
The Space of Rate Monotonic Schedulability

Enrico Bini
Scuola Superiore S. Anna

Pisa, Italy
e.bini@sssup.it

Giorgio C. Buttazzo
University of Pavia, Italy

INFM Research Unit
buttazzo@unipv.it

Abstract

Feasibility analysis of fixed priority systems has been
widely studied in the real-time literature and several accep-
tance tests have been proposed to guarantee a set of peri-
odic tasks. They can be divided in two main classes: poly-
nomial time tests and exact tests. Polynomial time tests are
used for on-line guarantee of dynamic systems, where tasks
can be activated at runtime. These tests introduce a neg-
ligible overhead, when executed upon a new task arrival,
however provide only a sufficient schedulability condition,
which may cause a poor processor utilization. On the other
hand, exact tests, which are based on response time anal-
ysis, provide a necessary and sufficient schedulability con-
dition, but are too complex to be executed on line for large
task sets. As a consequence, for large task sets, they are
often executed off line.

This paper proposes a novel approach for analyzing the
schedulability of periodic task sets under the Rate Mono-
tonic priority assignment. Using this approach, we derive
a new schedulability test which can be tuned through a pa-
rameter to balance complexity vs. acceptance ratio, so that
it can be used on line to better exploit the processor, based
on the available computational power. Extensive simula-
tions show that our test, when used in its exact form, is
significantly faster than the current response time analysis
methods.

Moreover the proposed approach, for its elegance and
compactness, offers an explanation of some known phenom-
ena of fixed priority scheduling and could be helpful for fur-
ther work on the Rate Monotonic analysis.

1. Introduction

Fixed priority scheduling is widely used in modern real-
time systems, since it can be easily implemented on top of
commercial kernels that provide a limited number of prior-
ity levels. One of the most common fixed priority assign-
ment follows the Rate Monotonic (RM) algorithm, accord-

ing to which tasks’ priorities are ordered based on tasks’
activation rates, so that the task with the shortest period is
assigned the highest priority.

In [8], Liu and Layland proved that RM is optimal
among all fixed priority schemes, meaning that if a task set
is not schedulable by RM, then it cannot be scheduled by
any other fixed priority assignment. In the same paper, the
authors also derived a simple guarantee test to verify the
feasibility of a periodic task set under RM.

Their result refers to the following task model. Each pe-
riodic task �i consists of an infinite sequence of jobs �ik
(k = 1; 2; : : :), where the first job �i1 is released at time
ri1 = �i (the task phase) and the generic kth job �ik is re-
leased at time rik = �i + (k � 1)Ti, where Ti is the task
period. Each job is characterized by a worst-case execution
time Ci, a relative deadline Di and an absolute deadline
dik = rik +Di. The ratio Ui = Ci=Ti is called the utiliza-
tion factor of task �i and represents the fraction of processor
time used by that task. Finally, the value

Up =

nX
i=1

Ui

is called the total processor utilization factor and represents
the fraction of processor time used by the periodic task set.
Clearly, if Up > 1 no feasible schedule exists for the task
set.

The schedulability condition for RM is derived for a set
�n of n periodic tasks under the assumptions that all tasks
start simultaneously at time t = 0 (that is, �i = 0 for all
i = 1; : : : ; n), relative deadlines are equal to periods (that is,
dik = k Ti) and tasks are independent (that is, they do not
have resource constraints, nor precedence relations). Under
such assumptions, a set of n periodic tasks is schedulable
by the RM algorithm if

nX
i=1

Ui � n (21=n � 1): (1)

Throughout the paper, we will refer to the previous schedu-
lability condition as the LL-test. We recall that

lim
n!1

n (21=n � 1) = ln 2 ' 0:69:

Proceedings of the 23rd IEEE REAL-TIME SYSTEMS SYMPOSIUM (RTSS’02)
1052-8725/02 $17.00 © 2002 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca della Scuola Superiore Sant'Anna

https://core.ac.uk/display/54928098?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

After this first result, a lot of work has been done to im-
prove the schedulability bound of the RM algorithm or relax
some restrictive assumption on the task set.

In [7], Lehoczky, Sha, and Ding performed a statistical
study and showed that for task sets with randomly generated
parameters the LL-test is able to guarantee schedulability up
to a processor utilization of about 88%. Exact schedulabil-
ity tests for RM yielding to necessary and sufficient condi-
tions have been independently derived in [5, 7, 1]. Using
the method proposed in [1], a periodic task set is schedula-
ble with the RM algorithm if and only if the worst-case re-
sponse time of each task is less than or equal to its deadline.
The worst-case response time Ri of a task can be computed
using the following iterative formula:8><

>:
R

(0)
i = Ci

R
(k)
i = Ci +

X
j:Dj<Di

&
R

(k�1)
i

Tj

'
Cj

(2)

where the worst-case response time of task �i is given by
the smallest value of R(k)

i such that R(k)
i = R

(k�1)
i . It

is worth noting, however, that the complexity of the exact
test is pseudo-polynomial, thus it is not suited to be used
for on-line admission control, when the number of tasks
is large. In [13], Sha, Rajkumar and Lehozcky extended
the rate monotonic analysis in the presence of resource con-
straints, where access to resources is performed using con-
currency control protocols, such as the Priority Inheritance
Protocol and the Priority Ceiling Protocol. In [1], Audsley
et al. generalized the response time analysis including re-
source constraints, and in [3], Burns, Davis, and Punnekats
extended it to take fault-tolerant constraints into account.
In [14], Sjödin and Hansson provided some methods for re-
ducing the number of iterations in computing the tasks re-
sponse times, however the worst-case complexity of their
test is still pseudo-polynomial.

In the last years, other authors [11, 10, 2] proposed novel
approaches for deriving polynomial time tests with better
acceptance ratio than the LL-test. For example, the Hyper-
bolic Bound (HB) proposed by Bini et al. [2] improves the
acceptance ratio up to a limit of

p
2 for large n, compared

with the Liu and Layland one. According to this method, a
set of periodic tasks is schedulable by RM if

nY
i=1

(Ui + 1) � 2: (3)

The authors also extended the test in the presence of re-
source constraints and aperiodic servers.

In [6, 4] the Liu and Layland utilization bound has been
improved by considering some additional information on
the task set, such as the number of harmonic chains and the
value of the periods. A similar approach was proposed by
Park et al. [12] and, in the case of a graph structured task,
by Liu and Hu [9].

In this paper, we propose a novel and more general
approach for analyzing the schedulability of periodic task
sets under the Rate Monotonic priority assignment. Using
this approach, we derived a new schedulability test, called
Æ-HET (Hyperplanes Æ-Exact Test), which can be tuned
through a parameter to balance complexity vs. acceptance
ratio, so that it can be used on line to better exploit the pro-
cessor, based on the available computational power. So, for
example, if the processor is powerful enough, and there is
sufficient time for on-line guarantee, our test can be tuned
to behave like the response time test, but with less execution
overhead. On the other hand, when the processor utilization
is high and the overhead of the guarantee test must be con-
tained, our test can be set to run in less time, with decreased
performance. A qualitative behavior of the proposed test is
illustrated in Figure 1.

complexity

acceptance
ratio

0 1
Æ

Figure 1. Qualitative properties of the tunable
guarantee test.

Extensive simulations show that our test, when used in
its exact form, is significantly faster than the current re-
sponse time analysis methods, and performs much better
than polynomial tests (such LL or HB) when used in its re-
duced form.

As a last remark, we like to notice that the main result
of this paper, expressed by Theorem 3, is very general and
provides a new view of the results presented in [6, 12, 4].

The rest of the paper is organized as follows. Section 2
describes the task model and states our notation. Section 3
explains our approach in detail. Section 4 illustrates the
proof of the main result of the paper. Section 5 introduces
the tunable guarantee test, called the Æ-HET test. Section 6
compares the Æ-HET test with others similar tests proposed
in the literature. Finally, Section 7 presents our conclusions
and future work.

2. Task model and notation

In this section we introduce the task model and the no-
tation we will use throughout the paper. We consider a set
�n = f�1; : : : ; �ng of n periodic tasks, where each task �i
is characterized by an initial activation time �i (phase), a
worst-case computation time Ci, and a period Ti. Each task
�i consists of an infinite sequence of jobs, where �ik de-

Proceedings of the 23rd IEEE REAL-TIME SYSTEMS SYMPOSIUM (RTSS’02)
1052-8725/02 $17.00 © 2002 IEEE

notes the kth job of task �i. In particular, rik and fik denote
the release time and the finishing time of �ik, respectively.
Each job has a relative deadlineDi, thus, for the periodicity
assumption, the release time rik and the absolute deadline
dik of job �ik can be computed as follows:

rik = �i + (k � 1)Ti; dik = rik +Di:

For the sake of simplicity, in this paper we assume that rel-
ative deadlines are equal to periods (Di = Ti), however the
analysis can easily be extended to consider Di � Ti. Fi-
nally, Ui = Ci=Ti denotes the utilization factor of task �i.

As proved by Liu and Layland in [8], the worst-case sce-
nario for a periodic task set scheduled by RM occurs when
all the tasks are simultaneously activated at the same time,
so without loss of generality we assume �i = 0 for all the
tasks.

In our formulation, a task set is viewed as a point in a
specific space of the task set parameters, hence the feasibil-
ity test will be expressed as a check that verifies whether a
point belongs to a region M n of the RM schedulable tasks
sets. In particular, region M n is defined as follows:

M n (T1; : : : ; Tn) = f(C1; : : : ; Cn) 2 Rn+ :
�n is schedulable by RMg:

(4)
We note that periods Ti are considered as parameters,
whereasCi are free variables. Hence, we obtain a constraint
on the Ci variables, which is a function of the periods Ti.
The space where every coordinate is represented by a task
computation timeCi, is called theC-space. In the following
section, we express region M n in a convenient form which
simplifies the feasibility check.

3. Expressing M n

A first attempt to analytically characterize the M n region
in the C-space was indirectly done by Lehoczky, Sha and
Ding in [7], through the following theorem:

Theorem 1 (Theorem 2 in [7]) Given a periodic task set
�n = f�1; : : : ; �ng,

1. �i can be scheduled for all tasks phasings using the
RM algorithm if and only if:

Li = min
t2Si

Pi
j=1

l
t
Tj

m
Cj

t
� 1

where Si = frTj : j = 1 : : : i; r = 1 : : :
j
Ti
Tj

k
g.

2. The entire task set is schedulable for all tasks phasings
using RM if and only if:

max
i=1:::n

Li � 1:

Manipulating this result, we can restate the theorem in
a more expressive form (in the next mathematical passages

i Ti Si
1 3 f3g
2 8 f3; 6; 8g
3 20 f3; 6; 8; 9; 12; 15; 16; 18; 20g

Table 1. A 3-task set example of Si when T1 =
3, T2 = 8 and T3 = 20.

we will widely use the logical OR operator_ and the logical
AND operator ^):

max
i=1:::n

min
t2Si

Pi
j=1

l
t
Tj

m
Cj

t
� 1 ()

()
^

i=1:::n

min
t2Si

Pi
j=1

l
t
Tj

m
Cj

t
� 1 ()

()
^

i=1:::n

_
t2Si

Pi
j=1

l
t
Tj

m
Cj

t
� 1:

The last result provides a first analytical formulation of
the M n feasibility region, which is more formally expressed
by the following theorem.

Theorem 2 The region of the schedulable tasks sets M n , as
defined by equation (4), is given by:

M n (T1; : : : ; Tn) = f(C1; : : : ; Cn) 2 Rn+ :V
i=1:::n

W
t2Si

Pi
j=1

l
t
Tj

m
Cj � tg

where Si = fr Tj : j = 1 : : : i; r = 1 : : :
j
Ti
Tj

k
g.

Proof. It directly follows from Theorem 1 and equation (4)
which defines M n . �

To understand this result, consider a simple example
composed by three tasks. Table 1 reports the periods Ti
and the sets Si.

The equations we get by expanding Theorem 2 are:8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

C1 � 3 3 2 S1
C1 + C2 � 3 3 2 S2
2C1 + C2 � 6 6 2 S2 plane � in fig. 2
3C1 + C2 � 8 8 2 S2 plane � in fig. 2

C1 + C2 + C3 � 3 3 2 S3
2C1 + C2 + C3 � 6 6 2 S3
3C1 + C2 + C3 � 8 8 2 S3
3C1 + 2C2 + C3 � 9 9 2 S3
4C1 + 2C2 + C3 � 12 12 2 S3
5C1 + 2C2 + C3 � 15 15 2 S3 plane �
6C1 + 2C2 + C3 � 16 16 2 S3 plane �
6C1 + 3C2 + C3 � 18 18 2 S3 plane �
7C1 + 3C2 + C3 � 20 20 2 S3 plane �

(5)

Proceedings of the 23rd IEEE REAL-TIME SYSTEMS SYMPOSIUM (RTSS’02)
1052-8725/02 $17.00 © 2002 IEEE

where the k symbol denotes the logical OR among the equa-
tions, whereas the f symbol denotes the logical AND. Fig-
ure 2 shows a graphical representation of the M 3 (3; 8; 20)
region in the C-space.

C 3

C 1

C 1

C 2

C 1

C 2

C 3

8
20643

1

1

0123

2

3

4

5

8

(a)

(b)

�
� �

�

�

�

Figure 2. A view of M 3 (3; 8; 20) in the C-space:
(a) the projection view, (b) the isometric view.

It is now worth making the following considerations.

Observation 1 The M n region is delimited by planes (hy-
perplanes in higher dimensions). Every plane equation
must be contained in the equation list (5). The opposite
is not true: there can be equations in the list which are
not shown in the picture because OR-ed with a more
relaxed one.

Observation 2 In Figure 2 we can distinguish 6 different
planes, meaning that in the equation list (5) there are
7 useless equations. Clearly, the situation can change
for different values of the periods.

Observation 3 A necessary and sufficient test
can be derived by translating the task set
�n = f(T1; C1); : : : ; (Tn; Cn)g into a point in
the C-space and then checking whether it belongs to
M n (T1; : : : ; Tn).

Observation 4 The idea of building a tunable test works
fine with this formulation. In fact, every subregion
B � M n , obtained by eliminating some of the equa-
tions to be OR-ed, is a subset of M n , and hence the fea-
sibility check in B will be less complex (i.e., less equa-
tions to be checked) and “less necessary” (i.e., smaller
region) than the one based on M n .

Observation 5 For large task sets, the number of equations
to be checked is huge and is equal to the sum of the
number of elements in all Si. When the ratio Tn=T1 is
large, the number of equations is so high that prevents
the practical application of Theorem 2 for any guaran-
tee tests.

Observation 6 The mathematical expression in Theorem 2
can also be written as

iX
j=1

�
t

Tj

�
Tj
t
Uj � 1:

We note that coefficients
l
t
Tj

m
Tj
t are always greater

than or equal to 1. Coefficients close to 1 delimit large

regions. In particular, if
l
t
Tj

m
Tj
t is equal to 1 for all

j and t, the M n region becomes
P
Ci=Ti � 1, which

is the EDF schedulability condition. This is just the
mathematical translation of the commonly known be-
havior of RM when all the periods are in the same har-
monic chain [6].

Observation 7 Operation research algorithms could also
be applied on the M n region to find the maximum
achievable utilization bound. This approach has been
followed by Park et al. in [12]. However, this method
involves a higher number of equations, so it is either
slow or not very accurate.

Among the considerations above, the most negative
seems to be Observation 5, which says that the high number
of equations prevents a practical use of the method. How-
ever, as stated in Observation 2, many equations in (5) are
useless, so the idea is to reduce the number of equations by
eliminating the redundant elements in Si.

Before entering in the detail of such a reduction process,
it is worth noting that such a reduction has been so effective
to make the consequent test not only applicable in practice,
but even better than all the classical tests proposed in the
literature. The reduction has been condensed in the next
theorem, which is the most important contribution of the
paper. The theorem and its proof are reported in the next
section.

4. The space of RM schedulability

The following theorem significantly reduces the number
of equations that are needed to delimit the M n region.

Theorem 3 The region of the schedulable task sets M n , as
defined by equation (4), is given by

M n (T1; : : : ; Tn) = f(C1; : : : ; Cn) 2 Rn+ :V
i=1:::n

W
t2Pi�1(Ti)

Pi
j=1

l
t
Tj

m
Cj � tg

where Pi(t) is defined by the following recurrent expres-
sion: 8<

:
P0(t) = ftg
Pi(t) = Pi�1

��
t

Ti

�
Ti

�
[Pi�1(t):

(6)

Before proving the theorem, we first illustrate its appli-
cation. Then, the formal proof will be given in a dedicated
subsection.

Proceedings of the 23rd IEEE REAL-TIME SYSTEMS SYMPOSIUM (RTSS’02)
1052-8725/02 $17.00 © 2002 IEEE

The difference between this result and that of Theorem 2
is only the presence of the set Pi�1(Ti), instead of Si. This
may seem a little change, but it is not. For example, Figure 3
shows the difference between the sets S3 andP2(T3) for the
task set reported in Table 1.

τ3

τ2

τ1

0 10 20

8 16 24

3 6 9 12 15 18 21

S3 P2(T3)

Figure 3. Comparison between S3 and P2(T3)
for the task set shown in Table 1.

With the introduction of the set Pi�1(Ti), the test to
check whether a task set belongs to M n becomes not only
reasonable, but better than every necessary and sufficient
test proposed in the literature. As clear from Figure 3, it
can easily be shown that Pi�1(Ti) � Si. This allows to
dramatically reduce and bound the time needed for the test.

Due to the double recurrent form of its definition, the
“worst-case” cardinality of a generic Pi(t) set is 2i. We
intentionally say “worst-case” cardinality because if the two
sets to be joined overlap, the cardinality, of course, reduces.

1009080706050

100

36

16

15

9

Ti

P4(T5) = P3

�j
T5
T4

k
T4
�
[P3(T5)

P3(T5)
P3

�j
T5
T4

k
T4
�

P4(t)

P3(t)

P2(t)

P1(t)

P0(t)

Figure 4. An example of Pi(t).
Figure 4 shows all the recurrent calls of P4(T5) in the

case of T1 = 9, T2 = 15, T3 = 16, T4 = 36 and T5 = 100.
In this figure we can clearly see how the Pj(t) definition
works. Every set Pj(t) is represented by a big grey dot.
When j 6= 0, each set is the union of two sets, and the
union relationship is represented by a line connecting two
sets. A dashed line means that the union does not contribute
with new points. Such a case happens for example whenj
t
Tj

k
Tj = t.

4.1. Proof of Theorem 3

To prove Theorem 3 we need the following definitions:

Definition 1 A job �ik is said to be active at time t if rik <
t < fik.

Definition 2 The processor is i-busy at time t if there exists
a job of a task in �i active in t. More formally, the following
function represents the subset of points in [0; b] where the
processor is i-busy:

Busy(�i; b) = ft 2 [0; b] : 9�jk such that �jk is
active at t; �j 2 �ig:

Definition 3 The worst-case workload Wi(b) of the i high-
est priority tasks in [0; b] is the total time the processor is
i-busy in [0; b]. By extension, W0(b) = 0 for all b.

Note that, using the concept of workload, the schedula-
bility condition of �i can be expressed by Ci+Wi�1(Ti) �
Ti.

Definition 4 Given the subset �i of the i highest priority
tasks, we define i(b) to be the last instant in [0; b] in which
the processor is not i-busy, that is:

 i(b) = max ft 2 [0; b] ^ t =2 Busy(�i; b)g :
By Definition 1, the set Busy(�i; b) is the union of open

intervals, hence the set [0; b]nBusy(�i; b) has always a max-
imum and so the last idle instant i(b) is well defined1. This
formalism is needed because the point i(b) is useful for
simplifying the computation of Wi(b) and to express the
RM schedulability condition. The following lemma pro-
vides a method to easily compute the workload in [0; b]
through the last idle instant i(b).

Lemma 1 Given a subset �i = f�1; : : : ; �ig of the i highest
priority tasks, the workload Wi(b) can be written as

Wi(b) =

iX
j=1

�
 i(b)

Tj

�
Cj + (b� i(b)):

Proof. From the definition of i(b), we note that no task
instance in �i is active at i(b) and all the released jobs
have been completed at that time. Hence,

Wi(i(b)) =

iX
j=1

�
 i(b)

Tj

�
Cj :

Moreover, because the processor is always i-busy in
[i(b); b], the workload of the i highest priority tasks in such
an interval is (b� i(b)). Hence, the lemma follows. �

Lemma 2 For any schedulable task subset �i =
f�1; : : : ; �ig,

Wi(b) = min
t2[0;b]

iX
j=1

�
t

Tj

�
Cj + (b� t): (7)

Proceedings of the 23rd IEEE REAL-TIME SYSTEMS SYMPOSIUM (RTSS’02)
1052-8725/02 $17.00 © 2002 IEEE

τ1

τ2

τ3

τ4

iX
j=1

�
t

Tj

�
Cj + (b� t)

 4(b)

W4(b)

b

b

t

Figure 5. Lemma 2 interpretation.

Proof. We first observe that
Pi
j=1

l
t
Tj

m
Cj is the processor

demand in [0; t], which is the time required by the tasks to
be executed in [0; t]. So, it must be that

8t Wi(t) �
iX

j=1

�
t

Tj

�
Cj

because the processor has no other job to be executed.
Moreover, since in a feasible schedule the workload in

[t; b] (i.e., Wi(b) �Wi(t)) is smaller than the length of the
interval, we have that

8t 2 [0; b] Wi(b)�Wi(t) � (b� t):

or, equivalently,

8t 2 [0; b] Wi(b) �
iX

j=1

�
t

Tj

�
Cj + (b� t): (8)

Now, since i(b) 2 [0; b], for Lemma 1 there exists a
value in [0; b] for which the equality holds, so the lemma
follows. �

The meaning of Lemma 2 is illustrated in Figure 5,
which shows the upper bounding function2 of the workload
for a specific set of four periodic tasks. Notice that the min-
imum of such a function is W4(b) and it falls in 4(b).

In other words, the workloadWi(b) in [0; b] can be upper

estimated by the computation of
Pi
j=1

l
t
Tj

m
Cj+(b� t) in

any t 2 [0; b]. This is not directly useful because this esti-
mation is rough, but the workload can be exactly calculated

by the function
Pi
j=1

l
t
Tj

m
Cj + (b� t) once we know the

last idle instant i(b). Unfortunately the complexity moves
from the workload estimation to the i(b) search. So we

1The symbol n denotes the set difference operator.
2Black dots indicate the value of the function in the discontinuities.

now restrict the set of possible values of i(b) by the fol-
lowing lemma.

Lemma 3 Given a task subset �i = f�1; �2; : : : ; �ig
schedulable by RM, let i(b) be the last idle instant in [0; b]
as defined in def. 4, and let Pi(b) be the set of points defined
by the following recurrent expression:8<

:
P0(b) = fbg
Pi(b) = Pi�1

��
b

Ti

�
Ti

�
[Pi�1(b):

Then,
 i(b) 2 Pi(b):

Proof.
We demonstrate the lemma by induction on i.
Initial Step. If i = 1, we have to prove that, for a

schedulable task �1, 1(b) 2 P1(b) for all b. We observe
that, in this case,

P1(b) = P0

��
b

T1

�
T1

�
[P0(b) =

��
b

T1

�
T1; b

�
:

Since �1 is schedulable, then the last idle instant 1(b) can
only be:

1. at bb=T1cT1, if the last instance in [0; b] of �1 is active
at b;

2. at b, otherwise.

Both values are in P1(b) and the initial step is proved.
Inductive Step. If i(b) 2 Pi(b) for all b, we have

to prove that, given a schedulable task subset �i+1 =
f�1; : : : ; �i+1g, then i+1(b) 2 Pi+1(b) for all b.

Let us consider the time interval [bb=Ti+1cTi+1; b]. In
this interval two things can happen:

1. the processor is (i+ 1)-busy in the whole interval;

2. there exists an instant of time at which the processor is
not (i+ 1)-busy.

In the first case, i+1(b) = i+1 (bb=Ti+1cTi+1)
because in [bb=Ti+1cTi+1; b] the processor al-
ways runs a task in �i+1. Moreover, it must be
 i+1 (bb=Ti+1cTi+1) = i (bb=Ti+1cTi+1) other-
wise the last instance of �i+1 in [0; bb=Ti+1cTi+1] would
miss its deadline at bb=Ti+1cTi+1, contradicting the
hypothesis of �i+1 schedulability.

In the second case, let x 2 [bb=Ti+1cTi+1; b] be an in-
stant of time where no tasks in �i+1 are active. Since at time
x the bb=Ti+1cth job of �i+1 is terminated, �i+1 is never ac-
tive in [x; b]. This implies that i+1(b) = i(b).

Merging the two cases we get:

 i+1(b) = i

��
b

Ti+1

�
Ti+1

� _
 i+1(b) = i(b):

Proceedings of the 23rd IEEE REAL-TIME SYSTEMS SYMPOSIUM (RTSS’02)
1052-8725/02 $17.00 © 2002 IEEE

For the inductive hypothesis, we have that:
 i (bb=Ti+1cTi+1) 2 Pi (bb=Ti+1cTi+1) and
 i(b) 2 Pi(b). Hence,

 i+1(b) 2 Pi
��

b

Ti+1

�
Ti+1

�[
Pi(b)

and finally, for the Pi+1(b) definition:

 i+1(b) 2 Pi+1(b)

which proves the inductive step and the lemma. �

Lemma 4 Given a task subset �i = f�1; : : : ; �ig schedula-
ble by RM and the set Pi(b) as defined in equation (6), the
workload Wi(b) is

Wi(b) = min
t2Pi(b)

iX
j=1

�
t

Tj

�
Cj + (b� t):

Proof. By observing thatPi(b) � [0; b], the lemma directly
follows from Lemmæ 1, 2, and 3. �

We are now ready to prove the theorem.

Proof of Theorem 3. We have to prove the equivalence
between the following two sentences:

1. for all i = 1 : : : n, �i is schedulable by the Rate Mono-
tonic algorithm;

2.
^

i=1:::n

_
t2Pi�1(Ti)

iX
j=1

�
t

Tj

�
Cj � t.

Without loss of generality, we can assume that, for the
schedulability of task �i, all tasks �1; : : : ; �i�1 are schedu-
lable. In this case, the schedulability condition of the single
task �i can be written as:

Ci +Wi�1(Ti) � Ti

where Wi�1(Ti) is the workload of the first i � 1 tasks in
the interval [0; Ti]. Using Lemma 4, such a condition of
individual schedulability can be written as:

Ci + min
t2Pi�1(Ti)

i�1X
j=1

�
t

Tj

�
Cj + (Ti � t) � Ti

min
t2Pi�1(Ti)

Ci +

i�1X
j=1

�
t

Tj

�
Cj � t � 0

_
t2Pi�1(Ti)

iX
j=1

�
t

Tj

�
Cj � t

because dt=Tie = 1 for all t 2 Pi�1(Ti).
Hence, the schedulability condition for all the tasks is

clearly given by^
i=1:::n

_
t2Pi�1(Ti)

iX
j=1

�
t

Tj

�
Cj � t

as required by theorem 3. �

5. The Hyperplanes Æ-Exact Test

In this section we first show how the necessary and suf-
ficient test is derived and then we describe the method to
make it tunable.

As we saw in the last section, the RM schedulability con-
dition in Theorem 3 can be equivalently expressed as

8i = 1 : : : n Ci +Wi�1(Ti) � Ti

where the workloadWi�1(Ti) is given by Lemma 4:

Wi�1(Ti) = min
t2Pi�1(Ti)

i�1X
j=1

�
t

Tj

�
Cj + (Ti � t)

and W0(T1) = 0 by extension.
Using this formulation, the pseudo-C code of the neces-

sary and sufficient test can be written as follows:

boolean RMTest(�n) f
int i ;

for (i=1;i � n ;i++)
if (Ci +WorkLoad (i� 1 ,Ti)> Ti)

return false ;
return true ;

g

Now we focus our attention on the function
WorkLoad(i,b), which is the workload of the i highest
priority tasks in [0; b], also called Wi(b) previously. From
Lemma 4 we know that

Wi(b) = min
t2Pi(b)

iX
j=1

�
t

Tj

�
Cj + (b� t)

and then, from the definition of Pi(b), we can write (in
the following expressions we define f = bb=Tic and c =
db=Tie):

Wi(b) = min

8<
: min
t2Pi�1(fTi)

iX
j=1

�
t

Tj

�
Cj + (b� t) ;

min
t2Pi�1(b)

iX
j=1

�
t

Tj

�
Cj + (b� t);

9=
;

(9)
where we split the set Pi(b) in the two subsets which com-
pose it.

We now write these expressions in a more meaningful
form. By noting that the ith element in the first sum is al-
ways equal to fCi (due to the schedulability of �i) the first

Proceedings of the 23rd IEEE REAL-TIME SYSTEMS SYMPOSIUM (RTSS’02)
1052-8725/02 $17.00 © 2002 IEEE

element of equation (9) can be written as

min
t2Pi�1(fTi)

iX
j=1

�
t

Tj

�
Cj + (b� t) =

= fCi +min

i�1X
j=1

�
t

Tj

�
Cj + (b� t)

= b+ fCi � fTi +min

i�1X
j=1

�
t

Tj

�
Cj + (fTi � t)

= b� f(Ti � Ci) +Wi�i(fTi)

from the result of Lemma 4. Similarly, the second element
in equation (9) can be written as:

min
t2Pi�1(b)

iX
j=1

�
t

Tj

�
Cj + (b� t)

= Ci +min

i�1X
j=1

�
t

Tj

�
Cj + (b� t)

= Ci +Wi�1(b)

Hence, equation (9) can be expressed in a recurrent form as
follows:

Wi(b) = minfb�f(Ti�Ci)+Wi�1(fTi); c Ci+Wi�1(b)g:
(10)

Such a recurrent expression of Wi(b) directly follows
from the recurrent definition of Pi(b). As in the Pi(b) defi-
nition the two sets Pi�1(bb=Tic) andPi�1(b) could overlap
(see Figure 4), it can happen that, for particular values of j
and t , two calls of Wj(t) could return the same value. In
this case, following both branches would be a waste of time.
This can be avoided by keeping track of the execution flow
through a global variable which can be used to prune all the
useless branches. The resulting algorithm is shown below:

double last [BIG ENOUGH];
double lastWorkLoad[BIG ENOUGH];

double WorkLoad(int i , double b) f
int f , c ;
double branch0 , branch1 ;

if (i � 0) return 0 ;
if (b � last [i]) /� if WorkLoad(i; b) already computed �/

return lastWorkLoad [i]; /� don’t go further �/
f = bb=Tic ; c = db=Tie ;
branch0 = b� f (Ti �Ci) +WorkLoad (i� 1 , f Ti�1);
branch1 = cCn�1 +WorkLoad (i� 1 , b);
last [i] = b ;
lastWorkLoad[i] = min(branch0, branch1);
return lastWorkLoad [i];

g

We note that the ith element of the array lastWorkLoad

keeps track of the call WorkLoad(i; last [i]). The neces-
sary and sufficient algorithm obtained in this way, called
HET, is quite more efficient than the response time based al-
gorithm. The performance comparison is presented in Sec-
tion 6.

5.1. The Æ-HET test

The tunable test Æ-HET is obtained by reducing thePi(b)
set as a function of an additional parameter Æ, as follows:8>>>>>><
>>>>>>:

P0(b; Æ) = fbg 8Æ

Pi(b; Æ) =

8>>>><
>>>>:
Pi�1

��
b

Ti

�
Ti; Æ

�
[Pi�1(b; Æ) if bÆ�Ti

Pi�1

��
b

Ti

�
Ti; Æ

�
otherwise

By this definition it is easy to prove the following properties
of the Pi(b; Æ) set:

Æ1 � Æ2 () Pi(b; Æ1) � Pi(b; Æ2)
Pi(b; 1) = Pi(b):

Similar properties also hold for the workload expressed by
Lemma 4. If we define

W
(Æ)
i (b) = min

t2Pi(b;Æ)

iX
j=1

�
t

Tj

�
Cj + (b� t)

then we have that

Æ1 � Æ2 () W
(Æ1)
i (b) �W

(Æ2)
i (b)

W
(1)
i (b) =Wi(b):

Both properties follow directly from the definition of W (Æ)
i .

In particular the first property derives form the observation
that the minimum cannot decrease when computed on a
smaller set.

The Æ-HET test can then be derived by substitutingPi(b)
with Pi(b; Æ). The resulting algorithm for computing the
new workload function is illustrated below.
double last [BIG ENOUGH];
double lastWorkLoad[BIG ENOUGH];

double WorkLoad(int i , double b , double Æ) f
int f , c ;
double branch0 , branch1 ;

if (i � 0)
return 0 ;

if (b � last [i]) /� if WorkLoad(i; b) already computed �/
return lastWorkLoad [i]; /� don’t go further �/

f = bb=Tic ; c = db=Tie ;
branch0 = b� f (Ti � Ci) +WorkLoad (i� 1 , f Ti�1);
if (Ti � b Æ)
branch1 = cCn�1 +WorkLoad (i� 1 , b);

else
branch1 = branch0 ; /� one branch is cut ! �/

last [i] = b ;
lastWorkLoad[i] = min(branch0 , branch1);
return lastWorkLoad [i];

g

6. Performance of Æ-HET

In this section, we compare the Æ-HET test with the com-
mon schedulability tests proposed in the literature for the
RM algorithm. The performance of a test is evaluated in

Proceedings of the 23rd IEEE REAL-TIME SYSTEMS SYMPOSIUM (RTSS’02)
1052-8725/02 $17.00 © 2002 IEEE

terms of both acceptance ratio and complexity. The ac-
ceptance ratio is measured by the number of accepted task
sets with respect to those accepted by a necessary and suf-
ficient test. In particular, if U denotes the testing universe
of the task sets for which there exists a feasible schedule,
if S� � U is the subset of all the RM schedulable task
sets, and ST � S� is the subset of task sets schedula-
ble by a generic sufficient test T , then the acceptance ratio
acceptance(T) of a test T is computed as follows:

acceptance(T) =
#ST

#S�

where # indicates “cardinality of”. From this defini-
tion it follows that acceptance(T) � 1 for all T , and
acceptance(T) = 1 for the RTA and all the necessary and
sufficient tests.

The complexity of a test is measured by counting the
number of innermost loop iterations. Formally, we define
steps(T;�) as the number of innermost loop steps required
to compute the guarantee test T on the tasks set �. More-
over, we model the computation time of a guarantee test T
as a random variable steps(T), defined by the following cu-
mulative distribution function:

Fsteps(T)(x) = Pfsteps(T;�) � xg � 2 U:
This model is useful because the maximum and the average
number of iteration steps can easily be extracted from the
probability density, which is

fsteps(T) =
dFsteps(T)

dx
:

In our experiments, simulations have been performed by
generating 108 task sets, each composed by 8 tasks. Task
periods Ti were randomly extracted in [1; 1000000] (with
uniform distribution) and computation times Ci were com-
puted as random variables in [0; Ti] (also with uniform dis-
tribution). Figure 6 illustrates the results of a first experi-
ment, which compares three necessary and sufficient tests:
the classical Response Time Analysis (RTA) of Audsley
et al. [1], the Response Time analysis Improved (RTI) by
Sjödin et al. [14], and the Hyperplanes Exact Test (HET)
presented in this paper. The figure plots the probability den-
sity achieved for the three tests.

We notice that the HET test is significantly faster than
the others, not only for the average case, but also, and espe-
cially, for its worst case. The appreciable “noise” of the
probability density is not due to the low number of sets
(108), but it comes from the intrinsic structure of the al-
gorithm.

Figure 7 shows the result of another experiment, in
which we evaluated the dependency of the average num-
ber of steps from the number of tasks in the set. As we
can clearly see, although for all tests the average number of
steps increases exponentially, in the case of the HET algo-
rithm the speed of growth is significantly smaller.

In a third experiment, we evaluated the performance of

0 100 200
steps

0

0.02

0.04

0.06

0.08

P
ro

b.
 d

en
si

ty

fsteps(HET)

fsteps(RTI)

fsteps(RTA)

Figure 6. Probability density of steps(R T A),
steps(R TI) and steps(HET).

3 4 5 6 8 10 12 14 16 18 20 25 30 40 50
tasks number

0

500

1000

1500

2000

av
er

ag
e

st
ep

s
RTA
RTI
HET

Figure 7. Average number of steps as a func-
tion of the number of tasks.

the Æ-HET test with respect to several other tests proposed
in the literature, such as the Response Time Analysis (RTA)
[1], the Response Time analysis Improved (RTI) [14], the
Liu and Layland test (LL) [8], and the Hyperbolic Bound
(HB) [2]. The Æ-HET has been executed for several values
of Æ 2 [0:5; 1]. The comparison is made in terms of both
acceptance ratio and complexity, on a universe of 106 tasks
sets consisting of 8 tasks.

In particular, each test is characterized by two values
(that is, the average number of steps and the acceptance
ratio), thus it is represented as a point in a plane, hav-
ing steps(T) and acceptance(T) as coordinates. In such
a plane, the best area for a guarantee test is the one located
around the upper-left corner, where the acceptance ratio is
high and the complexity is low. The result of this experi-
ment is shown in Figure 8.

As we can see, the performance of the Æ-HET test cov-

Proceedings of the 23rd IEEE REAL-TIME SYSTEMS SYMPOSIUM (RTSS’02)
1052-8725/02 $17.00 © 2002 IEEE

10 100
average steps (log scale)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ac
ce

pt
an

ce

HET
.95-HET

.90-HET

.80-HET

.70-HET

.60-HET

.50-HET

RTARTI

LL

HB

Figure 8. Comparison of guarantee tests.

ers all the intermediate positions in the plane. In particular
when n = 8, for Æ = 0:5 the Æ-HET test has a performance
similar to the one of the LL-test, whereas for Æ = 1 (exact
analysis) it is still significantly better than the RTI test.

7. Conclusions and future work

In this paper we presented a novel approach for analyz-
ing the schedulability of periodic task sets under the Rate
Monotonic priority assignment. Such an approach allowed
us to precisely describe the feasibility region in the space of
task computation times (the C-space) and to derive a tun-
able guarantee test (Æ-HET), by which we can balance ac-
ceptance ratio and complexity. Such a tunability property
of the Æ-HET test is important in those cases in which the
performance of a polynomial time test is not sufficient for
achieving high processor utilization, and the overhead in-
troduced by exact tests is too high for an on-line admission
control.

We believe that the proposed formulation opens a novel
direction in the schedulability analysis of fixed priority sys-
tems, allowing further research in this domain. As a future
work, we plan to investigate the case where task computa-
tion times are considered as random variables with known
probability distribution. In this case, the probability to meet
the deadlines of a task set can be computed by the integral
of the Ci probability density on the M n region.

Another interesting situation that can be addressed by
the proposed method deals with the case in which not all
the computation times are fixed, but we have some freedom
to select the size of some tasks (for instance when using
imprecise computation models). In this condition, the HET
approach can be used to decide the best values of those free
variables in order to improve schedulability. In fact, fixing
a Ci value is equivalent to cutting the M n region in the C-
space at a certain coordinate (this can easily be visualized
in Figure 2).

References
[1] N. C. Audsley, A. Burns, K. Tindell, and A. Wellings. Ap-

plying new scheduling theory to static priority preemptive
scheduling. Software Engineering Journal, December 1993.

[2] E. Bini, G. C. Buttazzo, and G. Buttazzo. A hyperbolic
bound for the rate monotonic algorithm. In IEEE Proc. of
the 13th Euromicro Conf. on Real-Time Systems, June 2001.

[3] A. Burns, R. Davis, and S. Punnekkat. Feasibility analysis
of fault-tolerant real-time task sets. In IEEE Proceedings of
the Euromicro Workshop on Real-Time Systems, pages 29–
33, June 1996.

[4] D. Chen, A. K. Mok, and T.-W. Kuo. Utilization bound re-
visited. In Proceedings of the 6th Real-Time Computing Sys-
tems and Applications, pages 295–302, 1999.

[5] M. Joseph and P. Pandya. Finding response times in a real-
time system. The Computer Journal, 29(5):390–395, 1986.

[6] T.-W. Kuo and A. K. Mok. Load adjustment in adaptive
real-time systems. In Proceedings of the IEEE Real-Time
Systems Symposium, December 1991.

[7] J. P. Lehoczky, L. Sha, and Y. Ding. The rate-monotonic
scheduling algorithm: Exact characterization and average
case behavior. In Proceedings of the IEEE Real-Time Sys-
tems Symposium, pages 166–172, 1989.

[8] C. L. Liu and J. W. Layland. Scheduling algorithms for mul-
tiprogramming in a hard real-time environment. Journal of
the ACM, 20(1):40–61, 1973.

[9] H. Liu and X. Hu. Efficient performance estimation for
general real-time task systems. In IEEE/ACM International
Conference on Computer Aided Design, pages 464–471,
2001.

[10] J. W. S. Liu. Real-Time Systems. Prentice Hall, 2000.
[11] Y. Oh and S. H. Son. Allocating fixed-priority periodic tasks

on multiprocessor systems. Real-Time Systems, 9:207–239,
1995.

[12] D. Park, S. Natarajan, and M. J. Kim. A generalized uti-
lization bound test for fixed-priority real-time scheduling.
In Proceedings of the 2

nd International Workshop on Real-
Time Systems and Applications, pages 73–76, October 1995.

[13] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance
protocols: An approach to real-time synchronization. IEEE
Transactions on Computers, 39(9):1175–1185, 1990.

[14] M. Sjödin and H. Hansson. Improved response-time analysis
calculations. In Proceedings of the 19

th IEEE Real-Time
Systems Symposium, pages 399–409, December 1998.

Proceedings of the 23rd IEEE REAL-TIME SYSTEMS SYMPOSIUM (RTSS’02)
1052-8725/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

