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This paper discusses some problems possibly arising when approximating via Monte-
Carlo simulations the distributions of goodness-of-fit test statistics based on the empir-
ical distribution function. We argue that failing to re-estimate unknown parameters
on each simulated Monte-Carlo sample — and thus avoiding to employ this infor-
mation to build the test statistic — may lead to wrong, overly-conservative testing.
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Furthermore, we present some simple examples suggesting that the impact of this pos-
sible mistake may turn out to be dramatic and does not vanish as the sample size
increases.
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1. Introduction

This paper discusses some problems possibly arising when approximating — via
Monte-Carlo simulations — the distributions and critical values of the most com-
monly employed goodness-of-fit (GoF) tests based on empirical distribution func-
tion (EDF) statistics [3,21].

This situation arises very frequently — in many areas of statistical physics or
econophysics — when the researcher aims at fitting some experimental or empirical
(univariate) sample with a parametric (univariate) probability distribution whose
parameters are unknown. In such cases, the goodness of fit may be ex-post evaluated
by employing standard statistical tests based on the EDF. However, critical-value
tables are only available for testing particular distributions (e.g. normal, exponen-
tial, etc.). If, as it typically happens, critical-value tables are not available, one has
to resort to Monte-Carlo methods to derive the approximated distribution of the
test statistics under analysis.

Some issues related to this problem have been discussed from a theoretical
perspective in Refs. 20 and 2. Here we take a more applied approach and we
show that, when testing with unknown parameters, the Monte-Carlo procedure
employed to approximate the critical values must involve the maximum-likelihood
(ML) re-estimation of unknown parameters on each simulated sample. The common
procedure of estimating the unknown parameters once and for all at the beginning
of the Monte-Carlo procedure leads to wrong, overly-conservative hypothesis tests.

The rest of this paper is organized as follows. Section 2 formalizes the general
GoF test under study and discusses the main problems associated with the approxi-
mation of EDF-based GoF test statistic distributions from a theoretical perspective.
Section 3 presents an application to the case of normality with unknown parame-
ters. Finally, Sec. 4 discusses the main findings of the paper and concludes with a
few remarks.

2. Approximating EDF-Based GoF Test Statistic Distributions

In many applied contexts, the researcher faces the problem of assessing whether
an empirical univariate sample z = (z1,...,2x) comes from a (continuous) dis-
tribution F'(z;#), where 6 is a vector of unknown parameters. EDF-based GoF
tests [3,21] employ statistics that are non-decreasing functions of some distance
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between the theoretical distribution under the null hypothesis Hy : x5 ~ F(x;0)
and the empirical distribution function constructed from z,;, provided that some
estimate of the unknown parameters is given.

In what follows, we will begin by focusing on the simplest case where F(z;6)
has only location and scale unknown parameters. Furthermore, we will limit the
analysis to four out of the most used EDF test statistics, namely Kolmogorov—
Smirnov [15,16], Kuiper [13], Cramér—Von Mises [17] and Quadratic Anderson—
Darling [1], with small-sample modifications usually considered in the literature.?

It is well-known that if one replaces € with its maximum likelihood (ML)
empirical-sample estimate Q(g ~ ), the distribution of the EDF test statistic under
study can be shown to be independent of the unknown true parameter values [5].
However, test statistic distributions are hard to derive analytically. They must
therefore be simulated via Monte Carlo and critical values must be computed
accordingly. To do so, let us consider a first possible procedure:

Procedure A

Step A1l Generate a sufficiently large number (say, M > 0) of independently-
drawn N-sized samples ng = (2{7 e ,z{v), j=1,..., M, where each zf 18
an i.i.d. observation from a F(x;0(xy)), i.e. from the distribution under
Hy where unknown parameters are replaced by their empirical-sample
estimates.

Step A2 For each N-sized sample gg\“ compute the relevant EDF test statistic
by comparing the EDF built from gg\, with the theoretical distribution
F(gf\“é(g ~)) where the unknown parameters are always replaced with
the corresponding estimates obtained once and for all from the empirical
sample. Repeat for all the M samples.

Step A3 Compute the empirical distribution function T of the test statistic.

Step A4 Compute (upper-tailed) critical values, for any given significance level
«, by employing the empirical distribution function T of the EDF test
statistic as obtained in Step AS3.

Procedure A is not correct, in the sense that it generates a completely wrong
approximation to the “true” distribution of the test statistic under the null hypoth-
esis. The reason why Procedure A is not correct lies in Step A2. More precisely,
when we compare the EDF constructed from gg\, with the theoretical distribution
F(Z)y,0(zy)), we are assuming that our estimate for  does not depend on the
actual sample ggv under analysis. This is the same as presuming that the hypoth-
esis test is performed for known parameters. On the contrary, sticking to the null
hypothesis implies that the theoretical distribution which should be compared to the

aFor more formal definitions, see Ref. 3, Chap. 4, Table 4.2. Small-sample modifications have
been applied to benchmark our results to those presented in the literature. However, our main
findings remain qualitatively unaltered if one studies test statistic distributions without small
sample modifications.
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EDF of gg\, must have parameter estimates that depend on the actual Monte-Carlo
sample igv' In other words, scale and location parameters § must be re-estimated
(via, e.g. ML) each time we draw the Monte-Carlo sample. Let é(gg\,) be such an
estimate for sample j. This means that the theoretical distribution to be used to
compute the test statistic would be F(z4,8(z})) and not F(z,8(zy)). The cor-
rect procedure therefore reads:

Procedure B

Step B1 Same as Al.

Step B2 For each N-sized sample gg\,, compute the relevant EDF test statistic
by comparing the EDF built from gg\, with the theoretical distribution
F(ZN, 0(2))), where the unknown parameters are replaced with estimates
Q(_ ) obtained from the j-th Monte-Carlo sample. Repeat for all the M
samples.

Step B3 Same as A3.

Step B4 Same as A/.

In the next section, we show that the shifts in the Monte-Carlo approximation to
the distribution of the test statistics under study are significant when we compare
Procedures A and B.

3. Application: Testing for Normality with Unknown Parameters

Let us consider the null hypothesis that the empirical sample comes from a normal
distribution N(u, o) with unknown mean (u) and standard deviation (o). In such
a case, parameters may be replaced by their ML estimates (m(zy),$(zy)), e
sample mean and standard deviation. For the normal distribution, critical values
for the four test statistics under study are already available. Our goal is therefore to
compare Monte-Carlo approximations to the distributions of the four test statistics
obtained under Procedures A and B.

We thus have two setups. In the first one (Procedure A), we do not re-estimate
the parameters and we always employ (m(xy), $§(xy)) to build the theoretical dis-
tribution. In the second one (Procedure B), we re-estimate via ML mean and stan-
dard deviation on each simulated sample by computing (7(z% ), (z%)) and then
use them to approximate the theoretical distribution of the test statistic.

Our simulation strategy is very simple. Since the argument put forth above does
not depend on the observed sample’s mean and standard deviation, we can sup-
pose that (m(zy), §(zx)) = (0,1) without loss of generality.” For each of the four
test statistics considered, we run Monte-Carlo simulations to proxy its distribution

b Alternatively, one can standardize the observed sample and generate Monte-Carlo sample repli-
cations from a N(0,1) without loss of generality.
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under the two setups above.® In both setups, we then compute the critical values
of the test statistics associated to any significance level (or p-value).

To begin with, Table 1 shows critical values for all 4 tests at o = 0.05 signifi-
cance level, and for different combinations of N (sample size) and M (Monte-Carlo
replications). If we employ Procedure B, we obtain the same critical values pub-
lished in the relevant literature for the case of normality with unknown parameters
(compare, e.g. our Table 1 with Table 1A-1.3 on p. 732 in Ref. 18). On the con-
trary, if we employ procedure A, critical values dramatically increase. The effect is
of course more evident in the case of so-called “quadratic statistics” (Cramér—Von
Mises and Quadratic Anderson—Darling), but is equally relevant also in the case
of “supremum statistics” (Kolmogorov—Smirnov and Kuiper). What is more, Pro-
cedure A allows us to obtain critical-value figures which are very similar to those
found in the literature for the case of normality with completely specified, known
parameters.

The figures in Table 1 imply also that if we wrongly employ Procedure A, we
end up with test statistics that are dramatically more conservative (at o = 0.05)
than if we correctly employ Procedure B. This is true irrespective of the significance
level. As Fig. 1 shows, the A versus B gap between critical values remains relevant

Table 1. The normal distribution. Critical values at significance level a = 0.05 for the four EDF
tests considered. Procedure A: Always using empirical-sample estimates. Procedure B: Parameters
are re-estimated each time on Monte-Carlo sample. KS = Kolmogorov—Smirnov; KUI = Kuiper;
CVM = Cramér—Von Mises; AD2 = Quadratic Anderson—Darling.

KS KUI CVM AD2

N M Proc B Proc A ProcB Proc A ProcB ProcA ProcB ProcA

10 100  0.8220 1.2252 1.4235 1.6138 0.0690 0.2807 0.7194 2.2727
1000  0.8564 1.3035 1.4485 1.7270 0.0706 0.3707 0.6996 2.6139
10000  0.8648 1.3482 1.4565 1.7314 0.0757 0.3800 0.7442 2.7667

50 100  0.8159 1.4965 1.4376 1.7671 0.0985 0.5941 0.6863 3.1936
1000  0.8928 1.3813 1.4783 1.7715 0.1111 0.4512 0.7424 2.4106
10000  0.8931 1.3623 1.4867 1.7489 0.1146 0.4446 0.7553 2.5414

100 100  0.9380 1.4601 1.5831 1.7954 0.1308 0.4902 0.7664 2.7079
1000  0.8839 1.3525 1.5083 1.7162 0.1129 0.4634 0.7172 2.6332
10000  0.8969 1.3587 1.4933 1.7407 0.1199 0.4478 0.7425 2.4740

500 100  0.9177 1.2389 1.531 1.7857 0.1146 0.3455 0.7231 2.0889
1000  0.9125 1.3316 1.5139 1.7250 0.1273 0.4333 0.7769 2.3941
10000  0.9108 1.3576 1.4998 1.7544 0.1261 0.4628 0.7543 2.5423

1000 100 0.9443 1.3723 1.4753 1.7879 0.1312 0.4116 0.7998 2.3795
1000  0.9041 1.3858 1.5103 1.7814 0.1246 0.4674 0.7700 2.5817
10000  0.9121 1.3606 1.5108 1.7575 0.1267 0.4578 0.7581 2.5076

5000 100  0.9689 1.2911 1.5656 1.8264 0.1405 0.4107 0.8099 2.2523
1000  0.8944 1.3807 1.4801 1.7478 0.1204 0.4513 0.7180 2.4596
10000  0.9116 1.3606 1.5120 1.7424 0.1274 0.4617 0.7613 2.5073

€All simulations are performed using MATLAB®7 version 7.4.0.287 (R2007a).
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Fig. 1. The normal distribution. Critical values versus p-values for the four test statistics under
study. Empirical sample size: N = 5000. Number of Monte-Carlo replications: M = 10000. Solid
line: Procedure B (parameters are re-estimated each time on Monte-Carlo sample). Dashed line:
Procedure A (always using empirical-sample estimates).

for all (reasonable) p-value levels. In other words, the wrong choice of employing
Procedure A induces a shift to the right of (and reshapes) the entire test statistic
distribution. To see this, in Fig. 2 we plot the estimated cumulative distribution of
all 4 test statistics under the two setups.

It is worth noting that the above results do not depend on the empirical sample
size. In fact, one might argue that the mismatch between the two procedures may
be relevant only for small N’s but should vanish as N gets large. This is not true:
the gap remains there as N increases within an empirically-reasonable range and
for any sufficiently large number of Monte-Carlo replications (M) — see Fig. 3 for
the case M = 10000.

4. Discussion and Concluding Remarks

In this paper, we have argued that failing to re-estimate unknown parameters
on each simulated Monte-Carlo sample (and not employing this information to
compute the theoretical distribution to be compared with the sample EDF) may
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Fig. 2. The normal distribution. Estimates of cumulative distribution function (Cdf) for the four
test statistics under study. Empirical sample size: N = 5000. Number of Monte-Carlo replications:
M = 10000. Solid line: Procedure B (parameters are re-estimated each time on Monte-Carlo
sample). Dashed line: Procedure A (always using empirical-sample estimates).

lead to wrong, overly-conservative approximations to the distributions of GoF test
statistics based on the EDF. Furthermore, as our simple application shows, the
impact of this possible mistake may turn out to be dramatic and does not vanish
as the sample size increases.

Notice that similar issues have already been discussed in the relevant literature
[9,12, 14, 18]. More specifically, Ref. 19 shows that the mean of the Anderson—
Darling statistic shifts towards the left when the parameters of the population
distribution are unknown. Furthermore, Ref. 20 and Ref. 2 discuss the problem
of approximating EDF test statistics from a rather theoretical perspective. Yet,
despite the success of EDF-based GoF tests, no clear indications were given — to
the best of our knowledge — about the practical correct Monte-Carlo procedure
to be followed in order to approximate test statistic distributions in the case of
unknown parameters. This paper aims at shedding more light on the risks resulting
from a wrong specification of the Monte-Carlo simulation strategy, in all cases
where critical-value tables are not already available. Given the lack of contributions
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Fig. 3. The normal distribution. Critical values versus empirical sample size N (in log scale)
for the four test statistics under study. Number of Monte-Carlo replications: M = 10000. Solid
line: Procedure B (parameters are re-estimated each time on Monte-Carlo sample). Dashed line:
Procedure A (always using empirical-sample estimates). Symbols stand for significance levels:
o =0.10, x = 0.05, 0= 0.01.

addressing this topic, and the subtle nature of the choice between Procedure A and
B, our feeling is that mistakes may be more likely than it may seem.

A final important remark is in order. In our discussion we deliberately focused on
the case where parameters to be estimated are location and scale. In such an “ideal”
situation, as we noted, the distributions of the four EDF-based test statistics that
we have considered do not depend on the true unknown parameters. Therefore,
in principle, to approximate their distributions one may generate, in Step B1, a
sufficiently large number of independently-drawn N-sized samples from a F(z;6"),
where 0" is any given value of the unknown parameters, and not necessarily their
empirical-sample estimates é(g ~)- Since the distribution of the test is location- and
scale-invariant, we just need to make sure to apply Step B2 (i.e. re-estimation of 8
using g{v) in order to avoid the implicit assumption that parameters are known.

What happens if instead parameters are not location and scale but are still
unknown? In such a case, test statistic distributions do depend on the true unknown
parameter values [4,8]. Therefore, Step B1 may be considered as a first (good) guess
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towards the approximation of test statistic distributions. In fact, when parameters
are not location and scale, one cannot employ any given 6* to generate Monte-
Carlo samples. Since the “true” test statistic distribution depends on the “true”
unknown parameter values, one would like to approximate it with a sufficiently
similar (although not exactly equal) distribution, which can be easily obtained —
provided that Procedure B is carried out — by employing the empirical sample
estimates 0(z ).

To shed more light on this situation, we consider here two additional distri-
butions, namely Beta [11] and Generalized Extreme Value (GEV) [10], for which
some shape parameters must be estimated. We repeat the exercise done in the pre-
vious sections by using samples drawn, respectively, from a Beta distribution having
both (shape) parameters equal to 2, and from a GEV distribution having parame-
ters equal to 0.2 (shape), 2 (scale) and 1 (location). The cumulative distributions
of the four test statistics for both setups are reported in Figs. 4 (Beta distribution)
and 5 (GEV distribution).
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Fig. 4. The Beta distribution. Estimates of cumulative distribution function (Cdf) for the four
test statistics under study. Empirical sample size: N = 5000. Number of Monte-Carlo replications:
M = 10000. Solid line: Procedure B (parameters are re-estimated each time on Monte-Carlo
sample). Dashed line: Procedure A (always using empirical-sample estimates).
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tion (Cdf) for the four test statistics under study. Empirical sample size: N = 5000. Number
of Monte-Carlo replications: M = 10000. Solid line: Procedure B (parameters are re-estimated

each time on Monte-Carlo sample). Dashed line: Procedure A (always using empirical-sample

estimates).

As the two figures show, Procedures A and B still produce different critical val-
ues for the four GoF tests considered. Therefore, the main insight of the paper is
confirmed also when estimation does not concern location or scale, but focuses on
the more general and frequent case of unknown shape parameters. In such situa-
tions, critical-value tables are not typically available, because they would depend on
the empirical sample to be tested. Monte-Carlo simulations are therefore required
and choosing the correct Procedure (B) instead of the wrong one (A) might become

even more crucial than in the location/scale case.
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