuracy of haptic rendering.  Future work will 

include the development and psychophysical evaluation of 

more appropriate metrics for “haptic correctness”. 

Given a sufficient variety of data, our approach also 

may have value in the automated optimization of various 

parameters used in haptic rendering; the identification of a 

dynamic friction coefficient in section 4.2 is a preliminary 

example of this application.  Future work will include the 

generalization of this optimization scheme to a wider 

variety of parameters, e.g. static friction, local compliance, 

roughness, and haptic texture. 

 

7. DATA REPOSITORY 
 

To provide a standard reference that can be used by the 

community for evaluation of haptic rendering systems, the 

data, methods, and results discussed in this paper are 

publicly available at: 
 

http://jks-folks.stanford.edu/haptic_data/ 

 

ACKNOWLEDGEMENTS 
 

Support for this work was provided by NIH grant LM07295, the 

AO Foundation, and NSF grants IIS-0308157, EIA-0215887, 

ACI-0205671, and EIA-0321057.  We also thank our reviewers 

for detailed and helpful feedback. 

 

 

REFERENCES 
 

[1] F. Conti, F. Barbagli, D. Morris, and C. Sewell, “CHAI: An 

Open-Source Library for the Rapid Development of Haptic 

Scenes”, IEEE World Haptics, Pisa, Italy, March 2005. 

[2] SenseGraphics AB, “H3D API”, http://www.h3d.org/ 

[3] SensAble Technologies, Inc., “OpenHaptics toolkit”, 

http://www.sensable.com 

[4] U.O. Gretarsdottir, F. Barbagli, and J.K. Salisbury, “Phantom-

X”, EuroHaptics 2003, Dublin, Ireland. 

[5] A.E. Kirkpatrick and S.A. Douglas, “Application-based 

Evaluation of Haptic Interfaces”, 10th IEEE Haptics Symposium, 

2002, Orlando, USA. 

[6] A. Guerraz, C. Loscos, and H.R. Widenfeld, “How to use 

physical parameters coming from the haptic device itself to 

enhance the evaluation of haptic benefits in user interface?”, 

EuroHaptics 2003, Dublin, Ireland. 

[7] C. Raymaekers, J. De Boeck, and K. Coninx, “An Empirical 

Approach for the Evaluation of Haptic Algorithms”, IEEE World 

Haptics 2005, Pisa, Italy. 

[8] V. Hayward and O.R. Astley, “Performance measures for 

haptic interfaces”, Proc Robotics Research: 7th Intl Symp.  1996. 

[9] J.E. Colgate and J.M. Brown, “Factors Affecting the Z-Width 

of a Haptic Display”, Proc IEEE Conf on Robotics and 

Automation, San Diego, CA, USA, May 1994. 

[10] D. Feygin, M. Keehner, and F. Tendick, “Haptic Guidance: 

Experimental Evaluation of a Haptic Training Method for a 

Perceptual Motor Skill”, 10th IEEE Haptics Symposium, 2002. 

[11] H.Z. Tan, “Identification of sphere size using the 

PHANToM: Towards a set of building blocks for rendering haptic 

environments”, Proc ASME Annual Meeting, Vol. 61, Nov 1997. 

[12] D. A. Lawrence, L. Y. Pao, A. M. Dougherty, M. A. Salada, 

and Y. Pavlou. “Rate-Hardness: a New Performance Metric for 

Haptic Interfaces”, IEEE Transactions on Robotics and 

Automation, 16(4):  357-371, Aug. 2000. 

[13] D. K. Pai, J. Lang, J. E. Lloyd, and R. J. Woodham.  

“ACME, A Telerobotic Active Measurement Facility”. 

Proceedings of the Sixth International Symposium on 

Experimental Robotics, Sydney, Australia, March 1999. 

[14] D. K. Pai, K. van den Doel, D. L. James, J. Lang, J. E. Lloyd, 

J. L. Richmond, and S. H. Yau, “Scanning Physical Interaction 

Behavior of 3D Objects,” in Computer Graphics (ACM 

SIGGRAPH 2001 Conference Proceedings), August 2001. 

[15] C. B. Zilles and J.K. Salisbury, “A Constraint-based God-

object Method for Haptic Display”, Intl Conference on Intelligent 

Robots and Systems, 1995. 

[16] W.A. McNeely, K.D. Puterbaugh, and J.J. Troy, “Six degree-

of-freedom haptic rendering using voxel sampling”, Proceedings 

of ACM SIGGRAPH 1999, pages 401-408. 

[17] W.S. Harwin and N. Melder, “Improved Haptic Rendering 

for Multi-Finger Manipulation using Friction Cone based God-

Objects”, Proceedings of EuroHaptics 2002, Edinburgh, UK. 

[18] H. B. Morgenbesser and M. A. Srinivasan, “Force shading 

for haptic shape perception”, Proceedings of ASME Dynamic 

Systems and Control Division, (DSC-Vol.58): 407-412, 1996. 

[19] D. Scharstein and R. Szeliski, “A Taxonomy and Evaluation 

of Dense Two-Frame Stereo Correspondence Algorithms”, 

International Journal of Computer Vision.  47(1/2/3):7-42, April-

June 2002. 

 
 

Figure 8. This failure case for the Proxy algorithm is an 

example of a geometric anomaly that can be captured 

and quantified using pre-recorded trajectories. 
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