
A Flexible Scheme for Scheduling Fault-Tolerant Real-Time Tasks on

Multiprocessors

Michele Cirinei1, Enrico Bini1, Giuseppe Lipari1, Alberto Ferrari2

1Scuola Superiore Sant’Anna 2PARADES EEIG
56127 Pisa, Italy 00186 Roma, Italy

{m.cirinei,e.bini,lipari}@sssup.it aferrari@parades.cnr.rm.it

Abstract

The recent introduction of multicore system-on-a-chip

architectures for embedded systems opens a new range of

possibilities for both increasing the processing power and

improving the fault-robustness of real-time embedded ap-

plications. Fault-tolerance and performance are often con-

trasting requirements. Techniques to improve robustness

to hardware faults are based on replication of hardware

and/or software. Conversely, techniques to improve per-

formance are based on exploiting inherent parallelism of

multiprocessor architectures.

In this paper, we propose a technique that allows the user

to trade-off parallelism with fault-tolerance in a multicore

hardware architecture. Our technique is based on a com-

bination of hardware mechanisms and real-time operating

system mechanisms. In particular, we apply hierarchical

scheduling techniques to efficiently support fault-tolerant,

fault-silent and non-fault-tolerant tasks in the same system.

1. Introduction

Recently, there has been considerable interest in using
multicore system-on-a-chip architectures in the embedded
systems domain. This interest is mainly due to the need for
increasing the computational power maintaining low both
the clock frequency and the complexity of each core. More-
over, trends in technology scaling allow the increase of both
the number and the power of the processors that can be inte-
grated in a single chip, making multicore systems-on-a-chip
even more appealing for embedded systems.

However, it is well-known [7, 20] that technology scal-
ing sensitizes electronic devices to external disturbs. Rea-
sons of this fact relate to several aspects of scaling, such

1-4244-0910-1/07/$20.00 c©2007 IEEE.

as lower voltage levels, lower capacitances, higher working
frequency. The overall effect is an higher probability that
lower energy particles (such as alpha particles) cause tem-
porary bit-flipping in memory and logic circuits (so called
soft errors). For this reason, tolerance to soft errors is bound
to become a major aspect in system design.

The classical way of providing fault-tolerance on multi-
core platforms (which are generalized by multiprocessors)
is to use time and/or space redundancy. In time redun-
dancy, the same software is executed two or more times
on the same CPU, and the produced results are compared.
However, final results could be influenced by the effective
instants of execution, possibly leading to several different,
although correct, results. In such a case, comparison is dif-
ficult. In space redundancy, on the contrary, the same soft-
ware is executed at the same time on different CPUs. One
solution based on this idea is to execute replicas in lock-

step: each involved processor executes the same code at the
same time (i.e., step by step), and every result is compared,
instantly revealing differences in operands or result of each
single instruction. To simplify the circuitry one idea is to re-
duce the comparison points, for example considering only
I/O operations. This way, we also obtain that comparisons
can be completely implemented outside the processor (e.g.,
at the interconnection between processor and bus).

By using these techniques, it is possible to implement
a fault-tolerant system (with more than 2 CPUs and by us-
ing an appropriate voting or fault-masking mechanism), or a
fail-silent system (with two CPUs and a comparator) where
the fault is simply detected but not corrected. In both cases,
the fault-tolerant behaviour is achieved at the cost of a re-
duced computational power.

This approach is usually static, in the sense that the con-
figuration does not vary in time. Hence the fault-tolerance
characteristics and the performance are not adjusted on
the application requirements. However, such a limitation
may be too restrictive because not all software tasks are
fault-critical. In general, applications consist of a mixture
of fault-tolerant, fail-silent and non-fault-tolerant tasks. It

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca della Scuola Superiore Sant'Anna

https://core.ac.uk/display/54927416?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

would be desirable to use the multiprocessor platform at its
best: as a replicated hardware platform for fault-tolerant and
fail-silent tasks; and as a parallel processor platform for the
non-fault-tolerant tasks. Unfortunately, in classical fault-
tolerant systems, such a degree of flexibility is not possible.

Contributions In this paper we propose a technique,
based on dynamic on-line reconfiguration of a four-
processor multicore hardware platform, to achieve a trade-
off between performance (through parallelism) and fault-
tolerance (through replication). Our technique consists in
dividing the time-line into time slots, each one dedicated
to a different class of tasks: fault-tolerant, fail-silent, and
non-fault-tolerant tasks. At each slot, we dynamically re-
configure the hardware platform to support a certain degree
of replication or parallelism. To guarantee the schedulabil-
ity of each class of tasks in its slot, we apply the theory of
hierarchical scheduling [15, 19, 12].

Based on that, we propose a technique to configure the
platform to achieve different goals. We then propose two
examples: first we show how to tune the platform to mini-
mize the processor bandwidth wasted in overhead; then we
consider how to maximize its flexibility at run-time.

1.1. Related works

The problem of fault-tolerance in multiprocessors sys-
tems has been thoroughly addressed. Two main branches
are usually proposed: on one side, try to build stronger hard-
ware platforms, able to resist to faults and continue their
work at the same or at a degraded level; on the other side, to
make the application able to recover from faults, either by
time or space redundancy.

The literature about hardware fault-tolerance techniques
is extremely vast, and an exhaustive analysis is almost im-
possible. To protect the application from faults, a general
approach is redundancy. The idea is to introduce redundant
copies of the elements to be protected (processors or other
components), and exploit them in the event of a fault.

We focus our research on the so called lock-step configu-

ration, in which the redundancy is used for both fault detec-
tion and recovery. In a lock-step configuration (explained
in more detail in Section 2.4), two or more processors exe-
cute the same code cycle by cycle, and a dedicated circuitry
compares the results. When a fault is detected, recovery can
be performed via SW (e.g., checkpoints and re-execution)
and/or HW (e.g., reconfiguration of the application on the
remaining processors).

Far from being only a theoretical fault-tolerance tech-
nique, the lock-step approach has been applied in several
commercial systems. The core of the Sequoia computer [8]
was an high number of Processor Elements, each one com-
posed of two Motorola MC68020 operating in lock-step and
a comparator testing the identicalness of the results. In more
recent years, the lock-step idea is exploited, e.g., as part of
the Continuous Processing Technology implemented in the

Stratus ftServer family of products. Similarly, in the HP
NonStop Advanced Architecture it is possible to configure
two Intel Itanium processors to work in lock-step [1].

Similar solutions exist for embedded systems. Xilinx
produces the Virtex-II Pro FPGA, based on two IBM Pow-
erPC 405, and uses the FPGA as the core of its ML310 Em-
bedded Development Platform. One of the proposed appli-
cations for the ML310 Platform is a processor lock-step for
fault-tolerant applications [3]. The IBM PowerPC 750GX
processor includes a lock-step facility [2], which integrates
all the circuitry, from comparator to data steering, necessary
for the connection of two identical processors in lock-step.

A major disadvantage in the way this technique is im-
plemented in commercial systems is the lack of flexibil-
ity: despite the fact that every system is composed of tasks
with different requirements of reliability, the fault-tolerance
techniques do not vary in time. In this sense, the architec-
ture we propose is extremely more flexible, since its fault-
tolerance techniques can be tuned on the specific applica-
tion, limiting the necessary loss in computational power.

In the field of software fault-tolerance techniques,
scheduling algorithms with safety characteristics are partic-
ularly interesting. A long series of works from the Real-
Time Systems Research Group at University of York, and
summarized in [18, 14], propose different solutions for
the schedulability of real-time task sets under fixed prior-
ity, considering various assumptions on faults and fault-
tolerance techniques. Another interesting approach is based
on the well-known concept of primary/backup [11, 17], in
which, for each critical task in the system, a backup copy is
activated when a fault impairs the primary one.

2. System model

2.1. Fault model

In this paper we address soft errors in multicore systems.
As explained earlier, soft errors are transient errors in mem-
ory or logic due to alpha particles, neutrons or similar low
energy particles. Due to the nature of soft errors, we con-
sider each fault to be transient, which means that the faulty
condition lasts for a limited and short time interval, after
which traces of the fault remain only in possible wrong val-
ues. Moreover, since soft error rates statistically guarantee
that time between two failures is sufficient to perform sim-
ple recovery operations, we assume that only one fault can
affect the system at a time. This allows us to rely on the
single transient fault assumption.

In a multicore environment all cores are integrated in the
same chip. Hence one could think that a single faulty event
could bring to simultaneous or correlated errors in differ-
ent processors. Under the hypothesis that only soft errors
influence the system, this problem does not show up, since
a single particle can strike only one core. This means that
even in a multicore environment the single transient fault
assumption does make sense.

It is outside the scope of this paper to discuss how a fault
can be recovered. This will be the topic of future research.
Informally, we can say that since the fault is transient, the
recovery involves three steps: waiting for the end of the
fault; correcting data errors due to tasks aborted in an in-
consistent state or wrong results written by non protected
tasks; restarting some of the non protected tasks that were
influenced by the fault.

2.2. Operating modes

An environment prone to faults must be protected to
avoid potentially catastrophic situations. It is clear, though,
that not all the parts of the application have the same im-
portance, and different aspects can require different levels
of fault-robustness. Consider an application which controls
a car engine and shows its activity on a screen. While we
could accept the visualization to be degraded, the control al-
gorithm must produce the correct result despite the presence
of faults. This idea is expressed by the concept of operat-

ing mode (or mode, for short). Intuitively, different parts of
the application require to execute in distinct modes, every
one characterized by a specific degree of tolerance to faults.
In particular, under the single transient fault assumption,
the following 3 modes can be required: in fault-tolerant

mode (FT) the system is not damaged by the presence of
a fault, i.e. wrong results can never be produced; in fail-

silent mode (FS), in case of a fault the system (or the faulty
part of it) is made silent, in order to avoid errors and wrong
results to propagate; in non-fault-tolerant mode (NF) no
fault-tolerance guarantees are given, i.e. the behaviour of
the system in the presence of a fault is unpredictable.

2.3. Application model

An application consists of a set of independent real-
time tasks to be executed on a multiprocessor platform. A
real-time task τi is characterized by the triplet (Ci, Ti, Di),
where Ci denotes the worst-case computation time, Ti rep-
resents the minimum interarrival time (i.e. the time sepa-
ration between two consecutive activations), and Di is the
relative deadline with Di ≤ Ti. This model corresponds
to the sporadic task model. An important characteristic of
the task τi is also its utilization Ui which is set equal to Ci

Ti
.

For any given subset of tasks T we denote its utilization by
U(T) and we naturally set it equal to

∑

τi∈T Ui. Finally, it
is important to point out that we consider all tasks to be in-
dependent, i.e. they do not share data with critical sections.

Depending on its desired robustness to faults, every task
requires to execute in one of the modes described in Sec-
tion 2.2, and is defined to be a fault-tolerant (FT), fail-silent
(FS) or non-fault-tolerant (NF) task. Based on the required
mode represented by parameter modei, tasks are then par-
titioned into three sets: TFT for FT tasks, TFS for FS tasks,
and TNF NF tasks. We assume that the task set is fixed and
known before run-time, i.e. no task is dynamically created

or deleted from the system.
Given an hardware platform able to provide the modes

described above, the goal of this work is to schedule the
application such that for every task no deadline is missed
and the required mode is guaranteed.

2.4. Hardware architecture

The hardware architecture is based on the concept of
lock-step. The generic lock-step configuration is composed
of two identical processors and a monitor. The two proces-
sors execute the same instruction cycle by cycle, so that in a
fault free situation their local context remains synchronized.
Meanwhile, the monitor compares all the outputs from the
processors: if the outputs are the same, it is assumed that
there are no faults, so the access to the bus is granted, and
memory is read/written; otherwise, the access is blocked
and an error signal is raised. This architecture guarantees
that a processor error is intercepted before it can propa-
gate to the main memory (or to the input/output subsystem),
hence the memory integrity is preserved. Of course, it is
possible to force more than two processors to execute the
same code, building the so called redundant lock-step, and
obtaining a more robust channel.

Exploiting the lock-step concept, and slightly modifying
the Shared Memory Dual Lock-Step Architecture proposed
by Baleani et al. [5], we consider an hardware platform
composed of 4 processors and a shared memory architec-
ture, depicted in Figure 1.

1
C

ro
s
s
b

a
r

S

w
it
c
h Flash

RAM

Peripheral Bus

CPU
4

CPU
3

2
CPU

CPU

C
h

e
c
k
e

r

Figure 1. The hardware platform

The key element introduced in our platform is the
checker, which conceptually integrates three aspects: the
comparison of the results provided by the processors, the
control of the bus and memory access, and the reconfigura-
tion of the platform.

The checker can change on-line its internal configura-
tion, in order to provide to the application the three operat-
ing modes described in Section 2.2. At each instant, the 4
processors can work in one of the following modes:

• all 4 in redundant lock-step, to provide the FT mode:
due to the single fault assumption, only one processor
can fail, so the correct result can be guessed by ma-

jority. The 4 processors build a single fault-tolerant
channel;

• coupled in 2 lock-step, providing the FS mode: again
only one processor in a couple can fail, so a mismatch
between the two outputs is immediatly revealed and
the channel is blocked. The two couples realize two
independent fail-silent channels;

• in parallel, implementing the NF mode: the 4 proces-
sors work independently, and no fault-tolerance guar-
antees are given, whereas the highest computational
power is delivered.

The modes are provided to the application by periodi-
cally switching from a mode to another, maintaining a sort
of temporal separation between different modes. We call
mode switch the on-line change of the system configuration
between two modes. So, in every time interval, one of the
modes is selected, and only tasks requiring that mode can
execute. How the reconfiguration of the platform is actually
performed is out of the scope of this paper.

In practice, the time line is divided into intervals of
length P , each one composed of three slots of length QFT,
QFS and QNF, one for each mode respectively. Accordingly,
the subset TFT will be executed during the first slot of length
QFT, the subset TFS during the second slot of length QFS,
and the subset TNF during the last slot of length QNF.

Another aspect we have to consider is that the mode
switch requires some operations, such as task state syn-
chronization and data storing. Hence OFT, OFS and ONF

represent respectively the overheads when switching out of
modes FT, FS and NF. Moreover, we define the sum of
the three overheads Otot = OFT + OFS + ONF. Note that
the overhead consumes part of the time available to the re-
spective subset, so the generic overhead Ok is included in
the slot Qk. This leads to the definition of Q̃k = Qk − Ok

as the amount of time available to the tasks in the generic
mode k. The notation is depicted in Figure 2.

FT mode FS mode NF mode

OFT OFS ONF

QFTQFT QFS QNF

Q̃FT Q̃FS Q̃NF

P

Figure 2. Switching between modes

We point out that in FT mode 3 processors are sufficient
to provide a fault-tolerant channel. Thus, it might be possi-
ble to use the fourth processor for running NF tasks. How-
ever, this additional degree of flexibility would complicate
both the hardware management circuitry and the operating
system. Thus, to simplify the platform management, we
prefer to maintain the modes separated in time. Please note
that from this point of view, there is no difference between

considering all the 4 processors together in a fault-tolerant
channel, and using only 3 processors for the fault-tolerant
channel and shutting down the 4th processor.

Note that in order to provide any level of fault-robustness
to the application, it is necessary to protect the whole plat-
form from faults, including memory, bus, interrupt con-
trollers, etc. In this paper we only focus on the tolerance
from faults on the processors. For the rest of the plat-
form we consider to apply other well-known hardware fault-
tolerance techniques, such as ECCs for bus and memory.

3. Design methodology

The proposed architecture opens a new wide range
of possibilities for exploiting the trade-off between fault-
tolerance, implemented by hardware replication, and com-
putational power, provided by parallel execution. When de-
signing the fault-tolerant platform, we already know the set
of tasks to be executed and their desired robustness to faults.
The final design must guarantee that each task completes
within the assigned deadline, and executes in the required
mode (NF, FS or FT)

When the platform provides some degree of parallelism
(i.e. during modes FS and NF) it is necessary to decide
how to schedule the tasks on the multiprocessor. Two main
classes of algorithms are known in the literature: the par-

titioning [16, 6] and the global [21] strategies. For lack of
space, we do not discuss advantages and disadvantages of
each class of algorithms; in this paper we focus on the par-
titioned scheme (in which each task is statically assigned
to one processor), whereas the analysis of global strategies
is postponed to future works. Moreover, since the goal of
this paper is the tuning of the platform once the character-
istics of the application are known, we consider the tasks
to be manually partitioned (although suitable solutions to
automatically partition the tasks among the processors ex-
ist [6]).

During NF mode, four processors are available. Hence
the tasks in TNF are partitioned into the 4 subsets T 1

NF, T 2
NF,

T 3
NF and T 4

NF, depending on the processor they will run on.
Similarly the tasks in TFS are partitioned into the 2 subsets
T 1

FS and T 2
FS. Finally, during FT mode only one processor is

available hence no further partition is required.
Once tasks are partitioned, the schedulability problem

leads to the well studied case of one single processor. How-
ever each subset of tasks can only run during the dedicated
mode, which is allocated only a fraction of the total avail-
able time. A considerable amount of efforts have been
recently dedicated to the study of such a problem. This
scheduling problem is generally refered to as hierarchical

scheduling, and it is recalled in Section 3.1.
Finally, let us formally define the problem: given a set of

real-time tasks τi = (Ci, Ti, Di,modei) defined as in Sec-
tion 2.3, and a 4-processors hardware platform as described
in Section 2.4, and assuming that the switching overhead
for mode k is Ok, and a partitioning scheduling strategy is

adopted, what are the parameters (P and Qk for each mode
k) of the operational modes that guarantee the schedulabil-
ity of each task τi in the required mode modei?

3.1. Hierarchical Scheduling

As shown in Figure 2, Q̃FT, Q̃FS, and Q̃NF represent re-
spectively the amount of time actually available to TFT, TFS,
and TNF tasks.

We remark that the tolerance to faults of the system is
higher when Q̃FT dominates the other values. On the other
hand, greater values of Q̃NF maximize the delivered com-
putational power, since four processors are available in NF
mode.

We can estimate the computational power provided dur-
ing each mode by a supply function, which is defined as
follows.
Definition 1 Given a mode k ∈ {FT, FS, NF}, the sup-

ply function Zk(t) of the mode k is the minimum amount
of time provided during the mode k in any interval whose

length is t. Formally,

Zk(t) = min
t0

{time provided in [t0, t0 + t] during mode k}.

The introduction of the supply function is very useful for
verifying the schedulability of real-time tasks, because it
provides a minimum time guarantee which is granted under
any circumstances. The idea of the supply function has been
already exploited both in the field of real-time [15, 19, 4]
and in networking [13].

In Figure 3 we show the supply function of each mode
(please refer to [15, 19, 4, 13] for a detailed explaination).
Lemma 1 (from [15]) The supply function of a mode k ∈
{FT, FS, NF} is the following

Zk(t) =

{

j Q̃k if t ∈ [j P, (j + 1)P − Q̃k)

t − (j + 1)(P − Q̃k) otherwise
(1)

where j =
⌊

t
P

⌋

.

Q̃k

2Q̃k

Q̃kQ̃kQ̃k

PPP

∆k

t

Zk(t)

αk(t
− ∆k)

Figure 3. The supply function

From the supply function Zk(t) of each mode, we derive
two important features: the rate αk, which roughly denotes

the fraction of processor available at mode k, and the delay

∆k, which is the maximum amount of time a task executing
during mode k must wait without being serviced.

It is possible to prove [15] that the relationship between
(αk, ∆k) and the mode parameters is:

αk =
Q̃k

P
∆k = P − Q̃k (2)

The values of αk and ∆k are useful, since they introduce a
simple lower bound of the supply function, as follows

Z ′
k(t) = max{0, αk(t − ∆k)}, (3)

as it can be noticed in Figure 3. Since we always have
Z ′(t) ≤ Z(t), assuming Z ′(t) as supply function is safe,
meaning that every solution feasible with Z ′(t) is always
feasible with Z(t). However, for simplicity, we consider
the supply function equal to Z ′(t), and from now on Z(t)
will denote the supply function of Eq. (3). The full consid-
eration of the exact Z(t) does not present any conceptual
difficulty, but it is only tedious to develop the math prop-
erly.

3.2. Schedulability analysis

While the classical approach is based on verifying the
schedulability of a task set once the supply function is
given, we focus on the opposite problem: given a task set,
what are all the possible supply functions which guarantee
the task deadlines?

FP scheduler If tasks are scheduled by fixed priorities the
feasibility condition of a task set T allocated to a mode k,
characterized by a rate αk and a delay ∆k is provided by
the following theorem.
Theorem 1 (Theorem 3 in [15]) A task set T is schedula-

ble by Fixed Priorities (FP) in the mode k, described by

(αk, ∆k), if:

∀τi ∈ T ∃ t ∈ schedPi ∆k ≤ t −
Wi(t)

αk

(4)

where

Wi(t) = Ci +
∑

τj∈hp(T ,τi)

⌈

t

Tj

⌉

Cj (5)

and (i) schedPi is the set of scheduling points of task τi as

defined in [10] and (ii) hp(T , τi) is the set of tasks in T
with a higher priority than τi.

The set of scheduling points schedPi is the smallest set of
points where Eq. (4) must be checked for the task τi to be
schedulable (please refer to [10], for further details).

Substituting in Eq. (4), the expressions of αk and ∆k

from Eq. (2), and performing a sequence of algebraic ma-
nipulations we find an explicit relationship between the
lengths of the time slots Q̃k and the period P :

Q̃k ≥ max
τi∈T

min
t∈schedPi

√

(t−P)2+ 4 P Wi(t) −(t−P)

2
(6)

Notice that the right hand side of Eq. (6) depends on the
period P , the task set T , and the adopted scheduling policy,
which is fixed priorities. We can then compact Eq. (6) in a
very convenient way as follows

Q̃k ≥ minQ(T , FP, P) (7)

where all the complex dependecies of Eq. (6) are hidden in
the function minQ.

EDF scheduler If tasks are scheduled by EDF then we
can use the results of hierarchical scheduling when the local
scheduler is EDF [19, 9]. If the supply function has a rate
αk and a delay ∆k, then Theorem 2 ensure the feasiblity of
an EDF task set.
Theorem 2 (from [9]) A task set T is schedulable by Ear-

liest Deadline First (EDF) in the mode k, described by

(αk, ∆k), if:

∀t ∈ dlSet(T) ∆k ≤ t −
W (t)

αk

(8)

where

W (t) =

n
∑

i=1

max

{⌊

t + Ti − Di

Ti

⌋

, 0

}

Ci (9)

and dlSet(T) is the set of all deadlines up to the hyperpe-

riod of the tasks in T .

Notice that the previous formulation also applies to task set
with static offset and jitter. However, we develop all our
results in the simpler case of no offset/jitter, because the
full treatment does not present theoretical problem but the
math is heavier (see [9] for further details).

Using the same arguments which led to Eq. (7), we can
equivalently find the conditions on the time quantum Q̃k

such that the mode k can feasibly schedule all the tasks al-
located to it if they are scheduled by EDF. In fact we have

Q̃k ≥ minQ(T , EDF, P) (10)

where in this case

minQ(T , EDF, P) =

max
t∈dlSet(T)

√

(t−P)2+ 4 P W (t) −(t−P)

2
(11)

3.3. Integration between modes

Until now, we have only considered generic task sets T
in isolation and the relationship between the time quanta
Qk’s is neglected. Now we want to combine the equations
which describe the feasible time quanta to find all the feasi-
ble (QNF, QFS, QFT). Let us generically denote by alg the
scheduling algorithm adopted to schedule the tasks.

During FT mode, the quantum QFT must be large
enough to schedule within the deadlines all the tasks in TFT.
Recalling that Q̃FT = QFT − OFT, the condition on QFT is

QFT − minQ(TFT, alg, P) ≥ OFT (12)

During FS mode the computational resource equivalent to
two processors is available. Hence the time quantum QFS

must accomodate the tasks of both the sets T 1
FS and T 2

FS.
The feasibility of both the sets is ensured by selecting QFS

as follows

QFS − max
i∈{1,2}

minQ(T i
FS, alg, P) ≥ OFS (13)

By doing so, in fact, the allocated quantum satisfy the fea-
sibility condition of T 1

FS and T 2
FS.

Finally, following the same previous arguments, the
tasks allocated in NF mode do not miss any deadline if the
following condition is verified

QNF − max
i∈{1,2,3,4}

minQ(T i
NF, alg, P) ≥ ONF (14)

All the three Equations (12), (13) and (14) define a lower
bound to the admissible values for the time quanta as a func-
tion of the period P .

The inequalities of Eq. (12), (13) and (14) can be very
conveniently summed side by side, revealing the following
interesting condition on the period P :

P −
∑

k∈{FT,FS,NF}

max
i=1,...,numPk

minQ(T i
k , alg, P) ≥ Otot (15)

Note that a value of P fullfilling Eq. (15) does not neces-
sarily determine a feasible solution, unless the lengths of the
time quanta satisfy the three Equations (12), (13), and (14).
The relationships must be considered as a set of instruments
that support the designer during the selection of the param-
eters. The final choice depends on the specific goal the de-
signer wants to achieve.

In order to clarify the application of the proposed tech-
nique, in the next section we show how two different design
goals bring to two different solutions.

4. Example of Application

We consider an application composed of 13 real-time
tasks requiring different operating modes. Table 1 reports
the operating mode required by each task, the task index, the
computation times, and the periods. The deadlines are as-

Mode NF FS FT

i 1 2 3 4 5 6 7 8 9 10 11 12 13

Ci 1 1 1 2 6 1 1 2 1 1 1 1 2

Ti 6 8 12 10 24 10 15 20 4 12 15 20 30

Table 1. The task set data

sumed equal to the period for simplicity, although our pro-
posed method well applies also to the case when Di ≤ Ti.

NF tasks are partitioned to the four processors avail-
able in NF mode as follows T 1

NF = {τ1}, T 2
NF = {τ2, τ3},

T 3
NF = {τ4} and T 4

NF = {τ5}. Similarly, FS tasks need to
be partitioned in two groups. The two subsets are T 1

FS =

{τ6, τ7, τ8} and T 2
FS = {τ9}. All FT tasks run on a unique

fault-tolerant processor and are not partitioned.
Once the tasks are partitioned on processors, a schedul-

ing algorithm must be selected. In this example we explore
two possible solutions: using RM to schedule the tasks in
all the subsets, and using EDF.

After the task partitioning and a suitable selection of the
scheduling algorithm, Eq. (15) describes all the feasible val-
ues of periods P . We developed a simple Matlab routine
(available on the Web at http://feanor.sssup.it/

˜bini/faultMP/) to compute all the feasible periods re-
sulting from Eq. (15). Figure 4 shows the region of feasible
periods for both EDF and RM. Notice that, as expected, the
EDF region is larger than the RM one, because every RM
schedulable task set is also schedulable under EDF.

0 0.5 1 1.5 2 2.5 3 3.5
−0.05

0

0.05

0.1

0.15

0.2

0.25

1

5

2

3

4

P (period)

le
ft

h
an

d
si

d
e

o
f

E
q

.
(1

5
) EDF

RM

Otot

Figure 4. Determining the feasible periods

The feasible regions are above the zero, because Otot ≥
0 and hence, below the zero it wouldn’t exist any feasible
period P . If the overhead is 0 then the maximum feasible
period P is 3.176 if using EDF and 2.381 if RM (points
1 and 2 in the figure). From the figure we can also find
the maximum admissible total overahead to have a feasible
solution which is 0.201 when using EDF and 0.129 when
RM (points 3 and 4).

Let us suppose a realistic example where the total over-
head is an intermediate value, e.g. 0.05 (also depicted in
Figure 4). A first possible design goal may be to mini-

mize the bandwidth wasted in overhead Otot

P
. This goal

is achieved selecting the maximum feasible period. If the
adopted scheduler is EDF, the maximum period is 2.966
(point 5). In correspondence to this period we can now find
the admissible values of Q̃FT, Q̃FS and Q̃NF from Eq. (12),
(13) and (14) respectively (see Table 2(b)).

In order to make the reader confident of the correctness
of these results we remind that a necessary condition for
the schedulability of a task set T is that the allocated band-
with is not smaller than the task set utilization U(T) (Ta-
ble 2(a)). Let us verify it for the tasks in TNF, leaving to the
reader the check for the two other modes FT and FS. Since
the bandwidth provided by Q̃NF must be sufficient to serve

every subset of TNF, we obtain the following inequality:

Q̃NF

P
= 0.275 ≥ max

i=1,...,4
U(T i

NF) = 0.250

Since this design choice does minimize the bandwidth
wasted in the mode switches, it provides the higher amount
of unused bandwidth in each mode, because the time quanta
are allocated at their maximum.

By following this design goal, inequalities (12), (13)
and (14) must hold with the equal sign and selecting any
larger time quantum would violate the last constraint. This
phenomenon happens because we have selected a period
value on the boundary of the feasible region. This solution,
however, may present a critical aspect: if we allow tasks to
dinamically arrive and leave the system, we can only take
advantage of the unused bandwidth on each mode, but the
length of the time quanta cannot be modified at all.

Instead there may be design scenarios where some tasks
arrive dynamically and it would be very convenient to
shrink or enlarge the time quanta. How do we proceed in
this hypothesis? What does the goal of our design become?

Informally speaking, we would like to select the period
such that the time quanta can vary as much as possible

at run-time. Basically we would like to redistribute, if nec-
essary, the most possible bandwidth among the modes. Let
us explain graphically how to do it. In Figure 4, the verti-
cal distance from any point (P, Otot) to the boundary mea-
sures the slack amount in Eq. (15) , when the period is set
equal to P . The slack bandwidth is maximum when the
ratio between the slack amount and the period P is maxi-
mum (indicated in Figure 4 by the maximum slope of the
dashed line). The solution found in this case is reported in
Table 2(c). Notice that 12.1% of the bandwidth can be re-

P Otot Q̃FT Q̃FS Q̃NF slack

(a) req. util. 0.267 0.267 0.250

(b)
length 2.966 0.050 0.820 1.281 0.815 0.000

alloc. util. 1.000 0.017 0.276 0.432 0.275 0.000

(c)
length 0.855 0.050 0.230 0.252 0.220 0.103

alloc. util. 1.000 0.059 0.269 0.294 0.257 0.121

Table 2. Possible design solutions

distributed dynamically, although in this case the allocated
bandwidth is much tighter to the required amount.

As a final remark, please notice that all the computation
are developed in the case of an EDF scheduler. The same
reasoning applies to the RM scheduling algorithm as well.

5. Conclusions and future work

In this paper, we propose a flexible management scheme
of a symmetrical multiprocessor platform for scheduling
periodic real-time tasks with fault-robustness requirements.

To the best of the authors’ knowledge, this is the first at-
tempt to dynamically reconfigure a hardware architecture in
different operating modes (lock-step or parallel) to support
at the same time fault-tolerance by means of hardware repli-
cation, and parallel execution for high performance. The
flexibility of the proposed platform can be used to achieve
the best trade-off between hardware replication and paral-
lelism. The methodology takes advantage of an hardware
platform capable of exploiting a high parallelism as well as
a high replication. We propose a time partitioning scheme
to alternate parallel execution modes to lock-step modes.
Finally, we propose an algorithm to find the optimal config-
uration of time partition parameters to minimize the system
overhead.

Our algorithm can be seen as a first step towards a com-
plete methodology for designing real-time fault-tolerant
systems based on a multiprocessor. As explained in Sec-
tion 3, the task allocation problem needs to be solved. Also,
in the future we will explore the possibility of providing dif-
ferent fault-tolerance services during the same time quan-
tum per period, as well as the same fault-tolerance service
during more than one time quantum per period.

Other modelling and analysis problems needs to be ad-
dressed. The most urgent is the need to model interact-

ing tasks, i.e. tasks that share resources through mutex
semaphores and tasks interacting through remote proce-
dure calls (RPC). We also need to better address the fault-
recovery phase. We plan to combine our methodology with
existing software techniques for fault-recovery (as check-
pointing and primary-backup). Moreover, we are investigat-
ing on-line reconfiguration algorithms to recover as many
tasks as it is possible after a fault.

References

[1] Hp nonstop advanced architecture - white paper. avail-

able at http://h71028.www7.hp.com/ERC/

downloads/NSAABusinessWP.pdf.

[2] Powerpc750 lockstep facility - application note.

available at http://www-306.ibm.com/

chips/techlib/techlib.nsf/techdocs/

292763D22B80DFEF872570C1006DF928/$file/

750GX_Lockstep11-17-05.pdf.

[3] Ppc405 lockstep system on ml310 - application note.

available at http://www.xilinx.com/bvdocs/

appnotes/xapp564.pdf.

[4] L. Almeida and P. Pedreiras. Scheduling within temporal

partitions: response-time analysis and server design. In Pro-

ceedings of the 4
th ACM International Conference on Em-

bedded software, pages 95–103, Pisa, Italy, 2004.

[5] M. Baleani, A. Ferrari, L. Mangeruca, A. Sangiovanni-

Vincentelli, M. Peri, and S. Pezzini. Fault-tolerant platforms

for automotive safety-critical applications. In Proceedings

of the 2003 international conference on Compilers, Archi-

tecture and Synthesis for Embedded Systems, pages 170–

177, San José (CA), U.S.A., 2003.

[6] S. K. Baruah. Partitioning real-time tasks among hetero-

geneous multiprocessors. In Proceedings of the 33
rd An-

nual International Conference on Parallel Processing, pages

467–474, Montreal, Canada, Aug. 2004.
[7] R. C. Baumann. Soft errors in advanced semiconductor de-

vices - part 1: The three radiation sources. IEEE Transaction

on Device and Materials Reliability, 1(1):17–22, Mar. 2001.
[8] P. A. Bernstein. Sequoia: a fault-tolerant tightly cou-

pled multiprocessor for transaction processing. Computers,

21:37–45, Feb. 1988.
[9] E. Bini. The Design Domain of Real-Time System.

PhD thesis, Scuola Superiore Sant’Anna, Pisa, Italy,

Oct. 2004. available at http://feanor.sssup.it/

˜bini/thesis/.
[10] E. Bini and G. C. Buttazzo. Schedulability analysis of peri-

odic fixed priority systems. IEEE Transactions on Comput-

ers, 53(11):1462–1473, Nov. 2004.
[11] M. Caccamo and G. Buttazzo. Optimal scheduling for fault-

tolerant and firm real-time systems. In Proceedings of the 5
th

International Conference on Real-Time Computing Systems

and Applications, pages 223–231, Hiroshima, Japan, Oct.

1998.
[12] X. Feng and A. K. Mok. A model of hierarchical real-time

virtual resources. In Proceedings of the 23
rd IEEE Real-Time

Systems Symposium, pages 26–35, Austin (TX) U.S.A., Dec.

2002.
[13] J.-Y. Le Boudec and P. Thiran. Network Calculus, volume

2050 of Lecture Notes in Computer Science. Springer, 2001.
[14] G. M. d. A. Lima. Fault Tolerance in Fixed-Priority Hard

Real-Time Distributed Systems. PhD thesis, University of

York, York, England, May 2003.
[15] G. Lipari and E. Bini. A methodology for designing hierar-

chical scheduling systems. Journal of Embedded Comput-

ing, 1(2):257–269, 2004.
[16] J. M. López, M. Garcı́a, J. L. Dı́az, and D. F. Garcı́a. Utiliza-

tion bounds for multiprocessor rate-monotonic scheduling.

Real-Time Systems, 24(1):5–28, Jan. 2003.
[17] D. Mossé, R. Melhem, and S. Ghosh. Analysis of a fault-

tolerant multiprocessor scheduling algorithm. In Proceed-

ings of the 24
th International Symposium on Fault-Tolerant

Computing, pages 16–25, Austin (TX), U.S.A., Apr. 1994.
[18] S. Punnekkat. Schedulability Analysis for Fault Tolerant

Real-Time Systems. PhD thesis, University of York, York,

England, June 1997.
[19] I. Shin and I. Lee. Periodic resource model for compo-

sitional real-time guarantees. In Proceedings of the 24
th

Real-Time Systems Symposium, pages 2–13, Cancun, Mex-

ico, Dec. 2003.
[20] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and

L. Alvisi. Modeling the effect of technology trends on the

soft error rate of combinational logic. In Proceedings of the

2002 International Conference on Dependable Systems and

Networks, pages 389–398, Bethesda (MD), U.S.A., 2002.
[21] A. Srinivasan and J. H. Anderson. Optimal rate-based

scheduling on multiprocessors. In Proceedings of the 34
th

ACM Symposium on Theory of Computing, pages 189–198,

Montreal, Canada, 2002.

